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Abstract. The microstructural evolution that occurs in polycrystalline ice during deformation leads to the development of

anisotropic rheological properties that are not adequately described by the most common, isotropic, ice flow relation used

in large-scale ice sheet models – the Glen flow relation. We present a preliminary assessment of the implementation in the

Ice Sheet System Model (ISSM) of a computationally-efficient, empirical, scalar, tertiary, anisotropic rheology (ESTAR). The

effect of this anisotropic rheology on ice flow dynamics is investigated by comparing idealised simulations using ESTAR with5

those using the isotropic Glen flow relation, where the latter includes a flow enhancement factor. For an idealised embayed

ice shelf, the Glen flow relation overestimates velocities by up to 17% when using an enhancement factor equivalent to the

maximum value prescribed by ESTAR. Importantly, no single Glen enhancement factor can accurately capture the spatial

variations in flow over the ice shelf. For flow-line studies of idealised grounded flow over a bumpy topography or a sticky base

– both scenarios dominated at depth by bed-parallel shear – the differences between simulated velocities using ESTAR and the10

Glen flow relation vary according to the value of the enhancement factor used to calibrate the Glen flow relation. These results

demonstrate the importance of describing the anisotropic rheology of ice in a physically realistic manner, and have implications

for simulations of ice sheet evolution used to reconstruct paleo-ice sheet extent and predict future ice sheet contributions to sea

level.

1 Introduction15

An essential component of an ice sheet model is its formulation of ice rheology, which relates deformation rates to applied

stresses. Data from laboratory ice deformation experiments can be used to define flow relations suitable for implementation in

numerical ice sheet models. Previous experiments have demonstrated that under conditions of constant stress and temperature,

polycrystalline ice with a statistically random distribution of crystallographic c-axes (fabric) initially behaves as a mechanically

isotropic material (Budd and Jacka, 1989). We use the term fabric to describe the distribution of crystallographic c-axis orienta-20

tions within a polycrystalline aggregate. At the commencement of deformation, during the primary stage of creep, the initially

high strain rate rapidly decreases. A minimum strain rate is reached during secondary creep (Fig. 1), which is associated with a

transitory balance between strain hardening and the strain-induced activation of microstructural recovery processes. With con-

tinued strain, a tertiary stage of creep is established (typically observed at strain of ∼ 10% in laboratory experiments), which

1

The Cryosphere Discuss., doi:10.5194/tc-2017-54, 2017
Manuscript under review for journal The Cryosphere
Discussion started: 5 May 2017
c© Author(s) 2017. CC-BY 3.0 License.



is characterised by a dynamic balance between microdeformation and recovery processes, statistically steady-state anisotropic

polycrystalline microstructures (e.g., crystal orientation fabric and grain size), and steady strain rates that are enhanced relative

to the rate observed during secondary creep.

Tertiary creep, with the associated development of polycrystalline anisotropy driven by the microstructural response to

applied stresses, is the predominant mode of ice deformation in ice sheets. The fabric anisotropy and the tertiary strain rates5

depend on the nature of the applied stresses (Fig. 1).

The prevailing description of ice rheology used in large-scale ice sheet models, the Glen flow relation (Glen, 1952, 1953,

1955, 1958; Nye, 1953), is a creep power law:

ε̇=A(T ′)τn−1
e σ′, (1)

where ε̇ is the strain rate tensor (s−1), τe is the effective stress (Pa), proportional to the second invariant of the deviatoric stress10

tensor σ′, and n is a power law stress exponent (observations support a value of n= 3).A(T ′) is a temperature dependent flow

parameter (Pa−n s−1), for which various parameterisations exist based on laboratory tests and field measurements (e.g., Budd

and Jacka, 1989; Cuffey and Paterson, 2010).

The Glen flow relation was empirically derived from secondary creep rates, determined under various conditions of constant

stress and temperature, for polycrystalline ice with an initially random distribution of c-axes and assuming mechanical isotropy.15

While the Glen flow relation captures the observed nonlinear response of ice deformation to an applied stress, it is unable to

account for the mechanical anisotropy of polycrystalline ice during tertiary creep (e.g., Nye, 1953; Glen, 1958; Budd et al.,

2013). That is, it cannot explain the dependence of tertiary strain rates on the character of the applied stress. To account for

the increased deformability associated with tertiary creep, a common adaptation of the Glen flow relation is the inclusion of a

constant flow enhancement factor, EG,20

ε̇= EGA(T ′)τn−1
e σ′. (2)

The specification of EG is typically ad hoc: EG may be selected from reported experimental values (e.g., Duval, 1981; Jacka

and Maccagnan, 1984; Pimienta et al., 1987; Treverrow et al., 2012), or used as a model tuning parameter (e.g., to alter the

relative contribution of viscous deformation and basal sliding to the overall dynamics of an ice sheet). In either case, a value

of EG that does not vary spatially in connection with the fabric and flow configuration, will lead to an unrealistic spatial25

distribution of strain rates (Treverrow et al., 2015). Previous studies have used anisotropic flow models or approximations to

assign regional values to EG (e.g., Ma et al., 2010) that may also vary according to the prevailing stress regime.

Budd et al. (2013) recently proposed an anisotropic flow relation based on results from laboratory ice deformation experi-

ments in simple shear, compression, and combinations of these. As tertiary creep rates and the corresponding compatible fabrics

were found to vary according to the relative proportions of the simple shear and compression stresses, Budd et al. (2013) de-30

fined an enhancement factor E as an anisotropic function of the stress configuration, with separate, experimentally-determined

enhancement factors for simple shear-alone and compression-alone. We refer to the generalised form of the anisotropic flow

relation proposed by Budd et al. (2013) as ESTAR (Empirical, Scalar, Tertiary, Anisotropic Rheology), since it is based on ter-
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tiary (steady-state) creep rates and features a scalar (collinear) relationship between the strain rate and deviatoric stress tensor

components.

Here, we describe how to implement ESTAR in large-scale ice sheet models and apply the required changes to the Ice Sheet

System Model (ISSM; Larour et al., 2012). ISSM is a thermomechanical finite element model that solves the full system of

Stokes equations to describe ice flow. We examine the effect of anisotropy in simple, idealised scenarios of a floating ice shelf5

and of grounded ice sheets, comparing simulated flow fields using ESTAR with the corresponding isotropic flow modelled by

the Glen flow relation. Section 2 presents an overview of anisotropic rheologies, including the experimental and theoretical

basis for ESTAR. Section 3 details the implementation of ESTAR in ISSM and its verification against an analytical solution. In

Sect. 5, we compare simulations of ice flow with ESTAR and the Glen flow relation using a suite of idealised flow geometries,

including selected experiments from the Ice Sheet Model Intercomparison Project for Higher Order Models (ISMIP-HOM;10

Pattyn et al., 2007).

2 Anisotropic ice rheology

A range of ice rheologies have been proposed to account for polycrystalline anisotropy. They can be broadly grouped in two

categories: (1) those defined at the individual ice crystal scale, where the effects of anisotropy are parameterised based on

specific properties of individual crystals, and (2) those that describe anisotropic aspects of deformation empirically: either15

based on regional expectations about local crystallographic microstructure, or through an empirical function of the stress

configuration. In this section, we briefly review these two approaches, and the underlying experimental and modelling basis

for ESTAR. In what follows, we distinguish between the Glen enhancement factor EG and the ESTAR enhancement factor

E(λS), which is a function of compression deviatoric and simple shear stresses, parameterised by the shear fraction λS . Where

necessary, we denote a more general enhancement factor, i.e., with unspecified form, as E.20

2.1 Microstructure approaches

Experiments on single crystals of ice demonstrate that deformation occurs predominantly by slip on the crystallographic basal

plane, with the yield stress being geometrically related to the magnitude of the applied stress resolved onto the basal plane

(Trickett et al., 2000) according to Schmid’s Law (Schmid and Boas, 1950). This observation, in conjunction with the develop-

ment of crystallographic preferred orientations during deformation of polycrystalline ice to high strains (e.g. Russell-Head and25

Budd, 1979; Jacka and Maccagnan, 1984; Pimienta et al., 1987; Morgan et al., 1998; DiPrinzio et al., 2005; Durand et al., 2009;

Budd et al., 2013; Montagnat et al., 2014), has driven the development of rheological descriptions in which the connection be-

tween deviatoric stresses and resulting strain-rates is regarded as an intrinsic material property determined by the effects of

microstructure on bulk deformation processes, (e.g. Lile, 1978; Lliboutry, 1993; Azuma and Goto-Azuma, 1996; Staroszczyk

and Gagliardini, 1999; Thorsteinsson, 2001; Gödert, 2003; Gillet-Chaulet et al., 2005; Pettit et al., 2007; Placidi et al., 2010).30

See also the review by Gagliardini et al. (2009). In broad terms, the anisotropic nature of these rheological descriptions is
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derived from the geometric relationship between the crystallographic c-axis and the stresses driving deformation, with the role

of misorientation relationships between nearest neighbour grains explicitly considered in some cases.

The complexity of numerical flow relations varies according to the extent to which a physically realistic description of

microdeformation and recovery processes, or a parameterisation of these, enters into the relationship between strain rates

and the stresses driving deformation. Many of these rheological models are more complicated than a collinear flow relation5

and involve a tensor coupling in place of Eq. 2. A further consideration is the quantitative description of fabric that is used

in flow relations. Those incorporating a discrete, c-axis vector based description of fabric (e.g. Lile, 1978; van der Veen

and Whillans, 1994; Azuma and Goto-Azuma, 1996; Thorsteinsson, 2002) are only appropriate for highly localised studies

and are incompatible with large-scale ice sheet modelling. Flow relations based on a continuous description of fabric, e.g.,

a parameterised orientation distribution function (ODF) or c-axis orientation tensor are also possible (e.g. Staroszczyk and10

Gagliardini, 1999; Gödert, 2003; Gillet-Chaulet et al., 2005; Pettit et al., 2007; Placidi et al., 2010). Including any fabric-based

rheological description in an ice sheet model requires a separate set of equations governing the fabric evolution. A drawback

to such an approach is the computational overhead and uncertainty associated with defining the spatial distribution of fabric

within ice sheets, which is poorly constrained by observations. Furthermore, for simplicity, restricted forms of the ODF or

orientation tensor are specified, which may not adequately describe all fabrics likely to be encountered in an ice sheet. As such,15

flow relations utilising a fabric description that relies on fabric evolution equations or that is imposed as a function of location

within the ice sheet are currently restricted to regional simulations (e.g., Seddik et al., 2011; Martín and Gudmundsson, 2012;

Zwinger et al., 2014).

2.2 Empirical approaches

A second approach comprising: experimental and observational approaches (Li et al., 1996; Wang et al., 2002a, b), modelling20

(Wang and Warner, 1998, 1999; Hulbe et al., 2003; Wang et al., 2003, 2004; Breuer et al., 2006; Wang et al., 2012), and

theoretical studies (Warner et al., 1999), has focussed on the development and assessment of an anisotropic flow relation

for polycrystalline ice in which the nature of the crystal fabric and the magnitude of strain rate enhancement, E, are both

determined by the stress regime. Specifically, this approach regards the fabric and the enhancement as determined by the

relative proportions of the simple shear and normal deviatoric stresses. For such flow relations, it is typically assumed that25

the spatial variation in dynamic conditions (e.g., flow configuration and temperature) only occur gradually in an ice sheet, so

that the microstructure evolves to maintain compatibility with these conditions. That is, throughout an ice sheet the rate of

microstructural evolution generally exceeds the rate at which the flow configuration varies. This assumption is supported by

experimental observations for pure polycrystalline ice, which demonstrate that an accumulated strain of . 10% is required for

the microstructure to evolve to a state that is compatible with the flow configuration, irrespective of its initial condition (Jacka30

and Maccagnan, 1984; Gao and Jacka, 1987; Li and Jacka, 1998; Treverrow et al., 2012).

The anisotropic flow relation proposed by Budd et al. (2013) represents a continuation of this strand. They found that a

scalar anisotropic flow relation, i.e., one maintaining the collinear relationship between the components of ε̇ and σ′ (τe is a

scalar function of the second invariant of σ′) provides a good fit to laboratory data from combined compression and shear
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experiments. Such a scalar anisotropic rheology also simplifies the requirements for implementation within ice sheet models

that are already compatible with the (scalar) Glen rheological description. Budd et al. (2013) proposed ESTAR as a suitable

candidate scalar anisotropic rheology generalised to arbitrary stress configurations (i.e., not restricted in its application to the

limited set of experimental stress configurations described in Li et al. (1996) and Budd et al. (2013)). A simplified version of

ESTAR, called ESTAR-MFL (MFL: Minimal Flow Law), has also been incorporated into the ice sheet model SICOPOLIS5

(SImulation COde for POlythermal Ice Sheets, http://www.sicopolis.net; Greve and Blatter, 2009, 2016).

2.3 Empirical scalar tertiary anisotropic rheology (ESTAR)

Here, we summarise the anisotropic rheology proposed by Budd et al. (2013) – ESTAR – that we are implementing in ISSM as

an alternative to the Glen flow relation, to provide a relation more applicable to the tertiary creep of anisotropic polycrystalline

ice typical of ice sheets and glaciers. ESTAR is a scalar power law formulation based on tertiary creep rates measured in10

laboratory ice deformation experiments under various combinations of simple shear and compression that has been generalised

to arbitrary stress configurations. Recasting Eqs. 62 and 63 of Budd et al. (2013) to more closely resemble Eq. 2. ESTAR is

given by the following expression:

ε̇= E(λS)A(T ′)τ2
eσ

′. (3)

Assuming n= 3 in Eq. 2. Eq. 3 only differs from the Glen flow relation by the form of the functional enhancement factor15

E(λS), which explicitly depends on the nature of the applied stresses via the shear fraction, λS . We note that in contrast to

ISSM, flow relations in Budd et al. (2013) are couched in terms of the octahedral shear stress, τo =
√

2/3τe, which provides a

more physically meaningful scalar measure of the overall stress magnitude than τe (Jaeger, 1969).

E(λS) in Eq. 3 is defined as

E(λS) = EC + (ES −EC)λ2
S , (4)20

whereEC is a compression enhancement factor,ES is a simple shear enhancement factor, and λS is a non-dimensional variable

that takes values in [0,1]. The shear fraction characterises the contribution of simple shear (τ ′) to the effective stress (τe)

λS =
‖τ ′‖
τe

. (5)

Accordingly, determining the portion of the overall deformation stress that can be regarded as simple shear is the main

ingredient in implementing ESTAR. This involves the identification of a particular local plane – the local non-rotating shear25

plane – and the determination of the shear acting on that plane, τ ′, as the measure of simple shear. As discussed in Budd et al.

(2013), the importance of moving beyond strain rates to consider other aspects of flow – the ‘movement picture’ – has been

recognised since at least the 1970s (e.g., Budd, 1972; Kamb, 1973; Duval, 1981). Duval (1981) identified the plane normal to

the velocity gradient in a simple shear regime as the ‘permanent shear plane’ and discussed its role in the evolution of crystal

fabrics. Budd et al. (2013) proposed a definition for this local plane in an arbitrary flow as the plane containing the vorticity30

vector associated solely with deformation and the velocity vector. As discussed below they also prescribed a further projection
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to remove any component of τ ′ parallel to the deformational vorticity. The collinear nature of ESTAR (Eq. 3) allows λS to be

written in terms of the corresponding strain rates, which is more convenient for Stokes flow modelling, as

λS =
ε̇′

ε̇e
, (6)

where ε̇′ is the magnitude of the shear strain rate on the locally non-rotating shear plane, as defined in Eq. 7 below. In

compression-alone scenarios, including three-dimensional uniaxial compression and two-dimensional plane compression and5

extension, λS = 0, so that E(λS) = EC . Similarly, for simple shear alone, λS = 1 and E(λS) = ES .

Analysis of tertiary creep rates for experiments conducted in simple shear-alone and compression-alone suggests that a

suitable ratio of ES to EC for ice sheets is ∼ 8/3 (Treverrow et al., 2012). The same data also suggest that E ∝√τe for

tertiary creep rates determined over a range of stress magnitudes. A flow relation incorporating stress dependent enhancement

could be achieved by employing a creep power-law stress exponent of n= 3.5, rather than the more commonly used n= 3,10

assuming both ES and EC are described by functions of
√
τe. For simplicity, we have excluded the apparent stress dependence

of ES and EC in our initial implementation of ESTAR in ISSM since further work is required to verify the stress dependence

of ES and EC experimentally for complex, combined stress configurations. Accordingly, we use scalar enhancement factors of

ES = 8 and EC = 3 for the idealised scenarios examined in this study. These values may be at the higher end of the anticipated

range in ES and EC for an ice sheet (see e.g., Russell-Head and Budd, 1979). However, the strength of anisotropy and its15

influence on ice dynamics in comparison to the enhanced Glen flow relation depends on the ratio ES/EC and its spatial

variation, i.e., the dynamically controlled distribution of E(λS).

If the enhancement parameters are selected so that EC = ES = EG, where EG is the Glen enhancement factor, ESTAR

becomes isotropic and equivalent to the Glen flow relation since E(λS)≡ EG. However, the viscous creep behaviour of

polycrystalline ice is highly anisotropic and regional variations in the relative proportions of shear and normal strain rates,20

which are driven by variations in the distribution of the stresses responsible for deformation, mean that spatial contrasts in

anisotropy are common and widespread in ice sheets. For this reason, a spatially varying enhancement factor is required for ice

sheet modelling (e.g., Morgan et al., 1998; Wang et al., 2002a).

Comparisons of simulations of ice sheet dynamics using ESTAR and the Glen flow relation will be influenced by: the

choice of the Glen enhancement parameter, EG; EC ; ES ; and the spatial distribution of λS . The most significant differences25

between Glen- and ESTAR-based simulations are expected where there are regional contrasts in λS . Specific regions where

these conditions are likely to arise include: the lateral margins of embayed ice shelves and ice streams; locations where there

are changes in dynamic conditions at the bed, e.g., at the transition between bed-parallel shear and basal sliding; ice shelf

grounding zones; and where there is significant relief in the bedrock topography. A caveat is that as stated earlier, for ESTAR

the assumptions of crystallography and deformation rates being compatible with the instantaneous stress/deformation regime30

requires that this does not change too rapidly along the flow.
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3 Implementation of ESTAR

The magnitude of the shear strain rate defined on the local non-rotating shear plane, ε̇′ from Eq. 6, is central to the formulation

of ESTAR. The full prescription, following Budd et al. (2013), involves the following expression

ε̇′ = ‖ε̇ ·n− (n · (ε̇ ·n))n− (ω̂D · (ε̇ ·n)) ω̂D‖, (7)

where: n is the unit normal to the non-rotating shear plane, ω̂D is the unit vector parallel to that part of the vorticity that is5

associated solely with deformation, and ε̇ is the strain rate tensor. The unit normal to the non-rotating shear plane n is defined

as the normalised cross product of the velocity and the deformational vorticity

n =
v×ωD

‖v×ωD‖
. (8)

The last projection term in Eq. 7 was proposed in Budd et al. (2013) to prevent any shear component parallel to the defor-

mational vorticity from contributing to the measure of simple shear.10

The vorticity of a flow, whether viewed as the anti-symmetrised part of the velocity gradient tensor or as the usual vector

ω =∇×v, contains motions associated with both deformation and local rigid-body rotation. The locally non-rotating shear

plane is intended to be rotating with any rigid rotation portion of the flow field, so it is only vorticity associated with the

deformation process that is relevant to determining the shear fraction. Accordingly we decompose vorticity into deformational

and rotational parts:15

ω =∇×v = ωD +ωR. (9)

For the present implementation it is convenient to decompose the vorticity further, into vectors perpendicular and parallel to

the velocity direction as follows:

ω = ω⊥D +ω⊥R +ω‖D +ω‖R. (10)

From Eq. 8, only the perpendicular projection ω⊥D of the deformational vorticity is relevant in determining the direction of the20

normal to the non-rotating shear plane. This is fortunate since the perpendicular projection of the rotational vorticity can be

calculated directly for steady flow from the flow speed and curvature of the local flowline, and is oriented along the bi-normal

to the flow-line. The decomposition of the component of vorticity parallel to the flow direction, conventionally termed swirling

motion, into deformational and rotational pieces is not so straightforward, but we can use the following expression, which can

be calculated using variables available within an individual element of ISSM to generate a vector suitable for computing n:25

ω̃D =∇×v− 2v× ((v · ∇)v)
‖v‖2 . (11)

This vector contains the correct perpendicular component ω⊥D to compute n using Eq. 8, but contains all of ω‖D +ω‖R. We can

obviously also project out the component parallel to velocity to find

ω⊥D = ω̃D − (v · ω̃D)
v
‖v‖2 . (12)
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In the present implementation of ESTAR, we assume that swirling effects are small for flows with the relevant spatial scales,

aspect ratios etc., which can be verified from the modelled flow-fields, and hence ω‖D is also expected to be small. We use the

unit vector corresponding to ω⊥D (i.e., ω̂D) in Eq. 7 for our computation of ε̇′. This corresponds to extracting the component

of the shear resolved on the non-rotating shear plane which is parallel to the velocity direction, which could be regarded as an

alternative generalisation for the simple shear to that proposed by Budd et al. (2013). No approximation is involved for flows5

that are exactly two dimensional in character, since vorticity is always orthogonal to velocity in such situations.

4 Analytical verification

We perform convergence tests in order to verify the ISSM implementation of ESTAR within the full Stokes (FS) and higher

order (HO) models. The objective of these tests is to compare the model results to analytical solutions for different mesh

resolutions. As the mesh becomes finer, the error between the model and the analytical solution (i.e.,
√∫

Ω
(X −Xa)2/

∫
Ω
X2

a ,10

for model solution X , analytical solution Xa, and domain Ω) should decrease, with a cubic dependence on resolution for FS

(quadratic for ice pressure) when using Taylor-Hood finite elements, and a quadratic dependence for HO using P1×P1 finite

elements (e.g., Ern and Guermond, 2004).

We designed our analytical solutions by considering a three-dimensional, grounded, isothermal ice slab of unit dimension

lying on a flat bed topography, with cartesian coordinates (x,y,z), where z is vertically upward and where there is no gravita-15

tional force. The FS three-dimensional velocity field is given by

vx(x,y,z) = 3z, (13)

vy(x,y,z) = 2x+ y, (14)

vz(x,y,z) =−z, (15)

and the HO velocity field by20

vx(x,y,z) = x2, (16)

vy(x,y,z) = 3z+ y. (17)

In the case of the HO model, vz(x,y,z) is recovered by incompressibility. For both FS and HO models, we use ESTAR

shear and compression enhancement factors of ES = 3 and EC = 1, and the flow parameter A(T ′) = 2/3 Pa−3 s−1. The open

source mathematics software system SageMath (http://www.sagemath.org/) is used to calculate analytical solutions for the25

force balance equations based on the above velocity fields:

fx(x,y,z) =−
(
∂σ′xx

∂x
+
∂σxy

∂y
+
∂σxz

∂z

)
, (18)

fy(x,y,z) =−
(
∂σxy

∂x
+
∂σ′yy

∂y
+
∂σyz

∂z

)
, (19)

fz(x,y,z) =−
(
∂σxz

∂x
+
∂σyz

∂y
+
∂σ′zz

∂z

)
. (20)
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Here, the deviatoric stress fields are calculated using ESTAR specified in Eq. 3. When the total, rather than deformation,

vorticity (i.e., without inclusion of the rigid body correction or removal of the vorticity component aligned with the flow) is

used in the calculation of ESTAR, the FS analytical solution for (fx,fy,fz) comprises (20 521, 9 190, 20 523) characters. By

contrast, non-trivial analytical solutions for the forcing functions that are calculated from an anisotropic enhancement factor

that is based on the deformation, rather than total, vorticity are at minimum 200 000 characters, well in excess of the character5

limits for most compilers. Hence, we verify ESTAR using the total, rather than the deformational, vorticity.

To test the numerical implementation of ESTAR, ISSM is forced using the analytical expressions for fx, fy , and fz in

Eqs. 18-20 and the resulting three-dimensional flow field is compared with the relevant analytical specification in Eqs. 13-17.

Since the aim is to verify correct coding of the ESTAR modifications within ISSM, we apply the analytic velocities on the faces

as the boundary conditions. Four sets of element sizes are used for each of the FS and HO models, increasing in resolution10

from 0.2 (272 elements over 5 vertical layers) to 0.08 (4656 elements over 13 vertical layers). We find convergence powers of

2.5 (vx), 3.1 (vy), and 2.6 (vz) for FS, respectively, and 1.4 (vx) and 1.1 (vy) for HO (Fig. 2), which are consistent with theory

and verify our implementation.

5 Application of ESTAR to idealised scenarios

ESTAR was applied to a suite of test cases. The first case we present simulates flow in an embayed ice shelf; the second two15

are based on experiments from the Ice Sheet Model Intercomparison Project for Higher Order Models (ISMIP-HOM; Pattyn

et al., 2007). The ISMIP-HOM experiments describe idealised scenarios of ice flow where the bed topography or basal friction

vary. ISSM has already been validated against each of these experiments (Larour et al., 2012).

In each experiment, the velocity, surface, and thickness fields were allowed to run to steady-state, as defined in each section

(the original ISMIP-HOM experiments were simply diagnostic). The ice sheet is isothermal in each case.20

As mentioned in the previous section, we use ESTAR shear and compression enhancement factors of ES = 8 and EC = 3,

respectively (Treverrow et al., 2012). For each experiment, we perform simulations using Glen enhancement factors of 1, 3,

5, and 8; this range of enhancement factors facilitates a 1:1 comparison with ESTAR for different governing stress regimes,

yet remains consistent with the broad range of enhancement factors used in previous ice sheet model experiments (e.g., Greve,

1997; Parizek and Alley, 2004; Tarasov and Peltier, 2004; Martin et al., 2011). The ISMIP-HOM experiments used the same25

parameter values (Pattyn et al., 2007) unless otherwise indicated.

5.1 Flow through an embayed ice shelf

The first experiment simulates three-dimensional flow through a rectangular embayed ice shelf. The experiment was carried

out for model domains with transverse spans x ∈ [0,L], for L= 20, 60, and 100 km and along-flow dimension y ∈ [0,100] km.

The initial ice thickness decreases uniformly from 1000 m at the grounded zone to 300, 600, and 850 m at the ice front for the30

L= 20, 60, and 100 km cases, respectively. The main features of the anisotropic effects are similar regardless of aspect ratio, so

we focus our discussion on one transverse length scale: L= 20 km. The plan view mesh is extruded ten quadratically-spaced
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layers in the vertical. A no-slip boundary condition is applied along the x= 0 and x= L km side boundaries. At the inflow

boundary, the y-component of velocity is set to

vy(x,0) = V0e
−
[

5(x−xmid)
2L

]8
, (21)

where V0 = 100 m yr−1 and xmid = L/2. As is standard, ocean water pressure is applied at the ice-ocean interface where

tangential (traction) stresses vanish. It is assumed that there is no surface or basal melting or accumulation over the ice shelf5

domain. The flow parameter A(T ′) = 1.74× 10−25 Pa−3 s−1, is set using the Budd and Jacka (1989) value for an isothermal

ice shelf of −20 ◦C.

We run the HO ice flow model for each of the ESTAR and Glen rheologies to steady-state, which we define to be reached

when the mean velocity change over the surface mesh points is less than 1×10−2 m yr−1 between two consecutive time steps

(of4t= 2 yr). ISSM uses the Blatter-Pattyn form of the HO approximation (Blatter, 1995; Pattyn, 2003), which assumes that10

horizontal gradients in the vertical velocities are negligible compared with vertical gradients in the horizontal velocities when

computing vertical shear, and longitudinal derivatives of vertical shear stress (bridging effects) are ignored.

The Glen and ESTAR HO steady-state surface velocity magnitudes are compared in Fig. 3, where a Glen enhancement factor

of EG = 8 has been used. The patterns of ice flow are similar for the two rheologies: in each case the ice velocity increases

as it flows through the ice shelf, reaching its maximum at the ice front. Over most of the domain the velocities are in close15

agreement, reflecting the dominance of the shear flow. However, the Glen velocities are up to 17% larger than the ESTAR

velocities at the ice front, where the flow field is predominantly extensive in accordance with the ice front boundary conditions.

The differences in velocities can be attributed to differences in flow enhancement factors for simple shear and compression.

In the centre of the ice shelf and across the ice front, where longitudinal and vertical normal stresses dominate, the Glen

enhancement is as much as 8/3 times larger than the corresponding ESTAR enhancement.20

The steady-state thickness ratio for the two rheologies is shown in Fig. 3d. In both cases, the equilibrated ice shelf is thicker

along the centre line and thinner towards the side margins where ice flow is slower, and thicknesses agree within 5% over

much of the domain. However, the Glen ice shelf is consistently thinner than the ESTAR ice shelf, particularly along the

centre line where Glen velocity is enhanced relative to ESTAR, and it is up to 20% thinner at the ice front. Reducing the Glen

enhancement factor (i.e., for EG = 1,3,5) results in almost identical steady-state velocities to the EG = 8 case. However, the25

ice shelf thicknesses for EG = 1,3,5 are then uniformly greater across the shelf than the EG = 8 case by approximately 100%,

40%, and 17%, respectively.

The ESTAR strain rate components are presented in Fig. 4. As expected, shear strain rate in the x− y plane is very high

near the lateral boundaries (Fig. 4d). However, it dominates the effective strain rate (and hence λS) well beyond those margins

(Fig. 5), before decreasing towards the centre line, where it identically vanishes. Towards the ice-ocean front, each of the normal30

strain rates – ε̇xx, ε̇yy, and ε̇zz – increase in magnitude, reaching their maxima at the front. The (approximately) longitudinal

ε̇yy is the dominant normal strain rate component and is extensive towards the front. Due to the confined geometry, towards

the front ε̇yy is largely balanced by ε̇zz , which drives ice shelf thinning. Transverse normal strain rate ε̇xx plays a lesser

role at the ice-ocean front than the remaining normal strain rates. It is extensive along the front as the streamlines diverge,
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but changes sign to compressive towards the corners. The patterns in the component strain rates, including the dominance of

vertical compression strain rates in the centre of the ice shelf and at the ice-ocean front, are evident in the strain rate on the

non-rotating shear plane (NRSP strain rate) and the effective strain rate (ε̇e; Fig. 5), the ratio of which sets the magnitude of

λS . In the ESTAR embayed ice shelf simulation, the vanishing of basal traction and the depth independent nature of the inflow

velocity lead to an almost 2D flow field with local non-rotating shear planes essentially vertical where they can be defined –5

there being neither x− y plane shear nor vorticity along the centre line. We note that ε̇yy decreases in magnitude with depth at

the ice-ocean front, coincident with ice front tilting (Weertman, 1957), which also gives rise to some local shear deformation

in the y− z plane.

The FS ice flow model was computed for 1 year (i.e., steady state had not yet been reached) and the results compared with

the HO simulation results for the same model period (results not shown). At the ice front, the HO velocities are everywhere10

within 5% of the FS velocities, with the maximum differences occurring near the lateral boundaries. Across the shelf, the HO

component velocities accord well with the FS velocities. The magnitude and spatial patterns of ε̇′, ε̇e, and λS also agree well

between the two flow equations.

Computation times for FS simulations using each of the two rheologies, and for increasing mesh resolutions, are summarised

in Table 1. In each case, the model was run for 1 month with a time step of4t= 1×10−4 yr. The ESTAR simulation computa-15

tion times are no more than 3% slower than the corresponding Glen times, and the simulation times for the two rheologies con-

verge as the mesh resolution increases. This result gives us confidence that ESTAR is essentially as computationally-efficient

as the Glen rheology.

5.2 ISMIP-HOM experiment B: two-dimensional flow over a bumpy bed

ISMIP-HOM Experiment B (ISMIPB) describes two-dimensional flow (x horizontal, z vertical) over a bed topography that20

varies sinusoidally, according to the following equation

zb(x) = zs(x)− 1000 + 500sin
(

2πx
L

)
. (22)

where zs(x) =−xtanα, for a mean bed slope of α= 0.5◦, and L controls the scale of the bedrock undulation. We take zs(x)

as the initial surface so that the mean initial ice thickness is 1000 m. As for the embayed ice shelf experiment, we discuss

only the L= 20 km case since the anisotropic effects are similar regardless of aspect ratio. The flow parameter is fixed at25

3.96× 10−25 Pa−3 s−1, corresponding to an ice temperature of approximately −14◦ C (Budd and Jacka, 1989). The value for

the flow parameter in the original ISMIPB was 3.17× 10−24 Pa−3 s−1, which corresponds to a Budd and Jacka (1989) ice

temperature of approximately −3.6◦ C. We have reduced the original flow parameter by a factor of 8 (i.e., equal to ES) to

ensure our results are as close as possible to the original ISMIP-HOM experiments. Periodic boundary conditions are applied

at the vertical edges of the domain and a no-slip boundary condition is applied at the base. In this and the following two-30

dimensional test case, the normal to the non-rotating shear plane is simply the direction perpendicular to the velocity and

there is no uncertainty about the vorticity (which has only one non-vanishing component) being perpendicular to the velocity.
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Steady-state is reached when the mean velocity change over the surface mesh points is less than 1×10−2 m yr−1 between two

consecutive time steps of4t= 1 yr for this and the following ISMIP-HOM experiment.

The ESTAR and Glen FS steady-state along-flow velocities (vx) are compared in Fig. 6 and the shear fraction used to

calculate the ESTAR enhancement is shown in Fig. 7a. When EG = ES = 8, the ESTAR velocities are marginally slower than

the Glen velocities throughout the domain, regionally by as much as 6%. Although, we note that in a real-world situation, a5

local difference of 6% may not be significant to overall flow. One major contrast occurs either side of the topographic bump in

the near-surface layers (Fig. 6c) where normal stresses dominate (λS < 1) and EG is greater than EC (Fig. 7). This reduces the

shear deformation in the upper-layers for ESTAR compared to Glen, leading to slightly lower horizontal velocities. Another

velocity contrast occurs directly above the topographic depression. Since deformation here is clearly shear dominated (λS = 1;

Fig. 7), the difference must arise from a lower shear stress in the ESTAR case, reflecting indirectly the stiffer ice in the upper10

layers because E(λS)<EG = 8.

Figure 7 also shows the FS shear and normal strain rates for the ESTAR simulation. The dominance of high values of λS

indicates that bed-parallel simple shear is the main driver of ice flow in ISMIPB with the expected transition through the ice

column from compression/extension-dominated flow near the surface to shear-dominated flow near the non-slip bed. Note that

while our component strain rates are locked into a global cartesian frame, λS denotes the relative importance of simple shear on15

local non-rotating shear planes. High shear peaks appear directly over the topographical bump and depression, extending further

into the surface layers than in surrounding regions. The locations of the peaks correspond to transitions between extensive and

compressive longitudinal stresses, centred on “transition curves”, along which normal strain rates are identically zero at some

point. In order to examine the dynamics giving rise to the high shear peaks, we consider the following exact form of λ2
S (for

this two-dimensional flow field) expressible in the cartesian frame components20

λ2
S =

αε̇2
xx +βε̇2

xz + γε̇xxε̇xz

ε̇2
xx + ε̇2

xz

, (23)

for spatially varying coefficients α, β, and γ. Since there is no surface accumulation, local non-rotating shear planes are parallel

to the ice sheet surface. The traction free surface boundary condition implies λS = 0 there, except that if ε̇e vanishes, λS is

technically undefined. We set λS = 0 for vanishing ε̇′ in such situations. It is apparent from Eq. 23 that along transition curves,

where ε̇xx = ε̇zz = 0, λ2
S = β, independent of (non-zero) ε̇xz strain rate. We find that β→ (1−S2

x)2 towards the surface25

(i.e., for surface slope in the x-direction Sx) along the transition curve, in order to satisfy the surface boundary condition.

This indicates that λS should be finite along the transition curve all the way to the surface. The fact that λS → 0 along the

transition curves towards the surface in Fig. 7 may also be a consequence of mesh averaging over elements such that there is

not necessarily an exact point in our finite mesh for which ε̇xx is identically equal to 0. Note that away from the transition

curves λS does go to zero at the surface, associated with vanishing shear on the non-rotating shear plane there.30

The FS spatial pattern of velocities is consistent for both ESTAR and Glen using each of the Glen enhancement factors

EG = 1,3,5,8. Naturally, the Glen velocities decrease with decreasing enhancement factor (as the ice becomes stiffer): for

EG = EC = 3, the Glen velocity magnitudes are 38-40% of the corresponding ESTAR velocities; for EG = 1, Glen velocities

are only 16-17% of the corresponding ESTAR velocities. These results indicate that the velocities in the Glen case scale
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exactly with the choice of EG. This follows from the nature of the boundary conditions here, so that one can rescale velocity

to compensate for changes in EG.

In addition to the ESTAR FS simulation of ISMIPB, we performed an HO simulation to investigate the representation of

anisotropic flow in that approximation scheme. Figure 8 compares velocities, shear fractions λS , and anisotropic viscosities,

and their ratios, between HO and FS simulations. The HO velocities are slower than the FS velocities throughout the domain.5

Generally, this is attributable to the neglect of strain rate components – notably the horizontal gradient of vertical velocity

– in the HO force balance equations, leading to stiffer ice in the HO approximation. The maximum differences between the

HO and FS velocities occur in the basal layers. Consistent with Pattyn et al. (2008), in the near-surface layers, HO velocities

are everywhere within 3% of the FS velocities, with larger differences between HO and FS velocities directly over the topo-

graphic bump and depression. The differences between HO and FS velocities are magnified in the near-surface layers over10

the topographic bump relative to the topographic depression. In combination with the neglect of strain rate components in the

HO approximation, this difference arises due to slight differences in the locations of vanishing longitudinal strain rates. The

local viscosity maxima in the near-surface layers also correspond to regions of vanishing longitudinal strain rates. For these

locations, the Glen viscosities would be infinite, but are limited to a maximum value in the ISSM implementation.

5.3 ISMIP-HOM experiment D: two-dimensional flow over a sticky spot15

ISMIP-HOM experiment D (ISMIPD) describes a two-dimensional domain over which the basal friction coefficient η varies

sinusoidally in the horizontal direction. A Paterson-type friction law (Paterson, 1994) of the following form is used

τb =−η2vb, (24)

where τb is the basal stress and vb the basal velocity, and η varies according to the equation

η2 = 1000 + 1000 sin
(

2π
L
x

)
. (25)20

The bed topography and the initial ice surface are inclined planes with a slope of 0.1◦, and the initial thickness is 1000 m

throughout the domain. As before, the flow parameter is A(T ′) = 3.96× 10−25 Pa−3 s−1 (the ISMIPB and ISMIPD original

flow parameters were equal). Periodic boundary conditions are applied at the edges of the domain.

First, the Glen and ESTAR FS stress balance (diagnostic) results for ISMIPD are compared (upper panels, Fig. 9). Note

that applied stresses from the initial slope are uniform for this solution type. Along-flow velocities (vx) are lowest over the25

sticky spot (0-10 km), and greatest over the slippery spot (10-20 km). However, the contribution from the deformation flow is

the other way around since there is negligible vertical shear where the basal friction vanishes. The Glen isotropic and ESTAR

anisotropic viscosities in the basal layers directly over the sticky spot are approximately equal, but towards the surface the

ESTAR ice becomes stiffer over the sticky spot. By contrast, over the slippery spot, the ESTAR ice is on average 1.8 times

stiffer than the Glen ice (see λS in Fig. 10a), leading to ESTAR velocities that are up to 10% slower there. For the deformation30

velocities alone, the maximum difference between the ESTAR and Glen velocities occurs over the sticky spot where ESTAR

velocities are up to 7% faster (ignoring the region over the slippery spot where both the ESTAR and Glen deformation velocities

are identically zero).
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We next consider the FS prognostic results for Glen and ESTAR. Over the sticky spot, vertical shear develops, leading to

faster velocities in the upper part of the column (Fig. 9d-e). This is required by continuity, given the low basal velocities over

the sticky spot, to balance the block flow over the slippery section. Sliding occurs throughout the domain. The basal velocities

increase over the interval where the basal friction coefficient decreases, with a corresponding adjustment in the upper layer

velocities. This is part of the transition to block flow over the slippery spot.5

With a Glen enhancement factor equal to the ESTAR shear enhancement factor, the total Glen FS velocities are everywhere

within 1% of the corresponding ESTAR velocities, with the maximum difference occurring in the near-surface layers over the

sticky spot (0-5 km), where the ESTAR ice is stiffer (Fig. 10). The component strain rates and shear fraction λS are illustrated

in Fig. 10. The distribution of λS evolves primarily due to the evolution of normal stresses to steady-state. Shear dominates

(λS > 0.5) throughout most of the domain (i.e., for values of the basal friction coefficient>10% of the maximum value). In10

the region of maximum stickiness at approximately 5 km, the shear stresses are greatest, while in the near-surface layers

longitudinal stresses develop either side of the sticky spot.

In examining the evolution of the FS strain rates to steady-state, the shear is largely unchanged although a steeper profile

develops over the sticky spot, while longitudinal normal strain rates are reduced by about an order of magnitude over most of

the domain. Naturally, a compressive to extensive transition occurs across the sticky spot and the transition curves (vanishing15

normal strain rates) now resemble the ISMIPB case (Fig. 7b) rather than their diagnostic starting point (Fig. 10b). The change

in the normal strain rates increases the vertical extent of the shear enhancement (Fig. 10d), except over the slippery spot.

6 Discussion

The ISMIP-HOM experiments B and D simulated scenarios in which the dominant control of flow was bed-parallel simple

shear. Only small differences (< 6% for ISMIPB and< 1% for ISMIPD) were apparent between the Glen and ESTAR velocities20

for a Glen enhancement factor equal to the ESTAR shear enhancement factor (EG = ES). These results suggest that close

agreement with the ESTAR results might be achieved more generally by this choice of the Glen enhancement factor. The

results provide a physical rationale to replace the ad hoc enhancement factors typically used in grounded ice sheet modelling.

Nevertheless, there remain scenarios of ice flow over grounded ice with more complicated stress regimes than those simulated

in the ISMIP-HOM experiments presented here (e.g., ice stream flow with similar contrasts in shear dominated margins and25

normal stress dominated central regions; flow close to rugged bedrock topography where combinations of shear and normal

stresses may be important; or, generally, regions in which λS demonstrates large spatial variations corresponding to different

stress regimes). In these instances, tuning the Glen enhancement factor may not be able to adequately account for multiple, or

varying, controls on ice velocities, nor will it necessarily result in a physically realistic enhancement factor.

Our simulations of embayed ice shelf flow comparing ESTAR and isotropic rheology showed that no single Glen enhance-30

ment factor (EG) can approximate the anisotropic flow characteristic of the stress regimes encountered. Our most significant

result indicated that for an embayed ice shelf, a choice of EG = ES to reproduce the overall velocities, which are controlled by

lateral shear, overestimated velocities near the ice front by up to 17%. This is a consequence of excessively soft ice for the Glen
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case in the zone near the ice front where extensional normal stresses dominate. The steady-state Glen ice shelf was accordingly

up to 20% thinner than the ESTAR ice shelf in this region. These results highlight one of the key failures of the Glen flow

relation in adequately accounting for complex, spatially varying stress regimes in its prescription of ice flow. The addition of

an enhancement factor EG to the Glen flow relation provides some compensation for the flow enhancement associated with

microstructural development (i.e., rescaling the minimum creep rate data conventionally used in prescribing the Glen flow5

relation, e.g., table 3.3, Cuffey and Paterson, 2010). However, such a modification does nothing to allow for the anisotropic

(stress configuration dependent) aspects of ice rheology that are characteristic of tertiary creep. The improvement offered by

ESTAR is that the specification of the pattern and degree of enhancement is physically based, varying spatially as a function

of the stress configuration. This is achieved without the complication of detailed treatment of microstructural information. For

near-surface regions of the ice sheet, there may be some lag in the development of anisotropy that is not captured by ESTAR.10

However, in this zone, both stresses and temperatures are low, so the resulting deformation rates are also low. As such, it is

unlikely that an over-enhancement in this zone will impact significantly on the overall dynamics of the ice sheet.

Our embayed ice shelf results have significant implications for ice sheet model simulations that rely on the Glen flow relation

to simulate past, present, and future ice flow, which are used to constrain uncertainty in reconstructions and projections of sea

levels. In particular, the result of unrealistically fast thinning ice, as simulated with the Glen flow relation, is to deform an ice15

shelf, which could lead to unrealistic ice shelf geometries and affect buttressing if it were to spread beyond the “passive ice”

sector (Fürst et al., 2016) near the ice front. Our findings motivate further enquiry into the simulated ice sheet dynamics of

glaciers, the flow of which is governed by anisotropy as captured in ESTAR rather than the Glen flow relation.

In order to measure the impact of an anisotropic rheology on simulated ice dynamics, the ISMIP-HOM and embayed ice

shelf experiments were carried out assuming isothermal conditions. However, strong vertical gradients in temperature, where20

they exist, will be a stronger control on viscosity than the factor of 8/3 in anisotropic enhancement. This is particularly relevant

for the ISMIP-HOM experiments simulated here for simple shear dominated flow.

Many large-scale ice sheet model simulations are run using approximations to the full Stokes (FS) equations, notably higher

order (HO, e.g., Blatter, 1995; Pattyn, 2003), shelfy-stream (e.g., MacAyeal, 1989; Morland and Zainuddin, 1987), or shallow

ice (e.g., Hutter, 1982) approximations. We compared the ESTAR FS simulations for the embayed ice shelf, ISMIPB, and25

ISMIPD, with corresponding HO simulations. The local differences between the ESTAR FS and HO simulations were typically

smaller than the corresponding differences between ESTAR and the Glen rheology. However, we only performed simulations in

idealised situations where the approximations underlying the HO flow equations were generally expected to hold. We anticipate

more pronounced differences between the FS and HO flow equations in regions where these assumptions fail. The magnitude

of such differences will be explored in future studies.30

The focus of this study was to explore the effect of a contrast between the predicted dynamic response of an ice sheet to

varying proportions of simple shear and normal stresses when using isotropic (Glen) and anisotropic (ESTAR) descriptions of

rheology. Our results, particularly with respect to the differences between the Glen and ESTAR simulations, are sensitive to

the choice of ES and EC . Experimental evidence (Treverrow et al., 2012) suggests that the ratio ES/EC = 8/3, rather than

their overall magnitude, is the dominant control in the level of enhancement E(λS) and corresponding dynamic response of35
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grounded and floating ice sheets. Here, we used values of ES = 8 and EC = 3, which are based on laboratory experiments of

tertiary creep (Treverrow et al., 2012), and which yield values for the overall enhancement that are compatible with estimates

from borehole inclination measurements (e.g., Russell-Head and Budd, 1979) and modelling studies (e.g., Wang and Warner,

1999). Nevertheless, further investigation into suitable values of ES and EC to use in numerical modelling studies of grounded

and floating ice sheets is warranted.5

7 Conclusions

We have investigated anisotropic flow as represented by the empirical, scalar, tertiary, anisotropic rheology ESTAR, in the

context of idealised experiments for an embayed ice shelf, and in two-dimensional models of grounded ice flow over bumpy

or sticky beds. We have demonstrated that ESTAR is a computationally-efficient anisotropic rheology for large-scale ice sheet

models. We have highlighted that ESTAR produces different flow responses compared with the prevailing rheological descrip-10

tion based on the Glen flow relation, in regions where simple shear and normal stresses, and combinations of these, are drivers

of ice flow. Further investigation into the capabilities of ESTAR to replicate real-world ice sheet flow in Antarctic outlet glaciers

is currently underway.
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Figure 1. Strain rate characteristics of polycrystalline ice undergoing deformation driven by single stresses as measured in laboratory exper-

iments. The part of the curve corresponding to tertiary (steady-state) anisotropic creep is relevant to the deformation of ice masses in typical

ice sheets and glaciers. The red (blue) curve illustrates the result of simple shear-alone (compression-alone) stress configurations. Note that

the ratio of the shear enhancement factor ES to the compression enhancement factor EC is approximately 8/3, and the enhancement due to

compression-alone is approximately three times that of the secondary (minimum) creep rate.

Table 1. Computational times for full Stokes simulations of the embayed ice shelf (section 5.1) using Glen and ESTAR for increasing mesh

resolution. The model is simulated for 1 month and for a total of 833 time steps in each case. Dof stands for model degrees of freedom.

Dof Vertices CPUs Glen walltime (s) ESTAR walltime (s)

2210 10040 16 9084 9281

2760 15665 32 10467 10778

3310 22540 64 12920 13008

4410 40040 128 20852 21008

8820 80080 256 59057 59934
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solutions in Eqs. 13-17 for increasing mesh resolutions.
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