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Abstract. Two approaches to ice-sheet modeling are available. Analytical modeling is the 6 
traditional approach (Van der Veen, 2016). It solves the force (momentum), mass, and 7 
energy balances to obtain three-dimensional solutions over time, beginning with the 8 
Navier-Stokes equations for the force balance. Geometrical modeling employs simple 9 
geometry to solve the force and mass balance in one dimension along ice flow (Hughes, 10 
2012a). It is useful primarily to provide the first-order physical basis of ice-sheet modeling 11 
for students with little background in mathematics. The geometric approach uses changes 12 
in ice-bed coupling along flow to calculate changes in ice elevation and thickness, using 13 
floating fraction   along a flowline or flowband, where   0  for sheet flow, 0    1  for 14 

stream flow, and   1  for shelf flow. An attempt is made to reconcile the two approaches.  15 

Introduction 16 

Cornelis “Kees” Van der Veen’s comparison of geometric and analytic approaches to the 17 
force balance in glaciology in The Cryosphere (Van der Veen, 2016) is most welcome 18 
because he takes seriously my geometrical approach to the longitudinal force balance, 19 
citing many of my paper from when I first introduced the concept (Hughes, 1992) to the 20 
latest application (Hughes et al., 2016). To begin, the analytic force balance is not 21 
challenged by me. The geometric force balance is useful only for one-dimensional flow 22 
along ice-sheet flowlines or flowbands of constant width. For two-dimensional flow in the 23 
map plane, width become a variable and geometrical areas become geometrical volumes; 24 
substantially increasing geometrical complexity with little advance in physical insight. The 25 
analytic force balance is typically obtained by solving the Navier-Stokes equations, which 26 
can be done in three dimensions and, when including the mass and energy balances, 27 
becomes time-dependent. The geometrical approach is useful for understanding the force 28 
balance by comparing the areas of right triangles and rectangles (or parallelograms).  29 

Addressing Van der Veen (2016) 30 

My interest in the force balance for ice sheets spans four decades, beginning when I used 31 
glacial geology to reconstruct former ice sheets from the bottom up based on the strength 32 
of ice-bed coupling deduced from glacial geology, an approach that also produced the 33 
concave surface of ice streams for the first time (Denton and Hughes, 1981, Chapters 5 and 34 
6). I developed the geometric approach after observing the huge arcing transverse 35 
crevasses at the head of Byrd Glacier, and realized it was actually pulling ice out of the East 36 
Antarctic Ice Sheet (Hughes, 1992). Since then it has been a work in progress. Van der Veen 37 
(2016) cites earlier stages of that work (Hughes, 2003, 2008). I would prefer that he use 38 
my current treatment in Hughes (2012a) and Hughes et al. (2016).  39 
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 Referring to Hughes (2008), Van der Veen (2016) states on his page 1332 that I believe 40 
lateral drag vanishes at the center of an ice stream. Lateral shear stress  xy  vanishes, but 41 

the lateral shear force does not. On one side, stress  xy  acts on side area Ay  and on the 42 

other side stress  xy  acts on side area Ay , with Ay  and Ay  being vectors in opposite y 43 

directions, so the shear force is always positive and opposes longitudinal gravitational 44 
forcing. 45 

 Van der Veen (2016) states his Eq. (9) is my Eq. (36) in Hughes (2003). It is not, his 46 
signs are different from mine and his F  is not the same as my T . In the geometric force 47 

balance, the driving force is the area of a triangle and all the resisting forces are areas of 48 
triangles and a rectangle (or parallelogram) that fit into the triangle so the driving and 49 
resisting forces are identical. All signs are positive in my Eq. (36). His F  is my flotation 50 

stress, which doesn’t appear in my 2003 paper. It appears in my Nova book, Holistic Ice 51 
Sheet Modeling (Hughes, 2012a) and in Hughes et al. (2016) in The Cryosphere. Van der 52 

Veen (page 1333) states my F  is his Rxx . It is not. His force budget approach has no way 53 

for calculating my flotation stress F  because his approach has no place for my floating 54 

fraction   of ice under an ice stream (which he calls a “basal buoyancy factor” that 55 

obscures its physical meaning), see my Fig. 1. 56 

 Van der Veen (2016) states his Eqs. (13), (14), and (15) are my equations in my 2008, 57 
2012a, and 2016 publications. They are not. His signs are different from mine and even 58 
some of his terms are different from mine. The proof is found by substituting his Eqs. (13) 59 
through (15) into his Eq. (9), which does not deliver 0 = 0 for the force balance. My 60 
equations, reproduced as my Table 1 from Table 12.1 in Hughes (2012a), do give 0 = 0. In 61 
my geometric force balance, resisting forces are represented by triangles and a rectangle 62 
(or parallelogram) that exactly fit inside a big right triangle that represents my driving 63 
force, so the area of my big triangle is the same as summed component areas from resisting 64 
forces within it. Therefore 0 = 0 must be obtained, see my Fig. 2. 65 

 Van der Veen (2016) plots his Eqs. (9) through (15) in his Fig. 2, so they cannot 66 
represent my force balance because they are not my equations. Also the plot of his 67 
“Gradients in longitudinal stress” should be gradients in longitudinal force, which is a 68 
stress, so he can compare stresses with stresses, not with stress gradients of stresses. If his 69 
Fig. 2 truly plots a longitudinal stress gradient, it compares apples with oranges. Also in his 70 
Fig. 2, his longitudinal stress (or force) gradient acts in the same direction as his 71 
gravitational driving force. That is impossible in my geometric force balance, see my Fig. 2.  72 

 Referring to my Figure 3 (left), Figure 3 in Van der Veen (2016), line AF should be 73 
parallel to line BE because they both show ice pressure increasing linearly with depth. Line 74 
CE shows how water pressure increases linearly with depth, as is obvious at the calving 75 
front. In my geometrical force balance, the longitudinal gravitational driving force is area 76 
ADF of the big triangle. Fitted inside ADF are a resisting flotation force given by area BDE 77 
for floating ice fraction   and a resisting drag force given by area ABEF for the grounded 78 

ice fraction 1   in my Fig. 1. Inside BDE is area CDE for the resisting force from water 79 
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pressure and area BCE for the resisting force from the tensile strength of ice. Inside area 80 
ABEF is the triangle above B for basal drag and the parallelogram below B for side drag. 81 
Resistance from basal drag is the area of the triangle above B. Resistance from side drag is 82 
the area of the parallelogram below B if lines BE and AF are made parallel. If BE is made 83 
part of AF a rectangle would replace the parallelogram but the area would be unchanged, 84 
see my Fig. 2. That’s all there is to it. The only remaining task is to replace forces with 85 
products of stresses and lengths (for areas having unit or constant widths along x) upon 86 
which the stresses act along a flowline (no width) or a flowband (constant width). My 87 
solution for the force balance is exact because forcing area ADF equals resisting areas 88 
ABEF, BCE, and CDE inside ADF. All gravitational and resisting forces in the longitudinal 89 
direction of ice flow are thereby included, with ABEF representing the force from both 90 
basal and side drag. 91 

 Van der Veen (2016) correctly states his Eq. (16) represents my longitudinal 92 
gravitational driving force, but then he states it “does not represent the gravitational 93 
driving force” (page 1335). It does. In my direction x  of ice flow, the gravitational force (a 94 
horizontal vector) is the average ice pressure (a scalar) times the transverse cross-95 
sectional area against which it acts (as a horizontal vector in my x  direction), which for 96 
an ice stream of constant width is ice width times ice height above the bed, a height that 97 
varies along x, as does average ice pressure, so the gravitational driving force varies along 98 
x. The correct representation of my longitudinal geometric force balance is my Fig. 2 where 99 
his area ABEF is my area 1+2 for basal and side drag at x.  100 

 Van der Veen (2016) states on his page 1335 that a longitudinal force balance along x 101 
must be made over incremental distance x  that shrinks to zero. My longitudinal force 102 
balance along x does in my Fig. 2 (bottom), see Hughes (2012a, Appendix G) and Hughes et 103 
al. (2016, page 10). I subtract longitudinal force areas over distancex to get my 104 
longitudinal force balance Eq. (22) in Hughes et al. (2016). However, Van der Veen (2016) 105 
is incorrect in stating a longitudinal force balance always must be made over length x . At 106 
the calving front of an ice shelf the balance is obtained right at the calving front where 107 
x  0 , as Robin (1958) proved 59 years ago geometrically. 108 

 Van der Veen (2016) discusses areas ADF and APD in terms of “lithostatic stresses” 109 
increasing with depth in his Fig. 4(a), shown in my Fig. 3 (right). The areas are forces. As he 110 
shows by his horizontal arrows in his Fig. 4(a), area ADF is my horizontal gravitational 111 
driving force and area APD is the sum of my horizontal resisting forces opposing the 112 
driving force in my geometrical force balance shown in my Fig. 2 (center) with an ice 113 
surface slope at x. His area APD can be subdivided into my smaller areas of triangles and a 114 
rectangle in my Fig. 2 (center) to obtain areas that resist gravitational forcing from his area 115 
ADF. There is no surface slope in his Fig. 4(a), a condition that applies to an unconfined 116 
linear ice shelf having constant thickness (Weertman, 1957; Robin, 1958), in which case 117 
only my areas 3 and 4 in my Fig. 2 (bottom) add to give his area APD since there are no 118 
basal and side drag forces represented by my areas 1 and 2. Raymond (1982) analyzed 119 
deformation near interior ice divides where the surface slope is also zero.  120 

 Van der Veen (2016) correctly shows the geometrical force balance in my Fig. 2 121 
(bottom) for a sloping ice surface above a horizontal bed in his Fig. 4(b), shown in my Fig. 3 122 
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(right). From these figures we can both obtain the geometric longitudinal force balance 123 
over incremental length x  in analytic form when x0 . In my Fig. 2 (bottom), my big 124 
triangles at x  and x  x  are gravitational driving forces that are respectively subdivided 125 
into areas 1, 2, 3, 4 and areas 5, 6, 7, 8 that resist gravitational motion along x. 126 

My Geometrical Force Balance 127 

I developed the geometrical force balance to teach the fundamentals of glaciology to 128 
students with an inadequate background in mathematics, usually students studying to be 129 
glacial geologists (Hughes, 2012a). My geometrical approach was designed to make 130 
maximum use of glacial geology in reconstructing former ice sheets from the bottom up 131 
(Hughes, 1998, Chapters 9 and 10; Fastook and Hughes, 2013) and in demonstrating how 132 
basal thermal conditions produce glacial geology under the Antarctic Ice Sheet today 133 
(Hughes, 1998, Chapter 3, Wilch and Hughes, 2000; Siegert, 2000). Previously I had spent 134 
more time teaching calculus than glaciology because the Navier-Stokes equations had to be 135 
integrated in the force balance.  136 

 The major variable in my geometrical force balance is the floating fraction   of ice, 137 

where   0  for sheet flow, 0    1  for stream flow, and   1  for shelf flow. Here we are 138 

primarily interested in stream flow as shown in my Fig. 1 for possible   distributions at 139 

the bed and my Fig. 2 for the longitudinal force balance. From Newton’s second law of 140 
motion in a vertical force balance, gravitational force FG  at the base must be the same for 141 

floating area wFx  and total area wIx  such that FG  (IhIwFx)g  (IhFwIx)g  for ice 142 

density I  and gravity acceleration g  to obtain basal pressures PF  IghF  and PI  IghI143 

that support ice of respective floating and total heights hF  and hI . This vertical force 144 

balance is satisfied if hF  goes from 0 to hI  as wF  goes from 0 to wI . The basal water 145 

pressure is PW  WghW  PF  IghF  for water density W  and water height hW  needed to 146 

float ice height hF . The floating fraction of ice at x is therefore: 147 

     wF /wI  hF / hI  PF / PI  PW / PI . 148 

 Pulling force ThI  resists the gravitational driving force given by area 4 in Figure 2 149 

(bottom), which is area 3+4 minus area 3. Area 3+4 is one-half flotation height hF  hI  150 

times basal floating length PF  PI , so area 3+4 is PIhI
2 . Area 3 is one-half height 151 

hW  (I / W )hF  (I / W )hI  times the same basal floating length PF  PI . Then the 152 

tensile pulling stress is T  P(1 I / W )
2 . It is that simple. At the calving front where 153 

  1  this is the solution obtained by Weertman (1957) and Robin (1958). Table 1 lists all 154 

stresses resisting gravitational forcing at x. 155 

 At distance x from the ice-shelf grounding line in my Fig. 2, gravitational driving force 156 

 is resisted by the sum of upstream tensile pulling force  and 157 

downstream compressive pushing force  so . Tensile force ThI  158 

balances the part of the driving force equal to area 4, and resisting force  balances the 159 
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part of the driving force equal to areas 1+2+3 in Figure 2 (center and bottom), and includes 160 
all downstream resistance due to averaged basal and side shear stresses  and  161 

respectively linked to areas 1 and 2, plus local water buttressing stress W  linked to area 3, 162 

all of which resist gravitational forcing equivalent to these areas. 163 

 My geometrical force balance is shown in Fig. 2, which is Fig. 5 in Hughes et al. (2016). 164 
Along incremental length x , change FG  in the longitudinal gravitational driving force FG  165 

is balanced by change FT  in the tensile pulling force FT  plus change FW  in the water 166 

buttressing force FW  plus basal drag force FO  plus side drag force FS , where FF  FT  FW  167 

is a flotation force that requires ice-bed uncoupling by basal water. Dividing by x  and 168 
letting x0  gives as the longitudinal gravitational force gradient 169 

   FG / x  (PIhI ) / x  PII  (FhI ) / x O  2S(hI /wI )  170 

where the bed is represented by an up-down staircase with successive x  steps so ice 171 
thickness gradient  I  equals   for ice surface slope on each step, PI  is the overburden ice 172 

pressure at the base, O  is the basal shear stress,  S  is the side shear stress for two sides, 173 

hI  is ice thickness, hW  is the height of water that floats flotation height hF  of ice supported 174 

by basal water pressure PW  such that PW  PF  and hW  (I / W )hF  for floating fraction  , 175 

and my flotation stress F  T W  PI
2  for ice tensile stress T  and water buttressing 176 

stress W , all at distance x upstream from an ice-shelf grounding line. At the calving front 177 

of an ice shelf where   1  so hF  hI  this is identical to the Weertman (1957) and Robin 178 

(1958) solutions. Together T  and W  resist gravitational forcing linked to PI  in an ice 179 

shelf and PI
2 linked to floating fraction   in an ice stream at x. My F  differs from Rxx  in 180 

Equation (1) of Van der Veen (2016) because my F  always requires basal water deep 181 

enough to uncouple ice from the bed or to supersaturate basal till. In ice streams, water 182 
height hW  above the bed is the height to which basal water would rise in a borehole, 183 

including heights far above sea level (Kamb, 2001). 184 

  Resistance from my W  may be akin to bridging stresses across water-filled cavities 185 

discussed by Van der Veen (2016). The existence of W  in the geometric force balance is 186 

not readily apparent from analytic solutions of the Navier-Stokes equations, but Van der 187 
Veen (2016) may have teased it out with his bridging stress, which forces him to add 188 
resistance by including steep shear-stress gradients on each side of his cavities. He 189 
maintains his cavities are small so these gradients average out to zero along an ice stream, 190 
eliminating the need for my W . They cannot average to zero if his cavities are water-filled 191 

and get bigger and closer together downstream, as required to progressively uncouple ice 192 
from the bed. Then cavities themselves have a size and distribution gradient. Figure 1, 193 
which is Figure 4 in Hughes et al. (2016), shows my concept of water-filled cavities in area 194 
wIx  under an ice stream. We do not know which concept of cavities is correct. 195 

Concluding Remarks 196 
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I developed the geometrical force balance over some decades, from Hughes (1992) through 197 
Hughes et al. (2016). My papers are a work in progress, see pages 201-202 of Hughes et al. 198 
(2016) regarding hW , hF , W , and F  not included in earlier papers. To access my most 199 

recent thinking, see Hughes (2012a) and Hughes et al. (2016). All the earlier studies are 200 
flawed in various ways. The last ones may also have flaws I haven’t detected. Some 201 
criticisms by Van der Veen (2016) are directed at my earlier flawed papers.  202 

 This response gives me an opportunity to correct three mistakes in Hughes (2012a) 203 
that will be apparent to careful readers. The first line in Equation (12.9) should be: 204 

   ( FhI ) / x  
1

2
IghI

2 2








 / x  PI( I  hI / x)  205 

and in the second line   should be 2 . In the denominator of Equation (17.18), r  should be 206 

replaced by (a  r) . The first line of Equation (22.18) should be: 207 

   hi
* / x  2

hI

x







i


hI

2







i

2

x

(O )i
IghI

*

2( S )i
IgwI


(O
* )i

IghI
*

 208 

Equation (22.18) applies to sheet flow when    / x  0  and O
*  increases resistance 209 

from basal drag O  by including side drag  S  in flowbands having some side shear. If   0210 

in tributaries supplying ice streams, and since tributaries are ubiquitous in the sheet-flow 211 
interior of the Antarctic Ice Sheet (Hughes, 2012b), side shear must be taken into account 212 
even for sheet flow because tributaries are flowbands. 213 
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Table 1: Resisting Stresses Linked to Floating Fraction  = PF/PI of Ice and Gravitational 248 
Forces Numbered in Figure 2 for the Geometrical Force Balance. 249 

Basal water pressure at x, from gravity force 3: 

    PW  WghW  

Ice overburden pressure at x, from gravity force (1+2+3+4): 

    PI  IghI   

Upslope tensile stress at x, from gravity force 4: 

    T  PI 1– I / W 2  

Downslope compressive stress at x due to O  and  S  along x and W at x = 0: 

    C  PI  T  PI  PI 1 I / W 2  

Downslope water-pressure stress at x, from gravity force 3: 

    W  PI I / W 2  

Upslope flotation stress at x from gravity force (3+4): 

    F  T W  PI
2  

Longitudinal force balance at x from gravity force [(5+6+7+8)–(1+2+3+4)]: 

    PI   FhI / x O  2 S hI /wI  

Flotation force gradient at x from gravity force [(7+8)–(3+4)]: 

     FhI / x  PI  I  hI / x  

Basal shear stress at x from gravity force (5–1): 

    O  PI 1– 
2
 – PIhI 1–  / x  

Side shear stress at x from gravity force (6–2): 

     S  PI wI / hI  1–   PIwI 1– 2  / x  

Average downslope basal shear stress to x from gravity force 1: 

    O  PIwIhI 1– 
2
/ wIx  AR  

Average downslope side shear stress to x from gravity force 2: 

     S  PIwIhI 1–   / 2hI x  2LShS CRhR  

 250 
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 251 

Figure 1: Figure 4 from Hughes et al. (2016). Under an ice stream, basal ice is grounded in 252 
the shaded areas and floating in the unshaded areas (top) as seen in a transverse cross-253 
section (bottom) for incremental basal area wIx . 254 

 255 
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 256 

Figure 2: Figure 5 from Hughes et al. (2016). Top: Stresses at x and downstream from x that 257 
resist gravitational forcing. The bed supports ice in the shaded area. Middle: The 258 
gravitational force inside the thick border is linked to  which represents all 259 

downstream resistance to ice flow at point x. Bottom: Gravitational forces (geometrical 260 
areas 1 through 8) and resisting stresses along incremental downstream length  at 261 
point x.  262 

 263 
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 264 

      Figure 3: Figure 3 (left) and Figure 4 (right) from Van der Veen (2016). 265 




