Author response to minor revision

We thank both reviewers and the editor for their positive opinion of our revised
manuscript. The remaining minor comments have been addressed accordingly, as shown in
the appended marked-up version of the manuscript. Below we add a brief explanation to
some specific comments, page numbers referring to the old marked-up version.

General comment

Unfortunately, an error was found in Eq. (Alc). In order to obtain the simplified solution in
Eq. (A2), also the term containing the melt rate and T_f in the heat balance equation was
neglected. This has been corrected.

Referee #1: Tore Hattermann
The general melt rate curve / Sec. 2.2

We agree with the editor that the discussion of the physical meaning of the various length
scales could be useful for non-specialists. Therefore, we prefer to keep this explanation in
Sec. 2.2. and reserve the Appendix for the detailed description of the parametrization.

The algorithm to determine the local slope and grounding line depth also includes
(unphysical) paths along reversed slopes of the ice base (could either be included in p.
12, line 15 and following or in the discussion).

This has been added to the Discussion section.
Although stratification being mentioned as an uncertainty, its role should be clarified ....

Some lines were added in the Discussion section, explicitly referring to the different modes
of basal melt and the breakdown of the current non-local relation with the grounding-line
depth.

On page 25, line 15, I suggest rephrasing to "with ocean temperatures being constructed
in a plausible way". Especially beneath FRIS, temperatures are certainly not plausible,
they are known to be below -2 degC for most of the cavity (various Nicholls et al.
papers), which is worth telling the reader on p. 21, line 5 and following.

The sentence on P25L15 has been rephrased. A reference to Nicholls et al. (2009)
concerning the sub-shelf temperatures has been added to P21L5.

Editor (Kenny Matsuoka)

P4L27, P4L32, and elsewhere: Change “ocean water” to “seawater” (or vice versa to
keep it consistent throughout the paper).

We chose to change everything to “ocean water”, because the term “ocean” occurs in more
instances in the manuscript.

P7L14-15: Small letter L is defined here as “a temperature- and geometry-dependent
length scale”. However, if | understand correctly, it is referred as “the universal length
scale 1” at P8L23. Because many length scales are discussed in the section 2.2, it is
confusing for me. When you define 1 at P7L14, can you also mention why it has a
universal feature?



We understand the confusion and tried to improve the transition between the paragraphs
at P8L23. The main point of the preceding paragraphs is to explain where the main part of
length scale l in (7) (namely the factor (T_a - T_f) / lambda3) comes from. The following
paragraphs then mention the other ingredients necessary to scale the plume model results
on a universal melt-rate curve. Hopefully this clarifies which length scales are meant and
that the length scale in (7) is the one used in the parametrization.

P7L28: I think that equation numbers “(9) and (8)” are incorrect. Maybe they are
associated with LateX system bug but please double check equation numbers.

This was indeed a bug/mistake in latexdiff and should only apply to the previous marked-
up version where equations with the same equation label were simultaneously crossed out
and added elsewhere. The final tex file should not have this issue and all equations
numbers seem correct.

P10L6: “The elevation of the upper ice surface Hs”. H is used for ice thickness and
elevations, whereas z is defined as depth. And later, “d” is used to define grounding-line
depth. It is confusing.

We understand the point made by the editor. The symbols for the “intermediate”
grounding-line depths have been changed to z_n. However, the other symbols are
commonly used within their respective subfields: Hs, Hi and Hb are common in ice-sheet
models (e.g. De Boer et al. 2015, The Cryosphere 9), whereas D has also been used for the
plume thickness in e.g. Jenkins (1991) and Jenkins (2011). Therefore, we would suggest
keeping these symbols to be consistent with these papers. Changing them could be equally
confusing for other readers.

P10L6 and P10L10, subscript b is used to refer both bedrock and the lower surface of
the ice shelf, which can be confusing. Also, “bedrock” is not accurate; seafloor is often
covered with sediments, and I think that the authors want to refer “seafloor”, instead of
“bedrock”.

As mentioned above, H_b is a common symbol in ice-sheet models for what is commonly
referred to as “bedrock elevation”, without distinguishing between the solid ground under
the ice sheet and the seafloor under the ice shelves. We thank the editor for mentioning the
inaccuracy and added “seabed” to the specification of this quantity, which is now called
H_bed to avoid confusion with z_b.

P18L10: Is the salinity correct? You say 34.6 here, but you used 34.65 for the 1D
experiments (P15L11).

These salinities are both correct, our apologies for the confusion. There seems to be a
discrepancy between the two different scripts used to produce the results in Sections 3.1
and 3.2, respectively. The salinity difference of 0.05 will have a negligible effect on the
results, changing the pressure freezing point by approximately 0.003 degrees.



P24L2: do you think Rignot’s estimate of 100 m/a is accurate? I accept your general
message here that models predict basal melt smaller than the observation but doubt
validity of this extreme number.

It is difficult to say if this value is accurate, but in the data we received from Jeremie
Mouginot these extreme values only seem to occur locally and close to the grounding line
of e.g. Pine Island Glacier. The area-averaged value for this ice shelf calculated by Rignot et
al. (2013) is 16.2 m/yr, showing that most of the area has basal melt rates that are less
extreme. We added the average melt rates of Pine Island and Thwaites to this sentence to
highlight that the 100 m/yr is only a local value.

Table 1: third row in the constant parameters. The subscript should be “TS”, not “TS0”.
Sorry for the confusion. Gamma_TSO0 is actually a different quantity than Gamma_TS§,
because Gamma_TS is a non-constant function containing, among others, the constant
parameter Gamma_TS0, which can be seen as an initial guess. This is already explained in
Sec. 2.2 and Appendix A (eq. A10), but we tried to clarify it, also changing the order and
description in Table 1.

Figure 2:

Different colours are now used for melting and refreezing, as requested, with specification
in the caption.

Figure 3:

The requested labels (with “Bed” instead of “Seafloor”) have been added.

Figure 5 & 6:

As requested, these two figures have been combined into one two-column figure, with the
results of each ice shelf vertically aligned. The figures and caption have been modified
accordingly, as well as references in the text. The brown area denoting the seafloor has
been removed because it only had an aesthetic purpose. The approximate positions of the
flow lines have been indicated in Fig. 6 (previously Fig. 7).

Fig. 10 (previously Fig. 11):

It proved difficult to add a color mask, but we decided to add labels denoting “Ice” and
“Ocean” areas instead.
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Modelling present-day basal melt rates for Antarctic ice shelves
using a parametrization of buoyant meltwater plumes
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Abstract. Basal melting below ice shelves is a major factor in mass loss from the Antarctic Ice Sheet, which can contribute
significantly to possible future sea-level rise. Therefore, it is important to have an adequate description of the basal melt rates
for use in ice-dynamical models. Most current ice models use rather simple parametrizations based on the local balance of heat
between ice and ocean. In this work, however, we use a recently derived parametrization of the melt rates based on a buoyant
meltwater plume travelling upward beneath an ice shelf. This plume parametrization combines a nonlinear ocean temperature
sensitivity with an inherent geometry dependence, which is mainly described by the grounding-line depth =zg-and the local
slope e-of the ice-shelf base. For the first time, this type of parametrization is evaluated on a two-dimensional grid covering the
entire Antarctic continent. In order to apply the essentially one-dimensional parametrization to realistic ice-shelf geometries,
we present an algorithm that determines effective values for z5-and-efor-the grounding-line depth and basal slope in any point
beneath an ice shelf. Furthermore, since detailed knowledge of temperatures and circulation patterns in the ice-shelf cavities

is sparse or absent, we construct an effective ocean temperature field from observational data with the purpose of matching

(area-averaged) melt rates from the model with observed present-day melt rates. The-resultis-a-qualitativelyrealistic-map
of Our results qualitatively replicate large-scale observed features in basal melt rates around Antarctica, not only in terms of

average values, but also in terms of the spatial pattern, with high melt rates typically occurring near the grounding line. The
plume parametrization and the effective temperature field presented here are therefore promising tools for future simulations

of the Antarctic Ice Sheet requiring a more realistic oceanic forcing.

1 Introduction

The Antarctic Ice Sheet is characterized by vast areas of floating ice at its margins, comprising ice shelves, both large and small,
that buttress the outflow of ice from inland. The stability of these ice shelves is governed by a delicate mass balance, consisting
of an influx of ice from the glaciers, iceberg calving at the ice front, snowfall and ablation at the surface, and basal melting
due to oceanic heat exchange in the ice-shelf cavities. Recent studies suggest that Antarctic ice shelves are experiencing rapid
thinning (Pritchard et al., 2009, 2012; Paolo et al., 2015), an effect which can be traced back to an increase in basal melting
(Depoorter et al., 2013; Rignot et al., 2013). This is especially apparent in West Antarctica, where relatively warm ecean-water

i-water from the Amundsen and Bellinghausen seas is able to flow into the ice-shelf cavities and enhance melting from below.
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Increased basal melt rates and thinning of ice shelves decrease the buttressing effect, enhancing the ice flow and associated
mass loss from the Antarctic glaciers and ice sheet. The disintegration of the ice shelves can significantly affect future sea-level
rise, as suggested by recent numerical simulations (Golledge et al., 2015; Ritz et al., 2015; DeConto and Pollard, 2016).

In order to correctly predict the evolution of the ice sheet, it is necessary to have accurate models of the dynamics of
ice shelves, in which basal melting at the interface between ice and ocean plays an important role. State-of-the-art ice-sheet
models for large-scale climate simulations (see e.g. De Boer et al. 2015) provide a complete description of the flow and ther-
modynamics of ice. However, due to the complex nature of the system and high computational cost of climate simulations,
these models inevitably contain approximations and parametrizations of many physical processes, among which basal melt-
ing is no exception. In particular, it is challenging to resolve the ocean dynamics within the ice-shelf cavities at a conti-
nental scale, which severely restricts the level of detail possible in basal melt parametrizations. Most recent simulations (e.g.
De Boer et al. 2015; DeConto and Pollard 2016) determine the basal melt rate from the local heat flux at the ice-ocean interface
(Beckmann and Goosse, 2003), driven by a far-field temperature and a number of tuning factors. Others include a dependence
on the thickness of the water column beneath the ice shelf in order to reduce melting near the grounding line (Asay-Davis et al.,
2016).

As demonstrated by observational data (e.g. Rignot et al. 2013), the basal melt rates around Antarctica show a complex
spatial pattern, which can be inferred to depend heavily on both the geometry of the ice-shelf base and the ocean temperature.
It is unlikely that a description of basal melt based on local fluxes at the ice-ocean interface can capture this complex pattern
without being either significantly tuned or used in conjunction with extremely detailed ocean-shelf-cavity models. On the other
hand, the ocean dynamics and associated melt rates within individual ice-shelf cavities have been studied in rather high detail in
recent years. For example, Holland et al. (2008) showed that basal melt rates obtained from a general ocean circulation model
respond quadratically to changing ocean temperatures. These studies shed light on the minimal requirements of basal melt
parametrizations, i.e. a nonlinear temperature sensitivity, an inherent geometry dependence corresponding to the unresolved
ocean circulation, and a depth-dependent pressure freezing point, yielding higher melt rates at greater depths and the possibility
of refreezing at lesser depths, closer to the margins of the ice shelves.

Taking these requirements into account, we develop a more advanced parametrization for the basal melt rates, based on
the theory of buoyant meltwater plumes, which was first applied to the ice-shelf cavities by MacAyeal (1985). In this theory,
it is assumed that the main physical mechanism driving the ocean circulation within the cavity is the positive buoyancy of
meltwater, which travels upward beneath the ice-shelf base in the form of a turbulent plume. Melting at the ice-ocean interface
is influenced by the fluxes of heat and meltwater through the ocean boundary layer, which depend on the plume dynamics. The
upward motion of the plume induces an inflow of possibly warmer ocean water into the ice shelf cavity, creating more melt.
Entrainment from the surrounding ocean water affects the momentum and thickness of the plume as it moves up the ice-shelf
base. Depending on the stratification of the ocean water inside the cavity, the plume may reach a level of neutral buoyancy
from which it is no longer driven upward.

The dynamics of the plume can be captured by a quasi-one-dimensional model of the mass, momentum, heat and salt fluxes

within the plume, as shown schematically in Fig. 1. In particular, this work is based on the plume model of Jenkins (1991),
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from which a basal melt parametrization has recently been derived (Jenkins, 2011, 2014). This parametrization is based on an
empirical scaling of the plume model results in terms of ambient ocean properties and the geometry of the ice-shelf cavity. The
geometry dependence is mainly determined by the grounding-line depth and the slope of the ice-shelf base. The aim of this
particular study is to apply the plume parametrization to a two-dimensional grid covering all of Antartica, in order to investigate
if this type of parametrization is able to give realistic present-day values and capture the complex pattern of basal melt rates
shown in observations (Rignot et al., 2013).

In the following section, we describe the details of the plume model and the basal melt parametrization derived from it
(Sections 2.1 and 2.2). An important part of the work is the development of an algorithm that translates the parametrization
from a one-dimensional to a two-dimensional geometry, as described in Section 2.3. In Section 3.1, we show results from
the numerical evaluation of the (still 1-D) parametrization along flow lines of two well-known Antarctic ice shelves, namely
Filchner-Ronne and Ross. Finally, Sections 3.2 and 3.3 discuss the application of the 2-D plume parametrization to the entire
Antarctic continent, resulting in a two-dimensional map of basal melt rates under the ice shelves. Special attention is given to
the construction of an effective ocean temperature field from observations by inversion of the modelled basal melt rates. The

results are compared with those from simple heat-balance models (Beckmann and Goosse, 2003; DeConto and Pollard, 2016).

2  Modelling basal melt

In this section, we start with a description of the basic physics underlying basal melt models. We summarize the quasi-one-
dimensional plume model of (Jenkins, 1991) and the development of the plume parametrization (Jenkins, 2011, 2014) resulting
from this model, as shown in previous work. The main contribution of the current study is the method used to extend this plume
parametrization to two-dimensional input data, necessary for use in a 3-D ice-sheet—ice-shelf model.

First of all, we briefly discuss a common feature of many basal melt parametrizations, namely the dependence on the
local balance of heat at the ice-ocean interface. In its simplest form, this is a balance between the latent heat of fusion
and the heat flux through the sub-ice-shelf boundary layer, which can be expressed as follows (Holland and Jenkins, 1999;
Beckmann and Goosse, 2003):

pimL = puwcwyr(To —Ty), (la)

where p;, p,, are the densities of ice and seawaterocean water, respectively, 72 is the melt rate, L is the latent heat of fusion for
ice, ¢, is the specific heat capacity of seawaterocean water, yr is a turbulent exchange velocity and 7, is the temperature of
the ambient seawaterocean water. In this model, the melting is driven by the difference between 7|, and the depth-dependent

freezing point,
Tf =ASw + Ao+ A3zp, (1b)

where S, is salinity of the seasaterocean water, z is the depth of the ice-shelf base, and A1, A2, A3 are constant parameters. As

explained by Holland and Jenkins (1999), more details can be included in this basal melt model, e.g. heat conduction into the ice
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and a balance equation for salinity (see also Section 2.1). Nevertheless, many ice models contain basal melt parametrizations
based on Egs. (1) (see e.g. De Boer et al. 2015; DeConto and Pollard 2016). These models typically use either constant or
temperature dependent values for v, leading to a melt rate that depends either linearly or quadratically on the temperature
difference T,, — T';. The latter case is consistent with the findings of Holland et al. (2008), who obtained a similar quadratic
relationship from the output of an ocean general circulation model applied to the ice-shelf cavities. The non-linearity arose
because the exchange velocity v in Eq. (1a) was expressed as a linear function of the ocean current driving mixing across
the boundary layer, which is itself a function of the thermal driving. Holland et al. (2008) further explain how this non-linear
temperature dependence is related to the input of meltwater with an associated decrease in salinity and increase in buoyancy.
Hence, the exchange velocity plays an important role in correctly determining the heat balance at the ice-ocean interface, or,
more precisely, the heat transfer through the ocean boundary layer beneath the ice shelves. However, a local heat-balance model
as expressed by (1) is too simplistic to capture the effects of the ocean circulation on the basal melting, e.g. those depending
on the ice-shelf geometry. The plume model and parametrization discussed in the remainder of this section are considered the
next step in modelling the physics for general ice-shelf geometries without having to rely on full ocean circulation models, for

which there are also insufficient input data to obtain a universal Antarctic solution.
2.1 Plume model

The parametrization used in this study is based on the plume model developed by Jenkins (1991). Here we summarize the
key assumptions and physics behind this model. The ice-shelf cavity is modelled by a two-dimensional geometry (Fig. 1), in
which the ice-shelf base has a (local) slope given by the angle «.. This geometry is assumed to be uniform in the direction
perpendicular to the plane and constant in time and can be seen as a vertical cross-section along a flow line of the ice shelf. We
can define a coordinate X along the ice-shelf base with slope « and consider the development of a meltwater plume initiating
at the grounding line (X = 0) and moving up along the ice-shelf base due to positive buoyancy with respect to the ambient
ocean water.

The situation depicted in Fig. 1 essentially yields a two-layer system of the meltwater plume with varying thickness D,
velocity U, temperature 7" and salinity S' lying above the ambient ocean with temperature 7}, and salinity S,. As explained in
Jenkins (1991), the typically small values of the slope angle « allow us to consider conservation of mass, momentum, heat and
salt within the plume in a depth-averaged sense. Moreover, as the plume travels upward in the direction of X, it is affected by
entrainment (at rate €) of ambient ocean water, as well as the fluxes of meltwater (with melt rate 7i) and heat at the ice-ocean
interface (with temperature 73 and salinity S3). These considerations yield the following quasi-one-dimensional system of

equations for (D,U,T,S) as a function of the coordinate X along the shelf base, denoting the balance of mass, momentum,
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Figure 1. Schematic picture of the plume model. The plume travels upward under the ice-shelf base along the path X with speed U and

thickness D while being influenced by melting and entrainment. Note that, in general, the slope angle « can vary in the direction of X.

heat and salt within the plume:

%{U —étrh, (2a)
ddD)gz :D%gsina—CdUz, (2b)
dggT = ¢T, + T, — C/*TrU(T - T), (2¢)
d?gs = ¢S, 4+ 1mS, — CPTU(S - Sp), (2d)

where g is the gravitational acceleration, Cy is the (constant) drag coefficient, Ap = p, — p is the difference in density between
plume and ambient ocean, and Ci/ 2I‘T, Ci/ *T'g are the turbulent exchange coefficients (Stanton numbers) of heat and salinity
at the ice-ocean interface. The above formulation makes explicit the linear dependence of the turbulent exchange velocities on
the ocean current (v = Ccll/ 2FTU, vs = C;/ 2I‘SU ). The system of equations (2) is closed using suitable expressions for the
entrainment rate ¢, an equation of state p = p(T,.5), the balance of heat and salt at the ice-ocean interface and the liquidus

condition. The expression for the entrainment rate is assumed to have the following form (Bo Pedersen, 1980):
é= FEyUsina, 3)
with Ej a dimensionless constant. Hence, the entrainment rate increases linearly with the plume velocity, is zero for a horizontal

ice-shelf base, and grows with increasing slope angle. Furthermore, a linearized equation of state yields:

A
p—fzﬁs(sa—ﬁ—ﬁT(Ta—Tx )
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where (g is the haline contraction coefficient and S the thermal expansion coefficient. The boundary conditions at the ice-

ocean interface are given by:

L i
Cy*TrU(T - T) :m<c—+§—(Tb—ﬂ>>, (52)
CYPTsU(S — Sp) = m(Sy — ), (5b)
Ty = A1Sp+ Ao+ A3z (5¢)

i.e. the first equation balances the turbulent exchange of heat with heat conduction and latent heat of fusion L in the ice, where
¢y and ¢; are the specific heat capacities of seawater-ocean water and ice, respectively, and T; is the ice temperature. Similarly,
Eq. (5b) is a balance between turbulent exchange of salt and diffusion into the ice. Eq. (5¢) is the (linearized) liquidus condition
that puts the interface temperature equal to the pressure freezing point at the local depth z; of the ice-shelf base, equivalent to
Eq. (1b).

Equations (2)-(5) form a closed set that can be solved to obtain the prognostic variables (D,U,T,S) of the plume as a
function of the plume path X, given the ice-shelf draft z,(X) with slope angle a(X), the ambient ocean properties T, (z)
and S,(z), and the ice properties T; and ;. Of particular interest for the current work, however, are the ice-ocean interface
conditions (5), which essentially determine the melt rate m, the key quantity of this study. In other words, the melt rate is
determined by the fluxes of heat and salt at the interface, which in turn are linked to the development of the plume. Note
that these boundary conditions can be simplified (McPhee, 1992; McPhee et al., 1999) to only two equations containing the
freezing temperature 7'y of the plume, rather than the interface properties 7}, and Sy:

L i
CY TrsU(T - Ty) :m<—+ C—(Tf—Ti)>, (6a)

c“) c“)

Tf Z)\15+)\2+)\32b, (6b)

where C é/ *T'rg is an effective heat exchange coefficient. This simplified formulation can be used together with the prognostic
equations (2) by substituting 73 with 7’y in (2c) (note that 73, and 7'y are not necessarily equal), whereas .Sy, disappears from
the problem by substituting (5b) in (2d). Strictly speaking, Eq. (6) is only valid after assuming a constant ratio I'7 /T of the
exchange coefficients, as explained by Jenkins et al. (2010), who also show that both Egs. (5) and Egs. (6) give similar results
when used to describe basal melt rates under Ronne Ice Shelf. Also note the similarity between Egs. (6) and the simple melt
model described by Eqgs. (1), the difference being the inclusion of heat conduction and the parametrization y; = C;/ 2FTSU
as well as the plume variables 7" and .S instead of ambient ocean properties. Hence, the turbulent exchange in this model is
directly determined by the plume velocity that appears as a prognostic variable.

Without giving further details, we mention that the plume model described above can be evaluated for different ice-shelf
geometries (i.e. vertical cross-sections along flow lines) and different vertical temperature and salinity profiles of the ambient
ocean (Jenkins, 2011, 2014). In this model, the general physical mechanism governing the development of the plume is the
addition of meltwater at the ice-ocean interface, which increases its buoyancy. Changes in buoyancy affect plume speed and

that, combined with its temperature and salinity, determines the subsequent input of meltwater.
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2.2 Basal melt parametrization along a flow line

Evaluating the aforementioned plume model for different geometries and ocean properties leads to a wide variety of solutions
for the basal melt rates. The question arises whether there exists an appropriate scaling with external parameters that combines
these results into a universal melt pattern. Here we will summarize how such a scaling can be found, leading to the basal melt
parametrization of Jenkins (2014) for the quasi-one-dimensional geometries along flow lines described in the previous section;
more details can be found in Appendix A. It is important to note that the following derivation is based on simple geometries
with a constant basal slope and constant ambient ocean properties, though the resulting parametrization can easily be applied
to more general cases, as shown in Section 3.1. Section 2.3 will discuss the extension of this parametrization to more realistic
two-dimensional geometries.

The basal melt parametrization used in this study consists of a general expression for a dimensionless melt rate M as
a function of the dimensionless coordinate X measured from the grounding line (Fig. 2). This dimensionless coordinate is
essentially the vertical distance of the ice-shelf base from the grounding line, scaled by a temperature- and geometry-dependent

length scale [:

> Rb— Zgl

X— l 7 ) Ta—Tf(Sa,Zgl)

= (o) e,

(N

where z, is the grounding-line depth and f(«) a slope-dependent factor. Hence, X=0 corresponds to the grounding line and
any shelf point downstream from the grounding line corresponds to a value 0 < X<1 depending on T, S,, zg; and «. This
scaling also implies that the edge-of-thedee-shelf-ce-shelf front is not necessarily located at X =1, but its location is highly
dependent on the input variables. Similarly, the melt rate is scaled as follows:
M= % M = Mo g(@) - [T — Ty (Sas 21)) 8)
with a different slope-dependent factor g(«) and a constant parameter Mj. The dimensionless curve M (X ) in Fig. 2 is now
defined by polynomial coefficients that were found empirically from the plume model results (Jenkins 2014; Appendix A).
In summary, to obtain the basal melt rate 7 at any point beneath the ice-shelf, one requires the local depth z;, local slope
o, grounding-line depth z,; and ambient ocean properties T}, and S, to calculate X and find the corresponding value on the
dimensionless curve M (X ), which then has to be multiplied by the physical scale given in (8) (see Appendix A for details).
The physical quantities and constant parameters required for evaluating the parametrization are summarized in Table 1.
Although the scaling defined by (7) and (8) is found in a purely empirical way, it is possible to derive the various factors
analytically, as sketched in Appendix A. The empirical procedure and the physical meaning of the different factors are outlined
in the following. A general solution to the problem is challenging to find as there are at least four length scales that deter-
mine the plume evolution (Jenkins, 2011). The first governing length scale is associated with the pressure dependence of the
freezing point that imposes an external control on the relationship between plume temperature, plume salinity and the melt
rate. Lane-Serff (1995) discussed how this length scale, (T, — T'r)/ s, approximately determines the distribution of melting
and freezing beneath an ice shelf. Jenkins (2014) extended the analysis of Lane-Serff (1995) by making the transition point

between melting and freezing dependent on the ice-shelf basal slope, resulting in the length scale (7) with slope factor f(«).
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The second length-seale-of these four length scales is associated with the ambient stratification, which determines how far
the plume can rise before reaching a level of neutral buoyancy. Magorrian and Wells (2016) discuss the plume behaviour and
resulting melt rates when this length scale dominates. Critically, with the pressure dependence of the freezing point assumed
to be negligible, as required in the analysis of Magorrian and Wells (2016), no freezing can occur. A-The third length scale can
be formulated by comparing the input of buoyancy from freshwater outflow at the grounding line with the input of buoyancy
by melting at the ice-ocean interface (Jenkins, 2011). This length scale indicates the size of the zone next to the grounding line
where the impact of ice shelf melting on plume buoyancy can be ignored and conventional plume theory (Morton et al., 1956;
Ellison and Turner, 1959) applied, and is generally small compared with typical ice shelf dimensions. A-The final length scale
is that at which the Coriolis force takes over from friction as the primary force balancing the plume buoyancy in the momentum
budget. Jenkins (2011) discussed these length scales in the context of which would take over as the dominant control on plume
behaviour beyond the initial zone near the grounding line where the initial source of buoyancy dominates, and showed the
length scale associated with the pressure dependence of the freezing pointEe—-, (T, — T¢) /)3, to be most important for
typical ice-shelf conditions.

The-universat-Hence, we obtain the second factor of the length scale I in (7) used in the parametrization, However, this
length scale contains two more ingredients. First, as discussed by Jenkins (2011), the entrainment rate in the mass conservation
equation (2a) explicitly depends on the slope «, whereas the melt rate is only affected indirectly, so there is a geometrical factor
that scales the elevation of the plume temperature above the local freezing point:

Fosina

C;/QI‘TS + FEy sina

€))

This factor gives rise to the slope dependence f(«) in [, which is essentially an empirically derived scaling of the transition
point between melting and freezing (Appendix A). The second ingredient is related to the coefficient I'rg, which appears in
f(a) through the simplified interface conditions (6). Jenkins (2014) retained the more complex melt formulation (5) in the
plume model while seeking empirical scalings based on an effective I'rg. As discussed by Holland and Jenkins (1999), the
factor relating I'r and I'rg is itself a function of the plume temperature, so Jenkins (2014) expressed the effective I'rg as
an empirical function of I'r, T,, — Ty and (9) including a constant initial value I'rsq (see Appendix A). When distance along
the plume path is scaled with this slightly more complex factor (see Eq. (A10)), the melt rates produced by the plume model
conform to a universal form, first rising to a peak at {-he—%a-me—%ea}ed—di%&ﬂeem before falling and transitioning to
freezing at a-commeon-point-X ~ 0.56 (Fig. 2).

With the distance along the plume path appropriately scaled, all that remains is to scale the amplitude of the melt rate curves
produced by the plume model and find the melt rate scale M in (8). As in Jenkins (2011) the appropriate physical scales
are: 1) the temperature of the ambient seawater-ocean water relative to the freezing point; 2) the factor in Eq. (9) scaling the
temperature elevation of the plume above freezing; 3) a factor that scales the plume speed, given by the ratio of plume buoyancy

to frictional drag:

( sin o ) C:/QFTS (10)
Cy+ Epsina C;/z].—‘TS—f'EOSinOZ ’
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Figure 2. Dimensionless melt curve M (X ) used in the basal melt parametrization. Higher melt rates typically occur close to the grounding
line with a maximum at X ~ 0.2. A transition from melting (red) to refreezing (blue) may occur further away from the grounding line,
depending on the position of the ice front. Note that the value of X depends on the distance to the grounding line, as well as the temperature
difference T, — 7'y and the local slope o (see Appendix A). In other words, X=0 corresponds to the grounding line, but the dimensionless

position of the ice-shelf front depends on the length scale and is not necessarily equal to X =1

The second term in parenthesis is the factor that scales the plume temperature relative to the ambient temperature and thus
controls plume buoyancy. It replaces the initial buoyancy flux at the grounding line used in the scaling of Jenkins (2011). The
final expression includes factors and powers that are derived empirically (though some theoretical arguments can be applied, cf.
Appendix A), giving rise to the form of M with slope factor g(«) in (8). Fhe-In summary, the result of this scaling procedure
is an approximately universal melt rate curve, which can then be represented by a single polynomial expression that is accurate

to about 20% for melt rates ranging over many orders of magnitude (Jenkins, 2014).
2.3 Basal melt parametrization in 2-D: effective plume path

As explained in the previous section, an important feature of the basal melt parametrization is its dependence on non-local quan-
tities, in particular the grounding-line depth z,; from which the plume originated. Therefore, in order to apply the parametriza-
tion to realistic geometries, one needs to know for each ice-shelf point the corresponding grounding-line point(s) serving as the
origin of the plume(s) reaching that particular shelf point. For the quasi-one-dimensional settings considered so far, this is not
an issue, since the plume can only travel in one direction. However, for general ice-shelf cavities, an arbitrary shelf point can
be reached by plumes from multiple directions, corresponding not only to different values for zy;, but also to different slope
angles .. This means that the plume parametrization cannot be directly applied to such geometries. An algorithm is needed to
determine effective values for z4 and «.. The development of this algorithm is the main focus of the current work and discussed

below.
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Table 1. Physical quantities and constant parameters serving as input for the basal melt parametrization.

External quantities Units

2b Local depth of ice-shelf base m

«@ Local slope angle —

Zgl Depth of grounding line m

Ta Ambient ocean temperature °C

Sa Ambient ocean salinity psu
Constant parameters Values

FEoy Entrainment coefficient 3.6 x 1072
Cq Drag coefficient 2.5x1073
C;/ Iy Turbulent heat exchange coefficient 1.1x1073
%U—Effee%heat—exeh&ﬂge—eeefﬁeieﬁt—&(%ﬁi)\l Freezing point-salinity coefficient —5.73x 1072 °C
A2 Freezing point offset 8.32x 1072 °C
A3 Freezing point-depth coefficient 7.61x10"*Km™!
Mo Melt rate parameter 10myr~!eCc™?
Ci"Trso Heat exchange parameter_ 6.0x107"
T Heat exchange parameter 0.545

Y2 Heat exchange parameter 3.5x10°m~!

As a starting point, we consider the usual topographic data in terms of two-dimensional fields for the ice thickness H;,
bedrock / seabed elevation H},.g and elevation Hy-and-surface-etevation—of the upper ice surface H, used by ice-dynamical
models. The following algorithm is valid for any topographic data on a rectangular grid with any resolution Az x Ay. First of
all, the topographic data are used to define an ice mask based on the criterion for floating uniform ice, as shown in Table 2.

Furthermore, the depth of the ice base is determined to be:
2 =Hs, — H;. (11

In order to apply the basal melt parametrization to this two-dimensional data, effective values for z4 and o must be determined
for every ice-shelf point (i, ;) with basal depth z(%, 7), where the indices ¢ and j denote the position on the grid. This is done
by first searching for “valid" grounding-line points in 16 directions on the grid, starting from any shelf point (2, j), as depicted
in Fig. 3a. Note that we can calculate a local basal slope s,,(4, ) at the point (4, ) in the n-th direction as follows:
(i) — 2009 =20+ ins 4 o)

V(inA2)? + (jnAy)?

where (i, j,) denotes a direction vector on the grid, i.e. (i,,j,) = (1,0) denotes right, (i,,j,) = (0,1) denotes up, etc., and

12)

Az and Ay denote the horizontal grid size in the z- and y-direction, respectively. To determine whether a grounding-line point

found in one of the 16 directions is valid for the calculation of the basal melt, the following two criteria are applied:

10
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1. Assuming that a buoyant meltwater plume can only reach the point (¢, j) from the n-th direction if the basal slope in that

direction is positive, the algorithm only searches in directions for which s, (i,7) > 0.

2. If the first criterion is met for the n-th direction, the algorithm searches in this direction for the nearest ice-sheet point.
More precisely, the associated direction vector (i, j,) is added to the grid indices and the mask value in the resulting
point is checked. This process is repeated until either an ice-sheet point, an ocean point or the domain boundary is
encountered. An ice-sheet point found in this way is only considered to be a valid grounding-line point if it lies deeper
than the original ice-shelf point at (i,), assuming again that a buoyant meltwater plume from the grounding line can

only go up. The second criterion then becomes d7{#75 ) is the grounding-line

depth in the n-th direction.

Note, however, that in determining the second criterion, the depth-difference-depth difference between the encountered sheet
point and the adjacent shelf point can be considerable, especially for coarser resolutions. In such cases, the algorithm tries to
obtain a better estimate of the true grounding-line depth in this direction, say-d={542, (1, ). by interpolating along either the
bed or the ice base, as shown in Fig. 3b and c. The two cases shown in these figures account for either a positive or a negative
basal slope beyond the grounding line. One should note that this additional step assumes the grounding line to be located
halfway between the sheet and shelf points, which could be improved by more sophisticated interpolation techniques.

Following the above procedure yields for each ice-shelf point (7, 7) a set of grounding-line depths €7z, and local slopes s,,
in the directions that are “valid" according to the aforementioned two criteria. Mind that not all directions may yield a (valid)
grounding-line point, in particular those towards the open ocean. Now, in order to determine the effective grounding-line depth
2q1(4,7) and effective slope angle (i, j) necessary for calculating the basal melt in the shelf point (¢, j), we simply take the

average of the values found for €52, and s,,:

o 1 o
Zg1(i,§) = 57—~ > dzaliyg), (13a)
7 valid n
. 1 o
tan[a(i,7)] = i Z sn(4,7), (13b)
*J valid n

where N;; denotes the number of valid directions found for the shelf point (¢,7). On the other hand, if no valid values for
2y and s, are found for a particular shelf point, we take z4 = z;, and a = 0, leading to zero basal melt in that point (see
Appendix A).

In summary, the method described above yields two-dimensional fields for the effective grounding-line depth z,4; and effec-
tive slope tan(a), given topographic data in terms of H;, H, and Hy-Hyeq and a suitable ice mask, such as the one defined in
Table 2. These fields, in turn, serve as input for the basal melt parametrization described in the previous section, together with
appropriate data for the ocean temperature 7;, and salinity S, (discussed in Section 3.2). We thus obtain a complete method
for calculating the basal melt for all Antarctic ice shelves, given the topography and ocean properties, which can also be used
in conjunction with ice-dynamical models. In the following, however, we use the Bedmap2 dataset (Fretwell et al., 2013) to

define the present-day topography of Antarctica and disregard the ice dynamics. More specifically, the original Bedmap2 data
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Table 2. Definition of the ice mask. The ice-shelf criterion is that for uniform ice with density p; floating on ocean water with density p..

The minimum ice thickness used here is H; min = 2 m.

Mask value Type Criterion
0 ice sheet (pi/pw)Hi > —Hp—Hpea
1 ice shelf (pi/pw)Hi < —Hy—Hyea
2 ocean/noice H; < H;min
‘ (a) Ocean
Shelf (
° |

Grounding line

% \\.“: p ‘\

3 /%
\ /
% RS T .
| — S—
Sheet . %
(b) Ice (c) Ice
Grounded grid point Ocean
___________________________ Hyed1
Shelf grid point
Shelf grid point 2b,1
................... ~Zn
Zn
Zb,2
........... Hyped,2 L
ded grid
B Ocean B

Figure 3. Schematic of the algorithm for finding the average grounding-line depth and associated slope angle used by the basal melt

parametrization. (a) Top view of an ice-shelf on a horizontal grid. The algorithm searches in 16 directions on the grid from the shelf point

(4,7). Possible grounded points found in this way are marked by x. (b) Vertical slice along the n-th direction (e.g. the red dotted line in

(a)). If the grounded point is higher than the previous shelf point, the grounding-line depth ¢7-z,, is found by interpolation along the bed
I W2

(= ; tHor+Horrz, = = (H, + Hyed 2))- () Interpolation along the ice base if the grounded point in the n-th direction is deeper
than the previous shelf point (dr=—{zrr+=252)2n = 3 (20,1 + 20.2))-
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Figure 4. Effective plume paths under the Antarctic ice shelves as calculated by the algorithm of Section 2.3 using the Bedmap2 topographic
data remapped on a 20 km by 20 km grid. (a) Ice mask according to Table 2. (b) The effective grounding-line depth zg;. (c) The effective

slope tan(«). (d) The difference between local ice-base depth and associated grounding-line depth, zp — zg;.

is remapped to a rectangular grid with grid size Az = Ay = 20 km, using the mapping package OBLIMAP 2.0 (Reerink et al.,
2016). The resulting topographic data can be used as input for the algorithm described here, leading to the fields for z, and
tan(a) shown in Fig. 4, which are used for the basal melt calculations discussed in Section 3. Note that the mask in Fig. 4a
does not exactly match the Bedmap2 mask because a constant p; was used in formulation of Table 2 as is common in many
ice sheet models. This might cause discrepancies in the position of the grounding line, which, however, are likely compensated
by the rather coarse resolution. In Fig. 4b one can see that the lowest values of z,; are obtained towards the inland regions of
Filchner-Ronne ice shelf and Amery ice shelf. The values for the local slope are typically high near the grounding line and in

some places also near the ice front, as shown in Fig. 4c.

13



10

15

20

25

30

One should note that, although we attempt to directly translate the concept of a quasi-1-D plume to a multitude of plumes
in two dimensions, there are important physical effects not taken into account by this approach. Most importantly, a realistic
two-dimensional plume has an additional degree of freedom because it also develops in the cross-flow direction, causing the
width to be a dynamic variable in addition to the thickness D. This can have significant consequences for the mass budget
currently described by (2a). Hattermann (2012) explored the possibility of adding a variable plume width to the original plume
model and Hattermann et al. (2014) showed that such a 2-D formulation improves the prediction of melt rates for a realistic
ice-shelf geometry compared to the 1-D modelHattermannetal52644). Although this appears to be an important extension
of the plume model that should be taken into account, the aim of the current work is to explore the capabilities of the original
1-D plume parametrization in predicting melt rates around Antarctica. The current approach is meant to be a simple method to
parametrize the net circulation within an ice-shelf cavity as the average effect of multiple plumes, in order to be applied around

the entire ice sheet. Further extensions for obtaining a 2-D plume model are beyond the scope of this work.

3 Results

Here we present various results obtained by evaluating the basal melt parametrization described in the previous section. First,
we investigate the main characteristics of the original 1-D parametrization of Section 2.2 by evaluating it along flow lines of
the Filchner-Ronne and Ross ice shelves. In Sections 3.2 and 3.3, we turn to the full 2-D geometry of Antarctica using the
algorithm described in Section 2.3, first by constructing an appropriate effective ocean temperature field from observational

data.

3.1 Comparison of basal melt parametrizations along flow lines

Topographic data along flow lines for both Filchner-Ronne ice shelf (FRIS) and Ross ice shelf are taken from Bombosch and Jenkins

(1995) and Shabtaie and Bentley (1987), respectively. This data can be used to determine the quantities 23, v and z4; necessary
for calculating the basal melt with the parametrization of Section 2.2. Furthermore, we define a uniform ambient ocean temper-
ature T, = —1.9 °C+ AT, where AT is varied between runs, and a constant ambient ocean salinity S, = 34.65 psu. The results
of these calculations are shown in FigsFig. 5 and ??-and-compared with those of the full plume model described in Section 2.1.
Moreover, we compare with two simple basal melt parametrizations based on Eqgs. (1), namely the linear (i.e. in T, —T')
parametrization by Beckmann and Goosse (2003) with constant v and the quadratic parametrization by DeConto and Pollard
(2016) with vz = kp|T, — T'¢|. Apart from the values listed in Table 1, additional model parameters used for these calculations
are given in Table 3.

FigsFig. 5 and-22-shew-shows that both the current parametrization and the original plume model yield approximately the
same melt-rate patterns as a function of the horizontal distance from the grounding line. These patterns roughly correspond to
the dimensionless melt curve in Fig. 2, i.e. maximum melt near the grounding line and possibly refreezing further away along

the flow line. This is most apparent in Fig. 5ac, which shows a transition from melting to freezing, since the relatively deep
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Table 3. Additional model parameters used for evaluating the plume model and the simple parametrizations described in Section 3.1. BG2003

refers to Beckmann and Goosse (2003) and DCP2016 refers to DeConto and Pollard (2016).

Constant parameters

Values

L Latent heat of fusion for ice 3.35 x 10° T kg™ *
cw  Specific heat capacity of water 3.974 x 103 Jkg ' K~!
ci  Specific heat capacity of ice 2.009 x 103 Jkg ' K~!
Bs  Haline contraction coefficient 7.86 x 1074

Br  Thermal expansion coefficient 3.87x 1075 K™*

g Gravitational acceleration 9.8l ms2

pi  Density of ice 9.1 x 10* kgm ™3
pw  Density of ocean water 1.028 x 10 kgm™3
~vr  Turbulent exchange velocity (BG2003) 50x107 " ms™!
k7  Turbulent exchange coefficient (DCP2016) 50x107"ms ' K!

draft of FRIS allows higher values of the dimensionless coordinate X . On the other hand, Fig. 22?a-5d does not show refreezing
because the draft of Ross ice shelf is much shallower. Increasing the ocean temperature (through AT') can significantly enhance
basal melt and remove the area of refreezing, as shown in Figs. Sb-and-22?be and 5f. In these cases, additional melt peaks occur
in regions of high basal slope. Moreover, although the general agreement is good, the discrepancies between the current
parametrization and the plume model are largest when the basal slope changes rapidly, because the parameterization responds
immediately to the change while the full model has an inherent lag as the plume adjusts to the new conditions. On the whole,
we see that the melt patterns given by the plume parametrization can be quite complex, while the two simple parametrization
parametrizations give nearly constant curves (i.e. independent of the position with respect to the grounding line).

It is interesting to investigate the temperature sensitivity of the four models in terms of the horizontally averaged melt rate as
a function of AT, as shown in Figs. Sd-and-22dg and 5h. In the case of FRIS, the plume model and parametrization are much
more sensitive to the ocean temperature than the two simpler models. However, the average melt rates for Ross ice shelf are
rather similar for all four models and all values of AT'. Hence, the difference in the temperature sensitivity depends signifi-
cantly on the ice-shelf geometry, where the plume parametrization appears to have a larger potential for capturing diverse melt
values than the simpler models. Note that in both cases, the temperature dependence of the plume parametrization is slightly
nonlinear, similar to the DeConto and Pollard (2016) parametrization, while the Beckmann and Goosse (2003) parametriza-
tion has a linear temperature dependence. Following the discussion of Holland et al. (2008), the temperature dependence of
the plume parametrization should therefore be more realistic than the one of Beckmann and Goosse (2003). However, the
quadratic parametrization of DeConto and Pollard (2016) tends to significantly underestimate the melt rates as well, despite its
nonlinearity. It appears that the geometry dependence of the plume parametrization is an important factor for the temperature

sensitivity of the calculated basal melt rates. In Section 3.3 we show that these geometrical effects are indeed crucial for ob-
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Figure 5. Comparison of the plume model (Section 2.1) with the 1-D basal melt parametrization (Section 2.2) , as well as the parametrizations
of Beckmann and Goosse (2003) (BG2003) and DeConto and Pollard (2016) (DCP2016), for a-flow ne-lines along Filchner-Ronne ice shelf
(left column) and Ross ice shelf (right column), both with uniform ocean temperature 7, = —1.9 °C+ AT and constant salinity S, = 34.65
psu. (a,b) Geometry of the ice-shelf base. (c,d) Melt pattern for AT = 0 °C. (be,f) Melt pattern for AT = 0.8 °C. (eg,h) Geometry-of-the
iee-shelf-base—(e-Horizontaty-averaged-mett-Melt rates average along the flow line as a function of AT'. Note that the black curve is nearly
identical to the green curve and might appear below it. Also note the difference in vertical scale between the left and right columns. The
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taining realistic melt rates with the 2-D parametrization, but first we discuss the matter of determining a suitable input eceasn

temperature-fieldfield for the ocean temperature.

3.2 Effective ocean temperature

The previous section dealt with the 1-D basal melt parametrization along a flow line using a uniform ambient ocean temperature
for the entire ice-shelf cavity. While a uniform temperature might appear a reasonable first approximation for a single ice shelf,
it is far from realistic to apply a single ocean temperature for multiple ice shelves around the entire Antarctic continent.
Therefore, in order to apply the parametrization to the 2-D geometry defined by Fig. 4, a suitable 2-D field for the ocean
temperature 7y, is required. In principle, the same is true for the salinity S,, but we will assume that the horizontal variations
in ocean salinity around Antarctica are so small that the pressure freezing point T’ is only affected by variations in depth. In
the following, we will therefore take a uniform salinity S, = 34.6 psu. One should realize that vertical variations in S, which
are not accounted for in the current parametrization, would be important in reality, as discussed in Section 4.

Two problems arise when considering a 2-D ocean temperature field for forcing the parametrization. First of all, such a
field should ideally be based on observational data, but ocean temperature measurements in the Antarctic ice-shelf cavities are
sparse. A more feasible approach would be to compute an interpolated field based on ocean temperature data in the surrounding
ocean, which inevitably contains artefacts resulting from the non-uniform and predominantly summertime sampling. Secondly,
even if a complete dataset of ocean temperatures were available, it is not immediately clear which temperatures (i.e. at which
depth) are characteristic for the ocean water reaching the grounding lines (e.g. Jenkins et al. 2010). In principle, detailed
knowledge of the bottom topography and the ocean circulation would be required for this, which goes beyond the scope of the
current modelling approach.

In view of these issues, we construct an effective ocean temperature field with which the current plume parametrization
yields melt rates that are as close as possible to present-day observations, averaged over entire ice shelves. In other words, this
can be regarded as the inverse problem of computing the unknown ocean temperatures by assuming that the model output for
the melt rates matches the (averaged) observations. For this purpose, we use the results of Rignot et al. (2013), who calculated
the area-averaged melt rates for each Antarctic ice shelf, based on a combination of observational data and regional climate
model output for the different terms in the local ice-shelf mass balance. Other datasets for recent Antarctic basal melt rates
exist (e.g. Depoorter et al. 2013), as well as more recent data for ice-shelf thinning (Paolo et al., 2015) from which the basal
melt rates can be calculated when combined with the other terms in the mass balance (e.g. velocity and surface melt rates).
These alternative datasets for the (area-averaged) basal melt rates are expected to be at least of the same order of magnitude,
which we deem sufficient for the purpose of the current study. Since it is impossible to resolve each individual ice shelf from
the Rignot et al. (2013) dataset with the currently used 20-km resolution (Fig. 4), we consider a set of 13 ice-shelf groups and
determine the area-averaged basal melt for each group from the data of Rignot et al. (2013). The definition of these groups
along with the calculated average melt rates are shown in Fig. 6. Note that the shelves have been grouped based on their
geographical location, but also for more practical reasons such as the possibility of distinguishing their boundaries on the
20-km grid.
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Ice-shelf group Average basal melt (m yr—1)

1 Filchner, Ronne 0.32£0.08
2 Stancomb, Brunt, Riiser-Larsen, Quar, Ekstrom, Atka 0.2+0.1
3 Jelbart, Fimbul, Vigrid, Nivl, Lazarev, Borchgrevink, Baudoin, Prince 0.5+0.1
Harald, Shirase
4 Amery, Publications 0.6+0.4
5 West 1.7+£0.7
6 Shackleton, Tracy, Tremenchus, Conger 2.7+0.5
7 Totten, Moscow University, Holmes 7.14+0.5
8 Mertz, Ninis, Cook East, Rennick, Lillie 1.7+£04
9 Ross 0.12+0.07
10 Sulzberger, Swinburne, Nickerson, Land 1.54+0.2
11 Getz, Dotsen, Crosson, Thwaites, Pine Island, Cosgrove, Abbot, Ven- 5.6+0.3
able
12 Stange, George VI, Bach, Wilkins 3.0+£04
13 Larsen B-C-D-E-F-G 0.5+0.6

Figure 6. The 13 groups of ice shelves used for constructing the effective ocean temperature field. Average melt rates and error estimates

(one stgmastandard deviation) for each group are calculated from the data of Rignot et al. (2013) for individual ice shelves. Green lines

indicate the approximate positions of the flow lines used in Fig. 5.
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As a starting point for constructing the effective ocean temperature, we consider the observational data of the World Ocean
Atlas 2013 (WOA13, Locarnini et al. 2013), which contains a global dataset of (annual mean) ocean temperatures within
a range of depths (0 — 5500 m). Restricting ourselves to the temperature data for latitudes south of 60°S, we average the
ocean temperatures over depth intervals [z1,z3], where z; is the level of the bed (i.e. the deepest level for which data is
available) with the additional constraint z; > —1000 m, and z3 = min{0, z; + 400 m}. This results in a relatively smooth 2-
D temperature field containing an inherent dependence on the bottom topography, which can be considered a first estimate
for the ocean water flowing into the ice-shelf cavities. The depth-averaged temperature field is now remapped on the same
20-km grid as the topography data (see Section 2.3 and Fig. 4) and interpolated using natural-neighbour interpolation (i.e. a
weighted version of nearest-neighbour interpolation, giving smoother results) to obtain data in the entire domain of interest. The
resulting temperature field, called 7}, is shown in Fig. 7a. One should note that both the depth-averaging and the interpolation
procedures introduce biases in the resulting field. In particular, the rather simple interpolation technique also interpolates ocean
temperatures between ice-shelf cavities separated by the continent or grounded ice, which is not realistic as it propagates
temperatures into cavities that the corresponding ocean water cannot reach. Using the natural-neighbour interpolation method
appears to limit these effects. However, the details of the resulting field 7j are somewhat arbitrary as it needs to be adjusted in
order to obtain melt rates that agree with the data of Rignot et al. (2013).

The aim is now to modify this depth-averaged, interpolated temperature field 7j in such a way that the basal melt parametriza-
tion yields melt rates close to those shown in Fig. 6 for each ice-shelf group. As explained earlier, this modification is necessary
for eliminating biases in 7j caused by the sparse observations and numerical interpolation, and also because the flow dynamics
of the ocean are not resolved. The field T} is now modified by adding a 2-D field of temperature differences (AT'), which, in
turn, is the result of linearly interpolating individual values of AT in 29 carefully chosen sample points, with AT = 0 on the
domain boundary. The sample points and values of AT have been determined by trial and error and are certainly not a unique
nor optimal configuration. The points are mainly located in regions that are most affected by interpolation between strictly
separated cavities (e.g. grounding line of FRIS) or extrapolation of warm open-ocean temperatures into cavities (e.g. Dronning
Maud Land, shelf groups 2 and 3 in Fig. 6). The resulting effective temperature field, Tog = Ty + AT, is shown in Fig. 7b,
which also indicates the positions of the aforementioned sample points along with the used values of AT in these points.
Note that for technical reasons explained in Appendix A, we have applied a lower limit to the effective temperature equal to
the pressure freezing point at surface level. With the current choice S, = 34.6 psu, this implies T.g > —1.9 °C. Comparing
Figs. 7a and b, we see that the main effect of AT is a decrease in the ocean temperature over most of the continental shelf and
most ice-shelf cavities (in particular for Ross and Amery ice shelves), and a slight increase in the ocean temperature in West
Antarctica and some regions in East Antarctica (e.g. shelf group 6 in Fig. 6). Again, note that the details in the procedure for
calculating Ty and AT are somewhat arbitrary, since increasing one term would require decreasing the other term in order to
obtain similar values for 7. with similar basal melt rates.

Fig. 8 shows the basal melt rates computed by the parametrization using the effective temperature Tog of Fig. 7b as forcing.
An area-averaged value is obtained for each of the 13 ice-shelf groups in Fig. 6 and compared with the observational values

from the Rignot et al. (2013) data. By construction, the modelled basal melt rates correspond closely to the observational values
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Figure 7. (a) Depth-averaged and interpolated ocean temperature, 7, calculated from annual mean WOA13 data. (b) Effective ocean tem-
perature Toq = max{To+AT,—1.9} constructed from 7} as described in Section 3.2. The circles indicate the positions of the sample points
in which the values of AT are imposed. The colour of each circle corresponds to the imposed value of AT" (same colour scale), ranging from

—1.4°Cto 0.8 °C. The full AT field is obtained by linearly interpolating these values.

and fall within the error estimates. A notable exception is the value for Filchner-Ronne ice shelf (FRIS), which is 0.32 4= 0.08
1

m yr~! according to the observations, whereas the parametrization gives a value just above 0.5 m yr—!. This discrepancy is
caused by the lower bound of —1.9 °C imposed on the effective temperature—, whereas in reality the temperatures can reach
values below —2.0 °C (e.g. Nicholls et al. 2009). As we can see in Fig. 7b, the ocean water below FRIS is almost entirely at
this minimum temperature, making it impossible to further improve the basal melt rate without using unfeasibly low values for
Ter. This rather technical constraint might be relaxed in various ways, as briefly discussed in Appendix A, possibly improving
the melt rates in very cold cavities.

Nevertheless, the plume parametrization in conjunction with the constructed effective temperature field appears to yield
realistic present-day melt rates for all shelf groups. By construction, the effective temperature shown in Fig. 7b contains an
inherent dependence on the bottom topography, with typically lower temperatures above the continental shelves (and thus
in the ice-shelf cavities), while still retaining the spatial variation in temperature of the surrounding deep ocean (e.g. higher

temperatures for West-Antarctica, leading to higher melt rates for ice-shelf groups 11 and 12 as defined in Fig. 6).
3.3 Comparison of 2-D melt-rate patterns

The effective grounding-line depth and effective slope in Fig. 4, the effective ocean temperature in Fig. 7b and the assumption

S, = 34.6 psu constitute the full set of input parameters necessary for evaluating the plume parametrization on the entire 2-D
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Figure 8. Area-averaged basal melt rates for each ice-shelf group in Fig. 6 obtained with the plume parametrization and the effective
temperature field of Fig. 7b. The modelled melt rates are plotted against the averaged observational values given in Fig. 6. For four important
shelf groups, the data points are explicitly labelled along with the corresponding group number in Fig. 6. The horizontal error bar is a-one

stgma-standard deviation uncertainty in the observations.

geometry. The resulting 2-D field of basal melt rates under all Antarctic ice shelves is shown in Fig. 9a (note that this is the
same data used for the area-averaged melt rates in Fig. 8, but now plotted as a spatial field rather than averaged values over the
ice shelves). A general pattern that can be observed, especially on the bigger ice shelves, consists of regions of higher melt close
to the grounding line and lower melt or patches of refreezing closer to the ice front—, the latter being most apparent at the ice
fronts of shelf groups 1, 2 and 9. This pattern is a consequence of the underlying plume model, as shown in Section 3.1 for data
along a flow line. Moreover, the highest melt rates occur in West Antarctica (shelf groups 11 and 12) and some specific shelves
in East Antarctica (shelf groups 6 and 7), where the constructed effective temperature is significantly higher than elsewhere.
The general melt patterns within individual cavities appear to be in line with observations, e.g. Rignot et al. (2013). However,
one should note that the Rignot et al. (2013) melt pattern shows a greater spatial variability, with more patches of (stronger)
refreezing occurring between patches of pesitive-mett-melting (Fig. 11a). Especially beneath FRIS and Ross ice shelf, the melt
pattern appears quite complex and local deviations from the general pattern can be considerable (Fig. 11b). These discrepancies
in the current parametrization might have different reasons, such as the coarse resolution or the fact that we disregard the details
of the ocean circulation within the ice-shelf cavities, as well as effects due to the Coriolis force and both seasonal and vertical
variability in the temperature and salinity fields.

Furthermore, Figure 9 shows the melt rates patterns of the plume parametrization zoomed in on three impertantregions,
giving more insight in the orders of magnitude of the highest melt rates. The high near-grounding-line melt rates for FRIS have

1

values between 1 and 10 m yr~, while those for Ross ice shelf appear one order of magnitude smaller. On the other hand, the

West Antarctic melt rates shown in Fig. 10b have values around 10 m yr~! or more due to the higher ocean temperatures here.
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Figure 9. Basal melt rates in meter per year with the Bedmap2 topographic data and the effective temperature field of Fig. 7b as obtained

from: (a) the plume parametrization with additional input parameters from Fig. 4; (b) the quadratic parametrization of DeConto and Pollard
(2016).
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Figure 10. As Fig. 9a, but with a logarithmic color scale (negative and zero values shown white) and zoomed in on impertantareas—a)
Filcher-Ronne ice shelf (group 1), (b) West Antarctica including Pine Island and Thwaites (group 11), (c) Ross ice shelf (group 9).

It should be noted, however, that the latter values are still lower than those observed in the Rignot et al. (2013) data, where

local melt rates close the grounding line can reach 100 m yr™", while the average melt rates over the full area of Pine Island
and Thaites are 16.2 m yr”" and 17.7 m yr” ", respectively.

For comparison, we also evaluate the quadratic parametrization of DeConto and Pollard (2016), described in Section 3.1,

5 using the same geometric data and the effective temperature field of Fig. 7b as input. The resulting basal melt rate pattern is

shown in Fig. 9b. Comparing this figure to Fig. 9a shows that the quadratic parametrization yields significantly lower melt rates
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Figure 11. Basal melt rates in meter per year extracted from the Rignot et al. (2013) observational dataset (courtesy of Dr Jeremie Mouginot):

(a) raw data plotted together with the currently used mask; (b) difference between the plume parametrization (Fig. 9a) and the observations

interpolated on the 20-km grid.

than the plume parametrization, at least with the current effective temperature as input. The only visible patches of basal melt
are located in the aforementioned regions where the ocean temperature is high, as well as near the grounding line of Filchner-
Ronne ice shelf. Therefore, if the effective temperature in Fig. 7b is indeed characteristic of the true temperatures in the ice-shelf
cavities, the quadratic parametrization would require significant tuning in order to obtain a similar agreement with observed
melt rates as currently found with the plume parametrization. For completeness, we mention that the linear parametrization of
Beckmann and Goosse (2003) yields even lower melt rates due to its low temperature sensitivity, as discussed in Section 3.1.
To further clarify the differences between the two parametrizations in Fig. 9, we have repeated the steps outlined in Sec-
tion 3.2 and constructed a second effective temperature field based on the quadratic parametrization by DeConto and Pollard
(2016) instead of the plume parametrization. The resulting temperature field is shown in Fig. 12a. Note that the difference
between this field and the one in Fig. 7b only lies in the values chosen for AT and not in the underlying interpolated obser-
vations (7(). For simplicity, the AT values have been imposed in the same sample points as used for Fig. 7b. Comparing the
two effective temperature fields in Figs. 7b and 12a shows that much higher ocean temperatures are required for the quadratic
parametrization to give realistic area-averaged melt rates. The AT values imposed in the sample points indicated in Fig. 12a
range from —0.5 °C to 5.4 °C, while those used for Fig. 7b range from —1.4 °C to 0.8 °C. Furthermore, we can calculate the
root mean square values of T.g — T over the entire domain (disregarding the continental points), yielding 0.3 °C for Fig. 7b
and 1.1 °C for Fig. 12a. Hence, the effective temperature in Fig. 7b lies closer to the underlying observational data T}y than the

field in Fig. 12a.
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Figure 12. (a) Effective temperature field constructed in a similar way as Fig. 7b, but with different values for AT’ (indicated by the circles
and ranging from —0.5 °C to 5.4 °C), chosen in order to match the melt rates of the quadratic parametrization of DeConto and Pollard (2016)
with the data of Rignot et al. (2013). (b) Basal melt rates obtained with the quadratic parametrization of DeConto and Pollard (2016) using

the Bedmap?2 topographic data and the effective temperature in (a) as input.

The basal melt rates resulting from the quadratic parametrization and the new effective temperature field are shown in
Fig. 12b. Clearly, the higher ocean temperatures cause significantly higher melt rates than those shown in Fig. 9b. However,
compared with the plume parametrization in Fig. 9a, the spatial distribution of these melt rates is more uniform, showing less
prominent melt peaks near grounding lines and no patches of refreezing. It appears that the quadratic temperature dependence
together with the (slight) depth dependence through the pressure freezing point 7y (equation (1b)) is not sufficient for obtaining
realistic melt rates without significantly increasing the input ocean temperature, which can be considered equivalent to using
different tuning factors for different ice shelves. On the other hand, the plume parametrization, containing an additional geom-
etry dependence through the grounding-line depth and local slope, appears to yield the required melt rates rather naturally with
constructed-ocean-temperatare-within—a-plausible-rangeocean temperatures constructed in a plausible way, and it results in a

more realistic spatial pattern with highest basal melt rates near the grounding line as well as areas of refreezing.

4 Discussion

The plume parametrization in combination with the 2-D algorithm of Section 2.3 and the effective temperature field of Sec-
tion 3.2 is able to capture a more complex spatial pattern of basal melt rates and a high temperature sensitivity, which is an
important step forward compared to the simpler models based only on Egs. 1. However, the plume parametrization also relies

on several rather strong assumptions, which we discuss below. First of all, both the original plume model and the parametriza-
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tion have a quasi-1-D formulation, assuming homogeneity in the spanwise direction. Even though we attempt to translate this
formulation to two dimensions with the algorithm in Section 2.3, there are undoubtedly errors associated with the underlying
1-D assumptions. As already discussed in Section 2.3, an important 2-D effect is the additional degree of freedom associated
with the widening of the plume, which influences the plume dynamics and the melt rates through the mass budget equation
(Hattermann, 2012; Hattermann et al., 2014).

Furthermore, the current algorithm for finding the plume paths in 2-D is not unique and more realistic and efficient methods
might be possible, e.g. by extrapolating the plume outward from the grounding line instead of searching for surrounding
grounding-line points from each shelf point. Also, the current algorithm was developed for the relatively coarse resolution
of 20 x 20 km, suitable for use in an ice-sheet model, and takes into account only the local slope and overal grounding-line
depth, whereas higher resolution runs might benefit from a different and more precise method. For example, the current method
inevitably includes unrealistic plume paths along points where the basal slope reserves, which might give problems at higher
resolutions, On the other hand, a higher resolution would also entail a more rapid variation of the basal slope, potentially
causing high melt peaks (Section 3.1) that would be smoother in the original plume model. This would introduce the need for
a smoothing algorithm for higher resolutions. All in all, the current formulation should be considered as a relatively simple
parametrization of the net circulation within an ice-shelf cavity, providing non-local features to the basal melt calculation that
are not present in the simpler models. Further work is needed to determine whether the realism of the current formulation can
be improved.

Another very important feature that has been neglected in the derivation is the vertical variation in the temperature and
salinity fields. In reality, stratification and the existence of different water masses have a crucial effect on plume buoyancy, e.g.

by causing the plume to detach from the ice-shelf base at levels of neutral buoyancy. In such cases, new plumes are formed at

the detachment depth and the relation between the plume and the grounding-line depth breaks down, creating multiple modes
in the sub-shelf circulation and associated basal melt (Jacobs et al., 1992). As explained in Sec. 2.2, the current formulation is

based on the assumption that the freezing-point length scale (7) is dominant w.r.t. the length scale associated with stratification,
as well as those associated with rotation and the initial meltwater flux at the grounding line. This assumption indeed works
well in conjunction with constant values for 7, and S, describing a net circulation for which the buoyancy is parametrized in
terms of T, — T, as shown more precisely in Appendix A. In this framework, the values of 7}, and S, determine the overall
magnitude of plume buoyancy, while the variation along the plume path is described by the depth-dependence of the freezing
point Ty. This is also the reason why the small horizontal variations in S, have only a small effect on the overall buoyancy
and can be neglected, as was done in Section 3. However, for obtaining a fully realistic melt rate pattern it will be important to
also include the effects of vertical and seasonal variations in T, and S,, e.g. in order to capture seasonal intrusion of warmer
surface waters (mode 3 melting; Jacobs et al. 1992; Hattermann et al. 2012; Stern et al. 2013).

An important uncertainty in the current study is the construction of the effective temperature field (Section 3.2). In principle,
this is done due to the lack of detailed ocean temperature observations beneath the ice shelves. One should note, however, that
in attempting to eliminate the biases caused by the sparse data, we are also correcting for errors in the parametrization itself,

since the construction is done by constraining the modelled melt rates. In this respect, the effective temperature field (or more
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precisely, AT should be regarded as part of the modelling framework. It would be crucial for the complete validation of the
model to perform additional temperature sensitivity studies to see how the plume parametrization might respond to an evolving
ocean. Ideally, this is done in the context of a coupled ice-ocean model. On the large scales currently considered, lack of detail
within the ice-shelf cavities will likely remain a problem also when using an ocean general circulation model. Since the current
formulation is based on constant ocean properties within individual cavities, a method to determine 7. from an ocean model
could be extrapolating the model temperature within a characteristic depth-range at the ice front and using a (possibly different)
AT to constrain the output melt rate, similar to the construction presented here.

On a more technical note, the current construction of T,z was not based on a sophisticated optimization algorithm, but it
is merely a simple method to determine an essentially spatially variable field directly from the observations. An alternative
method, which might be more consistent with the derivation of the parametrization, would be to introduce separate values for
the ocean temperature for each individual cavity, as the ambient temperature in the current context represents the net inflow
into the cavity and not the temperature of meltwater that is produced or mixed locally. On the other hand, the current method
is more generic in the sense that it removes the need for defining individual cavities in the model once AT (i.e. the constraint
on the melt rates) has been determined. It should be noted that the current method using only 29 sample points might become
problematic in dynamical simulations that include grounding-line retreat. Hence, in such a context a more sophisticated method
might be necessary. Furthermore, it is not yet clear if a fixed AT is a realistic assumption for an evolving ocean, and introducing
the aforementioned additional variations of T}, and S, might require different considerations altogether.

Finally, it is interesting to note the existence of alternative methods for describing the net circulation within the ice-shelf
cavities. A recent example is a box model that simulates the upward flow under the ice shelf in a similar quasi-1-D context by
describing the fluxes of heat and salt between a limited number of predefined boxes (Olbers and Hellmer, 2010). This method
has recently been extended to two dimensions and coupled to an ocean model (Reese et al., 2017), yielding Antarctic basal
melt patterns similar to the ones given by the plume parametrization. Both methods are similar in the sense that they essentially
describe the same type of physical process while not accounting for features such as stratification and 2-D effects, as discussed
above. One could argue that a systematically derived approximation to the governing equations is preferred over a simple box
model. On the other hand, a box model might be easier to implement and produce similar results in a more efficient way. A

more detailed comparison of these two methods is beyond the scope of this work.

5 Conclusions

In this study, we have the presented the application of a basal melt parametrization, based on the dynamics of buoyant meltwater
plumes, to all ice shelves in Antarctica. The physical basis of this parametrization is the plume model of Jenkins (1991), which
describes the fluxes of mass, momentum, heat and salinity within a meltwater plume travelling up from the grounding line
along the ice-shelf base. Details of the proposed parametrization have been discussed in earlier works (Jenkins, 2011, 2014)

for idealized one-dimensional geometries along an ice-shelf flow line. In particular, the basal melt rate given by the plume
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model follows a rather universal scaling law depending on the ice-shelf geometry (basal depth z;, local slope angle «, and
grounding-line depth z,;) as well as the ambient ocean temperature 7, and the pressure freezing point 7.

Here, the plume parametrization has been tested for two realistic ice-shelf geometries along a flow line and, for the first time,
applied to a completely two-dimensional geometry covering all the Antarctic ice shelves. The one-dimensional tests along flow
lines of Filchner-Ronne and Ross ice shelves (Section 3.1) reveal the typical characteristics of the parametrization, namely
higher melt rates near the grounding line and in regions of high basal slope. Patches of refreezing can occur further away
from the grounding line. Moreover, the plume parametrization exhibits a nonlinear dependence on the ocean temperature, and
the increase in melting resulting from higher ocean temperature is dependent on the ice-shelf geometry. In contrast, simpler
parametrizations based solely on the local balance of heat at the ice-ocean interface are not able to capture the complex melt
pattern nor the temperature sensitivity.

Applying the essentially one-dimensional plume parametrization to a two-dimensional geometry is not trivial and, ideally,
it would require a detailed knowledge of both the ice-shelf geometry and the ocean circulation in the ice-shelf cavities. The
method discussed in Section 2.3 provides a solution to this issue by constructing a field of effective grounding-line depths and
slope angles for each shelf point from topographic data. The resulting values for z4; and « can be interpreted as reflecting the
average effect of all plumes that reach the shelf point. This method provides a straightforward way to extend the parametrization
from 1-D to 2-D for a given topography and ice mask, but it is not unique. As discussed in the previous section, a fully realistic
2-D formulation of the plume dynamics would require additional considerations.

However, since the temperature sensitivity of the plume parametrization can be considerable, a more important factor for
the two-dimensional model is finding an ocean temperature field that is characteristic for the ocean water flowing into the
ice-shelf cavities. In this respect, the results in Sections 3.2 and 3.3 show that the depth-averaged and interpolated data from
observations require a plausible offset AT between —1.4 °C and 0.8 °C in order to obtain an effective temperature g (Fig. 7b)
with which the plume parametrization gives basal melt rates close to the present-day observations of Rignot et al. (2013). In
contrast, a much higher offset AT ¢between —0.5 °C to 5.4 °C ¥is required for obtaining the same melt rates with the quadratic
parametrization of DeConto and Pollard (2016), as shown in Fig. 12. The same low temperature sensitivity of the melt rates
from the latter parametrization is also apparent in Pollard and DeConto (2012), where different tuning factors in the basal melt
parametrization are used for different sectors along the Antarctic coastline, and in DeConto and Pollard (2016), where offsets
of 3 °C and 5 °C are added to the ocean temperature in the Amundsen and Bellinghausen seas (resulting from an ocean model)
in order to obtain the correct present-day basal melt rates and grounding-line retreat.

All in all, the presented plume parametrization, together with the constructed effective temperature field, gives reasonable
results for the spatial pattern of present-day basal melt in Antarctica. The inherent geometry dependence, based on the plume
dynamics, gives a more natural spatial variation that cannot be captured with local heat-balance models, a major aspect being
the occurrence of refreezing. Of course, the current discussion only assumes a steady state regarding the ice dynamics and the
ocean temperature. The question remains how an ice-dynamical model would behave when coupled to the plume parametriza-
tion, both for present-day forcing and for a varying climate. As a next step, it is important to perform such transient simulations

of an ice model coupled to the plume parametrization and conduct sensitivity experiments. For such simulations, the effective
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temperature in Fig. 7b, even though it is a constructed field, can prove to be a valuable reference state to which temperature
anomalies can be added, as briefly discussed in Section 4. Eventually, coupled ice-ocean simulations (e.g. DeConto and Pollard
2016) might benefit from this approach by using both ocean-model output and this reference state to determine an appropriate

temperature forcing for this type of basal melt parametrizations.

Appendix A: Details of the basal melt parametrization

Here we present more details of the basal melt parametrization summarized in Section 2.2, starting with the theoretical argu-
ments behind its mathematical form. The precise form of the parametrization is, however, the result of an empirical study of
the plume model results (Jenkins, 2014) and described at the end of this appendix.

First of all, we consider a simplified form of the plume equations (2)-(4), (6), where we neglect all advection terms except the
crucial mass flux ®,,, := @, since without this flux there would be no plume. Furthermore, we replace the salinity equation

dX
by an equation for the density contrast Ap as defined in (4) (similar to Jenkins 2011), neglect the direct effect of the melt rate 77z

in the mass eguation-and heat equations w.r.t. the entrainment flux (retaining it only for the heat-and-buoyaney-fhixesbuoyancy
flux), neglect heat conduction into the ice in the ice-ocean interface condition, and take S; = 0. In the case of constant ocean
properties (7}, S,), as considered also for the empirical derivation of the plume parametrization, this set of assumptions yields

the following simplified system:

®,, = EyUsina, (Ala)
@mU:D%gsina—CdUz, (Alb)
T = (EBoU sine)Ty+inTy — Cy *TrsU (T = Tp), (Alc)
%% = Bs11Sq — Brin(Ta — Ty) — frCy *TrsU (T — Ty), (Ald)

L . 1
=y *TrsU(T = Ty), (Ale)
Ty = MS+ A2+ A2 (A1f)

28



10

15

20

25

This is an algebraic system that can be solved rather easily for (U, T, Ap, ) as functions of the ambient properties (1,5, ),

the freezing point 7’y and the basal slope angle . The solution can be written compactly as follows:

) 1/2 AT
i=C)/*Trg-U- < 7 /Cw) , (A2a)
sina 1/2
= (¢DAp)Y/? . [ ——— A2
U=(gDAp) (Cd—f—Eosina) ’ (A2b)
FEosina
AT =T -T;= (T, —Ty), (A2¢)
! <C;/2FT3+EQSHIO[> !
CYTrg\ [ AT
Ap = 2 Ta T a A2
P <E081n0[ (L/Cw>QO( 2 f7S )7 ( d)
with
Qo(Tu,Ty,S.) = \/ BsSa 5T< +T, — Tf) (A2e)

By substituting the expressions above in (A2a), we obtain three geometrical factors in the melt rate expression, corresponding

to the factor g(«) in the melt scale (8):

1/2
B sin o /2 Cl/QFTS / FEysina A3
g(e) = Cy+ Epsina 1/2 1/2 (A3)
d 0 C,)/ "I'rs + Epsina C,)/ T'rs+ Epsina

What remains is to find the required quadratic temperature dependence in (8). First note that the factor (), essentially de-

termining the magnitude of buoyancy, can be taken approximately constant for constant S, and T,, — Ty < L/c,,, which is a
reasonable assumption with the values in Table 3. Second, the expressions in (A2) depend on the plume thickness D, which is
still an unknown variable. However, for a simple geometry with a constant and small slope « and slowly varying U (X), the
plume thickness can be explicitly solved from the mass equation (Ala) and directly related to the depth difference and, hence,

the temperature difference:
D = Ey(sina) X ~ Eo(zp — 291) = Eo - 1- X ~ (To — Ts. ) X, (A4)

where we have used (7) to incorporate the length scale and the dimensionless coordinate X . A linear thickening of the plume
is indeed a reasonable approximation for a constant slope that is also seen in the plume model output, with slight deviations
when the plume decelerates. Third, the temperature differences T,, — Ty and T,, — Ty 4 are related in a rather straightforward
way:

Ty~ Ty =Ty —Tr.g— As(25 — 2g1) = (T — Tp.g1) (1 - 7_)> ~ (To = Trg) (1- X) (A5)
Using (A4) and (AS) in (A2) now yields the following dependence for the melt rate:

, . \3/2
i ~ UAT ~ DY2ApV /2 AT ~ DY2AT32 o DV2(T, — Ty)3/2 ~ (T, — Tj. )% - X1/2 (1 - X) , (A6)
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which is the required quadratic dependence on T, — T ¢.

In summary, we have shown how the assumption of a simple geometry with constant slope and constant ocean properties
in the simplified system (A1) leads to the form of the melt rate scale (8). As a consequence of the derivation, we also found
a relation i ~ X'/ 21— X )3/ 2, showing how the melt rate rather naturally depends on the scaled coordinate X defined in
(7) (disregarding the factor f(«) for the moment; see below). However, this particular function of X does correspond to the
general melt curve in Fig. 2. In particular, it only yields positive values for 0 < X <1 and does not capture refreezing. The
message is that at this point, although we can formally derive the melt rate scale M with the correct temperature and slope
dependence, it is still necessary to do an empirical scaling of the plume model results in order to obtain the correct function of
X . This empirical "fine-tuning" then leads to the exact form of the parametrization described below, including parameters Mj,
2o, Y1, Y2 as well the polynomial fit of M (X ). A more thorough analysis of the plume equations would be required to derive
the correct form of the melt curve in a similar way as sketched here, possibly including more physical phenomena that were
neglected here, such as stratification.

The precise form of the parametrization can now be described as follows. For a given point at the ice-shelf base with local
depth z;, and local slope angle «, we can determine the corresponding grounding-line depth z,; and ambient ocean properties
T, and S,. As summarized in Table 1, these quantities, together with a set of constant parameters, serve as the input of the
parametrization. The basal melt rate 7 in meter per year at the particular ice-shelf point is now calculated as follows. First we

define the characteristic freezing point:
Tt g1 =Ts(Sas2g1) = AMSa + X2 + X321, (A7)

and an empirically derived effective heat exchange coefficient, essentially depending on plume temperature, as discussed in
Sec. 2.2:

T, =T FEosina
Prs=Tr|m+72- h\ Lot 12 - . : (A8)
3 C,/ "T'rso+ Epsina
The empirically derived melt rate scale M in meter per year (Eq. (8)) is now calculated from:
. 1/2 cl2p 1/2 s
M =My (T, ~ Ty 1) ( e ) G Trs - usina , (A9)
Ca+ Epsina C,/ " T'rs+ Epsina C,/"I'rs + Epsina

indeed having the general form derived at the beginning of this appendix. Furthermore, the length scale [ (Eq. (7)) is given by:

. T, — Tf,gl xOC;/QFTS + Epsina

l )
A3 xo(Ccll/QFTs + Epsina)

(A10)

where the second factor, corresponding to f(«) in (7), provides a slope-dependent scaling of the point of transition between
melting (7n > 0) and refreezing (7 < 0) (see Fig. 2), as discussed in Sec. 2.2. The empirically derived dimensionless scaling
factor o = 0.56 ensures that the transition point occurs at the same dimensionless position for all plume model results. We

can now determine the dimensionless coordinate:

% Zb — Zgl
x=2""

o (ALD)
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Table A1. Coefficients for the polynomial fit of the dimensionless melt curve M (X ).

pi1 6.388 x 10*
pio  —3.521 x 10°
Do 8.467 x 10°
ps  —1.166 x 10°
p7 1.015 x 10°
ps  —5.820 x 10°
Ps 2.219 x 10°
ps —5.564 x 10*
P3 8.927 x 10°
p2 —8.952 x 102
P1 5.528 x 10!
Po 1.371 x 107!

and calculate the basal melt rate from:
=M - M(X), (A12)

where M (X ) is the dimensionless melt curve shown in Fig. 2 and given by the following polynomial function:
11

M(X) =Y p X", (A13)
k=0

for which the coefficients py, are given in Table Al.

Note that we require 0 < X <1 in order to remain within the valid domain of the polynomial fit and avoid unbounded
values of M. It is rather straightforward to show that X <1 is guaranteed for T, > \1.S, + Ao, i.e. the ocean temperature
should be above the freezing point at surface level (z = 0). By combining equations (A7), (A10) and (A11) and taking the limit
Ty — AM1.Sa+ Ao, we obtain X (I—2p/2q)F —1 where F denotes the second (slope-dependent) factor in (A10). Because all
the terms appearing in this factor I are positive and xg < 1, we have F' > 1. Together with 24 < 2z, <0, this implies X <1lin
this particular limit for the ocean temperature. Since T}, appears in the denominator of X in (A11), ocean temperatures above
this limit will yield smaller values for X. Hence, the X < 1is guaranteed for T, > A\1.S, + A\o. Note that this is the reason why
we have applied this lower limit to the effective temperature T, in Fig. 7b. The physical reason for the constraint X<1is
that the plume has lost momentum beyond this value (see Jenkins 2011). Alternatives for constraining the temperature could
therefore be forcing 7 = 0 for X > 1 (which would, however, lead to a discontinuity in the melt curve in Fig. 2) or simply

forcing X<1 explicitly.
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