Reply to Reviewers — Smith et al., 2017

Comments - Editor

1. Your groundtruthing is not that solid. There is a well-established link between surface air temperatures
and melt onset (e.g. Libo Wang et al. 2008, RSE) that you could investigate using surface climate
observations. River flow data is another potential source of groundtruth information.

We have added an external validation section to the MS leveraging MODIS snow covered fraction
(MOD10C1, Hall and Riggs, 2016) for assessing the end dates and High Asia Refined Analysis surface
temperature (HAR - Surface Temperature, Maussion et al., 2014) for assessing the onset of melt. This is
explained in more detail in specific reviewer comments below (General comments of reviewer 1, specific
comment 2 of reviewer 2) as well as in the MS.

2. | suggest you make the study rationale a bit clearer in the Introduction e.g. the reason for monitoring
snow melt duration. This is discussed in the Hydrologic Implications section, but it would be useful to
make this clear at the beginning of the paper.

We have updated the introduction to expand on the rationale behind our study.

Comments — Reviewer 1

In this paper, the authors use passive microwave data to identify snowmelt onset, snowmelt end and
snowmelt period over the High Mountain Asia (HMA) region. They verify the results of an automated
algorithm by comparison to manually identified dates in the microwave signal and find it matches to
within 5 days. They then use the algorithm to calculate the melt onset, end and period over 29 years and
evaluate trends across the region. The paper is well written and provides a long-term record of snowmelt
trends across a region where snowmelt is a critical source of water supply. They use an existing method
for identifying melt, but apply new techniques for detecting onset and end, as well as a hierarchical
clustering method to identify spatial patterns in the data. This paper contributes to the literature in an
understudied area of

the world.

My main feedback is that the lack of validation data for this technique raises a number of questions. It
would be useful to see validation of the approach in this region that would lend confidence to the results,
independent of the microwave data. Some possible data sources that could be used include snow
covered area from MODIS or VIIRS to estimate snowmelt end dates. Discharge data, if available, could be
used to verify the onset of melt by evaluating the rising limb of the snowmelt hydrograph. Similarly, it
may be possible to examine shifts towards earlier melt timing by looking at the hydrograph centroid.
(See Regonda et al. 2004, Seasonal Cycle Shifts in Hydroclimatology over the Western United States,
Journal of Climate, Vol. 18). Alternatively, temperature data may provide some verification of onset
dates. If these data are not available, then demonstrating the approach in an area with data would be
useful.



Thank you for the detailed comments and review. We agree that the lack of spatially and temporally
extensive control data is a limitation of the study. Unfortunately, long-term, spatially extensive, and
high-quality snow records are simply not available for the study region. In our revision, we leverage
MODIS MOD10C fractional snow cover (Hall and Riggs, 2016) to assess the reliability of our snowmelt
end dates, and High Asia Refined Analysis (HAR) modeled surface temperatures (Maussion et al., 2014)
to examine our snowmelt onset dates.

We find that our snowmelt end dates agree very well (slope = 1.00, R2 = 0.99, n=34,468 over 16 years)
with the date of MODIS snow clearance (defined here as 5 out of 7 days below 5% snow-covered area).
A comparison of MODIS and algorithm snow clearance dates is found below in Figure 1 of this reply. This
figure and related discussion have been added to the manuscript in the Results section.
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Figure 1 — Comparison of snowmelt clearance dates with MODIS MOD10C1. There is nearly 1-1 agreement between the chosen
dates for snowmelt end (slope = 1.00, rsq =0.99, n=34,468). Nearly all algorithm-derived melt dates show less than 5% MODIS
fractional snow cover, with nearly 50% showing less than 1% snow cover.

We only compare those dates where there is no cloud cover within 7 days of our algorithm-determined
snowmelt end date to limit our analysis to only those years where both methods should provide equally
accurate snowmelt end dates.

The accuracy of snowmelt onset dates is somewhat more complicated to determine. Snowmelt onset
for this paper could be defined as either the first appearance of liquid water in the snowpack or the
beginning of the primary ‘melt-off’ phase, where there are no more significant snowfall events detected
in the passive microwave data and SWE generally starts to decline. In the original manuscript, we chose



simply the highest XPGR peak, which could correspond to either of these dates, depending on the
climate — and particularly temperature — context of any given location. In this revision, we have updated
the algorithm to flag years where there are multiple coherent peaks in the XPGR time series as being
unreliable. These data points are no longer included in the trend analysis components of the paper to
ensure that we only examine trends in reliably identified snowmelt dates. We find that ~25% of all
snowmelt onset dates across all locations are flagged as unreliable, and thus we use 15% less data
overall. Trend values are changed in some cases (cf. Fig 9 in the updated MS), mostly on the Tibetan
Plateau where fewer trends are now statistically significant. A small area of the far eastern Tibetan
Plateau shifts from slightly positive onset to slightly negative onset as well. Otherwise, the large-scale
trend patterns are maintained. A more detailed discussion of this update is given below in response to
reviewer 2 - Comment #3, as well as in Figure 2 of this reply.

General comments:

1. The 36 GHz signal saturates out in deep snow, which | expect much of this area experiences. How does
that affect the gradient ratio approach, since the difference may remain fairly constant for much of the
season? How do you know you’re selecting the actual maximum XPGR?

Signal saturation is a problem in HMA and elsewhere — particularly in mountainous regions — and
dramatically reduces the reliability of SWE estimates. However, even with signal saturation, the
appearance of liquid water in the snowpack will cause ‘spikes’ in the XGPR signal due to the drastic
difference between the passive microwave signal response to dry snow (volume scattering of the bare-
earth passive microwave signal inside the snowpack) and wet snow (emission of passive microwave
signal from the water layer). Our algorithm is sensitive to these spikes and we thus argue that it
identifies snowmelt, even in cases where saturation may occur.

2. Related to question 1, the XPGR seems to follow the calculated SWE signal. How does the calculated
SWE compare to general estimates of SWE in the region? Is it reasonable, or is there evidence of signal
saturation?

Unfortunately, in-situ estimates of SWE in the region are sparse. Previous work has reported reasonable
results for Western China (Che et al. 2008), but SWE estimates in complex and deep-snow terrain are
generally considered unreliable (Tedesco et al., 2015). Without reliable in-situ estimations it is hard to
quantify the degree of SWE underestimation due to saturation, but comparisons to modeled results
(WRF, HAR) indicate that SWE is underestimated in HMA in some areas.

We aim to exploit shifts native to the time-series of each individual pixel instead of using absolute
thresholds for tracking melt, as has been done in previous studies (e.g., Abdalati et al. 1995, Monahan
and Ramage, 2010), so the reliability of absolute SWE measurements should not have an outsized
impact upon our algorithm.

3. Itis interesting that some of the trends change after 2002, when several additional instruments begin
to be available and are included in the analysis. Is it possible that differences in the sensors are causing
different results?



While it is possible that the differences in the sensors could have impacted the results, we think this is
unlikely, as we explicitly designed the algorithm to be sensor-independent. First, our results rely on the
XPGR, which is a normalized ratio and which should mitigate some, if not all, of the sensor-related
differences between instruments. Second, we examine peaks native to each single-instrument time
series, so detected melt onset and end dates are native to each instrument. Third, and most
importantly, when there are multiple instruments providing a melt date for a given year, we use a
conservative strategy for choosing a single melt onset/end date for each year.

For melt onset, if the time series has multiple coherent peaks (defined as two peaks within 5% of each
other more than 3 weeks apart, the year is flagged as unreliable for melt onset determination (~25% of
the total number of melt onset dates across all locations and years are flagged as such, with a few
regions). If two instruments are providing a melt date, and they are less than two weeks apart, we
choose the earliest date between the two. If there are three melt onset dates, we choose the median
onset date. If the melt onset dates are more than two weeks apart, we flag the year as unreliable. We
then use a similar strategy for the end of the melt season, which is generally better constrained by our
algorithm. The only difference between the strategy for melt onset and melt end is when there are two
end dates more than two weeks apart, we choose the date that is closest to the long-term average melt
end date instead of flagging that year as unreliable.

4. Following on question 3, in section 2.3 the method used to merge the datasets for the hierarchical
clustering analysis is described. Was this merged dataset also used in the snowmelt tracking analysis? If
not, then explain why differences in the sensors wouldn’t impact the estimated melt onset and end
dates. If yes then this description should be included earlier.

The merged dataset was not used for the snowmelt tracking analysis to limit the impact of inter-sensor
differences on the determination of melt onset and end. Merging the multiple passive microwave
datasets introduces noise to the time series, which in turn impacts placement and magnitude of the
peaks used to determine melt onset. We instead used the strategy described in reply to comment #3
above to choose the melt dates for years with multiple sensors. We only use the merged dataset for (1)
display purposes on figures in the manuscript, and (2) for the hierarchical clustering. We chose to use
the merged dataset for the hierarchical clustering to extend the time period we cluster over and to
include data from each sensor to increase our cluster robustness throughout the entire study time
period, despite the increase in noise from using multiple merged time series.

5. The manual selection of dates based on the time series seems subjective. It would be useful to include
additional information on how those dates were selected. For example in Figure 3 — in both 2009 and in
2010 there were two peaks of similar magnitude during the winter season. In 2009 the one closer to the
end of the season was selected despite appearing less than the earlier one. In 2010 the one very early in
the season was selected despite there being an almost equal peak later on. The description in section 3.1
should be clearer.

We examined not only the XPGR, but the SWE and Tb37V signal at each year to determine snowmelt
onset. Both 2009 and 2010 are complex cases, where there are multiple strong candidates for the onset
of snowmelt. In 2009, the higher SWE total in the earlier peak, followed by a decreasing by oscillating
SWE total, pointed to the earlier XPGR peak as the onset of melt. In 2010, the generally decreasing SWE



total throughout the winter, punctuated one large event and then a return to the previous decreasing
curve a few weeks later indicated that the main snowmelt season started earlier. However, in both cases
it could be argued that either peak represents the true start of the snowmelt season.

Please see the reply to comment #3 above about changes in the algorithm related to flagging poorly
constrained years. Our updated comparison of our algorithm dataset and our control dataset does not
include comparison of these poorly constrained melt onset dates. These dates are also no longer used in
the assessment of snowmelt trends.

Specific comments:
1. Page 3, Line 25: why was this algorithm chosen over the other methods referenced in the
introduction?

We choose this method due to (1) simplicity, (2) speed of calculation, and (3) lack of reliance on pre-
calculated metrics or assumptions. For example, diurnal temperature algorithms rely on fixed
differences between day and night temperatures to detect melt; these differences are neither constant
in space nor in time (intra- and inter-seasonal) across our large and diverse study area. We found that
the XPGR algorithm was well-suited to the time series approach we use, and was fast enough to
compute for the entire dataset we used. It has the additional advantage of only relying on night-time
data, which somewhat limits the impact of sporadic daytime melt (due to solar radiation) on our results.

2. Section 2.1: additional background information on passive microwave detection of snow and
snowmelt is needed, specifically on how the signal is affected by liquid water in the snow at different
frequencies.

Section 2.1 (Section 2.2 in the new MS) has been updated with additional information on the
interactions of snow and passive microwave radiation.

3. Page 4, Line 7: Was SWE calculated using the Chang algorithm on Tb from the different sensors? Or
are you using the SWE products developed for the different sensors? Adding the equation would be
useful. How do you combine multiple sensors when available?

We use the original Chang algorithm for each sensor, albeit tuned to each sensor (i.e., the Chang
algorithm is offset by 5K when the AMSR-E frequencies are used). As our algorithm relies primarily on
the normalized XPGR index and we do not aim to provide a tightly-constrained SWE product, we
leverage a single, consistent algorithm across all satellite datasets. We have added the equation to the
MS in Section 2.1. We combine the SWE datasets for display purposes (e.g., Figure 3 of the MS) by
resampling a combined, multi-instrument, timeseries to the daily mean SWE value.

4. Page 5, line 2: Not sure what is meant by “regularize”.

We perform a simple linear regression of the overlapping pieces of the time series to determine the
offset between the overlapping datasets. We then add or subtract the determined coefficients to bring



the time series closer to a single coherent dataset (cf. Figure 2 of the MS) in order to use the longest
possible time frame for our hierarchical clustering. We have clarified this in-text.

5. Page 5, lines 23-25: How does the standard deviation of the melt onset date vary spatially? It seems
this approach would work best in high elevation/deep snow regions, whereas along the edges in lower
elevation where the snow is more ephemeral there might be more error. This would also affect estimates
of melt period.

Very true. However, we find that the highest deviation regions are those areas where deep snow
impacts the algorithm, or late-season storms change the snowmelt onset date from year-to-year.
Ephemeral snowmelt is actually tracked quite well, as it tends to have sharp peaks and a single,
continuous melt-off curve. Those areas where snow varies significantly year-to-year, and areas with
multiple SWE peaks, are more difficult (ie, in the Karakoram, cf. Fig 2 of this reply and Figure S5 in the
revised manuscript). We have attempted to reduce this error by flagging unreliable years in our melt
dataset as described above. A map of the standard deviation of melt onset dates for 29 years has also
been added to the Supplement (Figure S5). Note that many low-STD regions are areas where there is
almost no snow (e.g., Tarim Basin and low-elevation areas of the Himalayan front). These areas are not
included in our trend analysis.
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Figure 2 — Standard deviation in snowmelt period, calculated over the full 29-year dataset. Low standard deviation areas follow
low-SWE and low-elevation zones, with more variable snowfall regions (ie, Karakoram) showing higher standard deviations.

6. Page 6, line 8: Where you say, “snow is present for less than a month on average.” Are you referring to
the snowmelt period or the entire snow season? That sounds like the entire season, but everywhere else
is referring to melt period.

You’re correct, we refer here to short snowmelt periods. We remove data that have a long-term average
snowmelt period of less than 20 days. We have updated the wording in the MS.



7. Page 6, line 24: You say, “As can be seen in Figure 3, inter-annual variation in snowfall can cause large
disparities in the yearly dates of snowmelt onset and end.” Based on Figure 3 there doesn’t appear to be
a lot of variability — the peak SWE is around 100mm each year. Are you referring to timing of snowfall
events?

Yes, we refer here to the timing and magnitude of SWE buildup and melt. Each year has quite different
peak locations, and relative peak sizes. This has been clarified in the MS.

8. Figure 1. Can you identify on the overview map the location of the sample data shown in figures 2 and

37

This has been updated.

9. Figure 4: What do the gray areas on the plateau represent? Provide an explanation, similar to figure 6.

This has been updated.



Comments — Reviewer 2

Passive microwave satellite data have been used for snowmelt onset detection on nearly all components
of the cryosphere (e.g. ice sheets, sea ice, lake ice, and seasonal snow cover) mainly at the northern
middle to high latitudes and Antarctica, where there is permanent or relatively stable snow accumulation
each winter. It has also been used to classify daily freeze/thaw state dynamics for global vegetated land
cover regions without distinguishing individual elements of the landscape (e.g. soil, vegetation, snow).
The current study detects snowmelt onset/end dates and snowmelt season in Tibetan Plateau and its
surrounding mountain ranges, and analyzes trends in snowmelt timing during the 1987-2016 period.
Snowmelt onset detection is based on the crossed-polarized gradient ratio (XPGR) algorithm developed
in previous studies, and the end of snowmelt is determined by time series of Tb37v and snow water
equivalent (SWE) calculated using the Chang et al. (1987) algorithm. It is a useful extension to previous
studies. However, there are several caveats in the method used for snowmelt onset/end detection in this
study as described below.

Specific Comments

First of all, there are no in situ observations used for either thresholds calibration or results validation. |
wonder how the authors know the selected thresholds are associated with the actual snowmelt
onset/end? Although a manual control dataset was generated and used for results evaluation, the
control dataset was produced subjectively from the interpretation of the satellite data only.

In the updated manuscript we have added a section comparing our results to MODIS snow cover and
HAR mean daily surface temperature (see also reply to comment #1 of reviewer 1, and the extended
discussion of comparison to control datasets in response to your comment below). In situ data at the
correct spatial and temporal scale simply does not exist for the majority of the study region, so we rely
on these proxies instead. An updated discussion of the caveats of the method and uncertainties is
included in the MS.

The annual peak value of XPGR was used to identify snowmelt onset, which appears to correspond to
dates of annual maximum SWE and very low Tb37v (Fig.3). Fig.3 shows that the brightness temperatures
at 37GHz are <= 225K on the detected snowmelt onset dates for three out of the four winters. From my
experience, the snowpack is unlikely to be melting under such low brightness temperatures. The
magnitude of Tb37v was used as a condition for snowmelt detection in some previous studies, but it was
always >= 248K.

Thank you for this important critique. We have modified our algorithm as described in comment #3 of
reviewer #1. In addition to this, we have compared our melt onset dates to both MODIS fractional snow-
covered area and HAR modeled surface temperature. Figure 3 below shows the HAR surface
temperature distribution at melt onset. While average daily temperatures tend to be negative, daytime
temperatures are often positive (average 4C), with large (20+ degree) temperature variation. Figure 4
below shows a direct comparison between our melt onset dates and the MODIS and HAR datasets. As
can be seen in the middle panel, the onset of melt correlates with the peak of MODIS fractional snow
cover, and with the yearly minimum temperature from HAR (this has been added to the Supplement as
Figure S2). This implies that our melt algorithm is capturing the turning point where snow ceases to
increase and starts melting out. These figures have been added to the Supplement.



We also compared HAR air temperature to the raw Brightness Temperature (Tb) values (Figures 5 and 6
of this reply and S3-4 in the updated Supplement), and found that while there is a definite correlation
between air temperature and Tb, positive surface temperatures are associated with a wide range of
possible Tb values. The Th-Temperature distribution is also quite different between spatial locations,
implying that a single threshold would not be appropriate for determining the possibility of snowmelt
from Tb values.
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Figure 3 — HAR modeled hourly surface temperature (Maussion et al., 2014) at the date of algorithm-melt onset. Average daily

temperature (red) and average daytime temperature (blue) show divergent means, where the onset of melt is characterized by

below zero average temperatures, but daytime temperatures that are positive. The average daily range of temperatures (black)
shows quite large variability in 24h temperature profile at the onset of snowmelt.
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Figure 4 — Representative sample point showing SWE (top, this study), MODIS fractional snow covered area (middle, Hall and
Riggs, 2016), and HAR daily average temperature (bottom, Maussion et al., 2014) over the period 2001-2009. Algorithm-derived
melt onset dates (dashed lines, black) and end dates (solid lines, red). Years with multi-peaked XPGR data do not return a melt
onset date. Melt onset dates correlate well with peak annual snow-covered area (middle) and the yearly minimum temperature
(bottom), implying that our melt algorithm captures the onset of the snowmelt season accurately. Data taken from 71.25E,
36.75N.
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Figure 5 — HAR Average daily temperature vs Temperature Brightness (37V in green, 18H in red). Both channels show
correlations with air temperature, but show a wide spread. This observation indicates that there is no single Temperature
Brightness threshold that can be used for snowmelt detection.
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Figure 6 — HAR temperature metrics vs Tb at snowmelt onset. Both 37V (blue) and 18H (red) channels show significant spread.
While there is a slight correlation between average daily temperature and Tb, average daytime temperature is very poorly
related to Th. This implies that the night-time passive microwave data we use to track snowmelt onset still captures the impacts

of above-zero daytime temperatures.
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The XPGR algorithm was developed and used for melt detection on the Greenland ice sheet. Several
studies have shown that the XPGR technique detects less melt extent and duration than other algorithms
(e.g. Ashcroft and Long, 2006; Fettweis et al., 2006). Ascraft and Long (2006) compared six different melt
detection methods using either active or passive microwave satellite data over the Greenland ice sheet
for the year 2000, including the XPGR method. They found that compared to other methods, XPGR
detected significant less melt extent and duration on Greenland (see Table 2 from their paper).
Therefore, in my opinion the XPGR method is not suitable for snowmelt detection, especially without
proper calibration/validation.

In our usage of the XPGR, we do not rely on static melt thresholds, as has been done in the original
Abdalati and Steffen (1995) study and the studies of Fettweis et al. (2006) and Ashcroft and Long (2006).
Ashcroft and Long (2006) note that “with XPGR, local maxima in q(t) occur at times similar to those
observed for the a-based and Tb-M methods; however, the relative amplitude of the peaks are different,
contributing to discrepancies in the melt detection by XPGR and the other methods.” This implies that
the timing of melt events is detected in the XPGR time series, but the use of a single threshold calculated
for all of Greenland negatively impacts melt detection. High elevation and internal areas are classified
with the same cutoff as low elevation and coastal areas in their study. In our method, we do not rely on
a single cutoff, but instead find the XPGR peak unique to individual years and locations.

It should also be noted that we do not classify individual days as melting or not melting, as has been
done in the previously mentioned studies, but instead seek to identify the primary start and end dates
of the snowmelt season. Ashcroft and Long (2006) further note “the differences in the melt detected by
the individual methods are attributed to differences in sensitivity to melt due to frequency and/or
differences in the definition of melt implicit with each method.” Based on our stated goal of identifying
the primary melt period, and the data comparisons presented in Figures 1-6 of this reply, we maintain
that the XPGR is a useful metric.

“To determine the end of the snowmelt season, we choose either the date of the yearly maximum Tbh37V
value, which corresponds to the thinnest snowpack or to a ‘bare earth’ signal, or the first date where 4
out of 5 days have been within 2 cm of the yearly SWE minimum.” SWE calculated using the Chang et al.
(1987) algorithm was used for snowmelt end detection in this study. However, the Chang et al. (1987)
algorithm was found to overestimate SWE or snow depth in western China (Chang and others, 1992; Che
et al., 2008). SWE retrieval from passive microwave data is based on volume scattering of the microwave
signals by snow, thus SWE can’t be estimated accurately when the snowpack is wet. Most SWE retrieval
algorithms are only applied to data from the morning orbit to mitigate the impact of wet snow. The
snowpack is likely to be wet and shallow near the end of snowmelt, which would lead to erroneous SWE
retrievals from the passive microwave data. Wang et al. (2013) showed that it was a challenge to
discriminate wet snow from snow-free land using satellite data alone.

We realize the shortcomings of the Chang algorithm, particularly for wet snow depth estimation at the
end of the snowmelt season. This is why we do not simply identify snow clearance as days where SWE
reaches zero, but allow the algorithm to declare the end of the melt season when small amounts of SWE
remain, or when Tb37 has reached its yearly max. In our now included validation with MOD10C, we find
very close agreement between our melt end dates and the MOD10C snow fraction dropping below 5%
for five out of seven consecutive cloud-free days (Figure 1 of this reply, Figure 4 in the updated MS). We
thus argue that our method successfully identifies the end of the snowmelt season despite problems
inherent with passive microwave SWE estimation.
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The estimated mean snowmelt periods in the current study are nearly 150 days for large areas of Tibetan
Plateau during the 1987-2016 period (Fig.4), while Ke et al. (2016) showed that the annual mean snow
cover days were 120 days during the 1981/82 — 2009/10 period based on observations from weather
stations (see their Fig.3). This suggests that the detected snowmelt end dates in the current study are
likely too late (Fig.5). On account of the above, | recommend rejection of the paper.

The reviewer raises an important point that we address with the following four comments:

(1)

(2)

(3)

The cited Ke et al. (2016) study uses local station data to estimate the length of the snow-cover
season for Western China. However, from their Figure 1, their station density is very poor,
particularly in the Tibetan interior. Their following Figure 3 (snow-covered days) seems to be
interpolated from these sparse points, which may or may not be representative of the large,
unmonitored areas. Additionally, other studies of snowcover in Tibet (e.g., Pu et al., 2007) note
extensive areas of 9+ month snow cover using MODIS data (their Figure 4).

The coherence between independent snow-clearance measures (Figure 1 of this reply, MODIS
and Passive Microwave) leads us to argue for the reliability of our snowmelt clearance dates.
The non-representative spatial and elevation distribution of weather stations in the Ke et al.
(2016) study, along with difficulties of scaling up snow measurements at point locations and
interpolating them over diverse terrain, could account for some of the difference between the
results of the two studies.

As snowmelt period depends on two measurements (the onset and the end date), discrepancies
between our snowmelt periods and those shown in Ke et al. (2016) are more likely to come from
mismatches in the snowmelt onset date. However, as is shown in Figures 2 and 3 of this reply,
our melt onset dates generally track the start of the upward arm of the yearly temperature
distribution, and are correlated with dates of positive daytime surface temperatures.

In order to examine the reviewer’s comments about snowmelt period in more detail, we tested
an additional change to the melt tracking algorithm with an imposed Tb threshold on the onset
date of melt (after Fettweis et al., 2006). This threshold was chosen so that snowmelt was only
found if the Tb18H was above the long-term average Tb18H plus one half standard deviation.
This method was used previously in Greenland to improve the XPGR method with the stated
goal of flagging each day of the year as melting or not melting.

We find that this dramatically reduces snowmelt periods (Fig. 7 of this reply, below), but also
reduces the agreement between our algorithm data and the MODIS and HAR control datasets.
Onset dates correlate with quite low (~10%) snow fraction, and with positive (+15C) average
daily temperatures. Melt periods in regions outside of the Tibetan Plateau shrink significantly,
and no longer match up with other published literature. This implies that by imposing this
threshold, we examine only the very end of the snowmelt season, and not the true onset of
snowmelt.

Importantly, we also compared trends in our data using both methods (adaptive XPGR threshold
and with the addition of a fixed Tb threshold) and found that most regions maintained the same
trend direction, if not trend magnitude. Thus, trends in melt end date and melt period are
similar between both methods. The largest discrepancy is in the far eastern Tibetan Plateau,
where melt onset trends shift from negative to positive when the fixed thresholding method is
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used. The northern regions of HMA (north of the Tien Shan) also do not exhibit statistically
significant trends for all three metrics (onset, end, period). We attribute these differences to the
fact that the two methods are really tracking two separate measures of snowmelt onset. In our
method (which is used and described in the MS), we track the turning point of the yearly
temperature cycle and the peak time when snow first starts to decrease. Using the threshold
metric, we track the last strong pulse of snowmelt, when much of the snow has already melted
or sublimated away. For these reasons, we maintain that our algorithm, with the changes
described here in this reply and in the updated MS, is a valid way to track the snowmelt in this
context.

(4) Lastly, we argue that the context for the previously cited snowmelt studies and this study are
different. Most of the snowmelt algorithms have been developed over Greenland or for tracking
sea ice. As the altitudes and latitudes of these study locations are drastically different, solar
radiative forcing is generally larger in High Mountain Asia. Additionally, we modify the static
approach used in previous algorithms to derive snowmelt over a wide range of topographies,
and thus the efficacy of the previous snowmelt algorithms and our algorithm cannot be directly
compared.
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Figure 7 — Average snowmelt period when a more conservative Th18H threshold is applied to the method. While melt periods
in Tibet match better with those proposed in Ke et al. (2016), melt periods in the western regions of HMA are unreasonably
low.

We argue that despite the shortcomings of passive microwave data — and the lack of large-scale ground
control data — our algorithm accurately tracks the onset and end of the snowmelt season. An updated
discussion of methods, caveats, and comparisons to the control datasets have been added throughout
the manuscript.
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Abstract. High Mountain Asia (HMA) ;— encompassing the Tibetan Plateau and surrounding mountain ranges s— is the
primary water tower-source for much of Asia, serving more than a billion downstream users. Many catchments receive the
majority of their yearly water budget in the form of snow, which is poorly monitored by sparse in-situ weather networks.
Both the timing and volume of snowmelt play critical roles in downstream water provision, as many applications — such as
agriculture, drinking-water generation, and hydropower —rely on consistent and predictable snowmelt runoff. Here, we leverage
passive microwave data across five sensors (SSMI, SSMIS, AMSR-E, AMSR2, and GPM) from 1987-2016 to track the onset
and end of snowmelt across HMA. Compared-against-a-We validated our method against climate-model surface temperatures,

snow-cover data, and a manual control dataset (n=2100, 3 variables at 25 locations over 28 years);-; our algorithm is generally
accurate within 3-5 days of the onset and end dates of melt. Using the algorithm-generated snowmelt dates, we examine
the spatiotemporal patterns of the snowmelt season across HMA. The climatically short (29 year) time series, along with
complex inter-annual snowfall variations, makes determining trends in melt onset and end dates at a single point difficult.
We instead identify trends in snowmelt timing by using hierarchical clustering of the passive microwave data to determine
trends in self-similar regions. We make the following four key observations: (1) The end of the snowmelt season is trending
almost universally earlier in HMA (negative trends). Changes in the end of the snowmelt season are generally between 2 and
8 days/decade over the 29-year study period (5 - 25 days total). The length of the snowmelt season is thus shrinking in many,
though not all, regions of HMA. Some areas exhibit later snowmelt onset dates (positive trends), but with a generally smaller
magnitudes than trends in snowmelt end. (2) Areas with long snowmelt periods, such as the Tibetan Plateau, show the strongest
compression of the snowmelt season (negative trends). These trends are apparent regardless of the time period over which the
regression is performed. (3) While trends averaged over three decades indicate earlier snowmelt onset and end, data from the
last 14 years (2002-2016) exhibit positive trends in both snowmelt onset and end dates in many regions, such as parts of the
Pamir and Kunlun Shan. Due to the short nature of the time series, it is not clear whether this change is a reversal in a long-term
trend or simply inter-annual variability. (4) Some regions with stable or growing glaciers — such as the Karakoram and Kunlun
Shan — see slightly later snowmelt onset and longer snowmelt periods. It is likely that changes in the snowmelt regime of HMA
account for some of the observed heterogeneity in glacier response to climate change. While the decadal increases in regional

temperature have in general caused earlier snowmelt onset and shortened melt seasons, changes in HMA’s crysophere have
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been spatially and temporally heterogeneous. The complex response of HMA’s cryosphere to climate change highlights the

importance of both regional and small-scale studies for effective water planning.

1 Introduction

More than a billion people across Asia rely directly or indirectly on water sourced from melting snow in High Mountain Asia
(HMA) (Bookhagen and Burbank, 2010; Bolch et al., 2012; Kédib et al., 2012; Kang et al., 2010; Immerzeel et al., 2010;
Gardner et al., 2013; Hewitt, 2005; Malik et al., 2016). Many catchments receive the majority of their yearly water budget
in the form of snow — particularly at high elevations (Barnett et al., 2005). Both the volume of snowfall and the timing of
snowmelt play crucial roles in the efficacy of water provision for downstream users, as many applications — such as agriculture

and hydropower — rely on consistent and predictable water availability. Many areas also rely on snowmelt to provide a water

buffer late in the year -when direct precipitation is rare. Any changes in the onset, length, or intensity of the snowmelt season

will impact the water security of both high-elevation and downstream communities.
Passive microwave (PM) data has been used to estimate snow depth and snow-water equivalent (SWE) since the launch of

the Scanning Multichannel Microwave Radiometer (SMMR) in 1978. Consistent, pseudo-daily measurements became avail-
able in 1987 with the launch of the Special Sensor Microwave/Imager (SSMI) series of sensors (Wentz, 2013). PM data is
highly sensitive to liquid water present in the snowpack, and is thus a valuable tool for tracking the onset of snowmelt across
large, inhospitable, and unmonitored regions. PM data also have the advantage of functioning despite cloud cover, which is
ubiquitous in much of HMA during the-both winter and during the Indian Summer Monsoon (ISM) season. Using satellite-
derived PM measurements, several authors have tracked the onset, duration, and spatial extent of snowmelt events using a
range of approaches including the cross-polarized gradient ratio (XPGR) (Abdalati and Steffen, 1995; Hall et al., 2004), the
advanced horizontal range algorithm (Drobot and Anderson, 2001), Gaussian edge detection (Joshi et al., 2001), channel differ-
ences (Takala et al., 2003), artificial neural networks (Takala et al., 2008, 2009), diurnal temperature brightness (Tb) variations
(Apgar et al., 2007; Monahan and Ramage, 2010; Tedesco, 2007), and wavelet-based approaches (Liu et al., 2005).

In this study, we adapted a previously published algorithm (Abdalati and Steffen, 1995) s-which-that relied on the establish-
ment of a single cutoff threshold for identifying melt phases ;to the more complex and diverse snow regimes of HMA. While
previous studies have successfully measured snowmelt in large, homogeneous environments such as Greenland and Antarctica,
we found these algorithms ineffective in the highly variable topography and snow dynamics of HMA. Here ;-we present an
enhanced and generalized snowmelt algorithm building on previous work to improve on snowmelt detection in HMA. We then
apply this algorithm to PM data from 1987-2016, and use the derived melt start and end dates to examine spatio-temporal

snowmelt patterns across the entire HMA region.
1.1 Geographic Setting

HMA is comprised of several mountain ranges — the Himalaya, Pamir, Karakoram, Hindu Kush, Tien Shan, and Kunlun Shan —

which contain the headwaters of major watersheds which serve more than a dozen countries (Fig. 1). Many of these catchments,
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such as the Tibetan Plateau, Tarim, Syr Darya, Amu Darya, and Indus, rely on snowmelt for more than 50% of their yearly
water budget (Bookhagen and Burbank, 2010; Shrestha et al., 2015). Many communities — particularly those at high elevations
or those that depend on surface water for agriculture — are highly reliant on the timing of snowmelt. An early snowmelt season
can create a late-season ‘water gap’ when a dry spell is caused by snow meltwaters disappearing before the start of the next
rainy season. These water gaps can also negatively impact flora and fauna which depend heavily on the timing of the appearance
of ephemeral water bodies (Bookhagen, 2017). The timing and volume of snowmelt thus has important implications for the
environment, direct household water use, agriculture, and hydropower.

Several interacting moisture sources, steh-as-including the Winter Westerly Disturbances (WWD), Indian Summer Monsoon
(ISM), and East Asian Summer Monsoon (EASM), are responsible for the wide range of snowfall regimes across HMA (Fig.
1, inset). The interaction of these climatic regimes with the complex topography of HMA - particularly the vast elevation
gradients — creates a diverse set of snowfall regimes (Cannon et al., 2014; Kéib et al., 2012; Immerzeel and Bierkens, 2012;
Gardner et al., 2013; Kapnick et al., 2014; Barnett et al., 2005; Dahe et al., 2006; Takala et al., 2011; Cannon et al., 2017).

2 Materials and Methods
2.1 Datasets

We leverage a combined time series of SSMI (1987-2009), Special Sensor Microwave Imager/Sounder (SSMIS) (2008-2016),
Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E, 2002-2011), AMSR2 (2012-2016), and
Global Precipitation Measurement (GPM, 2014-2016) data, processed to 0.25 decimal degree (dd) resolution by interpolating
raw PM swath data at a series of point locations as described in Smith and Bookhagen (2016) (see Supplementary Table +-S1
for a full dataset listing). In essence, we group all measurements within a 0.125° dd radius of each point on a 0.25° dd grid and
generate a spatially weighted mean value for each swath at that point. The dataset is comprised of 6,399 point locations, with
on average 26,000 PM measurements each (long-term average of 2.4 measurements/day for 29 years, with more measurements
during the 2002-2016 period).

PM measurements are converted to snow-water equivalent (SWE) using the Chang equation (Eq. 1) (Chang et al., 1987

with modifications for non-SSMI platforms as proposed by Armstrong and Brodzik (2001) , and a constant snow density of
0.24 g/cm? as proposed by Takala et al. (2011) ,

SDem]= 1.59[cm/K*(Tbisy — They ) [ K] (1

Studies have noted that SWE estimates from the Chang equation have high uncertainties (e.g., Kelly et al., 2003; Kelly, 2009; Tedesco an

articularly in dense forests. However, as much of our study area is non-forested — and we use SWE only as a rough estimate
of snow volume — we choose to rely on the simple Chang equation rather than a more complex algorithm for SWE estimation.

As control data, we analyze Moderate Resolution Imaging Spectroradiometer (MODIS) percentage snow-covered areca
(product MOD10C1 V6, 2001-2016, (K. and Riggs, 2016) ) and High Asia Refined Analysis (HAR) surface temperature (tsk
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2000-2014, (Maussion et al., 2014) ). While these datasets only cover a subset of our study period, they are among the few
independent control datasets available across the entire study area.

2.2 Snowmelt Tracking Algorithm

The shift from dry snow, which can be physically characterized as snow crystals in an air background, to wet snow, which
replaces the air matrix with water, shifts the primary interaction between PM radiation and the snowpack from volumetric (dry
snow) to surface (wet snow) scattering. These scattering changes are reflected in the temperature brightness (Tb) data, and
allow wet and dry snow to be differentiated, as the transition from dry to wet snow drastically increases the measured Tb —
particularly in the scattering (Tbszy) channel. The XPGR, as originally described by Abdalati and Steffen (1995), is defined

as:

XPGR = (Thigu —Thsrv)/(Tbiom + Tbs7v) )

This algorithm takes advantage of both the channel difference between the 7'b19 and Tb3; GHz channels as well as the
depolarization effects of snowmelt, which increases the differences between the horizontally and vertically polarized channels
(Abdalati and Steffen, 1995). As this algorithm is normalized, it does not require ground calibration data, which is advantageous
in HMA. Snowmelt onset can be determined using either a static or dynamic threshold. In the original application of the XPGR
on the Greenland Ice Sheet, a static value of -0.025 was used to detect snowmelt (Abdalati and Steffen, 1995).

We find that for the majority of HMA, the -0.025 threshold is much too low to effectively detect melt. Indeed, the yearly
peak XPGR is highly variable throughout time and space, and a constant threshold was found to be inappropriate for HMA.
Additionally, while the XPGR time series is effective for tracking the onset of snowmelt, it is not effective for tracking the
cessation of snowmelt. To track the end of snowmelt, we leverage two additional datasets: (1) the raw Tbg7y, time series, which
rapidly increases as snowpack thins, and (2) a SWE time series calculated from the 7019 and 1037 GHz channels (Chang et al.,
1987; Kelly et al., 2003; Tedesco et al., 2015; Smith and Bookhagen, 2016).

We first use a simple peak-finding algorithm, which identifies peaks as points which are larger than their two neighboring
samples, to generate a list of potential peaks in the XPGR data. Next, we take the average XPGR value within £ 3-2 days

of each peak to determine not only the simple yearly maximum XPGR, but the highest and temporally widest peak in our

XPGR data. We flag years which have multiple strong and temporally distinct XPGR peaks as unconstrained for snowmelt

onset estimation, as the algorithm has trouble consistently identifying snowmelt onset in these cases.
To determine the end of the snowmelt season, we choose either the date of the yearly maximum Tbsry value, which cor-

responds to the thinnest snowpack or to a ‘bare earth’ signal, or the first date where 4 out of 5 days have been within 2 cm
of the yearly SWE minimum. We choose the yearly SWE minimum instead of zero as our SWE threshold for snow clearance
because some regions in HMA have a defined melt season but rarely reach zero SWE. This also helps control for uncertainty in
shallow SWE measurements, as detecting shallow snow (<5 cm) with PM data is still difficult (Kelly et al., 2003; Armstrong
and Brodzik, 2001). A full description of our melt detection algorithm is available in the Supplement (Figure-StFigs. S1-4).
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2.3 Manual Control Dataset Generation

Unfortunately, large-scale and several-decades long snowmelt onset and end date records are not available for HMA. Instead,
we use HAR (Maussion et al., 2014) and MODIS (K. and Riggs, 2016) data alongside a manually generated set of control
dates for the onset and end of snowmelt, determined from the SWE, XPGR, and Tbs;y- signals by the researchers. We visually
identified major peaks, as well as the cessation of snowmelt, by inspection of the time series. We chose a random sample of
25 point locations across our study area, and identify start and end dates for each year of the time series (n=1400). We use the

calculated length of the snowmelt period as an additional control variable (n=700).
2.4 Hierarchical Clustering

Hierarchical clustering is a method used to correlate time series data by intrinsic similarity (Corpet, 1988; Johnson, 1967; Jain
et al., 1999; Murtagh and Contreras, 2012; Rheinwalt et al., 2015), which has been used extensively in the environmental re-
search community. We generate clusters from those time series which share the most temporal overlap, or where the periodicity
of Tb values have the largest coherence, regardless of their spatial correlation.

We choose the XPGR time series as our clustering variable, as the XPGR is the most sensitive to melt dynamics, integrates
multiple Tb frequencies, and is not sensitive to SWE calibration issues. To improve the robustness of our clustering, we combine
the disparate single-instrument PM time series into a single coherent time series which leverages the full temporal extent of
each dataset (1987-2016), using the following three steps: (1) We standardize the PM signals of the suite of instruments used
in this study to a single set of dates, artificially created at daily resolution from the minimum and maximum dates across all
satellite datasets, by resampling all individual satellite time series to a daily time step and dropping dates without data. (2) We
regularize-homogenize the disparate PM time series based on the overlapping portions of individual satellite time series, using
linear regression. The results of these regressions can be seen in Fable-S2Tables S2-5, with an example regression at a single
point shown in Figure 2. (3) In order to reduce noise in our cluster analysis, we resample our merged XPGR time series to a
5-day temporal resolution (pentad).

Next, we normalize each merged pentad time series (1987-2016) to a Gaussian distribution, using a percentile mapping
approach (Rheinwalt, 2017). We then estimate the Pearson correlation coefficient to classify regions of self-similarity in our
XPGR time series (Rheinwalt, 2016). This method computes a Pearson correlation coefficient between each time series, and
based on the resulting correlation matrix, computes a set of linkages using the angle between time series in vector space
(Murtagh and Contreras, 2012). We use the maximum distance (complete linkage) to split the linkage matrix, which is favor-
able because it ensures a minimum intra-cluster correlation. An average linkage scheme was tested and produced heterogeneous
cluster sizes with outliers. We choose our cluster threshold from the hierarchical clustering dendrogram (Figure-S2)Fig. S6),
which maximizes cluster size while minimizing cluster internal diversity (Figure-S3Fig. S7). We emphasize that the correlation
is based on the temporal co-evolution of the time series, and is less sensitive to the relative magnitudes of peaks and troughs
between data points. For an oscillating time series, the magnitude of the Pearson correlation coefficient is driven by the syn-

chronization of peak timing, especially in normalized time series. The combination of several sensors in this study may impact
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the magnitudes of the resultant time series, but will not have an outsized effect on the timing, and thus clustering, of our time

series.

3 Results

3.1 Melt Algorithm Validation

3.1.1 Comparison with Manual Control Dataset

The agreement between manually clicked start/end dates and algorithm-derived start/end dates is generally within 3 days, with
more-than-70% or more of start and end dates falling within 5 days of the control dataset (Table 1). We find the lowest standard
deviation for the end of melt, which is to be expected given that the end of snowmelt is determined by both snow clearance
and the Tbs7y signal, and thus is more tightly constrained than the melt onset date. The melt onset date, while having a low
average offset, has a high standard deviation as the algorithm sometimes has trouble correctly choosing the onset of melt when
a snow season has several large storms, or several periods of melting and refreezing (cf. Fig. 3). Thus, errors in identification of
melt onset will naturally have a higher standard deviation due to the presence of more relatively large misclassification errors.
Diverse snow seasons are shown from an example location (71.25E, 36.75N), over feursix years of data (Fig. 3). Despite
clear inter-annual variations in the temporal distribution of SWE, there exists high correlation between the algorithm-derived
melt dates and our manually chosen melt dates. In the sample data, the first shown-snow-seasen-has-and third snow seasons have

multiple peaks which could possibly be the true onset of the snowmelt season, and these years are flagged as unconstrained.
The second and fourth years of data have a simple structure with a well-defined peak and a pseudo-linear melt during the

spring season. The secondfifth year of data has a s se+ s ; ale as ;

of the snowmelt season is not at the first peak. The last year of data shows a mismatch between the algorithm and control
datasets, where it is difficult to determine the true onset of the snowmelt season. The algorithm picks the wider XPGR peak
(earlier in the season), while we chose the thin but high peak later in the season as the start of snowmelt. Across all years of

data shown has—

eenerally-correetlyidentified-snowmelt end date is well matched between the algorithm and manual datasets.

3.1.2 Comparison with MODIS Snowcover Data

The MODIS sensor onboard Terra (product MOD10C1 V006, (K. and Riggs, 2016) ) provides an additional estimate of snowcover

from an optical, instead of PM, instrument. While MODIS cannot provide accurate measurements of fractional snow covered
area (SCA) in the presence of clouds, it represents an independent control on the snowmelt end date (Fig. 4). In Figure 4A, the
MODIS snow-clearance date is defined as the first day when five out of seven days have less than 5% SCA, and the data are
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cloud free. Only those dates where there is no cloud cover within seven days of the end of the snowmelt season are used in
Figure 4, which illustrates the consistently low SCA fraction at our algorithm-derived end of the snowmelt season.

3.1.3 Comparison with HAR Surface Temperature Data

HAR provides surface temperature at hourly intervals from 2000-2014 at 30 km spatial resolution over the entire study area
Maussion et al., 2014) . Using this data, we derive (1) the full-day average surface temperature, (2) the average daytime surface
temperature, and (3) the daily surface temperature range at each melt onset date (Fig. 33).

While the relationship between surface temperature and snowmelt onset isn’t as clearly defined as the comparison between
MODIS SCA and snowmelt end, the highly variable surface temperature and positive daytime surface temperature at the

the onset of snowmelt.

3.2 Application: Spatial Patterns of Snowmelt Period

Using our melt tracking algorithm, we can identify the start and end dates of melt on a yearly basis. This also allows us to
calculate the length of the snowmelt season, termed here the snowmelt period. The long-term average snowmelt period is
shown in Figure 6.

The length of the snowmelt season varies significantly across HMA (Fig. 7). In many low-elevation areas, such as the Ganges
Plain, and low-SWE areas, such as the central Tarim Basin, snow-ispresent-forlessthan-amonth-on-averagethe snowmelt period
is very short. Higher-elevation zones, and in particular the Tibetan Plateau, see melt-snowmelt periods of several months. While
both elevation and the amount of SWE impact snowmelt, these are not the sole determinants of snowmelt onset and end (Fig.
7). Each of the major catchments (cf. Fig. 1) has a unique melt start date, end date, and snowmelt-period distribution, based on

the various climate and topographic forcings present in each catchment.
3.3 Hierarchical Clusters

Cluster selection criteria can be seen in Figures $2-356-7. We base our selected dendrogram cutoff (distance threshold in
vector space) on a combination of the number of generated clusters, the internal variation within those clusters, and the average
resultant cluster size. In our case, we choose a distance cutoff of 1 radian from the complete linkage matrix (minimum intra-
cluster correlation 0.525), which results in 285 clusters (Fig. 8).

While the hierarchical clusters are not based on any explicit spatial relationships, many of the clusters fall into spatially
coherent groups. For example, the Pamir Knot and Tarim basin-Basin both form large, coherent clusters based on the similarity
of their snowfall and snowmelt patterns. The large number of small clusters throughout the Himalaya indicate that the region

is not climatically uniform, and small-scale variations in topography and climate have strong impacts on the snowmelt regime.
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4 Discussion
4.1 Spatial Melt Patterns from Hierarchical Clustering

As can be seen in Figure 3, inter-annual variation in sprowfal-the timing of snow buildup can cause large disparities in the
yearly dates of snowmelt onset and end. This is particularly true of areas impacted by the WWD, which often have multiple
snowfall events starting in winter and lasting until spring (Cannon et al., 2014). This complicates change detection of the onset
of melt between years, as one year may receive a small late season storm, and thus start the major snowmelt phase in the spring,
while the next year may receive a large summer storm, and thus start its main snowmelt phase in the summer.

To mitigate the influence of inter-annual variation in determining long-term trends in snowmelt onset and end, we group
our data into self-similar clusters using hierarchical clustering. We do not filter our generated clusters based on size or self-
similarity, as we do not use our clusters to generate a single averaged or representative time series for each cluster, as is often
done in climate analyses. Due to inter-annual variations in SWE, and snowmelt onset/end dates, fitting a linear regression
through only 29 years of data does not provide statistically significant results for the majority of HMA. Instead, we use our
clusters to group sets of algorithmically-derived melt onset and end dates, and fit linear models on a cluster-by-cluster basis. By
leveraging the melt start and end dates of a set of time series in parallel, we are able to identify statistically significant changes
in melt onset and end dates, as well as changes in the length of the snowmelt period (Fig. 9). To reduce noise from low-SWE

and very short snowmelt period areas, we remove areas from the subsequent analyses with long-term average melt periods

of less than 20 days. We also remove melt onset dates that are flagged as unconstrained (when there are multiple candidate
snowmelt onset dates) to limit the impact of unreliable melt onset data on our analysis.

B

shightly-Jater-onset-(pesitive-Snowmelt onset is trending earlier (negative trend) in many-high-elevation-areas-HMA outside of

a small band running from the Karakoram through the interior Tibetan Plateau (Fig. 9A). Negative snowmelt onset trends have
been previously observed in Central Asia (Lioubimtseva and Henebry, 2009; Dietz et al., 2014)and-, the Himalaya (Lau et al.,
2010; Panday et al., 2011), and the Tibetan Plateau (Xu et al., 2017) , but have not been confirmed a with decadal-timescale,

large-area and empirical study of snowmelt dates.

Inereasing-A complex pattern of regionally increasing and decreasing spring snow depth has-been-observed-across-in the Ti-

betan Plateau has been observed since the 1970s (Zhang-et-al;2004:-Che-et-al-2008)(Zhang et al., 2004; Che et al., 2008; Wang et al., 20

which could help account for the tater-onsetmixed onset trends observed in the majority-of-the-Tibetan Interior. High-elevation
zones in the upper Indus catchment, running from the Karakorum in a south-eastward direction, have seen increased precipita-
tion over the past decades due to increases in the strength of the WWD (Cannon et al., 2015; Norris et al., 2016; Treydte et al.,
2006). i i i i

Temperatures in HMA are increasing faster than the global average (Vaughan et al., 2013; Lau et al., 2010), and are likely the

primary driver of the almost universal earlier snowmelt end dates as seen in Figure 9B. Increased temperatures have likely both
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reduced overall SWE amounts, by causing more precipitation to fall as rain, and decreased SWE persistence into the spring
and summer months. These changes have helped drive a 2-8 day/decade earlier end to the snowmelt season (Fig. 9B).

The length of the snowmelt season is shortening in much of HMA, with the exception of an-arearunningfrom-the Pamirte
Kunton-Shansmall areas in the Pamir, Tien Shan, and Karakoram regions (Fig. 9C). We attribute this to a combination of
increased storm intensity in the WWD, and increases in late season storms, which could help extend the snowmelt season
slightly later into the year (Cannon et al., 2016; Norris et al., 2015; Kapnick et al., 2014). In general, however, the snowmelt
season is shortening throughout HMA. Intensification of the spring runoff regime in HMA has been observed in both model
(Lutz et al., 2014) and empirical (Dietz et al., 2014; Bookhagen and Burbank, 2010; Stewart, 2009) data.

4.2 Temporal Heterogeneity in Snowmelt Trends

Not only are changes in the snowmelt regime spatially complex (e.g., Fig. 9), but they exhibit distinct temporal heterogeneity
as well.

Changes in snowmelt onset do not have a bias towards early or late onset snow regimes (Fig. 10A). The end of the snowmelt
season is almost universally negative (earlier), excepting a few early-onsetzones—Thesezones-are-predominanthytow-SWE;
shert-melt-season;areas-isolated areas in the Kunlun Shan (cf. Fig. 9). The majority of locations show negative (shorter) trends
in snowmelt period. Strong negative changes in the snowmelt period are biased towards areas with long melt seasons (120 days
or more). This implies that high-elevation areas, such as the Tibetan Plateau, and high-SWE areas, such as the Karakoram,
will see a relatively stronger compression in the length of the snowmelt season. While changes in the snowmelt onset date
are partially responsible, the main driver of shorter snowmelt periods is the earlier end of the snowmelt season across most of
HMA.

Several-decade long trends conceal short-term fluctuations in the snowmelt regime of HMA. To assess the impact of the
analysis timeframe on our regression results, we analyzed trends with window sizes ranging from four years to 28 years, across
all possible start-year and window-size combinations, averaged over the entire study area (Fig. 11).

Trends are universally negative for the onset and end of the snowmelt season, as well as for the snowmelt period, between
1988 and 1995, regardless of the timeframe over which the regression is performed. While there were some short positive
trends in snowmelt end date (5-10 years) starting in the mid 1990s, trends in end dates and snowmelt period are generally
negative. Although long-term trends in snowmelt onset date (longer than 20 years) are negative, recent trends (after 2002) in
snowmelt onset date are positive when considered at timeframes of 5-10 years. This implies that while the three-decade trend
in snowmelt onset dates has been negative, the trend has become more variable in the past decade.

It is clear that decadal trends (cf. Fig. 9) are not consistent throughout the entire study period (cf. Fig. 11). When trends in
the first half (1988-2002) and second half (2002-2016) of the data are compared, distinct regional patterns are apparent (Fig.
12).

The lack of statistically significant trends limits some interpretations, particularly with regards to changes in the snowmelt

period.

threugh-Nowhere in HMA are snowmelt onset trends consistent in both analysis periods. While many snowmelt end dates have
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remained negative in both time periods, trends in parts of the Pamir and Karakoram have moved from negative to positive,
and those in the Tien Shan have become less negative (cfFig—S4. Fig. S8). A similar story is apparent when snowmelt onset
dates are considered, where the Tien Shan and parts of the Pamir have moved from negative to positive snowmelt onset dates.
Unfortunately, due the the climatically short nature of the dataset, it is not clear whether this change represents inter-annual

variability or a reversal of a long-term trend.
4.3 Hydrologic Implications

The spatially and topographically complex changes in snowmelt onset, end, and period make interpretation of downstream
impacts difficult. The long-term trend in HMA of a shortened and earlier melt season will impact downstream populations who
rely on the consistent timing and volume of spring and summer runoff (Archer and Fowler, 2004; Barnett et al., 2005). Already
the impacts of precipitation intensification and shifts in the snowmelt season have been felt in many regions (Barnett et al.,
2005; Stewart, 2009). These trends are likely to continue as temperatures rise across HMA, and each major catchment will feel
the impacts of a shortened snowmelt season, regardless of changes in the start and end dates of melt.

Many regions rely on glaciers as their only water source between the end of snowmelt and the beginning of major pre-
cipitation systems (Bolch et al., 2012). This important water reserve is certain to be impacted by, and reflect changes in, the
snowmelt regime of HMA, as the timing of precipitation has been shown to be an important factor in the response of glaciers to
climate change (?Wang-etal520+7)-(Maussion et al., 2014; Wang et al., 2017) . While many regions have seen rapid glacier
retreat (Bolch et al., 2012; Kéab et al., 2012, 2015; Scherler et al., 2011) there exist regions of glacier stability and even growth,
such as the Karakoram (Hewitt, 2005; Gardelle et al., 2012) and Kunlun Shan (Gardner et al., 2013; Yao et al., 2012). Our
results (cf. Fig. 9) show longer snowmelt periods in parts of the Pamirand-Kunlun-Shan, later snowmelt enset-end dates in parts
of the Karakoram and Kunlun Shan, and relatively less negative trends in snowmelt end in the Pamir ; Karakeram;-and-Kunlan
Shan-when compared with the rest of HMA. These regions overlap with both the ‘Karakoram Anomaly’ and positive glacier
mass balances in parts of the Kunlun Shan and Pamir, implying that changes in the timing of the snowmelt season could be
partially responsible for regional heterogeneity in glacier change.

The majority of HMA, however, exhibits a three-decade long trend towards an earlier end of the snowmelt season. Earlier
snow clearance increases the absorption of solar radiation, and thus stores more heat at high elevations and generates a positive
feedback (Willis et al., 2002). As seasonal snow is removed earlier from glacier regions, glacier melt will accelerate. In general,
glaciers in HMA are decreasing in volume and shrinking, which fits with the observed long-term decrease in snowmelt end
dates (cf. Figs. 9, 10, 11), despite clear spatial and temporal heterogeneity in these trends (cf. Fig. 12).

4.4 Caveats of the Method

Our algorithm-derived snowmelt end dates and the snowmelt end dates derived from the independent MOD10C1 product

show close alignment, indicating that the algorithm is well-suited to identifying the end of the snowmelt season (cf. Fig. 4).

The identification of the onset of the snowmelt season, however, is more difficult. Periods of melt and refreeze, as well as
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late-season storms, hamper the identification of a single snowmelt onset date. Furthermore, without rigorous measurements of
surface air temperature or in-situ monitoring of snowmelt, the efficacy of our algorithm cannot be directly confirmed.
Snowmelt onset dates are correlated with the day of year that HAR temperatures first start to increase (Fig, $2). Furthermore,
they are associated with days with a high temperature range and on-average positive daytime surface temperatures (cf, Fig. 5).
This implies that rising daytime temperatures, in conjunction with solar radiation, induce the start of the snowmelt season in
our study area. However, as we lack a direct control dataset for snowmelt onset, and there is a high degree of variance in the
HAR surface temperature-snowmelt onset relationship, snowmelt onset dates and trends therein should be considered as less

reliable than snowmelt end dates.

5 Conclusions

This study presents a snowmelt tracking algorithm based on the cross-polarized gradient ratio, native passive microwave (PM)
signal, and a rough estimate of snow-water equivalent (SWE). We do not rely on static thresholds to determine the onset
or end of the snowmelt season across our diverse study region, but instead rely on identifying the snowmelt signal from
intrinsic properties of each individual time series. The algorithm leverages passive microwave data from the Special Sensor
Microwave/Imager (SSMI), Special Sensor Microwave Imager/Sounder (SSMIS), Advanced Microwave Scanning Radiometer
- Earth Observing System (AMSR-E), AMSR2, and Global Precipitation Measurement (GPM) satellites (1987-2016) to track
the onset, duration, and end of the snowmelt season across High Mountain Asia (HMA). We examine large-scale spatial
patterns in the snowmelt regime and identify trends in the timing of snowmelt across HMA over the past three decades using
hierarchical clustering.

We find the following four key points: (1) The snowmelt season is ending earlier in much of HMA (negative trend), with
magnitudes between 2 and 8 days/decade (5-25 days total over 29 years). The length of the snowmelt season is shortening in the
majority of HMA, despite some regions of delayed snowmelt onset. (2) Negative changes to the end of the snowmelt season are
felt most strongly in areas with long snowmelt seasons (as averaged over three decades), such as the Tibetan Plateau and high-
SWE areas in the Himalaya, Karakoram, and Tien Shan. (3) While three-decade long trends indicate earlier start and end dates
for the snowmelt season, recent (2002-2016) trends are positive (later snowmelt end dates) in many regions of HMA. These
changes could be due to inter-annual variability or a reversal in the long-term trend. (4) Areas with slightly longer snowmelt
seasons or later onset dates overlap with regions of positive glacier mass balance, such as the Karakeram-Pamir and Kunlun
Shan. This implies that changes to the snowmelt regime of HMA could help account for some of the observed regional glacier
changes. In general, however, regional warming has caused long-term earlier snowmelt onset and shortened melt seasons in
much of HMA. These changes are spatially and temporally complex, and will require further local and high-spatial resolution

assessments to fully understand changes in HMA’s cryosphere.

Code availability. The code used in this study is available online at: https://github.com/UP-RS-ESP/SnowmeltTracking
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Table 1. Summary statistics comparing the-manual control dataset and the-algorithm dataset (n=2100, 28 snowmelt seasons at 25 locations).

Variable Mean Offset Mean Absolute  Standard De- RMSE Percentage of Algorithm Dates
(days) Offset (days) viation Within 3/5/10 Days of Control
Dates
Snowmelt Onset
Snowmelt End
-0:76-1.3 4765.0 9:82-9.74 9:84-9.82 5749 /7470 / 87-89 %
Snowmelt Period
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Figure 1. Topographic map of the study area across High Mountain Asia (HMA), with major catchment boundaries (black lines and labels
in black font with white border) and major mountain ranges (white font). Inset map shows wind direction of major Asian weather systems

(WWD: Winter Westerly Disturbances, ISM: Indian Summer Monsoon, EASM: East Asian Summer Monsoon) on top of political boundaries.
Red star indicates the location used for Figures 2 and 3.
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Figure 2. (aA) Sample time series showing SSMI (blue) and AMSR-E (green) Tbs7v frequencies, with linearly matched modified AMSR-E
Tb (red), 1987-2009. Data taken from 71.25E, 36.75N (cf. Fig. 1). (bB) The same data as panel A but for two seasons (2005-2007).
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Figure 3. Sample data from 71.25E, 36.75N (cf. Fig. 1) showing: (#A) Snow-Water Equivalent (SWE) based on the Chang algorithm
(Chang et al., 1987), (bB) Cross-Polarized Gradient Ratio (XPGR), and (¢C) vertically polarized temperature brightness at 37 GHz (Tbs7v)
measurements. Onset of melt (dashed lines) and end of melt (solid lines) are black for algorithm dates, and red for control dates. Lack
of red lines indicates temporal overlap of algorithm and control dates. Years with multiple distinct peaks (e.g., 2004, 2006) are flagged as
unconstrained, and not used for further analysis. We use the XPGR to identify the start of melt, and the SWE and Tbs7y measurements to
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Figure 5. (A) HAR full-day average surface temperature (red), daytime average surface temperature (blue), and (B) daily surface temperature
range (black) at the algorithm-derived snowmelt onset date (n=31,583). Full-day and daytime average temperatures show distinctly different
distributions, with full-day temperatures averaging below 0°C and daytime temperatures above. This relationship, as well as the large dail
temperature range, imply that the algorithm-derived melt onset dates occur at or near the transition from sub-freezing to above-freezin

temperatures.
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Figure 6. Average snowmelt period across HMA from 1987-2016. Snowmelt period ranges from less than a month to several months,
depending on geographic location, elevation, and local climate. Locations with long-term average snowmelt periods less than 20 days are
removed. Topographic hillshade in background. Grey areas indicate water bodies, low-SWE areas, and very short snowmelt period areas that
are all excluded from the analysis.
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Figure 7. Snowmelt onset (A,D), end (B,E), and period (C,F) for the entire study area, colored by elevation (A-C) and snow depth (D-F) bins.
Bin heights indicate relative number of pixels at each day of year (i.e. area). While very short snowmelt periods show a distinct low-elevation,
low-SWE bias, in general melt onset and end dates are well distributed throughout elevation zones and SWE amounts.
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Figure 8. Hierarchical clusters (black outlines), as determined from the rank-order correlation coefficients of the 5-day resampled, merged,
and linearly matched XPGR data (1987-2016). Colors indicate cluster-average internal diversity (average Pearson’s correlation coefficient
between members in the same cluster). Grey areas indicate water bodies, low-SWE areas excluded from the analysis, or areas with irregular
PM signals which fail to cluster.
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Figure 9. Significant (p <0.05 ) trends in date of snowmelt (aA) onset, (bB) end, and (eC) period, 1987-2016 for the cluster areas (cf. Fig.
8). The onset of snowmelt is generally moving earlier outside of the Tibetan PlateauPlateau-Karakoram region, and moving slightly later in
a high-elevation zone running from the Karakoram through the Tibetan Plateau interior, as well as parts of the Himalaya. The end of the melt
season is moving earlier in the vast ma]orlty of HMA, at varymg rates. Consequently, snowmelt period is also shrinking in much of HMA,

with the exception of pa he-Kunlun-Shan-aleng-th e e anrd-small parts of the Pamir, Karakoram, and
Tien Shan.
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Figure 10. 29-year average snowmelt (aA) onset, (bB) end, and (¢C) period, colored by trend (1987-2016), with bin heights indicating relative
number of pixels (i.e. area) at each day of year. Black lines indicate zero trend. Data taken only from areas with statistically significant trends

(p <0.05, cf. Fig 9). Changes in snowmelt end date are enly-positive in a-very few —early-onset-areas. Negative changes in snowmelt period
(shortening) are relatively larger in long snowmelt-period areas.

27



A: Snowmelt Onset

|3
@ 2572
b H
> |
_CZD': 5
o | $:.
@151 ¢ 1t
_I . & 9 0
2 3 SrEEiss .
510 ¢ $:8::2%:%:
g |iEitriiiiadcaadedildy.
= B et i sttt
1
wmelt End
v %
25 ¢ =
{ - » (i)
> =
£ 20] £
o :o v
= .8 -
4 13 tiide, -
§ 10 iiiiii 2
c 14 ; :!‘. =
o - - & |_
s 5{83 .;izei :
owmelt 1

,‘-_.n._ -
Ezs-f $
v -1 i
WML T
52073 :.!! =
™ . st e
g5 e
S8 :::_i!a.
Z10ld 2riiidel ’
g & $ieigiediis:
T strreiiiiieiiiiLias:

1990 1995 2000 2005 2010

Year

Figure 11. Impact of window length on measured trends in snowmelt (aA) onset, (bB) end, and (¢C) period over the entire study area. Each
dot represents trends over a single window size (4 to 28 year) and start year (1988-2012) combination. Regressions are performed using the
same clusters as shown in Figure 8. Only statistically significant trends (p <0.05) are included in this analysis; gray dots indicate lack of
significant trend. Larger dots indicate positive or negative trends larger than 1 day per year. Trends in snowmelt period and snowmelt end
dates are atmostuniversathy-generally negative regardless of which years the trend is assessed over, excepting short periods in the late 1990s
and 2000s. Onset dates are positive over short time periods starting in the earky-2666slate 1990s, and negative over earlier time periods and
longer time windows.
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Figure 12. Impact of analysis period (1988-2002 or 2002-2016) on measured trends in snowmelt (aA) onset, (bB) end, and (¢C) period. Grey
areas indicate lack of statistically significant (p <0.05) trends at one or both analysis periods. Much of HMA lacks significant shorter-term
trends in snowmelt onset and snowmelt period, highlighting the complexities and inter-annual variation in snowmelt onset. While muaeh-of
northern HMA has maintained a negative trend in snowmelt end throughout both analysis timeframes, a large region running from the Pamir
east has had a reversed trend from negative to positive in the last decade. Regression results at both individual timeframes are available in the
Supplement (Fig. $4S8).
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