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Reply to Reviewers – Smith et al., 2017

Comments – Reviewer 1
In this paper, the authors use passive microwave data to identify snowmelt onset, snowmelt end and
snowmelt period over the High Mountain Asia (HMA) region. They verify the results of an automated
algorithm by comparison to manually identified dates in the microwave signal and find it matches to
within 5 days. They then use the algorithm to calculate the melt onset, end and period over 29 years and
evaluate trends across the region. The paper is well written and provides a long-term record of snowmelt
trends across a region where snowmelt is a critical source of water supply. They use an existing method
for identifying melt, but apply new techniques for detecting onset and end, as well as a hierarchical
clustering method to identify spatial patterns in the data. This paper contributes to the literature in an
understudied area of
the world.

My main feedback is that the lack of validation data for this technique raises a number of questions. It
would be useful to see validation of the approach in this region that would lend confidence to the results,
independent of the microwave data. Some possible data sources that could be used include snow
covered area from MODIS or VIIRS to estimate snowmelt end dates. Discharge data, if available, could be
used to verify the onset of melt by evaluating the rising limb of the snowmelt hydrograph. Similarly, it
may be possible to examine shifts towards earlier melt timing by looking at the hydrograph centroid.
(See Regonda et al. 2004, Seasonal Cycle Shifts in Hydroclimatology over the Western United States,
Journal of Climate, Vol. 18). Alternatively, temperature data may provide some verification of onset
dates. If these data are not available, then demonstrating the approach in an area with data would be
useful.

Thank you for the detailed comments and review. We agree that the lack of spatially and temporally
extensive control data is a limitation of the study. Unfortunately, long-term, spatially extensive, and
high-quality snow records are simply not available for the study region. In our revision, we leverage
MODIS MOD10C fractional snow cover (Hall and Riggs, 2016) to assess the reliability of our snowmelt
end dates, and High Asia Refined Analysis (HAR) modeled surface temperatures (Maussion et al., 2014)
to examine our snowmelt onset dates.

We find that our snowmelt end dates agree very well (slope = 1.00, R2 = 0.99, n=34,468 over 16 years)
with the date of MODIS snow clearance (defined here as 5 out of 7 days below 5% snow-covered area).
A comparison of MODIS and algorithm snow clearance dates is found below in Figure 1 of this reply. This
figure and related discussion have been added to the manuscript in the Results section.
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Figure 1 – Comparison of snowmelt clearance dates with MODIS MOD10C1. There is nearly 1-1 agreement between the chosen
dates for snowmelt end (slope = 1.00, rsq =0.99, n=34,468). Nearly all algorithm-derived melt dates show less than 5% MODIS

fractional snow cover, with nearly 50% showing less than 1% snow cover.

We only compare those dates where there is no cloud cover within 7 days of our algorithm-determined
snowmelt end date to limit our analysis to only those years where both methods should provide equally
accurate snowmelt end dates.

The accuracy of snowmelt onset dates is somewhat more complicated to determine. Snowmelt onset
for this paper could be defined as either the first appearance of liquid water in the snowpack or the
beginning of the primary ‘melt-off’ phase, where there are no more significant snowfall events detected
in the passive microwave data and SWE generally starts to decline. In the original manuscript, we chose
simply the highest XPGR peak, which could correspond to either of these dates, depending on the
climate – and particularly temperature – context of any given location. In this revision, we have updated
the algorithm to flag years where there are multiple coherent peaks in the XPGR time series as being
unreliable. These data points are no longer included in the trend analysis components of the paper to
ensure that we only examine trends in reliably identified snowmelt dates. We find that ~25% of all
snowmelt onset dates across all locations are flagged as unreliable, and thus we use 15% less data
overall. Trend values are changed in some cases (cf. Fig 9 in the updated MS), mostly on the Tibetan
Plateau where fewer trends are now statistically significant. A small area of the far eastern Tibetan
Plateau shifts from slightly positive onset to slightly negative onset as well. Otherwise, the large-scale
trend patterns are maintained. A more detailed discussion of this update is given below in response to
reviewer 2 - Comment #3, as well as in Figure 2 of this reply.
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General comments:
1. The 36 GHz signal saturates out in deep snow, which I expect much of this area experiences. How does
that affect the gradient ratio approach, since the difference may remain fairly constant for much of the
season? How do you know you’re selecting the actual maximum XPGR?

Signal saturation is a problem in HMA and elsewhere – particularly in mountainous regions – and
dramatically reduces the reliability of SWE estimates. However, even with signal saturation, the
appearance of liquid water in the snowpack will cause ‘spikes’ in the XGPR signal due to the drastic
difference between the passive microwave signal response to dry snow (volume scattering of the bare-
earth passive microwave signal inside the snowpack) and wet snow (emission of passive microwave
signal from the water layer). Our algorithm is sensitive to these spikes and we thus argue that it
identifies snowmelt, even in cases where saturation may occur.

2. Related to question 1, the XPGR seems to follow the calculated SWE signal. How does the calculated
SWE compare to general estimates of SWE in the region? Is it reasonable, or is there evidence of signal
saturation?

Unfortunately, in-situ estimates of SWE in the region are sparse. Previous work has reported reasonable
results for Western China (Che et al. 2008), but SWE estimates in complex and deep-snow terrain are
generally considered unreliable (Tedesco et al., 2015). Without reliable in-situ estimations it is hard to
quantify the degree of SWE underestimation due to saturation, but comparisons to modeled results
(WRF, HAR) indicate that SWE is underestimated in HMA in some areas.

We aim to exploit shifts native to the time-series of each individual pixel instead of using absolute
thresholds for tracking melt, as has been done in previous studies (e.g., Abdalati et al. 1995, Monahan
and Ramage, 2010), so the reliability of absolute SWE measurements should not have an outsized
impact upon our algorithm.

3. It is interesting that some of the trends change after 2002, when several additional instruments begin
to be available and are included in the analysis. Is it possible that differences in the sensors are causing
different results?

While it is possible that the differences in the sensors could have impacted the results, we think this is
unlikely, as we explicitly designed the algorithm to be sensor-independent. First, our results rely on the
XPGR, which is a normalized ratio and which should mitigate some, if not all, of the sensor-related
differences between instruments. Second, we examine peaks native to each single-instrument time
series, so detected melt onset and end dates are native to each instrument. Third, and most
importantly, when there are multiple instruments providing a melt date for a given year, we use a
conservative strategy for choosing a single melt onset/end date for each year.

For melt onset, if the time series has multiple coherent peaks (defined as two peaks within 5% of each
other more than 3 weeks apart, the year is flagged as unreliable for melt onset determination (~25% of
the total number of melt onset dates across all locations and years are flagged as such, with a few
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regions). If two instruments are providing a melt date, and they are less than two weeks apart, we
choose the earliest date between the two. If there are three melt onset dates, we choose the median
onset date. If the melt onset dates are more than two weeks apart, we flag the year as unreliable. We
then use a similar strategy for the end of the melt season, which is generally better constrained by our
algorithm. The only difference between the strategy for melt onset and melt end is when there are two
end dates more than two weeks apart, we choose the date that is closest to the long-term average melt
end date instead of flagging that year as unreliable.

4. Following on question 3, in section 2.3 the method used to merge the datasets for the hierarchical
clustering analysis is described. Was this merged dataset also used in the snowmelt tracking analysis? If
not, then explain why differences in the sensors wouldn’t impact the estimated melt onset and end
dates. If yes then this description should be included earlier.

The merged dataset was not used for the snowmelt tracking analysis to limit the impact of inter-sensor
differences on the determination of melt onset and end. Merging the multiple passive microwave
datasets introduces noise to the time series, which in turn impacts placement and magnitude of the
peaks used to determine melt onset. We instead used the strategy described in reply to comment #3
above to choose the melt dates for years with multiple sensors. We only use the merged dataset for (1)
display purposes on figures in the manuscript, and (2) for the hierarchical clustering. We chose to use
the merged dataset for the hierarchical clustering to extend the time period we cluster over and to
include data from each sensor to increase our cluster robustness throughout the entire study time
period, despite the increase in noise from using multiple merged time series.

5. The manual selection of dates based on the time series seems subjective. It would be useful to include
additional information on how those dates were selected. For example in Figure 3 – in both 2009 and in
2010 there were two peaks of similar magnitude during the winter season. In 2009 the one closer to the
end of the season was selected despite appearing less than the earlier one. In 2010 the one very early in
the season was selected despite there being an almost equal peak later on. The description in section 3.1
should be clearer.

We examined not only the XPGR, but the SWE and Tb37V signal at each year to determine snowmelt
onset. Both 2009 and 2010 are complex cases, where there are multiple strong candidates for the onset
of snowmelt. In 2009, the higher SWE total in the earlier peak, followed by a decreasing by oscillating
SWE total, pointed to the earlier XPGR peak as the onset of melt. In 2010, the generally decreasing SWE
total throughout the winter, punctuated one large event and then a return to the previous decreasing
curve a few weeks later indicated that the main snowmelt season started earlier. However, in both cases
it could be argued that either peak represents the true start of the snowmelt season.

Please see the reply to comment #3 above about changes in the algorithm related to flagging poorly
constrained years. Our updated comparison of our algorithm dataset and our control dataset does not
include comparison of these poorly constrained melt onset dates. These dates are also no longer used in
the assessment of snowmelt trends.

Specific comments:
1. Page 3, Line 25: why was this algorithm chosen over the other methods referenced in the
introduction?
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We choose this method due to (1) simplicity, (2) speed of calculation, and (3) lack of reliance on pre-
calculated metrics or assumptions. For example, diurnal temperature algorithms rely on fixed
differences between day and night temperatures to detect melt; these differences are neither constant
in space nor in time (intra- and inter-seasonal) across our large and diverse study area. We found that
the XPGR algorithm was well-suited to the time series approach we use, and was fast enough to
compute for the entire dataset we used. It has the additional advantage of only relying on night-time
data, which somewhat limits the impact of sporadic daytime melt (due to solar radiation) on our results.

2. Section 2.1: additional background information on passive microwave detection of snow and
snowmelt is needed, specifically on how the signal is affected by liquid water in the snow at different
frequencies.

Section 2.1 (Section 2.2 in the new MS) has been updated with additional information on the
interactions of snow and passive microwave radiation.

3. Page 4, Line 7: Was SWE calculated using the Chang algorithm on Tb from the different sensors? Or
are you using the SWE products developed for the different sensors? Adding the equation would be
useful. How do you combine multiple sensors when available?

We use the original Chang algorithm for each sensor, albeit tuned to each sensor (i.e., the Chang
algorithm is offset by 5K when the AMSR-E frequencies are used). As our algorithm relies primarily on
the normalized XPGR index and we do not aim to provide a tightly-constrained SWE product, we
leverage a single, consistent algorithm across all satellite datasets. We have added the equation to the
MS in Section 2.1. We combine the SWE datasets for display purposes (e.g., Figure 3 of the MS) by
resampling a combined, multi-instrument, timeseries to the daily mean SWE value.

4. Page 5, line 2: Not sure what is meant by “regularize”.

We perform a simple linear regression of the overlapping pieces of the time series to determine the
offset between the overlapping datasets. We then add or subtract the determined coefficients to bring
the time series closer to a single coherent dataset (cf. Figure 2 of the MS) in order to use the longest
possible time frame for our hierarchical clustering. We have clarified this in-text.

5. Page 5, lines 23-25: How does the standard deviation of the melt onset date vary spatially? It seems
this approach would work best in high elevation/deep snow regions, whereas along the edges in lower
elevation where the snow is more ephemeral there might be more error. This would also affect estimates
of melt period.

Very true. However, we find that the highest deviation regions are those areas where deep snow
impacts the algorithm, or late-season storms change the snowmelt onset date from year-to-year.
Ephemeral snowmelt is actually tracked quite well, as it tends to have sharp peaks and a single,
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continuous melt-off curve. Those areas where snow varies significantly year-to-year, and areas with
multiple SWE peaks, are more difficult (ie, in the Karakoram, cf. Fig 2 of this reply and Figure S5 in the
revised manuscript). We have attempted to reduce this error by flagging unreliable years in our melt
dataset as described above. A map of the standard deviation of melt onset dates for 29 years has also
been added to the Supplement (Figure S5). Note that many low-STD regions are areas where there is
almost no snow (e.g., Tarim Basin and low-elevation areas of the Himalayan front). These areas are not
included in our trend analysis.

Figure 2 – Standard deviation in snowmelt period, calculated over the full 29-year dataset. Low standard deviation areas follow
low-SWE and low-elevation zones, with more variable snowfall regions (ie, Karakoram) showing higher standard deviations.

6. Page 6, line 8: Where you say, “snow is present for less than a month on average.” Are you referring to
the snowmelt period or the entire snow season? That sounds like the entire season, but everywhere else
is referring to melt period.

You’re correct, we refer here to short snowmelt periods. We remove data that have a long-term average
snowmelt period of less than 20 days. We have updated the wording in the MS.

7. Page 6, line 24: You say, “As can be seen in Figure 3, inter-annual variation in snowfall can cause large
disparities in the yearly dates of snowmelt onset and end.” Based on Figure 3 there doesn’t appear to be
a lot of variability – the peak SWE is around 100mm each year. Are you referring to timing of snowfall
events?

Yes, we refer here to the timing and magnitude of SWE buildup and melt. Each year has quite different
peak locations, and relative peak sizes. This has been clarified in the MS.

8. Figure 1. Can you identify on the overview map the location of the sample data shown in figures 2 and
3?

This has been updated.
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9. Figure 4: What do the gray areas on the plateau represent? Provide an explanation, similar to figure 6.

This has been updated.
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Comments – Reviewer 2
Passive microwave satellite data have been used for snowmelt onset detection on nearly all components
of the cryosphere (e.g. ice sheets, sea ice, lake ice, and seasonal snow cover) mainly at the northern
middle to high latitudes and Antarctica, where there is permanent or relatively stable snow accumulation
each winter. It has also been used to classify daily freeze/thaw state dynamics for global vegetated land
cover regions without distinguishing individual elements of the landscape (e.g. soil, vegetation, snow).
The current study detects snowmelt onset/end dates and snowmelt season in Tibetan Plateau and its
surrounding mountain ranges, and analyzes trends in snowmelt timing during the 1987-2016 period.
Snowmelt onset detection is based on the crossed-polarized gradient ratio (XPGR) algorithm developed
in previous studies, and the end of snowmelt is determined by time series of Tb37v and snow water
equivalent (SWE) calculated using the Chang et al. (1987) algorithm. It is a useful extension to previous
studies. However, there are several caveats in the method used for snowmelt onset/end detection in this
study as described below.

Specific Comments

First of all, there are no in situ observations used for either thresholds calibration or results validation. I
wonder how the authors know the selected thresholds are associated with the actual snowmelt
onset/end? Although a manual control dataset was generated and used for results evaluation, the
control dataset was produced subjectively from the interpretation of the satellite data only.

In the updated manuscript we have added a section comparing our results to MODIS snow cover and
HAR mean daily surface temperature (see also reply to comment #1 of reviewer 1, and the extended
discussion of comparison to control datasets in response to your comment below). In situ data at the
correct spatial and temporal scale simply does not exist for the majority of the study region, so we rely
on these proxies instead. An updated discussion of the caveats of the method and uncertainties is
included in the MS.

The annual peak value of XPGR was used to identify snowmelt onset, which appears to correspond to
dates of annual maximum SWE and very low Tb37v (Fig.3). Fig.3 shows that the brightness temperatures
at 37GHz are <= 225K on the detected snowmelt onset dates for three out of the four winters. From my
experience, the snowpack is unlikely to be melting under such low brightness temperatures. The
magnitude of Tb37v was used as a condition for snowmelt detection in some previous studies, but it was
always >= 248K.

Thank you for this important critique. We have modified our algorithm as described in comment #3 of
reviewer #1. In addition to this, we have compared our melt onset dates to both MODIS fractional snow-
covered area and HAR modeled surface temperature. Figure 3 below shows the HAR surface
temperature distribution at melt onset. While average daily temperatures tend to be negative, daytime
temperatures are often positive (average 4C), with large (20+ degree) temperature variation. Figure 4
below shows a direct comparison between our melt onset dates and the MODIS and HAR datasets. As
can be seen in the middle panel, the onset of melt correlates with the peak of MODIS fractional snow
cover, and with the yearly minimum temperature from HAR (this has been added to the Supplement as
Figure S2). This implies that our melt algorithm is capturing the turning point where snow ceases to
increase and starts melting out. These figures have been added to the Supplement.
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We also compared HAR air temperature to the raw Brightness Temperature (Tb) values (Figures 5 and 6
of this reply and S3-4 in the updated Supplement), and found that while there is a definite correlation
between air temperature and Tb, positive surface temperatures are associated with a wide range of
possible Tb values. The Tb-Temperature distribution is also quite different between spatial locations,
implying that a single threshold would not be appropriate for determining the possibility of snowmelt
from Tb values.

Figure 3 – HAR modeled hourly surface temperature (Maussion et al., 2014) at the date of algorithm-melt onset. Average daily
temperature (red) and average daytime temperature (blue) show divergent means, where the onset of melt is characterized by
below zero average temperatures, but daytime temperatures that are positive. The average daily range of temperatures (black)

shows quite large variability in 24h temperature profile at the onset of snowmelt.

Figure 4 – Representative sample point showing SWE (top, this study), MODIS fractional snow covered area (middle, Hall and
Riggs, 2016), and HAR daily average temperature (bottom, Maussion et al., 2014) over the period 2001-2009. Algorithm-derived
melt onset dates (dashed lines, black) and end dates (solid lines, red). Years with multi-peaked XPGR data do not return a melt

onset date. Melt onset dates correlate well with peak annual snow-covered area (middle) and the yearly minimum temperature
(bottom), implying that our melt algorithm captures the onset of the snowmelt season accurately. Data taken from 71.25E,

36.75N.
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Figure 5 – HAR Average daily temperature vs Temperature Brightness (37V in green, 18H in red). Both channels show
correlations with air temperature, but show a wide spread. This observation indicates that there is no single Temperature

Brightness threshold that can be used for snowmelt detection.

Figure 6 – HAR temperature metrics vs Tb at snowmelt onset. Both 37V (blue) and 18H (red) channels show significant spread.
While there is a slight correlation between average daily temperature and Tb, average daytime temperature is very poorly

related to Tb. This implies that the night-time passive microwave data we use to track snowmelt onset still captures the impacts
of above-zero daytime temperatures.
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The XPGR algorithm was developed and used for melt detection on the Greenland ice sheet. Several
studies have shown that the XPGR technique detects less melt extent and duration than other algorithms
(e.g. Ashcroft and Long, 2006; Fettweis et al., 2006). Ascraft and Long (2006) compared six different melt
detection methods using either active or passive microwave satellite data over the Greenland ice sheet
for the year 2000, including the XPGR method. They found that compared to other methods, XPGR
detected significant less melt extent and duration on Greenland (see Table 2 from their paper).
Therefore, in my opinion the XPGR method is not suitable for snowmelt detection, especially without
proper calibration/validation.

In our usage of the XPGR, we do not rely on static melt thresholds, as has been done in the original
Abdalati and Steffen (1995) study and the studies of Fettweis et al. (2006) and Ashcroft and Long (2006).
Ashcroft and Long (2006) note that “with XPGR, local maxima in q(t) occur at times similar to those
observed for the a-based and Tb-M methods; however, the relative amplitude of the peaks are different,
contributing to discrepancies in the melt detection by XPGR and the other methods.” This implies that
the timing of melt events is detected in the XPGR time series, but the use of a single threshold calculated
for all of Greenland negatively impacts melt detection. High elevation and internal areas are classified
with the same cutoff as low elevation and coastal areas in their study. In our method, we do not rely on
a single cutoff, but instead find the XPGR peak unique to individual years and locations.

It should also be noted that we do not classify individual days as melting or not melting, as has been
done in the previously mentioned studies, but instead seek to identify the primary start and end dates
of the snowmelt season. Ashcroft and Long (2006) further note “the differences in the melt detected by
the individual methods are attributed to differences in sensitivity to melt due to frequency and/or
differences in the definition of melt implicit with each method.” Based on our stated goal of identifying
the primary melt period, and the data comparisons presented in Figures 1-6 of this reply, we maintain
that the XPGR is a useful metric.

“To determine the end of the snowmelt season, we choose either the date of the yearly maximum Tb37V
value, which corresponds to the thinnest snowpack or to a ‘bare earth’ signal, or the first date where 4
out of 5 days have been within 2 cm of the yearly SWE minimum.” SWE calculated using the Chang et al.
(1987) algorithm was used for snowmelt end detection in this study. However, the Chang et al. (1987)
algorithm was found to overestimate SWE or snow depth in western China (Chang and others, 1992; Che
et al., 2008). SWE retrieval from passive microwave data is based on volume scattering of the microwave
signals by snow, thus SWE can’t be estimated accurately when the snowpack is wet. Most SWE retrieval
algorithms are only applied to data from the morning orbit to mitigate the impact of wet snow. The
snowpack is likely to be wet and shallow near the end of snowmelt, which would lead to erroneous SWE
retrievals from the passive microwave data. Wang et al. (2013) showed that it was a challenge to
discriminate wet snow from snow-free land using satellite data alone.

We realize the shortcomings of the Chang algorithm, particularly for wet snow depth estimation at the
end of the snowmelt season. This is why we do not simply identify snow clearance as days where SWE
reaches zero, but allow the algorithm to declare the end of the melt season when small amounts of SWE
remain, or when Tb37 has reached its yearly max. In our now included validation with MOD10C, we find
very close agreement between our melt end dates and the MOD10C snow fraction dropping below 5%
for five out of seven consecutive cloud-free days (Figure 1 of this reply, Figure 4 in the updated MS). We
thus argue that our method successfully identifies the end of the snowmelt season despite problems
inherent with passive microwave SWE estimation.
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The estimated mean snowmelt periods in the current study are nearly 150 days for large areas of Tibetan
Plateau during the 1987-2016 period (Fig.4), while Ke et al. (2016) showed that the annual mean snow
cover days were 120 days during the 1981/82 – 2009/10 period based on observations from weather
stations (see their Fig.3). This suggests that the detected snowmelt end dates in the current study are
likely too late (Fig.5). On account of the above, I recommend rejection of the paper.

The reviewer raises an important point that we address with the following four comments:

(1) The cited Ke et al. (2016) study uses local station data to estimate the length of the snow-cover
season for Western China. However, from their Figure 1, their station density is very poor,
particularly in the Tibetan interior. Their following Figure 3 (snow-covered days) seems to be
interpolated from these sparse points, which may or may not be representative of the large,
unmonitored areas. Additionally, other studies of snowcover in Tibet (e.g., Pu et al., 2007) note
extensive areas of 9+ month snow cover using MODIS data (their Figure 4).

The coherence between independent snow-clearance measures (Figure 1 of this reply, MODIS
and Passive Microwave) leads us to argue for the reliability of our snowmelt clearance dates.
The non-representative spatial and elevation distribution of weather stations in the Ke et al.
(2016) study, along with difficulties of scaling up snow measurements at point locations and
interpolating them over diverse terrain, could account for some of the difference between the
results of the two studies.

(2) As snowmelt period depends on two measurements (the onset and the end date), discrepancies
between our snowmelt periods and those shown in Ke et al. (2016) are more likely to come from
mismatches in the snowmelt onset date. However, as is shown in Figures 2 and 3 of this reply,
our melt onset dates generally track the start of the upward arm of the yearly temperature
distribution, and are correlated with dates of positive daytime surface temperatures.

(3) In order to examine the reviewer’s comments about snowmelt period in more detail, we tested
an additional change to the melt tracking algorithm with an imposed Tb threshold on the onset
date of melt (after Fettweis et al., 2006). This threshold was chosen so that snowmelt was only
found if the Tb18H was above the long-term average Tb18H plus one half standard deviation.
This method was used previously in Greenland to improve the XPGR method with the stated
goal of flagging each day of the year as melting or not melting.

We find that this dramatically reduces snowmelt periods (Fig. 7 of this reply, below), but also
reduces the agreement between our algorithm data and the MODIS and HAR control datasets.
Onset dates correlate with quite low (~10%) snow fraction, and with positive (+15C) average
daily temperatures. Melt periods in regions outside of the Tibetan Plateau shrink significantly,
and no longer match up with other published literature. This implies that by imposing this
threshold, we examine only the very end of the snowmelt season, and not the true onset of
snowmelt.

Importantly, we also compared trends in our data using both methods (adaptive XPGR threshold
and with the addition of a fixed Tb threshold) and found that most regions maintained the same
trend direction, if not trend magnitude. Thus, trends in melt end date and melt period are
similar between both methods. The largest discrepancy is in the far eastern Tibetan Plateau,
where melt onset trends shift from negative to positive when the fixed thresholding method is
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used. The northern regions of HMA (north of the Tien Shan) also do not exhibit statistically
significant trends for all three metrics (onset, end, period). We attribute these differences to the
fact that the two methods are really tracking two separate measures of snowmelt onset. In our
method (which is used and described in the MS), we track the turning point of the yearly
temperature cycle and the peak time when snow first starts to decrease. Using the threshold
metric, we track the last strong pulse of snowmelt, when much of the snow has already melted
or sublimated away. For these reasons, we maintain that our algorithm, with the changes
described here in this reply and in the updated MS, is a valid way to track the snowmelt in this
context.

(4) Lastly, we argue that the context for the previously cited snowmelt studies and this study are
different. Most of the snowmelt algorithms have been developed over Greenland or for tracking
sea ice. As the altitudes and latitudes of these study locations are drastically different, solar
radiative forcing is generally larger in High Mountain Asia. Additionally, we modify the static
approach used in previous algorithms to derive snowmelt over a wide range of topographies,
and thus the efficacy of the previous snowmelt algorithms and our algorithm cannot be directly
compared.

Figure 7 – Average snowmelt period when a more conservative Tb18H threshold is applied to the method. While melt periods
in Tibet match better with those proposed in Ke et al. (2016), melt periods in the western regions of HMA are unreasonably

low.

We argue that despite the shortcomings of passive microwave data – and the lack of large-scale ground
control data – our algorithm accurately tracks the onset and end of the snowmelt season. An updated
discussion of methods, caveats, and comparisons to the control datasets have been added throughout
the manuscript.
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