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Abstract. Estimates of surface snow water equivalent (SWE) in mixed alpine environments with seasonal melts are particularly

difficult in areas of high vegetation density, topographic relief, and snow accumulations. These three confounding factors

dominate much of the province of British Columbia (BC), Canada. An artificial neural network (ANN) was created using

as predictors six gridded SWE products previously evaluated for BC. Relevant spatiotemporal covariates were also included

as predictors, and observations from manual snow surveys at stations located throughout BC were used as target data. Mean5

absolute errors (MAEs) and interannual correlations for April surveys were found using cross-validation. The ANN using the

three best performing SWE products (ANN3) had the lowest mean station MAE across the province. ANN3 outperformed each

product as well as product means and multiple linear regression (MLR) models in all of BC’s five physiographic regions except

for the BC Plains. Subsequent comparisons with predictions generated by the Variable Infiltration Capacity (VIC) hydrologic

model found ANN3 to better estimate SWE over the VIC domain and within most regions. The superior performance of ANN310

over the individual products, product means, MLR, and VIC was found to be statistically significant across the province.

1 Introduction

In areas of the world with significant alpine regions, many drainage basins exhibit a predominantly nival regime. Under such

conditions, which are characteristic of the province of British Columbia (BC), Canada, accurate snow water equivalent (SWE)

estimation is particularly crucial for water supply, hydropower generation, and flood forecasting and planning purposes. The15

ability of current methods and products to give accurate SWE estimates is limited by a number of topographic and climate

factors. Forest cover, topography, and large SWE accumulations pose challenges for physical models containing multiple

simplifications and parameterizations, as well as for satellite-based products, which can experience signal masking and wash-

out (Chang et al., 1996; Derksen, 2008). Likewise reanalysis and assimilation-based products are susceptible to biases arising

from various structural limitations (e.g. elevation biases tied to spatial resolution) and uncertainties in the climate mean state20
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(Dutra et al., 2011; Reichler and Kim, 2008). Mudryk et al. (2015) compared various gridded products across the Northern

Hemisphere and observed large spreads in SWE with magnitudes on the order of the SWE interannual variability. These spreads

were seen particularly in alpine regions with complex topography and in the Arctic, a region of large data gaps.

A similar set of gridded products was examined and ranked by Snauffer et al. (2016) over the rugged, forested topography of

British Columbia. Product correlations, biases, and MAEs were determined by comparison with in situ manual snow surveys5

and reported by survey month and physiographic region. While the best products were generally superior performers across

the determined statistics and the majority of regions, all products were found to underestimate SWE and imperfectly represent

interannual fluctuations, particularly in the regions of highest snow accumulation. Against this backdrop, the current work

set out to improve the accuracy of SWE estimates in the same topographically complex region by combining an ensemble of

products with relevant site covariates utilizing a data fusion approach.10

Numerous models and estimation techniques have attempted to better characterize SWE. Nascent satellite-based efforts

involved the use of multiple linear regression (MLR) to retrieve snow parameters from passive microwave data. Though newer

platforms have become available, many of the early algorithms (Chang et al., 1987; Foster et al., 1997; Tait, 1998) rely on the

Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I) brightness temperature data,

which is a long passive microwave record covering July 1987 to December 2015 derived from intercalibrated measurements15

across several spaceborne platforms (Wentz, 2013). While the early linear approaches performed well in areas of low snow

accumulation, forest cover, and topographic relief, mountainous regions with dense vegetation and deep snowpacks were not

as well represented.

Machine learning methods began to become an important tool in the environmental sciences in the 1990s and have since

spread to many application areas (Hsieh, 2009). Early applications of machine learning methods for retrieving SWE were20

developed by Chen et al. (2001) and Guo et al. (2003) using artificial neural networks (ANNs). Inputs were based on a

snow hydrology model, and outputs derived from a dense media radiative transfer model were iteratively computed until

the ANN results converged on observations. The model improved on previous efforts by improving grain size representation

and applying a spatially distributed snow accumulation and melt model. Tedesco et al. (2004) compared SWE retrieved from

an ANN to values from the spectral polarization difference (SPD) algorithm (Aschbacher, 1989), the Helsinki University of25

Technology (HUT) snow emission model (Pulliainen et al., 1999), and the Chang algorithm (Chang et al., 1987; Foster et al.,

1997). The ANN used SSM/I 19 GHz and 37 GHz vertical and horizontal brightness temperatures as inputs and the national

operational snow observations of the Finnish Environment Institute or HUT simulated brightness temperatures as the target

data. Under dry snow conditions enforced by only considering days on which the maximum temperature was lower than −5

°C, the ANN outperformed these other methods when trained with observations. Evora et al. (2008) developed a data fusion30

modeling framework utilizing ANNs, passive microwave data, and geostatistics. Predictors for this framework were seven

passive microwave channels and the interpolated minimum temperature. The target SWE field was derived from snow depth and

density measured manually at snow stations and interpolated by a kriging with external drift (KED) algorithm using elevation

as the secondary variable. More recently Tong et al. (2010) compared SWE predictions of ANNs using microwave brightness

temperatures (TBs) to those of the SPD algorithm Aschbacher (1989) and other TB difference algorithms (Chang et al., 1987;35
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Derksen, 2008) in the Quesnel River Basin of BC, finding that ANNs which included the most TB channels outperformed

other networks and algorithms. Binaghi et al. (2013) applied radial basis function networks to estimate snow cover thickness

in the Italian Central Alps, finding that this approach outperformed inverse distance weight and spline interpolation methods

commonly used in similar contexts with limited numbers of homogeneously distributed measurement sites. These and other

studies covered in various review papers (Gan, 1996; Evora and Coulibaly, 2009; Shi et al., 2016) demonstrate the promise of5

more accurate snow estimates via machine learning methods, but they do not incorporate existing SWE products directly.

Manual snow surveys, taken on courses extending tens of meters, cannot be accurately represented by large-scale gridded

products with resolutions on the order of tens of kilometers (Mudryk et al., 2015). Inherent SWE differences can be introduced

by disparities between mean grid cell elevation and station elevation, as well as other topographic controls. Even higher resolu-

tion covariates such as the GLOBE 1-km DEM (Hastings et al., 1999) still fail to adequately reflect important physical contexts10

at survey sites (e.g. local slope and aspect) which can significantly affect measured values. In spite of the scale mismatch, the

combination of large-scale gridded products with covariates such as finer terrain information and physiographic context may

capture the spatiotemporal patterns in the manual snow surveys. Scale issues are further addressed in Section 3.2.

The objective of this work is to apply data fusion techniques to readily available gridded SWE products, manual snow

surveys, and covariates in order to better estimate SWE in BC. Means of six products are evaluated, as are means of the best15

three of these products based on previous rankings (Snauffer et al., 2016). Relevant covariates are further combined with these

sets of products in MLR models as well as nonlinear ANNs. The assumptions and limitations underlying this approach are

discussed in detail in Section 3.2.

2 Study Area

The study area, namely the province of BC, can be separated into five physiographic regions, which are shown in Fig. 1. These20

regions vary considerably in terms of their topography and climate, as well as the amount of snow they receive, as reported

in Snauffer et al. (2016). Along the entire western edge of BC, the Coast Mountains and Islands is a highly rugged series of

mountain ranges and troughs with a mean station SWE of 782 mm in April. The Columbia Mountains and Southern Rockies

to the southeast is a very rugged region with high mean elevation and a mean measured April SWE of 565 mm. Possessing a

similarly moderate 337 mm SWE measured during April surveys, the Northern and Central Plateaus and Mountains is relatively25

flat along the plateaus in the north with low mountain ranges scattered throughout. The Interior Plateau in the middle of the

province is mostly flat except in the east and has a more moderate April mean station SWE of 283 mm. To the northeast of

the province, the Interior Plains of British Columbia, referred to in this work as the “BC Plains”, is the region of lowest relief

as well as SWE accumulations, having a survey station average of 88 mm in April. Further descriptions of the study area are

detailed by British Columbia Ministry of Forests (1995) and Holland (1964).30
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Figure 1. Physiographic Regions of British Columbia, Canada, overlaid on the GLOBE 1-km DEM. Elevations are shown according to

the legend with units of meters above sea level. The five physiographic regions are outlined in red: (A) Coast Mountains and Islands, (B)

Columbia Mountains and Southern Rockies, (C) Northern and Central Plateaus and Mountains, (D) Interior Plateau, and (E) BC Plains.

SWE accumulations generally increase from region A to region E. Outlined in blue is the VIC domain run by the Pacific Climate Impacts

Consortium, covering four basins throughout BC: (I) the Peace, (II) upper Columbia, (III) Fraser, and (IV) Campbell River watersheds.

Manual Snow Survey station locations are indicated by green dots. Inset: A map of Canada (source: Wikimedia Commons) shows BC

highlighted in red. The province is bordered to the south by the continental United States (USA) and to the west by the US state of Alaska

(AK).
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3 Methods

Various publicly available SWE data sets have global to hemispheric coverage and can provide information on snow spatiotem-

poral distribution over BC. This study considered four reanalysis products (ERAInterim, ERALand, MERRA, and MERRA-

Land), a land data assimilation system (GLDAS2), and an observation-based product (GlobSnow). Key predictors of snow

distribution and evolution are these gridded SWE products, and the target data are manual snow surveys conducted throughout

the province.5

3.1 Input Data

The following gridded SWE products were used as predictors in this study and are described in further detail in Snauffer

et al. (2016). ERA-Interim (Dee et al., 2011), a reanalysis product of the European Centre for Medium-Range Weather Fore-

casts (ECMWF), assimilates land surface, oceanographic, atmospheric, and spaceborne measurements from numerous sources

using the Integrated Forecast System (IFS) at T255 spectral (∼ 80 km) horizontal resolution. ERA-Interim/Land (Balsamo10

et al., 2015) is an offline rerun of ERA-Interim using an improved land surface model known as HTESSEL (Hydrology-Tiled

ECMWF Scheme for Surface Exchanges over Land) and precipitation adjustments based on the Global Precipitation Clima-

tology Project (GPCP) v2.1. The Modern-Era Retrospective analysis for Research and Applications, or MERRA (Rienecker

et al., 2011) ingests a host of land, oceanic, and atmospheric data using the Goddard Earth Observing System Data Assimi-

lation System Version 5 (GEOS-5) at a resolution of one-half degree latitude by two-thirds degree longitude. MERRA-Land15

(Reichle et al., 2011) is an offline land surface simulation based on MERRA which uses the land surface model Fortuna-2.5

and makes precipitation adjustments based on the NOAA Climate Prediction Center “Unified” (CPCU) product. The Global

Land Data Assimilation System Version 2, known as GLDAS-2 (Rodell et al., 2004) and produced by NASA, runs forcings

from the Princeton meteorological data set (Sheffield et al., 2006) on one of four land surface models, including the 0.25°

Noah implementation that is used in this study. GlobSnow (Takala et al., 2011), the “mountains unmasked” data set provided20

by the Finnish Meteorological Institute (FMI), relies on a background field of snow depths created using synoptic observations

and a forward model of satellite-based microwave radiometer measurements to construct a 25 km horizontal resolution SWE

field. Other evaluated products in Snauffer et al. (2016), GLDAS-1 and CMC, do not cover the early part of the study period

(1980-2010) and hence are not included in this work.

The target data are manual snow surveys (MSS) conducted by the Snow Survey Network Program for the BC River Forecast25

Centre (http://bcrfc.env.gov.bc.ca/data). At each designated survey site a column of snow is extracted using a Standard Federal

Snow Sampler and weighed to determine SWE. The mean of SWE measurements at five to ten points along a snow course

is calculated to find the station areal average, which is then reported. Surveys are taken up to eight times a year, once at

beginning of months January through June and once mid-month in May and June, and they are currently conducted at 167

stations throughout the province with another 216 stations with historical but no current measurements. Sampling frequencies30

and temporal ranges vary considerably by station, with some records dating back to 1935.
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Automated snow pillow data were also examined as a part of this work. These data were found to be considerably more

prone to obvious errors than the manual snow surveys. Such errors included negative values, snow accumulation and melt

curves that contained sudden jumps, drops and unrecognizable noise, missing values that were sometimes interpolated, and

other problems. In addition to passing such errors into the model, the likelihood exists to introduce redundancy, as many of the

snow pillows are co-located with manual snow survey sites. Consequently, only the manual snow surveys were used as target

data.

3.2 Artificial Neural Network Construction5

An ensemble ANN (hereafter ANN) was constructed following Cannon and McKendry (2002) using the implementation

by Cannon (2015). ANN topology consisted of an input layer, one hidden layer, and an output later with a single node for

SWE. A single hidden layer is adequate to model any nonlinear continuous function (Hsieh, 2009). The hyperbolic tangent

sigmoid function was used as the hidden layer activation function, the identity function was used for the output layer, and

predictor and predictand variables were standardized (zero mean and unit standard deviation) prior to model training. Initial10

model weights were set randomly in the range of ±
√

0.8/din, where din is the number of inputs (Thimm and Fiesler, 1997).

The optimization function employed was the Broyden-Fletcher-Goldfarb-Shanno method or “BFGS method” (Fletcher, 1970;

Nash, 1979). Training data sets for the individual ANN ensemble members were created using the block bootstrap (Davison

and Hinkley, 1997), with each block made up of all training cases for a given station. To prevent overfitting, early stopping was

used to regularize individual ensemble members; ANN training was stopped when validation error, as monitored on the out-15

of-bootstrap cases, reached a minimum. The optimal number of hidden nodes for each test split was determined by minimizing

the ensemble’s out-of-bootstrap RMSE over the training data. Following model selection and training, predictions from the 50

ensemble members were averaged for each test split, and statistics for each test split station were calculated accordingly.

In total, manual snow survey data from 386 stations across BC was available for training and testing. Of those stations 256

had at least ten years of measurements within the overlapping period of record of the six gridded products (1980–2010). This20

was considered to be an adequate length to generate representative statistics for testing the ANN by cross-validation. Ten test

splits were created by selecting every tenth station, stratified by watershed, such that for each split one-tenth of the stations

were excluded from training. The result was an approximately uniform spread of test stations throughout the province in each

split, as shown in Fig. 2 (green dots). Inevitably there were large areas with little in situ data, particularly along the coast and in

the BC Plains to the north, but the use of all available data outside the test split maximized the spatial coverage of the training25

set. The MAE and April survey correlation reported at each station were computed using predictions from the ANN which did

not include data from that station in its training set.

Due to their coarse spatial resolution, the gridded products tend to capture broad spatiotemporal SWE patterns over BC,

but values still exhibit large biases with respect to MSS observations (Snauffer et al., 2016). In addition to the gridded SWE

products, the following base set of predictors were included in the model: elevation, elevation bias, latitude, longitude, physio-30

graphic region, year, and sine and cosine of 2π times the elapsed year fraction. These predictors represented major spatial and

temporal dimensions to the ANN training, as well as broad location context information (e.g. physiographic region). Predictor
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Figure 2. MSS station locations used in evaluating combination products. Green dots show the distribution of ten test splits for comparing

means, MLRs, and ANNs to gridded SWE products throughout BC by cross-validation. Blue crosses show the distribution of seven test splits

for comparing ANNs to VIC runs in four BC watersheds. Physiographic regions are outlined in red.
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screening was not necessary because relatively few base covariates were identified, and correlations between predictors would

not diminish model performance. Station elevation biases were calculated as the grid cell mean elevations found from the

GLOBE 1-km DEM (Hastings et al., 1999) minus the reported station elevations, and elevation biases corresponding to each

included product were used as predictors. Physiographic regions were represented in the model using discrete logical variables

for each region, so-called 1-of-c coding as described in Bishop (1995). These predictors provide specific spatial and temporal

information as well as broad location context information.5

From a temporal perspective, the most important predictor of seasonal SWE is the fraction of the year elapsed at the time

of observation. This elapsed year fraction is modeled using trigonometric predictors (sine and cosine) as it is a periodic signal.

The stationarity of each utilized data set was not evaluated in the course of this study. In order to handle the prospect of non-

stationary data, linear or otherwise, the value of the observation year was included as a predictor, allowing the ANN to account

for changes in the joint probability distribution over time.10

The assumptions underlying this approach include that the SWE field can be reliably resolved by an ANN topology that

includes a single hidden layer, which is suitable for modeling any nonlinear continuous function (Hsieh, 2009). Overfitting is

assumed to be adequately mitigated using early stopping and an ensemble of 50 members. It is also implicitly assumed that

enough predictors are employed to adequately cover the solution space, though the number of predictors is less important than

the quality of those predictors. Outside the given study area and time window, SWE estimates are less reliable, as properly15

trained ANNs perform nonlinear interpolation well but extrapolate poorly, potentially leading to significant deviations from

the true signal beyond the bounds of the predictor training space (Hsieh, 2009).

As previously mentioned, MSS values found at sites on the order of ten meters do not adequately represent SWE averaged

across gridded product cells. Since elevation is a key indicator in both SWE accumulation and melt (Anderton et al., 2004),

among the most apparent scale issues is the difference between survey site elevation and grid cell mean elevation. Including20

such elevation differences as predictors adds important site-specific context but also carries limitations in capturing interactions

of topography and the atmosphere. Local elevation minima and maxima may be subject to wind redistribution from peaks to

valleys depending on surrounding topography, and weather systems drop different amounts of snow on windward and leeward

mountain slopes. Nevertheless, elevation and grid cell elevation differences may provide a basic indication of subgrid SWE

variability. Another important piece of local context is location within the province, key covariates of which include latitude,25

longitude, and physiographic region.

Efforts to include additional local information were limited by lack of extensive site-specific metadata and appropriate

regional scale representations. For instance, while various ground cover products are available, the actual site forest cover is

highly dependent on snow course location, time since last maintenance, and other factors, which vary considerably across the

MSS data set (Tony Litke, personal communication, 2016). As a result, only this base set of covariates has been employed. The30

main focus of this work, however, was to find which combination(s) of products lead to the best result. While other covariates

may incrementally improve the ANN performance, use of this base covariate set should suffice for this purpose.

The gridded SWE product combinations shown in Table 1 were used as predictors in the ANNs. Multiple linear regression

(MLR) models were run using the same sets of predictors and test station splits, and their results are listed alongside those
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Table 1. Mean station MAEs (in mm SWE) for individual and combinations of products and corresponding MLR and ANN runs, with

the mean station MAEs computed using only the VIC stations given in parenthesis. Products shown are ERAInterim (E), GlobSnow (G),

MERRALand (ML), MERRA (M), GLDAS2 (G2), and ERALand (EL).

Gridded Products

E GS ML M G2 EL Mean Product MLR ANN

X 411 (400) 214 (217) 184 (184)

X 407 (396) 220 (218) 196 (194)

X 362 (349) 211 (209) 178 (180)

X 315 (303) 196 (191) 172 (168)

X 308 (294) 206 (205) 177 (176)

X 305 (290) 202 (201) 173 (176)

X X 292 (282) 196 (194) 171 (173)

X X 295 (287) 192 (186) 166 (163)

X X 295 (287) 190 (186) 170 (165)

X X X 289 (281) 188 (185) 163 (159)

X X X X 302 (295) 189 (185) 165 (162)

X X X X X 316 (311) 189 (186) 167 (167)

X X X X X X 328 (324) 189 (186) 168 (166)

of the ANN models for comparison of linear and nonlinear data fusion techniques. The predictor combinations included each35

gridded product run individually as well as in combination with better performing products. In addition, each two-product

combination of the three best products was run. The rationale for this approach was the desire to limit the total number of

ANN runs to substantially less than all 63 possible combinations of any number of products, running those most likely to give

performance insights and improvements. The three best performing products had mean station MAEs across BC that were

within 5% of each other, whereas other products had mean station MAEs 15–30% higher than the top product, ERALand.5

Furthermore, it was not anticipated, for instance, that adding the poorest performing product to an ANN of the best three would

outperform an ANN of the best four. Only observations for which all six gridded products had SWE values within seven days

of the observation date were used, so that all models were based on the same set of observations.

A number of alternative machine learning methods were investigated in the course of this work. Bayesian Neural Networks

(BNN) and Support Vector Machines (SVM) runs were executed but did not result in notable improvements over the ANN10

in spite of additional computational cost. While studies (e.g. Xue and Forman, 2015; Forman and Reichle, 2015) have shown

machine learning methods such as SVM to be superior over ANNs for snow-related parameters, Lima et al. (2015) found that

in an evaluation of four different non-linear methods across nine different environmental data sets, no single non-linear method

consistently outperformed the others. Though an exhaustive exploration of machine learning algorithms was not the objective
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of this manuscript, the machine learning runs completed indicated that, of the investigated algorithms, the ANN was at least15

comparable if not superior for this application and data sets.

3.3 Hydrologic Model Comparison

The Variable Infiltration Capacity (VIC) hydrologic model is used by the Pacific Climate Impacts Consortium (PCIC) to

conduct hydrologic assessments for the province of British Columbia (Pacific Climate Impacts Consortium, 2014). VIC is

a macroscale hydrologic model that solves full surface water and energy balances (Liang et al., 1994), sharing many basic5

features with land surface models (LSMs) in global climate models (GCMs). The land surface is modeled as a grid of large,

flat, uniform cells, and sub-grid heterogeneity is handled via statistical distributions. The land-atmosphere fluxes and water

and energy balances are simulated at a daily or sub-daily time step. Water can only enter a grid cell via the atmosphere, which

means that water in the channel network stays in the channels and subsurface flow between grid cells is not included in the

water balance. For the 1/16° grid cells used in the PCIC implementation, this is a reasonable approximation.10

The PCIC VIC implementation currently covers four watersheds throughout BC (Pacific Climate Impacts Consortium,

2014), as shown in Fig. 1. Relevant model parameters, specifically snow/rain temperature thresholds and snow albedo de-

cay curves, were explicitly adjusted to reproduce observed SWE at snow pillows, with subsequent automated multi-objective

calibration to reproduce streamflow series and volume errors (Schnorbus et al., 2010). The model is forced with daily observa-

tions for minimum and maximum temperature, precipitation, and wind on a 1/16° grid (Schnorbus et al., 2014).15

A second set of ANN runs was conducted using a subset of the test stations previously used. Only the MSS stations that

were within the VIC domain and that had at least ten years of measurements were used for testing. The 173 stations which

met this criterion were divided into seven test splits of 24 or 25 stations each, ordered by watershed, such that for each split

one-seventh of the VIC long record stations were excluded from training. This selection results in a relatively uniform spread

of test stations for each split over the VIC domain as shown in Fig. 2 (blue crosses). Model training and MAE and correlation20

computation for each station were performed as in the full-province runs.

4 Results

Results of ANN runs for different combinations of products in this study are shown in Table 1. The gridded products used are

listed in order of increasing performance across the entire province: ERAInterim (E), GlobSnow (GS), MERRALand (ML),

MERRA (M), GLDAS2 (G2), and ERALand (EL). Mean station MAEs are presented for single and average gridded product25

SWE values, plus MLRs and ANNs constructed using test splits of 256 stations across BC. Mean station biases were found to

mirror mean station MAEs, as errors are largely the result of underestimates of SWE in most regions of the province (see the

Supplement). MAEs are also shown for those same combinations based on test splits of 173 stations within the VIC domain.

Using the individual products in an ANN with a base set of relevant spatiotemporal covariates improves the mean station MAE

by 43% to 55%. ANNs and MLRs based on combinations of the products further improve the mean station MAE, and MAEs30

for the ANNs are consistently lower than the corresponding values for the MLR models. While ANNs using multiple products
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all outperform those using single products, the best performance was achieved by a combination of the three best products:

MERRA, ERALand, and GLDAS2. The differences in mean station MAE between the three-product ANN and ANNs that use

more products are very small, suggesting that adding the products that do not perform as well does not bring additional useful

information into the model. These results are consistent both for ANNs that use test splits of all 256 stations and for those that

rely on test splits of the 173 VIC stations.

While comparing snow statistics aggregated across BC is useful for broad comparisons, SWE is a highly inhomogeneous

field due to climatic and topographic variability in the province. Fig. 3 illustrates the variability at stations across the five5

physiographic regions of the province. SWE values from manual snow surveys, gridded products, and combinations are plotted

for representative stations, each of which has a station MAE close to the mean for the encompassing region. Regions are ordered

by decreasing mean SWE accumulations in panels (a) through (e). The time interval shown covers snow seasons of 1999, a

year of relatively high accumulations across the province, to 2005, a relatively low year. A wide range of accumulations across

the regions was observed, with a peak SWE of 50 to 150 mm observed in the BC Plains (panel e) while 500 to over 300010

mm SWE was measured in the Coast Mountains and Islands (panel a). Significant temporal disparities were also seen. Peak

SWE in the Coast Mountains and Islands in 1999 was over five times that of 2005, while there is less than a 40% difference

for these years in the BC Plains. Underestimates in peak SWE are apparent for most gridded products and snow seasons. The

largest underestimates were in the Coast Mountains and Islands and the Columbia Mountains and Southern Rockies (panels a

and b respectively), the regions of heaviest snow. The MLR model using the combination of the three best products (MLR3)15

mostly improved the underestimates of SWE apparent at these highest accumulation stations. The MLR still significantly

underpredicted SWE in the two regions of highest accumulations but then also overpredicted in the three other regions with

lower accumulations, particularly in the BC Plains (panel a). The ANN using the three best products (ANN3) partially corrected

these errors, estimating lower SWE values at the stations averaging less snow and higher SWE values at those with more snow

relative to MLR3. Very high accumulation seasons are still particularly challenging for both products and statistical models,20

especially 1999 in panels (a) and (b). This finding indicates that while the ANN is better able to estimate SWE in most contexts,

the very highest SWE values remain challenging to assess.

Further analyzing mean station MAE and April correlation by physiographic region may reveal spatial dependencies and in

turn give insight into model performance. Mean station MAEs (Fig. 4) and April correlations (Fig. 5) are shown for the five

major physiographic regions of BC in order of decreasing mean SWE accumulations (panels a through e) and for the province25

as a whole (panel f). In order to measure the ability of the gridded products to capture peak SWE interannual variability,

correlations were calculated using time series constructed from April surveys only, as April is the survey of highest mean SWE

for all regions (Snauffer et al., 2016). Mean station biases were also calculated but found to mirror mean station MAEs, likely

due to underestimates of SWE across most of the province (see Fig. S1 in the Supplement). Whiskers on the bars represent 95%

confidence intervals determined by n= 5000 bootstrap samples as described in Jolliffe (2007). Blue bars show mean station30

values for the six SWE gridded products, with dark blue highlighting the three best performers. Across the four physiographic

regions of highest accumulations, ERALand, GLDAS2 AND MERRA are consistently the best performers in both mean station

MAE and April correlation values, though in many cases the 95% confidence intervals overlap. In the BC Plains, the region
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Figure 3. SWE time series for manual snow survey stations, the best three gridded SWE products, MLR3, and ANN3. Gridded products are

ordered by increasing overall performance, with darker blues for better performing products. MLR3 and ANN3 estimates are masked outside

the mean first and final survey dates (January 2 and June 15 respectively). A representative station is shown for each of the five physiographic

regions of BC: (a) station 1D08 Stave Lake in the Coast Mountains and Islands, (b) station 2A25 Kirbyville Lake in the Columbia Mountains

and Southern Rockies, (c) station 4B08 Mount Cronin in the Northern and Central Plateaus and Mountains, (d) station 2F11 Isintok Lake in

the Interior Plateau, and (e) station 4C05 Fort Nelson Airport in the BC Plains.
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Figure 4. Mean station MAE for several SWE products/combinations for regions of BC in order of descending mean accumulations: (a)

Coast Mountains and Islands, (b) Columbia Mountains and Southern Rockies, (c) Northern Plateaus and Mountains, (d) Interior Plateau,

(e) BC Plains, and (f) province-wide (combining all data from the five preceding panels). Shown are MAEs with 95% confidence intervals

based on n= 5000 bootstrap samples for the six gridded products in blue: ERA-Interim (E), GlobSnow (GS), MERRALand (ML), MERRA

(M), GLDAS2 (G2), and ERALand (EL). Dark blue indicates three best performing products. Also shown are three fusion techniques (mean,

MLR, and ANN) using all six products (green) and the three best performing products (brown). Note the vertical scale in panels (a) and (b)

is double that of panels (c) through (f).
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Figure 5. Mean station April Correlation for several SWE products/combinations for regions of BC in order of descending mean accumu-

lations: (a) Coast Mountains and Islands, (b) Columbia Mountains and Southern Rockies, (c) Northern Plateaus and Mountains, (d) Interior

Plateau, (e) BC Plains, and (f) province-wide. Product and combination abbreviations and colors are as in Fig. 4.
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of lowest snow accumulations, GlobSnow has the lowest MAE and a similar April correlation to that of MERRA and ERA-

Interim, though the differences in this region are relatively small. The green bars represent different ways of combining all six35

products (mean, MLR, and ANN), while the brown bars represent the same combinations but use only the three best performing

products. In terms of mean station MAEs, the regional story is again similar to that of the entire province for the four regions

of highest accumulations. MAEs for the three-product means are slightly lower than those of the six-product means. MLRs

show notable performance improvements over multi-product means and are virtually identical for both three- and six-product

combinations. ANNs further show improved performance over the MLRs. Three-product ANNs perform very slightly better5

than the six-product networks and are the best performers of all ANNs. For the BC Plains, both three- and six-product means

produce results comparable to those of the individual products, but the MLRs and ANNs have a higher mean station MAE.

This result is likely due to the fact that relatively few stations exist in this region, causing the models to be less well trained in

the BC Plains. In terms of April correlations, however, the combination products are relatively high across all regions, with the

three-product means and ANNs generally being the best performers.10

The relative performance of each gridded or combination product relative to a reference was found using the confidence

intervals for differences approach of Jolliffe (2007). Briefly, 5000 bootstrap samples of the mean station MAE and April

correlation differences between each product and the reference were plotted on box plots (Figs. 6 and 7), in which the boxes

extend between lower and upper quartiles and the whiskers span 95% of the distribution. If the whiskers do not cross the origin,

the difference in the product and reference is said to be significant, rejecting the null hypothesis at the 5% level. The mean15

of all six products (Mean6) was used as the reference and was compared to the remaining gridded and SWE fusion products.

Negative mean station MAE differences (Fig. 6) and positive mean station April correlation differences (Fig. 7) indicate that the

evaluated product performed better than Mean6. The best three products significantly outperformed Mean6 in MAE across the

province and in some of its regions, but Mean6 was often a better performer than the individual products in April correlation.

The mean of these best three (Mean3) was consistently better than that of Mean6 under both metrics, and this difference is20

statistically significant across the province and all regions except the BC Plains. The ANN using all six products (ANN6) and

the one using the best three products (ANN3) also significantly outperformed Mean6 and slightly outperformed corresponding

multiple linear regressions (MLR6 and MLR3) province-wide and in all physiographic regions except for the BC Plains. In

the BC Plains MLRs were slightly better than Mean6 in April correlation but significantly underperformed in MAE. ANN

performance in this region was similar, though the underperformance in MAE was less notable. This failure of the MLRs and25

ANNs to perform well in MAE was likely due to the lower accumulations of SWE here, accompanied by the scarcity of manual

snow survey stations.

A closer examination of ANN performance revealed improvements over comparable MLR. Fig. 8 shows the results of

n= 5000 bootstrap samples of mean station MAE and April correlation differences between the ANNs and MLRs using six

products (panels a and c) and the best three products (panels b and d). Negative mean station MAE differences (panels a and30

b) and positive mean station April correlation differences (panels c and d) indicate the regions in which the ANN performed

better than the comparable MLR. ANN improvements over MLR were seen across all regions, and those improvements were

statistically significant in most regions and across the province. While non-significant differences between ANNs and MLRs

15
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Figure 6. Bootstrap mean station MAE differences between several SWE products/combinations and the reference (the mean of six products).

First quartile, median, and third quartile are plotted respectively as the bottom, waist, and top of each box, and 95% confidence intervals

are indicated by whiskers. MAE difference spreads are shown for regions of BC in order of descending mean accumulations: (a) Coast

Mountains and Islands, (b) Columbia Mountains and Southern Rockies, (c) Northern Plateaus and Mountains, (d) Interior Plateau, (e) BC

Plains, and (f) province-wide. Product and combination abbreviations and colors are as in Fig. 4. Note differences in vertical scale.
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Figure 7. Bootstrap mean station April Correlation differences between several SWE products/combinations and the reference (the mean of

six products). Quartiles and 95% confidence intervals are shown for regions of BC in order of descending mean accumulations: (a) Coast

Mountains and Islands, (b) Columbia Mountains and Southern Rockies, (c) Northern Plateaus and Mountains, (d) Interior Plateau, (e) BC

Plains, and (f) province-wide. Product and combination abbreviations and colors are as in Fig. 4. Note differences in vertical scale.
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Figure 8. Box plots of bootstrap station differences in MAEs and April correlations showing quartiles and 95% confidence intervals for

ANNs of six products, ANN6 (green), and of the best three products, ANN3 (red), relative to MLR6 and MLR3 respectively. Bootstrap

difference distributions are shown for (a) ANN6−MLR6 MAEs, (b) ANN3−MLR3 MAEs, (c) ANN6−MLR6 April correlations, and (d)

ANN3−MLR3 April correlations. Shown are the differences for each physiographic region: Coast Mountains and Islands (CM), Columbia

Mountains and Southern Rockies (CR), Northern and Central Plateaus and Mountains (NP), the Interior Plateau (IP), and the BC Plains (BP),

as well as province-wide (BC).

18



−
10

0
−

50
0

50

M
A

E
 D

iff
er

en
ce

 (
m

m
 S

W
E

)

CM CR NP IP BP BC

(a)

−
10

0
−

50
0

50

M
A

E
 D

iff
er

en
ce

 (
m

m
 S

W
E

)

CM CR NP IP BP BC

(b)

−
0.

10
0.

00
0.

10
0.

20

A
pr

il 
C

or
re

la
tio

n 
D

iff
er

en
ce

 

CM CR NP IP BP BC

(c)

−
0.

10
0.

00
0.

10
0.

20

A
pr

il 
C

or
re

la
tio

n 
D

iff
er

en
ce

 

CM CR NP IP BP BC

(d)

Figure 9. Box plots of bootstrap station differences in MAEs and April correlations showing quartiles and 95% confidence intervals for ANNs

of six products, ANN6 (purple), and of the best three products, ANN3 (orange), with respect to VIC. Bootstrap difference distributions are

shown for (a) ANN6−VIC MAEs, (b) ANN3−VIC MAEs, (c) ANN6−VIC April correlations, and (d) ANN3−VIC April correlations.

Notation for the physiographic regions follows Fig. 8.

were found for the best three product MAEs and correlations in the Northern and Central Plateaus and Mountains (panels b

and d) and for both combinations’ correlations in the BC Plains (panels c and d), median ANN improvements over MLR were35

observed. This result suggests nonlinear modeling of the SWE survey data set may merit further investigation as a tool to better

estimate province-wide and regional SWE.

The performance of the six product and best three product ANNs were also compared to VIC runs for the four major

watersheds in BC shown in Fig. 1 (Pacific Climate Impacts Consortium, 2014). As these four watersheds do not cover all

of the available manual snow stations, station test splits were redrawn, and the ANNs runs were conducted separately from5

those mentioned above. Fig. 9 shows the results of n= 5000 bootstrap samples of mean station MAE and April correlation

differences between the ANNs and VIC using six products (panels a and c) and the best three products (panels b and d).
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Negative mean station MAE differences (panels a and b) and positive mean station April correlation differences (panels c and

d) indicate the regions in which the ANNs performed better than VIC. Across the province, the ANNs outperformed VIC in

MAEs and April correlations across most regions. The exceptions included MAEs in the Northern and Central Plateaus and10

Mountains and BC Plains, where VIC performed slightly better than the ANNs, and April correlations in the Coast Mountains

and Islands, where the two are nearly tied. Statistically significant differences were seen only for MAEs in the Columbia and

Rocky Mountains and for April correlations in the Northern and Central Plateaus and Mountains. However, across the entire

province ANN3 significantly outperformed VIC in both MAEs and April correlations. This result suggests that consideration

of a large enough data set and the use of the best gridded products for the province as inputs to an ANN can produce better15

estimates of SWE in BC, both spatially and temporally.

5 Conclusions

Six gridded products have been used to predict SWE at manual snow survey stations using data fusion techniques. The products

estimated lower snow accumulations than were measured, but ANNs combining a single gridded SWE product with a base

set of relevant predictors reduced the products’ mean station MAEs by 43% to 55% (average 48%) across the province,20

improvements that are mirrored within most physiographic regions. ANNs which used multiple gridded products as predictors

performed better than those using single products. The best performing ANN used the best three products (ERALand, MERRA,

and GLDAS2), with no improvement seen by including additional products in the ANN. This ANN was found to have a mean

station MAE 47% to 60% (average 53%) lower than the six individual products considered in this study. Both MLRs and ANNs

significantly outperformed the mean of six products in terms of MAEs and April correlations across the province and in four25

regions. Only in the BC Plains, a region of low accumulations and few stations, did the products themselves have lower MAEs,

while still underperforming the SWE fusion products in April correlations. The ANNs also outperformed comparable MLRs

using the same gridded products; this assessment was statistically significant across the province and in most physiographic

regions. Comparing ANNs with runs of the hydrologic model VIC, it was found that the ANNs performed better across the

province and in three regions, though statistical significance was found in only one region and across the province for the ANN30

using the best three products.

While estimating SWE using a fusion of available gridded products and a base set of relevant spatiotemporal covariates poses

limits in context and process understanding, from an operational standpoint it can potentially improve the representation of

SWE via a far more efficient approach. Further development of the ANNs, including the incorporation of additional covariates

and data sources (e.g. terrain information, a simple snow model, etc.), may result in further improvements to the estimation of

snow in BC.5
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6 Data availability

Data sets used in this work have mostly been downloaded from their respective websites. Manual snow survey data is available

from the British Columbia River Forecast Centre (http://bcrfc.env.gov.bc.ca/data). ERAInterim and ERALand data can be

obtained from the European Centre for Medium-Range Weather Forecasts Public Datasets web interface (http://apps.ecmwf.

int/datasets). MERRA, MERRALand, and GLDAS2 data can be pulled from the Goddard Earth Sciences Data and Information10

Services Center (GES DISC) at https://disc.sci.gsfc.nasa.gov/uui/datasets. The GlobSnow “mountains unmasked” data set is

not publicly available because it is considered a prototype product. This data set was necessary for this work however, as most

of British Columbia is masked in the publicly available data. The GlobSnow “mountains unmasked” data set can be obtained

by contacting the GlobSnow team (see http://www.globsnow.info).
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