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The authors greatly appreciate the comments in RC2: ’Review of “Improving gridded
snow water equivalent products in British Columbia, Canada: multi-source data fu-
sion by neural network models” by Snauffer et al.’, by Anonymous Referee #2, 14 Aug
2017 (https://doi.org/10.5194/tc-2017-56-RC2). The following are responses to those
comments.

Reviewer Comments (C#:), followed by Author Responses

C1: Though I understand ANNs to be very powerful machine learning algorithms, I

C1

would like the authors to clarify why they have chosen an ANN instead of other machine
learning algorithms such as Support Vector Machines (SVM)? Some other methods are
more computationally efficient and provide very similar results to ANNs as shown by
Forman and Reichle (2014).

Response: A number of alternate machine learning methods were investigated in the
course of this work. Bayesian Neural Networks (BNN) and Support Vector Machines
(SVM) runs were executed but did not result in improvement upon the ANN in spite
of additional computational cost. Mentions of these investigations will be added to
the manuscript. While SVM has been documented to improve brightness temperature
modeled over North America (Forman and Reichle 2014), the authors of the submit-
ted manuscript have previously found that in an evaluation of four different non-linear
methods across nine different environmental data sets, no single non-linear method
consistently outperformed the others (Lima et al., 2015). Though an exhaustive explo-
ration of machine learning algorithms was not the objective of this manuscript, the trials
performed indicated that of the investigated algorithms the ANN was the best method
for this particular application and data set.

C2: In Table 1, please provide the names of the SWE products and there acronyms in
the legend to make it easier for the reader to identify quickly the different products.

Response: The reviewer comment will be incorporated as suggested.

C3: In this study, only the Mean Absolute Error (MAE) is used to determine the perfor-
mance of each product/method. Please provide reasoning for this or add other metrics
such as bias. The bias potentially gives more information on the performance of the
method by indicating if it over/underestimates the measurements. This could actually
help understand why ANN3 outperforms ANN6.

Response: This work attempted to better estimate SWE magnitudes and temporal
variations on a regional scale. MAE and April correlation were chosen as metrics to
examine these quantities. In the mountainous province of BC, the typically high SWE
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accumulations are not well represented by any of the gridded products, leading to over-
whelmingly negative biases. Hence in this region, bias generally follows MAE, which
was noted by Snauffer et al. (2016). Mean station biases by product and physiographic
region are shown here in Fig. 1 (same as Fig. 2 in author response AC1). This fig-
ure shows similar patterns to those of mean station MAEs in Fig. 4 in the submitted
manuscript. Mean station biases for ANN6 and ANN3 are found to be comparable
across the province. Biases are also significantly reduced by MLR models, though the
MAE and April correlation box plots in Figure 8 of the submitted manuscript confirm the
ANN models statistically outperform the MLR models.

C4: I understand that the authors have analysed in depth the six SWE products in
Snauffer et al. (2016). Nonetheless, why only try different combinations of the 3 best
SWE products with the ANN? Some other combination might actually prove better
since the different SWE products don’t all use the same inputs and modelling schemes
to estimate SWE. Though this might be out of the scope of this current paper, I suggest
the author provide a reasoning why they only tested combinations of the 3 best SWE
products and I also suggest they test other combinations in a future study.

Response: Table 1 details the gridded products used in various run. Each product
was run in the ANN individually, and combinations of products were run based on their
previously evaluated performance. All combinations of the best three were run, and
the best four through six products were also run. It is not anticipated, for instance, that
adding the poorest performing product to an ANN of the best three will outperform an
ANN of the best four. If the reviewer has suggestions for additional combinations or
better ways to explain this combination approach, please indicate this.

C5: I would also like more clarifications on the selection of the ANN parameterization.
Since there are many parameters in an ANN, this would help understand the results.
Even if the parameters are the default ones from a given algorithm, please provide
them.

C3

Response: The following additional ANN parameterization details will be incorporated.

An ensemble ANN (hereafter ANN) made up of 50 members was constructed follow-
ing Cannon and McKendry (2002) using the implementation by Cannon (2015). ANN
topology consisted of an input layer, one hidden layer and an output later with a single
node for SWE. A single hidden layer is adequate to model any nonlinear continuous
function (Hsieh, 2009). The hyperbolic tangent sigmoid function was used as the hid-
den layer transfer function, the identity function was used for the output layer, and
predictor and predictand variables were standardized (zero mean and unit standard
deviation) prior to model training. Initial model weights were set randomly in the range
of ±

√
0.8/din, where din is the number of inputs (Thimm and Fiesler, 1997). The op-

timization function employed was the Broyden-Fletcher-Goldfarb-Shanno or “BFGS”
method (Fletcher, 1970; Nash, 1979). To prevent overfitting, early stopping was used
to regularize individual ensemble members; ANN training was stopped when validation
error, as monitored on the out-of-bootstrap cases, reached a minimum. The optimal
number of hidden nodes for each test split was determined by minimizing the ensem-
ble’s out-of-bootstrap RMSE over the training data. Following model selection and
training, predictions from the 50 ensemble members were averaged for each test split,
and statistics for each test split station were calculated accordingly.

C6: The authors need to do a more thorough analysis of the predictor variables. Which
predictor is more statistically significant? Are there correlated variables? Etc.

Response: In statistics, regression coefficient estimation becomes very uncertain
when there are correlated inputs. Unlike statistics, machine learning does not attempt
to estimate “regression coefficients”, and correlated inputs do not affect prediction ac-
curacy. Predictor variables used in the ANNs, especially the SWE gridded products,
are certainly correlated given that they attempt to estimate the same quantity in the
same time period. These correlations will introduce large uncertainties in regression
coefficients as well as in finding the most significant predictors. The objective of this
work was not to use the results of a machine learning model to evaluate the statisti-
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cal significance of or correlations in the constituent input data, but rather to produce a
result which has demonstrably better performance.
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Fig. 1. Mean station bias for several SWE products/combinations for regions of BC in order of
descending mean accumulations. Regions, products and combinations are as in Figs. 4 and 5
in submitted manuscript.
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