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Overall response to the reviewers

We thank the reviewers for their comments on our manuscript.
Both reviewers raise the important point of the need for further clarification in the manuscript on

the definitions of anisotropy and tertiary creep. Specifically, reviewer 1 said:
The authors recall that the main aim of the paper is to present the implementation of ESTAR in an

ice flow model and not to provide a comprehensive review of anisotropic flow models or a justification
of ESTAR as it is presented in Budd et al. (2013). However as we may anticipate that this paper will
mostly interest ice flow modellers that are not all specialist of ice rheology, I think that it is particularly
important to correctly discuss the hypothesises of the flow law and what it can do or not.

And later on:
This do not prevent to implement ESTAR in a large-scale ice-sheet model and test its performances.

But the different hypotheses and the character of the flow law must be described more carefully so ice
flow modellers can discuss the choice of the flow law depending on the targeted applications. The authors
should clarify and revise their use of both “anisotropy” and “tertiary creep” all along the manuscript.

We agree about the likely audience for this paper, and the importance of providing clear definitions
about our use of the terms “anisotropy” and “tertiary creep”. Accordingly, we have rearranged and
expanded the manuscript to clarify the discussion on these. We have introduced a new Sect. 2 that
precisely defines anisotropy and the tertiary flow regime, and their relevance to polar ice sheets. We
have introduced a new Sect. 3.4 that outlines those regions where our assumptions of anisotropy and
tertiary creep, as they apply to the ESTAR flow relation, apply in polar ice sheets.

We have – as detailed in the specific responses to the reviewers below – changed our perspective on
isotropy and anisotropy regarding flow relations. We have introduced a new Sect. 3.5 that differentiates
between the anisotropic and isotropic flow relations that are used to describe the deformation of
anisotropic ice. We acknowledge that the ESTAR flow relation is a mathematically isotropic flow
relation that describes the flow of anisotropic ice. Accordingly, the acronym ESTAR now stands for
Empirical Scalar Tertiary Anisotropy Regime (ESTAR).

We are glad that the reviewers agree that our work is of value. Indeed, we would be concerned if
anyone regarded the use of the Glen flow relation as intrinsically superior to the ESTAR flow relation.

The modifications to address the reviewers’ concerns have been applied throughout the manuscript
and we encourage the reviewers to consult the “diff” file we provide at the end of this response document.

We are confident that the substantial modifications we have made address the main concerns of
the reviewers and provide sufficient background for readers.

Below, we have provided specific comments on the reviewer responses. In each, the reviewer
comment is italicised, and our response is in normal font. We have provided direct quotations of the
additions/modifications to the manuscript, where appropriate.

Kind regards,

Dr Graham and coauthors

1



REVIEWER 1

The primary concerns of reviewer 1 remain twofold. They are associated with:

1. the usage of the term anisotropy in connection with the ESTAR flow relation,

2. tertiary creep of ice in polar ice sheets, its connection with anisotropic crystal fabrics, and the
validity of using observations from ice deformation experiments conducted in the laboratory to
define a constitutive relation that is widely applicable to polar ice.

In the following we provide a response to the comments of reviewer 1, addressing specific points from
the review where necessary.

Point 1: Anisotropic or not?
R1: ESTAR is then not an “anisotropic” flow relation, the fact that it predicts a different behaviour
between compression and simple shear is not sufficient to comply with the definition of anisotropy.

We raised the question in our previous response as to whether there was more than a semantic
difference between an anisotropic flow relation and a constitutive relation for ice with an induced
anisotropy. After considering the reviewer’s latest comments we agree that the ESTAR flow relation
is not an anisotropic flow relation, in the sense cited from various authorities, since it provides a
constitutive relation that is unaffected by any hypothetical local rotation of the material.

We note that the new reviewer appears to consider this a suitable shift of perspective.
To avoid any confusion by readers we have modified the acronym, recasting it to describe the flow

relation – Empirical Scalar Tertiary Anisotropy Regime (ESTAR) flow relation – to emphasise that this
is a constitutive relation that describes the flow of anisotropic ice, not an anisotropic flow relation. We
have also introduced a new Sect. 3.5 that discusses the differences between isotropic and anisotropic
flow relations.

R1: Because ESTAR has no information about the material orientation, it does not enter this
definition of anisotropy, as for a given solicitation (e.g. compression, simple shear) the material
response will be invariant by any orthogonal transformation as, by definition, ESTAR does not include
information about a material orientation. Contrary to what is claimed in response to reviewer 2, the
scalar enhancement factor in ESTAR is an isotropic function of the deformability which itself is an
isotropic function of the forcing represented by the deviatoric stress tensor and n (the normal to the
non-rotating shear plane).

We agree with the reviewer’s terminology regarding absence of anisotropy in the constitutive re-
lation, and in new Sect. 3.5 we have explained, for the benefit of “ice flow modellers that are not all
specialists of ice rheology” that we are using an an isotropic constitutive relation to describe the de-
formation rates for ice with a deformation-induced anisotropic crystal fabric, as occurs during tertiary
creep.

It is precisely to keep this restriction on the applicability of the ESTAR constitutive relation that
we have carefully modified our acronym describing the constitutive relation to attach “anisotropy’ to
the ice in tertiary stage deformation rather than the flow relation (P2L34-P3L5):

“We refer to the generalised flow relation proposed by Budd et al. (2013) as ESTAR (Empirical
Scalar Tertiary Anisotropy Regime), since it is based on steady-state (tertiary) creep rates
describing the deformation of ice with a flow-compatible induced anisotropy and features a
scalar (collinear) relationship between the strain rate and deviatoric stress tensor components.
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As discussed below, the ESTAR relation is a mathematically isotropic flow relation for ice with
a fully developed anisotropic fabric compatible with the deformation regime.”

As the new Sect. 3.5 makes clear, it is incorrect to assert that the ESTAR flow relation has no
information about the material orientation. It is simply that we can only say (due to our founda-
tions on actual experimental situations in tertiary flow) what the material properties are when the
microstructure has evolved to be compatible with the stress configuration.

Our assumption that we are dealing with a fully developed deformation-induced anisotropy simply
means that the material anisotropy has evolved to have a characteristic direction (n̂) which can be
predicted from the normal to the non-rotating shear plane. This is not conceptually different to
measuring the axis of symmetry of a collection of crystal c-axes. The limitation is that unlike a micro-
structure based model, we cannot say what the deformations would be in response to an arbitrary
applied stress – or equivalently an arbitrary rotation of the material.

In view of the public nature of The Cryosphere reviewing process we feel it worth making two
further points here.

First, we suggest that if the flow relation had been presented with a unit vector n̂ simply declared
as the axis of some material anisotropy, then the constitutive relation would be regarded as anisotropic.
It is the immediate substitution into that flow relation of the normal to the non-rotating shear plane
as the indicator of this axis of anisotropy (within the tertiary flow assumption) that collapses the
anisotropic character of our constitutive relation.

Second, given the remark that “in general the anisotropic ice viscosity should be a rank-four ten-
sor...” we feel it worth pointing out that if such a tensor description were developed as a similarly
empirical constitutive relation for ice with a flow-induced anisotropy, that also would not constitute an
anisotropic constitutive relation, since there would still be no sensitivity to material rotations. Note
that such a tensor viscosity could have been constructed by more speculative extrapolations from the
non-scalar analyses of the experiments on tertiary deformation rates under combined stresses presented
by Budd et al (2013), or Warner et al (1999). Indeed, as we mention in the paper, the most general
form of flow relation proposed by Glen (1958) on the basis of isotropy was not a scalar (collinear) flow
relation.

R1: To summarise, I am not contesting that laboratory results shows that in tertiary creep the fabric
depends only on the stress configuration and that the mechanical response depends on the fabric and
thus on the stress configuration. ESTAR captures these properties and, integrated in an ice flow model,
will give a spatially varying mechanical behaviour depending on the flow configuration. However, this
is not the definition of anisotropy.

We have conceded that our usage of anisotropy with regard to the “rheology” or more specifically,
the form of the ESTAR flow relation was potentially misleading, and we agree with the new reviewer
that the usage of “rheology" should be restricted to the field of study and ought not be regarded as
a synonym for a constitutive relation. However, we find it difficult to follow the reviewer’s logic that
even though “... the mechanical response depends on the fabric ...” the reviewer does not regard this
as having any connection with “anisotropy” of the deforming ice.

As the survey by the new reviewer shows, there are a variety of perspectives about the scope of the
term “anisotropy”. We have included a new Sect. 2 in the updated manuscript that explicitly defines
what we mean by anisotropy and polar ice sheets, and a new Sect. 3.5 that discusses the distinction
between anisotropic flow relations and the flow of anisotropic ice in the context of tertiary flow.
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R1: In consequence the manuscript must be revised to use the term “anisotropy” where appropriate,
especially it can not be included in the acronym to describe the flow law.

Precisely because “this paper will mostly interest ice flow modellers that are not all specialist of ice
rheology”, we consider it is important to keep the fact of the deformation-induced anisotropic fabric
of the polycrystalline ice in our revised acronym to emphasise that the effects we are treating and the
domain of applicability of our constitutive relation only concerns the tertiary flow of ice with a flow-
induced anisotropy (new Sects. 2 and 3.5). In relation to the ESTAR flow relation – our descriptive
characterisation of the flow relation from Budd et al. (2013) – we emphasise that this is an empirical
scalar flow relation, describing the deformation of ice in the state of tertiary anisotropy. Hence the
ESTAR flow relation – Empirical Scalar Tertiary Anisotropy Regime.

Point 2: Tertiary creep and anisotropy

Main points:

• To improve clarity, a new Sect. 2 has been added in which we articulate our usage of anisotropy
and describe tertiary flow.

• We have clarified our remarks about tertiary creep being commonly encountered in polar ice
sheets, particularly in regions that strongly control the large-scale dynamics, and we have also
expanded our remarks about regions where our model assumptions would not apply (Sect. 3.4).
Indeed, in the previous revision we already addressed this – highlighting problematic regions
arising in the simulations (e.g., throughout the Discussion).

Comments on the activity of migration recrystallisation

It is worth noting that, like the reviewer, we consider that multiple microdeformation and recovery
mechanisms contribute to the creep deformation of polar ice, and that the relative contribution of
individual processes may be expected to vary spatially throughout an ice sheet due to the influence of
temperature and/or stress on their activity.

Differences of opinion emerge when it comes to the activity of migration recrystallisation. The
reviewer suggests that tertiary creep rates from laboratory experiments have only limited relevance
to in-situ conditions because migration recrystallisation is active under laboratory conditions, but
not under in-situ conditions. In contrast to this, our view is that recovery processes enabling grain
boundary migration do make a contribution to microstructural development within ice sheets.

Reviewer 1 states:
For the applicability of ESTAR, the question is then not too much ‘is tertiary creep occurring?’

but ‘is tertiary creep as seen in laboratory experiments where migration recrystallisation is important
occurring?’. The answer is clearly related to the activity of migration recrystallisation in-situ.

And later on:
I then maintain that the occurrence of migration recrystallisation and its importance in controlling

the microstructure evolution, is an important observation to assess areas where in- situ conditions
could be compared to the laboratory tests that have been used to calibrate ESTAR.

If, as suggested, the activity of migration recrystallisation is key to determining the validity of using
laboratory observations to specify a constitutive relation for polar ice sheets, then it is necessary to
assess where any such threshold lies. If all microdeformation and recovery processes in polycrystalline
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ice were adequately understood it would be possible to describe any variability or thresholds in their
activity. In general this is not the case, and in the absence of a generally agreed threshold for the
activity of migration recrystallisation, we return to the example from Law Dome, described in our
initial response to the reviews as a guide (also discussed in Sect. 2 of the updated manuscript). We
reiterate that for the A001 core drilled at the dome summit, a distinct small circle girdle (cone-type)
fabric is observed at a depth of 318 m, where the total accumulated strain is ⇠ 30% and the in-situ
flow regime is compression dominated, with approximately radial symmetry in the transverse rates
(Fig. 3a, Budd and Jacka, 1989). The latter is supported by observations from the Dome Summit
South drill site and borehole, ⇠ 4 ice thicknesses downstream of A001. The in-situ temperature within
this zone is ⇠ �22�C. The important points from this are that:

• a cone-type fabric such as this cannot form by lattice rotation alone in a compression domi-
nated setting, therefore boundary migration processes must be contributing to microstructural
development in a relatively low temperature setting

• similar fabrics cone-type fabrics are also observed in uniaxial compression laboratory experiments
that are conducted at higher temperatures and stresses than those encountered in-situ.

From these observations we can infer that migration recrystallisation is both active and influential
under in-situ conditions – at least for temperatures as low as ⇠ �22�C. As such, a crude approximation
for the activity of migration recrystallisation and a limit for extrapolating laboratory observations
down to in-situ conditions might be ⇠ �22�C. This temperature is almost certainly an upper limit.
Cone-type fabrics have been observed in what are expected to be compression dominated settings at
other locations, e.g. cores drilled at Siple Dome (DiPrinzio et al., 2005), Byrd (Gow and Williamson,
1976), Dye 3, Greenland (Herron et al., 1985) and the Amery (Budd, 1972) and Ross ice shelves (Gow,
1963). The corresponding in-situ temperatures are even lower for some of these sites, suggesting
that migration recrystallisation remains sufficiently active to influence microstructure at temperatures
below ⇠ �22�C.

From the examples given above and those presented within Sects. 2 and 3.4 of the manuscript, there
is sufficient evidence to support our view that the ESTAR flow relation is likely to be applicable in the
dynamically active regions of the ice sheet where creep deformation makes a significant contribution
to overall flow. The task of identifying the cutoffs where the ESTAR flow relation may cease to be
applicable e.g., in less dynamically active zones of the ice sheet, remains an active area of research.

Further comments on using laboratory data in the development of constitutive relations

When it comes to the implementation of the ESTAR flow relation, a detailed discussion in response
to the reviewers question ‘is tertiary creep as seen in laboratory experiments where migration recrys-
tallisation is important occurring?’ while relevant, is of secondary importance. Of greater relevance is
whether or not the values of enhancement prescribed by the ESTAR flow relation – which are derived
from experiments – are applicable to in-situ conditions.

The reviewer states:
In their reply, the authors seem to suggest that the development of fabrics is a proof of the existence

of tertiary flow. I don’t see the causality, as the plastic deformation by slip induce an evolution of the
fabric, so there is no requirement to reach the tertiary creep to have a fabric.

Some clarifying remarks on anisotropy and tertiary creep are required here. We did not intend
to suggest that one had to reach tertiary creep to have anisotropic fabric. It is true, we do not have
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to reach tertiary creep to have an anisotropic fabric. However, the strain induced development of an
anisotropic fabric is an integral part of reaching tertiary creep (where tertiary creep corresponds to
the point where the microstructure (and strain rate) have evolved to be compatible with the imposed
stresses). We assume that microstructural anisotropy is the cause of the different deformation responses
observed for different stress regimes. If and when the stress configuration changes the microstructure
will evolve in order to establish a new tertiary creep state.

Since the ESTAR flow relation is an empirical relationship used to define an enhancement factor
dependent on the stress configuration, it will work provided the nature of mechanical anisotropy
identified in experiments is consistent with in-situ conditions. It would not be possible to sensibly apply
the ESTAR flow relation to simulating ice sheet dynamics if it was possible to point to widespread
regions in an ice sheet where the fabric has evolved in such a way as to reduce the bulk deformation
rate below that which would be expected from ice with an isotropic fabric. To our knowledge there are
no ice core (fabric) and corresponding borehole deformation (other in situ measurements) that support
the concept of widespread hardening in response to fabric evolution.

We do not suggest that the ESTAR flow relation is the final word on simulating anisotropic polar
ice (Introduction, P3L5-7). We use the ESTAR flow relation on the basis that it provides better overall
performance in simulating ice sheet dynamics than the Glen flow relation. There will be regions where
the ESTAR flow relation is not applicable; however, we make it clear in the manuscript where we
think it will and will not work, and comment on the relative importance of these zones to the overall
dynamics of an ice sheet (Sect. 3.4). For example, the ESTAR flow relation may overestimate strain
rates in the coldest, near surface layers of the deep interior of a polar ice sheet where accumulated
strains are low (P10L19-26). Since strain rates are correspondingly low in such regions the overall
impact of ‘getting it wrong’ here will be minimal. We discuss the significance of ‘getting it wrong’ in
the new Sect. 3.4.

Lastly, the use of laboratory data to constrain constitutive relations is not unique to the ESTAR
flow relation. At some level, most if not all flow relations are based on, calibrated by, or validated
using experimental results. In many cases (including the ESTAR flow relation) specification of the
limiting values of strain rate enhancement associated with the development of fabrics are obtained
from laboratory results, so the ESTAR flow relation sets no new precedent here. Furthermore, the
prescription of the temperature dependence of ice flow rates that is commonly used in many models is
based on experimental secondary creep rates.

The strain required for the development of tertiary creep

It is clear from many laboratory studies that tertiary creep occurs at strains of ⇠ 10% – we regard
this as a lower limit. Since this was not already clear in the manuscript we now indicate that tertiary
creep occurs at � 10% strain (Sect. 2, e.g., P4L18-32).

There are suggestions that the strain required to develop steady-state strain rates and compatible
fabrics at lower temperatures and stresses may be higher than values obtained from laboratory ex-
periments. In the example from the Law Dome A001 ice core described above, a distinct cone-type
fabric is observed for a strain of ⇠ 30%, providing an upper limit for the strain required to develop a
compatible fabric under in-situ conditions. Since the fabric is already well developed at this point, the
actual strain required to achieve tertiary creep was probably less. This idea is further supported by
experimental observations (Jacka and Maccagnan, 1984) that show how a steady-state (tertiary) creep
rate is achieved prior to corresponding anisotropic fabric reaching a steady-state. The suggestion here
is that the strain rate does not continue to evolve so much once the most obstructive grains have been
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removed by fabric development, i.e. the continued strengthening of an already anisotropic fabric has
a minor influence on the strain rates. We discuss this result in new Sect. 2.

While the experiments of Jacka and Li (2000) cited by the reviewer provide some support for
the requirement of higher accumulated strains to develop tertiary creep at low temperatures and
stresses, the results of these experiments are somewhat inconclusive and should be interpreted with
care. These experiments were conducted at constant applied loads, not constant applied stresses. Due
to an increase in the cross sectional area of the sample with increasing strain the stress effectively
decreases throughout the experiments. This effect can be observed by the decrease in creep rates at
strains � 10% for the higher temperature and/or stress experiments (see their Figures 7 & 8). At a
strain of 10% the corresponding decrease in stress will lead to strain rates ⇠ 30% lower than the value
expected for the stress that was applied at the start of the experiment. From this perspective the
nearly constant strain rates referred to by the reviewer actually indicate a modest (30%) enhancement
in the flow relation by 10%. Accordingly, we suggest that the cone-type fabric from A001 at ⇠ 30%

and ⇠ �22�C provides a more robust indication of the levels of strain required for fabric development
(Sect. 2, P4L33-P5L8).

Throughout much of an ice sheet the evolution in the stress configuration and corresponding com-
patible microstructure along ice streamlines is gradual, hence the strain required for the microstructure
to adapt to changes is substantially less than observed in laboratory experiments that commence on
samples with an initially isotropic fabric.
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REVIEWER 2

From Section 2.1: Scientific points (July 2017):
R2: I think it might be helpful to include a short section in the Introduction to address [the semantics
of anisotropy] head-on, as outlined in the following item. This could come at the expense of removing
some to the other introductory material about anisotropy, which I felt didn’t always make the point that
is needed here.

Perhaps if the authors can clarify exactly what they mean by an anisotropic flow relation in this
paper with a few sentences or paragraphs, it will convince readers to focus on their results, and their
paper will be more widely cited. I expect that glaciologists agree that ice develops a non-uniform
preferred crystal orientation fabric as a result of deformation, and that because an ice crystal has
essentially just one slip system, this preferred crystal orientation fabric affects the deformation rate.

We greatly appreciate the considerable effort expended by the reviewer in detailing each of the
different concepts of what might be meant by an “anisotropic flow relation”. In the revised manuscript
we have adopted this reviewer’s original perspective that (Introduction, P3L4-5):

“...the ESTAR relation is a mathematically isotropic flow relation for ice with a fully developed
anisotropic fabric compatible with the deformation regime.”

Accordingly, we have amended the acronym to now stand for: Empirical Scalar Tertiary Anisotropy
Regime, intending the usage “ESTAR flow relation” to correspond to “Glen flow relation”. We have
added a new Sect. 2 to discuss anisotropy and polar ice sheets, both the experimental and observational
evidence, and the importance of its consideration in constitutive relations for use in numerical ice sheet
models. For completeness, and in line with the reviewer’s recommendation from both reviews, we have
also added a new Section 3.5 to discuss the seeming paradox of using an isotropic constitutive relation
to describe the flow of ice with a deformation-compatible tertiary anisotropic crystal fabric. We have
added this at the end of the section on constitutive relations, rather than in the introduction. Given
that we have adopted the reviewer’s suggested perspective of presenting the ESTAR flow relation as
a mathematically isotropic flow relation for anisotropic ice, we consider that this was the appropriate
place to put this discussion.

R2: I am puzzled by Equation (21), which represents the incoming boundary condition for flow.
Equation (21) does not go to zero at the lateral boundaries (x = 0 and x = L), yet the boundary
condition along the lateral margins is zero flow, i.e., vy(0, y) = vy(L, y) = 0. Since xmid = L/2,
these two conditions are incompatible in the corners where they meet. Admittedly, exp(-5.96)=0.003 is
small, but it is not zero. Does this create some of the fine structure there, for example in Figure 4a?

In the original set of experiments, we subtracted the small value of vy at x = 0 and x = L to ensure
that vy satisfies the no-slip boundary condition at the margin. We have revised the manuscript to be
clear on this, as follows (P15L9-13):

“At the inflow boundary, the y-component of velocity is set by

V (x) = V0e
�
⇥

5(x�xmid)
2L

⇤8
, (1)

vy(x, 0) = V (x)� V (0), (2)

where V0 = 100 m yr�1 and xmid = L/2. This ensures that vy(x, 0) satisfies the no-slip boundary
condition on the margins.”

R2: It is a pity that the ISMIP experiments used only sinusoidal bed variations, because, as the
authors point out, they are unable to examine the ESTAR response in what we might call the far field,
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away from the influence of an isolated bump. Perhaps in future work, experiments with isolated bumps
in a longer model domain would shed more light on the effectiveness of the ESTAR formulation?

We agree with the reviewer and are planning further tests of the ESTAR flow relation over synthetic
and realistic domains. It would certainly be desirable to decouple the spatial scale of a bump from any
effects of periodic boundary conditions.

From Section 2.2: Editorial points and clarity (July 2017):
R2: Page 9, line 10: binormal to a flow line

A binormal to a flow line has been defined (P12L17) as “the unit vector orthogonal to both the tan-
gent vector and the normal vector”. Throughout the manuscript, we have amended flow-line/flowline
to flow line, unless where the word streamline is more appropriate.

R2: Page 11, line 11: Consistent with what theory?
Our results are consistent with those predicted from Ern and Guermond (2004), as discussed also

on P12L22-26. This reference has been added on P14L18.

R2: Page 21, line 25: Should be Fig. 3f.
Amended (P15L28).

R2: Can times be slow?
Amended (P16L23).

R2: Misplaced only
Amended.

R2: Extensive/extensile/tensile
We have removed all occurrences of extensive, instead adopting tensile or extensional, where ap-

propriate. E.g., see P15L23-24 and P16L4-5.

R2: Flow line/streamline/particle path
We have replaced flow line with streamline throughout the manuscript.

R2: Hyphens
We have removed hyphens on computationally efficient, and added a hyphen to near-surface

(P10L21).

R2: Figure 1 axes
We have amended Fig. 1 axes labels as suggested. The x-axis is strain, but plotted on a log scale.

The y-axis (strain rate) is also plotted on a log scale and the units have been removed from the label.
We have specified that this figure is intended to be a cartoon to illustrate the relationships between
strain and strain rates for different stress regimes and at different stages of deformation.

R2: Use of e notation on graphs
We have removed all occurrences of the e notation on graph axes.

From Section 3.1: Scientific points (March 2017):
R2: It would be fair to say that ESTAR offers an improved flow law for ice that is anisotropic, but it
is incorrect to say that ESTAR is an anisotropic flow law

We agree with the reviewer. As mentioned above in response to the scientific points from the
reviewer’s section 2.1, we have removed all reference to the ESTAR flow relation as an anisotropic flow
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relation. Rather, we clarify that the ESTAR flow relation is a mathematically isotropic flow relation
for describing the influence of induced anisotropy (P3L4-5).

R2: “Data from laboratory ice deformation experiments can be used to define flow relations suitable
for implementation in numerical ice sheet models.” This may be correct, but at such dramatically
different rates of strain, isn’t there a strong possibility that the dominant micro-scale processes are
different, and if that’s the case, why should the lab experiments offer very much insight? Some more
discussion might be in order.

We have made detailed comments related to this same issue in our response to reviewer 1 above:
“Further comments on using laboratory data in the development of constitutive relations”. To briefly
summarise: laboratory results are broadly transferable to polar ice sheets, particularly the dynami-
cally active zones, but identifying thresholds in the activity of specific microdeformation and recovery
processes (in order to determine when laboratory observations are no longer representative of in-situ
conditions) remains an area of active research. In the updated manuscript we have added discussion
about the rates of strain observed in laboratory experiments of tertiary creep and how they compare
with observations from the field (e.g., from the A001 core drilled at the Law Dome summit; Budd and
Jacka, 1989; Sect. 2 of the updated manuscript), as well as the applicability of laboratory experiments
in constraining and validating constitutive relations (Sects. 3.2 and 3.4).

R2: Both previous reviewers expressed concern that ESTAR is based on the assumption that tertiary
creep has been reached everywhere. This is equivalent to the expectation that there is “an anisotropic
flow relation for polycrystalline ice in which the nature of the crystal fabric and the magnitude of strain
rate enhancement, E, are both determined by the stress regime.” I think we all understand that fabric
actually evolves in response to strain, so in order for these two different views to be compatible, the
time required for ice to undergo ⇡ 10% strain must be significantly less than the time required for it
to move into a regime with a significantly different stress. Perhaps the paper by Thorsteinsson et al.
(2003) would offer some ideas and discussion points about where this might be justified and where not.

We thank the reviewer for the insightful reference (Thorsteinsson et al., 2003) that highlights
situations where the ESTAR flow relation might not apply. We have incorporated this reference in
new Sect. 3.4, which outlines the domain of applicability of the ESTAR flow relation, and where the
assumptions underlying the ESTAR flow relation are not expected to hold.

In the first revision of the paper we had already made efforts to indicate the type of region where this
compatibility of anisotropy and stress regime was unlikely to be justified, and to address the connection
between the time required to develop a compatible fabric (in terms of accumulating strain), the distance
travelled in that time and the spatial scales over which the stress regime might change significantly. In
the Discussion section we explicitly introduced the concept of a transition scale – the distance travelled
in accumulating ⇠ 10% strain and used this to draw attention to regions in the simulations where the
assumption of tertiary flow with a compatible fabric was expected to fail.

In the current version we have further expanded on this matter in the Sects. 2 and 3.4, as well as
retaining the remarks in the Discussion section – e.g., P22-23.

R2: Figure 1 caption. “Note that the ratio...is approximately 8/3...” How is a reader suppose to
note this when there are no numbers on the vertical axis? The figure is just a cartoon.

We have amended the caption on Fig. 1 and made the intent of the figure more explicit.

From Section 3.2: Editorial points (March 2017):
R2: Some purists would say that rheology denotes a field of study, like geology, and a better term in
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the title would be constitutive relation.
We agree with the reviewer and have replaced “rheology” with “constitutive relation” or “flow

relation” throughout the manuscript.

R2: Cuffey and Paterson (2010) and Paterson (1994) references need page numbers
We have added a page number to both the Cuffey and Paterson (2010) and Paterson (1994) refer-

ences.

R2: Section 4 not mentioned in outline, although all other sections are mentioned.
Amended (P3L13-20).

R2: Avoid long strings of adjectives
Amended as suggested.

R2: Misplaced “only”s
Amended.

R2: Definition of NRSP moved before idea of simple shear
We have reordered the material in section 3.3 so that the discussion of the non-rotating shear plane

and the shear acting on that plane is introduced before the shear fraction is formally defined (P8-9).

R2: Taylor Hood and P1⇥P1 elements
We have specified the type of finite elements used in the verification process as it is a relevant detail

for replicability, especially for modellers hoping to implement the ESTAR flow relation into their own
models. Should readers require more information, details on the finite element method are provided
in the reference (Ern and Guermond, 2004), and the ISSM code is available online.

R2: ...In this case, eliminating the acronyms HO (higher order) and FS (full Stokes) and just
writing those terms out in full for the perhaps 2 dozen times they are used would make the paper more
readable...

We agree with the reviewer and have removed the acronyms HO and FS.
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Abstract. The microstructural evolution that occurs in polycrystalline ice during deformationleads to the development of

anisotropic rheological properties that are

::::::::::::
microstructure

::
of

::::::::::::
polycrystalline

:::
ice

:::::::
evolves

:::::
under

::::::::
prolonged

:::::::::::
deformation,

:::::::
leading

::
to

:::::::::
anisotropic

:::::::
patterns

::
of

::::::
crystal

::::::::::
orientations.

::::
The

::::::::
response

::
of

:::
this

::::::::
material

::
to

::::::
applied

:::::::
stresses

::
is not adequately described by

the most common, isotropic, ice flow relation

::::
most

:::::::::
commonly

:
used in large-scale ice sheet models – the Glen flow relation. We

present a preliminary assessment of the implementation in the Ice Sheet System Model (ISSM) of a computationally-efficient

:::::::::::::
computationally5

:::::::
efficient, empirical, scalar, tertiary, anisotropic rheology (ESTAR )

:::::::::
constitutive

::
or

::::
flow

:::::::
relation

:::::
which

::::::::
addresses

:::
the

::::::::
influence

::
of

::
the

:::::::::::
dynamically

::::::::::
steady-state

:::::::::::::
flow-compatible

:::::::
induced

:::::::::
anisotropic

::::::
crystal

:::::::::
orientation

:::::::
patterns

:::
that

:::::::
develop

::::
when

:::
ice

::
is

::::::::
subjected

::
to

:::
the

::::
same

:::::
stress

::::::
regime

:::
for

::
a

::::::::
prolonged

::::::
period

:
–

:::::::::
sometimes

:::::::
termed

::::::
tertiary

::::
flow.

:::
We

::::
call

:::
this

:::
the

:::::::
ESTAR

::::
flow

:::::::
relation. The

effect of this anisotropic rheology on ice flow dynamics is investigated by comparing idealised simulations using ESTAR with

those using the isotropic Glen flow relation, where the latter includes

::
and

:::::
Glen

::::
flow

::::::::
relations,

:::::
where

:::
we

:::::::
include

::
in

:::
the

:::::
latter10

an overall flow enhancement factor. For an idealised embayed ice shelf, the Glen flow relation overestimates velocities by up

to 17% when using an enhancement factor equivalent to the maximum value prescribed by ESTAR

::
in

:::
the

::::::
ESTAR

:::::::
relation.

Importantly, no single Glen enhancement factor can accurately capture the spatial variations in flow over

:::::
across

:
the ice shelf .

For flow-line

::::::::
generated

::
by

:::
the

:::::::
ESTAR

::::
flow

:::::::
relation.

:::
For

::::
flow

::::
line studies of idealised grounded flow over varying topography

or variable basal friction – both scenarios dominated at depth by bed-parallel shear – the differences between simulated veloc-15

ities using ESTAR and the Glen flow relation vary according to

::::
Glen

::::
flow

:::::::
relations

:::::::
depend

::
on

:
the value of the enhancement

factor used to calibrate the Glen flow relation. These results demonstrate the importance of describing the anisotropic rheology

of

::::::::::
deformation

::
of

::::::::::
anisotropic ice in a physically realistic manner, and have implications for simulations of ice sheet evolution

used to reconstruct paleo-ice sheet extent and predict future ice sheet contributions to sea level.

1 Introduction20

An essential component of an

:::
any ice sheet model is its formulation of ice rheology, which relates deformation rates to

:::
the

:::::::::
constitutive

:::::::
relation

:::
(or

::::
flow

::::::::
relation),

::::::
which

:::::::
connects

:::
ice

:::::::::::
deformation

::::
rates

::::
and

:
applied stresses. Data from laboratory ice

1



deformation experiments can be used to define flow relations suitable for implementation in numerical ice sheet models.

Previous experiments have demonstrated that under conditions of constant stress and temperature, polycrystalline ice with

a statistically random distribution of crystallographic

:::::
Under

:::::::::
prolonged

:::::::::::
deformation

::::::::::::
polycrystalline

:::
ice

::::::::::
aggregates

:::::::
develop

:::::::
material

:::::::::
anisotropy,

:::::::
patterns

::
of

::::::::
preferred

::::::::::
orientations

::
of

:::::::::
individual

::::::
crystal c-axes (fabric) initially behaves as a mechanically

isotropic material (Budd and Jacka, 1989) where the rate of deformation is not sensitive to the character of the applied stresses.5

We use the term fabric to describe the distribution of crystallographic c-axis orientations within a polycrystalline aggregate.

At the commencement of deformation, during the primary stage of creep, the initially high strain rate rapidly decreases.

A minimum strain rate is reached during secondary creep (Fig. 1), which is associated with a transitory balance between

strain hardening and the strain-induced activation of microstructural recovery processes. With continued strain, a tertiary

stage of creep is established (typically observed at strain of ⇠ 10% in laboratory experiments), which is characterised by10

a dynamic balance between microdeformation and recovery processes, statistically steady-state anisotropic polycrystalline

microstructures (e. g., crystal orientation fabric and grain size), and steady strain rates that are enhanced relative to the rate

observed during secondary creep.

Tertiary creep, with the associated development of polycrystalline anisotropy driven by the microstructural response to

applied stresses, is the predominant mode of ice deformation in ice sheets (Budd and Jacka, 1989) . The pattern of fabric15

anisotropy and the tertiary strain rates both depend on the nature of the applied stresses(Fig. 1). Attaining a state of tertiary

creep requires that a stable pattern of stresses acts for sufficient time to develop the compatible crystal anisotropy. We can

expect this tertiary state to be common throughout the bulk of a polar ice sheet from simple considerations of the observed

velocities and strain rates, provided the spatial pattern of deformation varies slowly compared to the passage of ice through

that pattern. Clearly there are also some regions where tertiary flow is not expected to be achieved. We discuss applicability of20

this tertiary creep assumption in more detail in Sects. 3.2 and 3.3, and in discussions in Sect. 7 in light of the results of

:::::
-axes,

:::::
which

:::
we

::::
refer

::
to

::
as

:::::::::
anisotropic

:::::::
fabrics.

:::::
There

::
is

:::::
broad

:::::::::
agreement

:::
that

::::::::::
deformation

:::::
under

:::::::
stresses

:::::
within

:::::
polar

:::
ice

:::::
sheets

:::::
leads

::
to

:::::::::
widespread

:::::::::::
development

::
of

:::::::::
anisotropic

::::::
fabrics

:::::::::::::::::::::::::::::::::::::::
(e.g., Budd and Jacka, 1989; Hudleston, 2015) ,

::::::
through

::
a

::::::
variety

::
of

:::::::
physical

::::::::
processes

::::::::::::::::::::
(e.g., Faria et al., 2014) .

:::
The

:::::::::::
development

::
of

:::::
these

:::::::::
anisotropic

::::::
fabrics

::
is

:::::::::
associated

::::
with

:::::::
different

::::::::::
deformation

:::::
rates

::
for

::::::::
different

::::::
patterns

::
of

:::::::
applied

:::::::
stresses.

:::::::::
Laboratory

::::::::::
deformation

::::
tests

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Russell-Head and Budd, 1979; Bouchez and Duval, 1982; Jacka and Maccagnan, 1984; Treverrow et al., 2012) and25

::::
field

:::::::
evidence

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Wang and Warner, 1999; Wang et al., 2002a; Treverrow et al., 2015) indicate

::::
that the idealised experiments.

:::::::
influence

::
of

:::::::::
anisotropy

:::
on

::::::::::
deformation

::::
rates

::
is

:::::::::
significant

:::
for

::::
polar

:::
ice

:::::
sheets

::::
and

:::::
should

:::
be

::::::::::
incorporated

::
in

::::
flow

::::::::
relations

::::
used

::
in

:::::::::
large-scale

:::
ice

::::
sheet

:::::::
models.

The

:::::
There

:::
are

:::::::
complex

::::
flow

:::::::
relations

::::
that

::::::::
explicitly

::::::
include

:::::::
material

:::::::::
anisotropy,

:::
and

:::::::
models

:::
that

::::
track

:::
the

::::::::
evolution

::
of

::::::
crystal

::::::
fabrics,

::
as

::::::::
discussed

::::::
briefly

::::::
below,

:::
but

:::
the

::::
Glen

::::
flow

:::::::
relation

:::::::::::::::::::::::::::::::::::::
(Glen, 1952, 1953, 1955, 1958; Nye, 1953) is

:::
the

:
prevailing de-30

scription of ice rheology used

:::::::::
deformation

:
in large-scale ice sheet models, the Glen flow relation (Glen, 1952, 1953, 1955, 1958; Nye, 1953) ,

is a creep power law:

"̇=A(T 0)⌧n�1
e

�0
,
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where

:
.

::
It

:
is

:::::
given

:::
by

:::
the

::::::::
following

:::::::::
expression

:

"̇=A(T 0)⌧n�1
e

�0
.

:::::::::::::::
(1)

::::
Here,

:
"̇ is the strain rate tensor (s

�1
), ⌧

e

is the effective stress (Pa), proportional to the second invariant of the deviatoric stress

tensor �0
, and n is a power law stress exponent (observations support a value of n= 3). A(T 0) is a flow parameter (Pa

�n

s

�1
),

dependent on homologous temperature T

0
and persistent material properties, for which various parameterisations exist based5

on laboratory tests and field measurements (e.g., Budd and Jacka, 1989; Cuffey and Paterson, 2010) .

:::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Budd and Jacka, 1989; Cuffey and Paterson, 2010, p. 73) .

:
The Glen flow relation was empirically derived from secondary

creep rates, determined under various conditions of constant stress and temperature, for polycrystalline ice with an initially

random distribution of c-axes and assuming mechanical isotropy . While

::
is

:::
not

:::::::
expected

::
to

::::
hold

:::
for

:::::::::
anisotropic

:::
ice

::::::::::::::::
(Budd et al., 2013) ,

::::
being

::::::::::
empirically

:::::::
derived

:::::
under

:::
the

:::::::::
assumption

:::
of

:::::::::
mechanical

:::::::
isotropy

::::::::::::
(Nye, 1953) ,

:::::
which

::::::::::
necessarily

:::::::
restricts

:::
the

:::::::
possible10

:::::::
structure

::
of

:::
the

::::
flow

::::::
relation

::::::::::::
(Glen, 1958) .

::::::
Hence,

:::::
while

:
the Glen flow relation captures the observed nonlinear response of ice

deformation to the magnitude of

::
the

:
applied stresses, it is unable to account for the mechanical anisotropy of polycrystalline ice

that develops during the transition to tertiary creep (e.g., Nye, 1953; Glen, 1958; Budd et al., 2013) . That is, it cannot explain

the dependence of tertiary

::::::::
observed

:::::::::
dependence

:::
of

::::::::::
steady-state strain rates on the character of the applied stress.

To account for the increased deformability associated with tertiary

::::::::::
steady-state creep, a common adaptation of the Glen flow15

relation is the inclusion of a constant flow enhancement factor, E

G

,

"̇= E

G

A(T 0)⌧n�1
e

�0
. (2)

The

::::
Such

::
a

::::::::
parameter

::
is

:::::::
included

::
in

::::
most

:::::::::
large-scale

:::
ice

:::::
sheet

::::::
models

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Saito and Abe-Ouchi, 2004; Greve, 2005; Huybrechts et al., 2007; Winkelmann et al., 2011) ,

:::::::
typically

::
to

:::::::
increase

:::
the

:::::
rates

:::::::
expected

:::
in

:::
the

::::::::::
bed-parallel

:::::
shear

:::
that

::
is

::::::::
important

:::
in

:::
ice

::::::
sheets.

::::::::
However,

:::
the specification of

E

G

is typically ad hoc: E

G

may be selected from reported experimental values (e.g., Duval, 1981; Jacka and Maccagnan,20

1984; Pimienta et al., 1987; Treverrow et al., 2012), or used as a model tuning parameter. Such a parameter is included in most

large-scale ice sheet models (e.g., Saito and Abe-Ouchi, 2004; Greve, 2005; Huybrechts et al., 2007; Winkelmann et al., 2011) .

Indeed, Greve and Blatter (2009) comment that it

::
E

G:
is “often introduced without explicitly mentioning anisotropy”. In any

case, a value of E

G

that does not vary spatially in connection with the fabric and flow configuration, will lead to an unrealistic

spatial distribution of strain rates (Wang and Warner, 1999; Wang et al., 2002a; Treverrow et al., 2015). Previous studies have25

used anisotropic flow models or approximations to assign

:::::::
assigned regional values to E

G

(e.g., Ma et al., 2010) that may also

vary according to the prevailing stress regime.

Budd et al. (2013) recently proposed an anisotropic

:
a

:
flow relation based on results from laboratory ice deformation ex-

periments involving simple shear, compression, and combinations of these. As tertiary creep rates and the

::::
These

:::::::::::
experiments

::::::
reached

::::::::::
steady-state

:::::
creep

::::
rates

::
–

::::
also

:::::::
referred

::
to

::
as

::::::
tertiary

:::::
flow.

:::
As

::::
these

:::::
strain

:::::
rates

:::
and

:
corresponding compatible fabrics30

were found to vary according to

::::::::
depending

::
on

:
the relative proportions of the simple shear and compression stresses, Budd et al.

(2013) defined an enhancement factor E as an anisotropic

:
a function of the stress configuration, based on interpolating between

separate, experimentally-determined enhancement factors for simple shear-alone and compression-alone.

::::
The

::::::::
laboratory

::::::::::
experiments

3



::::
were

:::::::::::
satisfactorily

::::::::
described

:::
by

:
a

:::::
scalar

:::::::
relation

:::::::
between

:::::::
stresses

::::
and

:::::::::
strain-rates

::::::::::::::::::
(Budd et al. (2013) ),

:::::
which

:::::::::
motivated

:::
the

:::::::::
suggestion

:::
that

:::
this

::::::
might

:::::
extend

::
to

:::::::
general

::::::
stresses. We refer to the generalised form of the anisotropic flow relation proposed

by Budd et al. (2013) as ESTAR (Empirical , Scalar , Tertiary , Anisotropic Rheology

:::::
Scalar

:::::::
Tertiary

:::::::::
Anisotropy

:::::::
Regime), since

it is based on tertiary (steady-state

:::::::
(tertiary) creep rates describing the deformation of anisotropic ice

::
ice

::::
with

:
a

::::::::::::::
flow-compatible

::::::
induced

:::::::::
anisotropy

:
and features a scalar (collinear) relationship between the strain rate and deviatoric stress tensor components.5

::
As

::::::::
discussed

::::::
below,

:::
the

:::::::
ESTAR

:::::::
relation

:
is

::
a

:::::::::::::
mathematically

:::::::
isotropic

::::
flow

:::::::
relation

:::
for

:::
ice

::::
with

:
a

:::::
fully

::::::::
developed

::::::::::
anisotropic

:::::
fabric

:::::::::
compatible

::::
with

:::
the

::::::::::
deformation

:::::::
regime.

:::::
While

:::
this

::::
flow

:::::::
relation

:::
will

:::
not

:::::::
capture

:::
the

::
all

:::
the

:::::::::
influences

::
of

:::
the

:::
full

::::::
variety

::
of

:::::::::
anisotropic

::::::
crystal

::::::
fabrics,

:::
nor

::::::::
situations

::::::
where

:::
the

:::::
fabric

:::
and

:::::
stress

::::::
regime

:::
are

:::
not

::::::::::
compatible,

::
we

:::::::
suggest

:
it

::::::
should

:::::::
provide

::
an

:::::::::::
improvement

::
on

:::
the

:::::
Glen

::::
flow

:::::::
relation.

Here, as a first step towards exploring the implications of this description of tertiary creep

:::::::::
anisotropic

::
ice

:::
in

:::::::::
large-scale

:::
ice10

::::
sheet

::::::
models, we describe how to implement ESTAR in large-scale ice sheet models

:::
the

::::::
ESTAR

::::
flow

:::::::
relation

:
and apply the

required changes to the Ice Sheet System Model (ISSM; Larour et al., 2012). ISSM is a thermomechanical finite element model

that solves the full system of Stokes equations to describe ice flow. This will permit exploration of the ramifications of ESTAR

::
the

:::::::
ESTAR

::::
flow

:::::::
relation in general ice flow situations. In an initial studyhere

:::
this

:::::
initial

:::::
study, we examine the effect of

:::::::
induced

anisotropy in simple, idealised scenarios of a floating ice shelf and of grounded ice sheets, comparing simulated flow fields15

using ESTAR with the corresponding isotropic flow modelled by the Glen flow relation

::::
flow

:::::
fields

::::::::
simulated

:::::
using

::::::
ESTAR

::::
and

::::
Glen

::::
flow

:::::::
relations. Section

:
2

::::::::
discusses

:::
the

::::
role

::
of

::::::::::
anisotropic

:::
ice

::
in

::::
polar

:::
ice

::::::
sheets.

:::::::
Section

:
3 presents a brief overview of

anisotropic rheologies, including

::::
flow

:::::::
relations

:::
for

:::
ice

::::
with

::
a

:::::::::::::
polycrystalline

:::::::::
anisotropy,

::::::::
focussing

:::
on

:
the experimental and

theoretical basis for ESTAR

:::
and

::::::::::
applicability

:::
of

:::
the

::::::
ESTAR

::::
flow

:::::::
relation. Section ??

:
4

:
details the implementation of ESTAR

::
the

:::::::
ESTAR

:::::
flow

::::::
relation

:
in ISSM while Sect. 5 verifies the implementation against an analytical solution. In Sect. 6, we20

compare simulations of ice flow with ESTAR and the Glen flow relation

:::
the

::::::
ESTAR

::::
and

::::
Glen

::::
flow

::::::::
relations using a suite of

idealised flow geometries, including selected experiments from the Ice Sheet Model Intercomparison Project for Higher Order

Models (ISMIP-HOM; Pattyn et al., 2007). Section 7 discusses the results, and implications of the ESTAR description of the

flow of anisotropic ice

:::
ice

::::
with

:
a

:::::::::::
flow-induced

::::::::::::::
crystallographic

::::::::
anisotropy. Conclusions are drawn together in Sect. 8.

2 Anisotropic
::::::::::
Anisotropy

::::
and

:::::
polar ice rheology

:::::
sheets25

::
In

:::
this

::::::
section

:::
we

::::::
outline

:::
the

::::::::::
development

::
of

::::::::::
anisotropic

::::::
fabrics

::
in

::::::::::::
polycrystalline

:::
ice,

::::::::
including

:::
the

::::::
tertiary

::::
flow

::::::
regime

:::
and

:::
its

:::::::::
connection

::::
with

::::::::
enhanced

::::::::::
deformation

:::::
rates

:::
and

:::::::::::
development

::
of

::::::::::
compatible

:::::::::
anisotropy,

:::
and

:::::::
discuss

:::
the

:::::::
expected

::::::::::
occurrence

::
of

:::::::::
anisotropy

:::
and

::::::
tertiary

::::
flow

:::::::::
conditions

::
in

:::::
polar

:::
ice

:::::
sheets.

:

::::::::
Individual

:::
ice

:::::::
crystals

:::::
have

::
a

::::::
strong

::::::::::
mechanical

:::::::::
anisotropy,

::::::
owing

::
to

:::::
high

:::::
levels

:::
of

::::::::::::
deformability

:::
due

:::
to

::::
slip

::
on

::::
the

:::::::::::::
crystallographic

:::::
basal

:::::
plane,

::::::
whose

::::::
normal

::
is

:::
the

::::::::::::::
crystallographic

::::::
c-axes.

::::::
Under

::::::::
prolonged

:::::::::::
deformation,

:::
the

:::::::::::::
microstructure30

::
of

:::
ice

:::::::
evolves,

::::::
leading

:::
to

:::
the

:::::::::::
development

::
of

:::::::
patterns

::
of

::::::::
preferred

::::::
c-axis

::::::::::
orientations

::::::
(crystal

::::::::::
orientation

::::::
fabric).

::::::
While

:::
the

:::::
direct

:::::::
evidence

:::
for

::::::::::
anisotropic

::::::
fabrics

::
in

:::::
polar

:::
ice

::::::
sheets

::
is

::::::
limited

::
to

::::
data

:::::
from

:
a

:::::
small

:::::::
number

::
of

:::::
deep

:::
ice

::::
core

:::::
sites,

:::
the

::::
long

::::::
passage

:::
of

:::
ice

::::::
through

:::
the

:::
ice

:::::
sheet

:::::
stress

::::::
regime

::::::
makes

::::
this

::::::::
inevitable.

:::
In

:::
the

::::::
course

::
of

::::
flow

:::::::
through

:
a

:::::
polar

:::
ice

:::::
sheet

4



::::
each

:::::
parcel

:::
of

::::::::::::
polycrystalline

:::
ice

:::
is

::::::::
deformed

:::
by

::::::::
exposure

::
to

:::::::
patterns

::
of

::::::
stress

:::::
which

:::::::
usually

::::::
change

:::::::::
gradually,

:::
the

:::::
most

::::::
obvious

:::::
being

:::::::
stresses

:::::::::
dominated

::
by

:::::::
vertical

::::::::::
compression

:::::::
through

:::
the

:::::
upper

::::
part

::
of

:::
the

:::
ice

::::
sheet

::::::
before

:
a

:::::::
smooth

::::::::
transition

::
to

::::::::::::
predominantly

::::::::::
bed-parallel

::::::
simple

::::
shear

::::::
below.

::
As

::::::::
discussed

:::
by

::::::::::::::::::::::
Budd and Jacka (1989) the

:::::
nature

::
of

:::
the

:::::::
applied

::::::
stresses

::::
and

:::
the

::::::
rotation

::::
with

:::
the

::::
flow

:::::::
produce

::::::::::
anisotropic

:::::
crystal

::::::
fabrics

::::
that

::::::
evolve

::
to

::::::
reflect

:::
the

:::::::::::
accumulating

:::::
strain

::::::
history

::::
and

:::::
flow.

:::::
These

::::::
fabrics

::::::::::
necessarily

::::
have

:
a

::::::::::::
compatibility5

::::
with

::::
their

:::::
strain

::::::
history,

::::
and

:
if

:::
we

:::::::
assume

:::
that

::::::
fabrics

::::::
usually

:::::::
develop

::::::
within

::::
time

::::::
frames

:::
that

:::
are

:::::
short

::::::::
compared

::
to

:::
the

:::::
rates

:
at

::::::
which

:::
the

:::
ice

:::::::::
encounters

::::::::
changing

:::::
stress

:::::::
regimes

::::::::::::::::::::::::::
(Thorsteinsson et al., 2003) they

::::
will

:::::::
typically

:::
be

:::::::::
compatible

::::
with

::::::
recent

::::
strain

::::::
history

::::
and

::
by

:::::::::
extension

::::
with

:::
the

::::::
current

:::::
stress

::::::
regime.

:

:::::
There

:::
are

::::::::::
exceptional

::::::::
locations

::::::
where

:::
this

:::::::
concept

:::
of

:::::::::::
compatibility

::
is

::::::
likely

::
to

:::::
break

:::::
down

::
–

::::::
where

:::
the

:::::
stress

:::::::
regime

::::::::::
experienced

::
by

:::
the

:::::::
flowing

:::
ice

:::::
alters

::::::
rapidly.

:::::::::
Examples

::::::
include

:::::::::
transitions

:::::
from

:::::::
tributary

::::::
glacier

::
or

:::::
sheet

::::
flow

::::
into

:::
the

:::::
shear10

::::::
margins

:::
of

:::
ice

::::::
streams

:::
or

:::
ice

::::::
shelves

:::::::::::::::::::::::::::
(e.g. Thorsteinsson et al., 2003) ,

::::
and

::
for

::::::
deeper

::::::
layers

:::
the

::::::::
transition

:::::
from

::::::::::
bed-parallel

::::
shear

::
to

::::::::::
extensional

::::
flow

::
at

:::
ice

:::::
shelf

::::::::
grounding

:::::
lines

::
or

::
at

:::
the

:::::
onset

::
of

:::
ice

:::::::
streams.

::::::::::::::::::::::::::
Thorsteinsson et al. (2003) also

:::::
point

:::
out

:::
that

::::::::
temporal

:::::::
changes

::
in

:::
the

:::::
stress

::::::
regime,

:::::
such

::
as

:::::
divide

:::::::::
migration,

::::
can

::::::
provide

::
a

::::
more

::::::
abrupt

::::::
change

::::
than

:::::::::
advection

::
of

:::
ice

::::::
through

::
a

:::::
steady

::::::::::
distribution

::
of

:::::::
stresses.

:

::
In

::::
their

::::::
review,

::::::::::::::::::::::::
Budd and Jacka (1989) made

:
a

::::::
further

:::::::::
conjecture

:::::
about

:::
the

::::::::
character

::
of

:::
the

::::::::::
anisotropic

::::::
fabrics.

::::::::::
Comparing15

:::::::
evidence

:::::
from

::
an

:::::
array

::
of

::::::::
boreholes

:::
on

::::
Law

::::::
Dome,

::::
East

:::::::::
Antarctica

::::
(the

::::
most

::::::::
extensive

:::
ice

::::::
coring

::::::::
program

:::::::
focussed

:::
on

:::
ice

::::::::
dynamics

:::::
rather

::::
than

:::::::::::
paleoclimate)

:::::
with

::::::::
laboratory

:::::::
studies

::
of

:::
ice

:::::::::::
deformation,

::::
they

::::::::
suggested

::::
that

::
as

:::
ice

::::::
passes

:::::::
through

:::
the

::::::
varying

:::
ice

:::::
sheet

:::::
stress

:::::::
regime,

:
it

::::::::
likewise

:::::
passes

:::::::
through

::
a

:::::::::
succession

::
of

::::::::::::
“steady-state”

:::::::
fabrics,

:::::
which

::::
they

::::::
termed

:::::::
tertiary

::::
flow.

:::
We

:::::
return

::
to

::::
this

:::::
point

::::
after

:
a

:::::
brief

:::::
review

:::
of

:::
the

:::::
stages

::
of

:::::::::::
deformation

:::::::
observed

::
in

:::
the

::::::::::::::
accommodation

::
to

:
a

:::::
fixed

:::::
stress

::::
from

:
a

:::::::::
laboratory

::::::::::
perspective.

:
20

:::::::::::
Experimental

:::::::::::
observations

:::
for

::::
pure

::::::::::::
polycrystalline

::::
ice,

::::::::::
demonstrate

::::
that

:::
an

::::::::::
accumulated

::::::
strain

::
of

::::::
� 10%

::
is

::::::::
required

:::
for

::
the

:::::::::::::
microstructure

::
to

::::::
evolve

:::
to

:
a

:::::
state

::::
that

::
is

::::::::::
compatible

::::
with

:::
the

:::::
flow

::::::::::::
configuration,

::::::::::
irrespective

::
of

:::
its

:::::
initial

:::::::::
condition

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Jacka and Maccagnan, 1984; Gao and Jacka, 1987; Li and Jacka, 1998; Treverrow et al., 2012) .

:::::::::::
Specifically,

::::::::
laboratory

::::::::::
experiments

::::
have

:::::::::::
demonstrated

::::
that

:::::
under

:::::::::
conditions

::
of

:::::::
constant

:::::
stress

:::
and

:::::::::::
temperature,

::::::::::
deformation

:::
of

::::::::::::
polycrystalline

:::
ice

::::
with

:::
an

:::::
initial

:::::::::
statistically

:::::::
random

:::::::::
distribution

:::
of

:::::::::::::
crystallographic

::::::
c-axes

::::::::
(isotropic

::::::
fabric)

:::::
passes

:::::::
though

::::
three

::::::
stages.

:::::::
Initially

::
it

:::::::
behaves

::
as25

:
a

:::::::::::
mechanically

::::::::
isotropic

:::::::
material

:::::::::::::::::::::::::
(Budd and Jacka, 1989) where

:::
the

::::
rate

:::
of

::::::::::
deformation

::
is

:::
not

::::::::
sensitive

::
to

:::
the

::::::::
character

:::
of

::
the

:::::::
applied

:::::::
stresses.

:::
At

:::
the

::::::::::::::
commencement

::
of

:::::::::::
deformation,

::::::
during

:::
the

:::::::
primary

:::::
stage

::
of

::::::
creep,

:::
the

:::::::
initially

::::
high

:::::
strain

::::
rate

::::::
rapidly

::::::::
decreases.

:::
A

::::::::
minimum

:::::
strain

::::
rate

::
is

:::::::
reached

:::::
during

:::::::::
secondary

:::::
creep

:::::
(Fig.

::
1).

:::::
With

::::::::
continued

::::::
strain,

::
a

::::::
tertiary

:::::
stage

::
of

:::::
creep

:
is

::::::::::
established

::::::::
(typically

::::::::
observed

::
at

:::::
strain

::
of

::::::
⇠ 10%

:::
in

:::::
under

::::::::
laboratory

::::::::::
conditions)

::::
with

::::::
steady

:::::
strain

::::
rates

::::
that

:::
are

::::::::
enhanced

::::::
relative

::
to

:::
the

:::
rate

::::::::
observed

:::::
during

:::::::::
secondary

:::::
creep,

:::
and

:::::::::::
characterised

:::
by

:::
the

::::::::::
development

::
of

::::::::::
statistically

::::::::::
steady-state30

:::::::::
anisotropic

:::::::::::::
microstructures

::::
that

:::
are

:::::::::
associated

::::
with

:::
the

:::::
stress

:::::::
regime.

:::
We

:::::::
describe

::::
this

::
as

:::::::
tertiary

:::::::::
anisotropy.

:::
An

:::::::::
important

::::::
feature

::
of

::
the

:::::::::::
experiments

:
is

::::
that

::
for

:::
the

:::::
same

:::::
stress

::::::::
magnitude

:::
the

::::::::
enhanced

::::::
tertiary

::::::::::
deformation

:::::
rates

:::::
under

::::::::::
compression

:::::
alone

::
or

::::::
simple

::::
shear

:::::
alone

:::
are

::::::::
different

:::::::::::::::::::::::::::::::::::::::
(Budd and Jacka, 1989; Treverrow et al., 2012) .

:::::::::
Laboratory

:::::::::::
experiments

:::
also

:::::::
indicate

::::
that

::::::::
attainment

:::
of

::::::::
enhanced

::::::::::
deformation

::::
rates

::::::::
precedes

:::
the

:::
full

:::::::::::
development

::
of

:::::::::
anisotropic

::::::
fabrics

::::::::::::::::::::::::::
(Jacka and Maccagnan, 1984) ,

:::::::::
suggesting

:::
that

:::::
strain

:::
rate

:::::
does

:::
not

::::
alter

:::::
much

::::
once

:::
the

::::
most

::::::::::
obstructive

:::::
grains

::::
have

:::::
been

:::::::
removed

::
by

::::::
fabric

:::::::::::
development.35
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:::::
There

::
are

::
a

::::::
variety

::
of

:::::::::::::::
microdeformation

:::
and

:::::::
recovery

::::::::
processes

::::
that

:::
lead

::
to

:::
the

:::::::::::
development

::
of

:::::::::
anisotropic

::::::
fabrics

:::::::::::::::::::
(e.g. Faria et al., 2014) ;

:::::::
however,

:::::
there

::
is

:::
not

:
a

:::::::::
consensus

:::
on

::::
how

:::
the

::::::
activity

:::
of

::::::
specific

:::::::::
processes

::::
may

::::
vary

::::::::
according

::
to

::::::::::
temperature

::::::
and/or

::::::
stress.

:::::::::::
Observations

::::
from

:::
ice

:::::
cores

::::
can

:::::::
provide

::::::::
guidance

::
on

::::
the

::::::::::
temperature

:::::::
domain

::::
over

::::::
which

:::::::::
laboratory

::::::::::
observations

:::::::
remain

::::::::
indicative

::
of

:::::
in-situ

:::::::::
behaviour.

:::
For

:::
the

:::::
A001

:::
ice

::::
core

:::::
drilled

::
at

:::
the

:::::::
summit

::
of

::::
Law

:::::
Dome,

::::
East

:::::::::
Antarctica,

::
a

::::::
distinct

:::::
small

:::::
circle

:::::
girdle

:::::::::
(cone-type)

::::::
fabric

:::
(the

::::::::::::::::::::
compression-compatible

:::::
form)

::
is

::::::::
observed

::
at

:
a

:::::
depth

:::
of

:::
318

::
m

:::::::::::::::::::::::::::
(Fig. 3a Budd and Jacka, 1989) ,5

:::::
where

:::
the

::::
total

::::::::::
accumulated

:::::
strain

::
is

::::::
⇠ 30%,

:::
the

::::::::::
temperature

::
is

::::::::
⇠�22�C,

::::
and

::
the

::::::
in-situ

::::
flow

::::::
regime

:
is

:::::::::::
compression

:::::::::
dominated

::::
with

::::::::::::
approximately

:::::
radial

::::::::
symmetry

::
in

:::
the

:::::::::
transverse

:::::
rates.

:::::
Since

:::
the

:::::
fabric

::
is

::::::
already

::::
well

:::::::::
developed

::
at

:::
this

:::::
point,

:::
the

::::::
actual

::::
strain

::::::::
required

::
to

::::::
achieve

:::::::
tertiary

::::
creep

::::
was

::::::::
probably

::::
less.

::::::
Similar

::::::::::::::::::::
compression-compatible

::::::
fabrics

:::::
have

::::
been

::::::::
observed

::
in

:::
the

::::::::
laboratory

::
at

::::::
higher

:::::::::::
temperatures

::::
and

::::::
stresses

::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Jacka and Maccagnan, 1984; Treverrow et al., 2012) .

:::::::::::
Accordingly,

:::::
these

::::::::::
observations

:::::::
suggest

:
a

::::::::::
conservative

::::::::::
temperature

::::
limit

:::
of

::::::::
⇠�22�C

:::
for

:::::::::::
extrapolating

::::::::
laboratory

:::::::::::
observations

::
of

::::
fully

:::::::::
developed10

::::::
tertiary

:::::
creep

::::
down

:::
to

:::::
in-situ

::::::::::
conditions.

::::::::::
Information

:::::
about

:::
the

:::::
effects

:::
of

::::::::
anisotropy

:::
on

::::::
in-situ

::::::::::
deformation

::::
rates

::
in

:::::
polar

:::
ice

:::::
sheets

::
is

:::::::
limited.

::::::::
Analyses

::
of

:::
the

:::::
shear

::::
strain

::::
rate

::::::
profiles

:::::::
inferred

::::
from

::::
bore

::::
hole

:::::::::
inclination

::::::::::::
measurements

::
on

::::
Law

:::::
Dome

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Russell-Head and Budd, 1979; Wang and Warner, 1999; Wang et al., 2002a; Treverrow et al., 2015) indicate

:::::::::::
enhancement

::
in

::::::::::
deformation

:::::
rates

::::::::
correlated

:::::
with

:::
the

:::::
stress

::::::
regime

:::::::::
consistent

::::
with

::::::
tertiary

:::::
flow,

:::
and

::::::
fabrics

::::
that

::::::
match

:::
the

::::::::::
expectations

::
of

:::
the

:::::::::
laboratory

::::::::::
experiments

:::::::::::::::::::::::::::::::::::::::::::
(Donoghue and Jacka, 2009; Treverrow et al., 2016) .

:
15

:::::
While

:::
the

:::::::
relevant

::::::::::
temperature

::::::
regime

::::
and

:::
the

:::::::
amount

::
of

:::::
strain

::::
that

:::::
needs

::
to

:::
be

:::::::::::
accumulated

:::::::
remains

::::::::
uncertain,

:::::::
tertiary

:::::
creep,

::::
with

:::
the

:::::::::
associated

:::::::::::
development

:::
of

:::::::::::::
polycrystalline

:::::::::
anisotropy,

::::
may

:::
be

::::::::
common

::
in

:::::
polar

:::
ice

::::::
sheets,

::::::::::
particularly

:::
in

::::::
regions

:::::::::
controlling

:::
the

:::::
large

:::::
scale

:::::::::
dynamics,

::
as

::::::::
discussed

::::::
further

::
in

:::::
Sect.

::::
3.1.

::::
This

:::
has

:::
the

::::::::
potential

::
to

:::::::
provide

::
a

::::::::
relatively

:::::
simple

::::::::::
description

::
of

:::
the

::::::::::
deformation

::::::::
properties

::
of

::::
this

:::::::::
anisotropic

:::
ice,

:::::
since

:::
the

::::
stress

::::::
regime

::::::::
becomes

:
a

:::::
guide

::
to

:::
the

::::::::
enhanced

::::
flow,

:::
and

::::::::
motivates

::::
this

::::
study

::
to

::::::::::
incorporate

::
an

::::::::
empirical

::::::
tertiary

::::
flow

:::::::
relation

:::
into

:::::
large

::::
scale

:::
ice

:::::
sheet

:::::::::
modelling,

::
as

::::::::
discussed20

::
in

:::
the

::::
next

:::::::
section.

:

3
::::::::::
Constitutive

::::::::
relations

:::
for

::::::::::
anisotropic

:::::::::::::
polycrystalline

:::
ice

A range of ice rheologies

:::::::::
constitutive

::::::::
relations have been proposed to account for polycrystalline anisotropy. They can be

broadly grouped in two categories

::::::::::::::
(Marshall, 2005) : (1) those defined at the individual ice crystal scale, where the ef-

fects of

:::::::::::::
crystallographic anisotropy are parameterised based on specific properties of individual crystals, and (2) those that25

describe anisotropic aspects of deformation empirically: either based on regional expectations about local crystallographic

microstructure, or

::::::::
connected

:::::
with

:::
the

:::::::
present

::::
work

::::
that

::::::::
describe

:::
the

::::::::::
deformation

:::
of

:::
ice

::::
with

::::::::::::::
flow-compatible

::::::::::
anisotropy,

through an empirical function of the stress configuration. In this section, we briefly review these two approaches, and the un-

derlying experimental and modelling basis for ESTAR.

::
the

:::::::
ESTAR

::::
flow

:::::::
relation.

:::
We

::::
then

::::::
outline

:::
the

::::::::
expected

::::::
domain

::::::
where

::
the

:::::::
ESTAR

::::
flow

:::::::
relation

:::::
might

:::::
apply

::
in

::::
polar

:::
ice

::::::
sheets.

::::::
Lastly,

:::
we

:::::::::
distinguish

:::::::
between

::::::::::
anisotropic

:::::::::
constitutive

::::::::
relations,

::::
and30

:::::::::
constitutive

::::::::
relations

:::
for

:::
ice

::::
with

::
a

::::::::::
compatible,

:::::::::::
flow-induced

:::::::::
anisotropy.

:
In what follows, we distinguish between the Glen

enhancement factor E

G

and the ESTAR enhancement factor E(�
S

), which is a function of compression deviatoric and simple
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shear stresses, parameterised by the shear fraction �

S

. Where necessary, we denote a more general enhancement factor, i.e.,

with unspecified form, as E.

3.1 Microstructure approaches

Experiments on single crystals of ice demonstrate that deformation occurs predominantly by slip on the crystallographic basal

plane

::::::::::::
(perpendicular

::
to

:::
the

::::::
c-axis), with the yield stress being geometrically related to the magnitude of the applied stress5

resolved onto the basal plane (Trickett et al., 2000) according to Schmid’s Law (Schmid and Boas, 1950). This observation

::
In

:::
the

:::::::::
formulation

::
of

:::
the

:::::
Glen

:::
flow

:::::::
relation

:::
for

::::::::::::
polycrystalline

:::
ice

:::
the

:::::::
assumed

:::::::
isotropic

::::::::::
distribution

::
of

:::::
c-axes

::::::
results

::
in

::::::::::
indifference

::
to

:::::::
material

:::::::
rotations

:::::::
(relative

::
to

:::::::
applied

:::::::
stresses)

:::
and

:::
an

:::::::
isotropic

::::::::::
expression.

:::
The

::::::::::
underlying

:::::::::
anisotropic

::::::::::
deformation

:::::::::
properties

::
of

::::::::
individual

:::::::
crystals, in conjunction with the development of crystallographic preferred orientations during deformation of

polycrystalline ice to high strains (e.g. Russell-Head and Budd, 1979; Jacka and Maccagnan, 1984; Pimienta et al., 1987;10

Morgan et al., 1998; DiPrinzio et al., 2005; Durand et al., 2009; Budd et al., 2013; Montagnat et al., 2014), has driven the

development of rheological descriptions

:::::::::
constitutive

::::::::
relations in which the connection between deviatoric stresses and resulting

strain-rates is regarded as an intrinsic material property determined by the effects of microstructure on bulk deformation

processes, (e.g. Lile, 1978; Lliboutry, 1993; Azuma and Goto-Azuma, 1996; Staroszczyk and Gagliardini, 1999; Thorsteinsson,

2001; Gödert, 2003; Gillet-Chaulet et al., 2005; Pettit et al., 2007; Placidi et al., 2010). See also the review by Gagliardini et al.15

(2009). In broad terms, the anisotropic nature of these rheological descriptions is derived from the

:::::
These

:::::::::
constitutive

::::::::
relations

:::::::
describe

::::::::::::
polycrystalline

:::::::::
anisotropy

:::::::
through

:::
the

:
geometric relationship between the crystallographic c-axes and the stresses

driving deformation, with the role of misorientation relationships between nearest neighbour grains explicitly considered in

some cases.

The complexity of numerical

:::::::
resulting

:
flow relations varies according to the extent to which a physically realistic de-20

scription of microdeformation and recovery processes, or a parameterisation of these, enters into the relationship between

strain rates and the stresses driving deformation. Many of these rheological

:::::::::
constitutive models are more complicated than a

collinear flow relation and involve a tensor coupling in place of Eq. 2. A further consideration is the quantitative description

of fabric that is used in flow relations. Those incorporating a discrete , c-axis vector based

::::::::::
vector-based description of fabric

(e.g. Lile, 1978; van der Veen and Whillans, 1994; Azuma and Goto-Azuma, 1996; Thorsteinsson, 2002) are only appropriate25

:::::
based

::
on

::::::
c-axes

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Lile, 1978; van der Veen and Whillans, 1994; Azuma and Goto-Azuma, 1996; Thorsteinsson, 2002) are

:::::::::
appropriate

::::
only

:
for highly localised studies and are incompatible with large-scale ice sheet modelling. Flow relations based

on a continuous description of fabric, e.g., a parameterised orientation distribution function (ODF) or c-axis orientation tensor

are also possible (e.g. Staroszczyk and Gagliardini, 1999; Gödert, 2003; Gillet-Chaulet et al., 2005; Pettit et al., 2007; Placidi

et al., 2010).

:
A

::::::
central

:::::
tenet

::
of

:::::
these

::::::::::::::::::
microstructure-based

:::::::::
constitutive

::::::::
relations

::
is

:::
that

:::::
they

::::::
require

:::
the

:::::::
specific

::::
input

:::
of

:::
the30

:::::::::
anisotropic

::::::::
character

::
of

:::
the

:::::::
material

:::::
being

:::::::::
deformed.

:::::
They

:::::::
describe

:::
the

:::::::::::
instantaneous

::::::::::::
deformational

::::::::
response

::
of

:::
any

:::::::
sample

::
of

::
ice

:::
to

:::
any

::::::
pattern

::
of

:::::::
applied

:::::::
stresses.

::
In

:::
this

::::::
regard

::::
they

:::
can

::
be

:::::::
defined

::
as

:::::::::
anisotropic

::::
flow

::::::::
relations,

:::::::
whether

::::
they

::::::
involve

::
a

:::::
tensor

::
or

:
a

::::::
scalar

:::::::::
connection

:::::::
between

:::::::
stresses

:::
and

:::::::::
strain-rates

::::::::::::
(Faria, 2008) .

:
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Including any fabric-based rheological description in

:::::::::
description

::
of

:::::::
material

:::::::::
anisotropy

::
in

:::
the

::::
flow

:::::::
relation

:::
for an ice sheet

model requires a separate

:::::
either

:
a

::::::::::
prescription

:::
of

:::::::::
anisotropy

::
or

::
an

:::::::::
additional

:
set of equations governing the fabric evolution.

A complication of such an approach is the computational overhead and uncertainty associated with defining the spatial dis-

tribution of fabric within ice sheets, which is poorly constrained by observations. Furthermore, for simplicity

:::::::::
Sometimes,

::
as

::
a

:::::::::::
simplification, restricted forms of the ODF or orientation tensor are specified, which may not adequately describe all fabrics5

likely to be encountered in an ice sheet. As such

:::
To

:::
date, flow relations utilising a fabric description that relies on fabric evolu-

tion equations or that is imposed as a function of location within the ice sheet are currently restricted to regional simulations

(e.g., Seddik et al., 2011; Martín and Gudmundsson, 2012; Zwinger et al., 2014).

3.2 Empirical approaches
:
to

::::::::
tertiary

::::
flow

A second approach

::
As

::::::::
indicated

::
in

::::
Sect.

::
2

:
a

::::
flow

:::::::
relation

:::::::::
applicable

::
to

:::
the

::::::
tertiary

::::::
regime

::::
may

::::::
provide

::
a

:::::
useful

::::::::::
description

::
of10

::::::::::
deformation,

::::::::
capturing

:::::::::
important

::::::
aspects

::
of

:::
the

::::
flow

::
of

::::::::::
anisotropic

::
ice

::
in

:::::
polar

:::
ice

::::::
sheets.

::
An

:::::::::
empirical

::::::::
approach

::
to

:::
the

::::::::::
deformation

:::::::::
properties

::
of

:::
ice

::::
with

::
a

::::::
tertiary

::::::::::::
polycrystalline

:::::::::
anisotropy

::::
has

:::::::::
developed,

:
com-

prising experimental and observational approaches

:::::
studies

:
(Li et al., 1996; Wang et al., 2002a, b), modelling (Wang and

Warner, 1998, 1999; Hulbe et al., 2003; Wang et al., 2003, 2004; Breuer et al., 2006; Wang et al., 2012), and theoretical

studies (Warner et al., 1999),

:
.

::::
This

::::::::
empirical

::::::::
approach

:
has focussed on the development and assessment of an anisotropic15

:
a

:
flow relation for polycrystalline ice in which the nature of the

:::::::::::
circumstance

::::::
where

:::
the crystal fabric and the magnitude of

strain rate enhancement, E, are both regarded as

::::
flow

::::::::
properties

::::
are

::::
both determined by the stress regime. This assumption

is supported by experimental observations for pure polycrystalline ice, which demonstrate that an accumulated strain of

⇠ 10% is required for the microstructure to evolve to a state that is compatible with the flow configuration, irrespective of its

initial condition (Jacka and Maccagnan, 1984; Gao and Jacka, 1987; Li and Jacka, 1998; Treverrow et al., 2012) . Specifically,20

this approach regards the fabric and the enhancement in tertiary flow as determined by the

:
;

::::::::::
specifically,

:::
the relative propor-

tions of the simple shear and normal deviatoric stresses. For such flow relations, it is typically assumed that the spatial variation

in dynamic conditions (e.g., flow configuration and temperature) only occur

:::::
occur

::::
only gradually in an ice sheet, so that the

microstructure evolves to maintain compatibility with these conditions. Through most of an ice sheet we expect that the rate

of microstructural evolution generally exceeds the rate at which the flow configuration varies, and that the distances travelled25

by a parcel of ice during the time taken to develop a compatible fabric are typically small compared to the relevant ice sheet

spatial scales.

The anisotropic

:
A

::::
flow

::::
line

::::::
model

:::
by

::::::::::::::::::::::::::::::::
Wang and Warner (1999) implemented

::
an

:::::::::
empirical

:::::::::::
enhancement

:::::::
function

::::::
based

::
on

:::
the

:::::
stress

:::::::
regime,

:::::
using

:
a

:::::::::::
compression

:::::::
fraction,

::::::::::::::
�

C

=
p

1��

2
S

,

:::
and

:::
an

:::::
earlier

::::::::::::::
parameterisation

:::
of

::::::
tertiary

::::::::::::
enhancement,

::::::
E(�

C

),
:::::
from

:::::::::::::
Li et al. (1996) .

::::
That

:::::
study

::
of

::
a

::::
flow

:::
line

:::
on

::::
Law

:::::
Dome,

::::
East

::::::::::
Antarctica,

::::::
showed

::::
how

:::
an

:::::::::::
enhancement

:::::::
function30

::::::::
improved

:::::::::
agreement

::::
with

:::::::::::
observations

::
of

:::::
shear

:::::
strain

::::
rate

:::::::
profiles

::::
from

::::::::
borehole

:::::::::
inclination

:::::::::::::
measurements,

:::
and

:::::::::
displayed

:::::::::
correlations

::::
with

:::
ice

::::
core

::::::
crystal

::::::
fabrics.

::::::::::::::::::::::::::::
Wang et al. (2002a) demonstrated

:::
that

:::::::
vertical

::::::::
variation

::
of

:::::::::::
enhancement

::::
was

:::::::
required

::
to

:::::
match

:::
the

:::::
shear

:::::
strain

:::
rate

::::::
profile

:::::
from

:::
the

::::
Law

:::::
Dome

:::::::
Summit

:::::
South

::::::
(DSS)

::::::::
borehole,

:::
and

:::::::
showed

::
its

::::::::::
correlation

::
to

:::::
stress

:::::::::::
configuration,

::::
and

::
the

::::::::::
connection

::::
with

::::::
crystal

:::::
fabric

:::::::::
anisotropy.

:
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:::
The

::::::::::
generalised

::::::
tertiary

:
flow relation proposed by Budd et al. (2013) represents a continuation of this strand. They

:::::
While

::::
more

::::::::::
complicated

:::::::::::::::
parameterisations

:::::
were

::::
also

::::::::
explored,

:::::::::::::::
Budd et al. (2013) found that a scalar anisotropic flow relation, i.e.,

one maintaining the collinear relationship between the components of "̇ and �0
(⌧

e

is a scalar function of ,

:::::
with

:
a

:::::::::
functional

:::::::::
dependence

:::
on

::::
both

:
the second invariant of �0

) provides

:::
and

:::
the

::::::
fraction

:::
of

:::
the

::::::::::
deformation

:::
that

::::
was

::::::
simple

:::::
shear,

::::::::
provided

a good fit to laboratory data from

:::
for

::::::
tertiary

::::
flow

::
in

:
combined compression and shear experiments. Such a scalar anisotropic5

rheology also simplifies the requirements for implementation within ice sheet models that are already compatible with the

(scalar) Glen rheological description. Budd et al. (2013)

::::
Given

::::
this

:::::
scalar

::::::::
character,

::::
they

:
proposed what we term ESTAR

:::
the

::::::
ESTAR

::::
flow

:::::::
relation

:
as a suitable candidate scalar anisotropic rheology generalised to

:::
flow

:::::::
relation

:::
for

:
arbitrary stress con-

figurations(i.e., not restricted in its application

:
,

:::::::::::
extrapolating

:::::
from

::
its

:::::::::::
applicability to the limited set of experimental stress

configurations described in Li et al. (1996) and Budd et al. (2013)). A

:
.

::
A

:::::
scalar

:::::::
relation

::::
also

::::::::
simplifies

::::
the

:::::::::::
requirements10

::
for

:::::::::::::
implementation

::::::
within

:::
ice

:::::
sheet

::::::
models

::::
that

::::::::
currently

:::
use

:::
the

::::
Glen

:::::
flow

:::::::
relation.

::
A simplified version of ESTAR, called

ESTAR-MFL (MFL

:::
the

::::::
ESTAR

:::::
flow

:::::::
relation,

:::::
called

::::::::::::
ESTAR-MFR

:::::
(MFR: Minimal Flow Law

:::::::
Relation), has also been incor-

porated into the ice sheet model SICOPOLIS (SImulation COde for POlythermal Ice Sheets, http://www.sicopolis.net; Greve

and Blatter, 2009, 2016).

There are of course zones within an ice sheet where the assumption of compatible tertiary flow will not apply; however, we15

note that these zones will be restricted in their extent. We contend that ESTAR will apply to the vast majority of the dynamically

active regions of an ice sheet, in particular the zones where creep deformation makes a significant contribution to the overall

flow. Specific zones where the assumption of tertiary creep may be inappropriate can be summarised as those where fabric

has not yet evolved compatibility with the flow, where there is a rapid transition in the flow configuration, or where creep

deformation makes only a minor contribution to the overall dynamics.20

For example, in very cold ice in a low stress setting, such as the uppermost layers of the polar ice sheets, the time required

to accumulate the strain necessary to develop a compatible fabric may lead to a near-surface zone in which the assumption

of tertiary creep is not valid. Since the development of anisotropic fabrics provides an indication of the existence of tertiary flow,

their observation at modest depths, (e.g., . 100� 200 m; Morgan et al., 1997; DiPrinzio et al., 2005; Treverrow et al., 2016) allows

estimation of the maximum extent of the zone where tertiary creep is not occurring. The observation within polar firn of25

microdeformation processes that are necessary for the development of fabric throughout ice sheets (e.g. Kipfstuhl et al., 2009; Faria et al., 2014) suggests

that it may be appropriate to even further restrict the extent of the near-surface zone for which the assumption of tertiary creep

is not valid. Additionally, the nonlinear nature of polycrystalline ice rheology leads to very high viscosities in low temperature

and stress environments, so that incorrectly estimating deformation rates due to the assumption of tertiary flow in such regions

may be of limited importance to simulations of ice sheet evolution.30

Regions where rapid transitions in dynamic conditions can lead to abrupt changes in the pattern of applied stresses and a

potential breakdown in tertiary flow compatibility include ice shelf grounding zones and other locations where basal traction

is lost or abruptly changes, e.g., where ice flows over a subglacial lake, or with the onset of basal sliding in ice streams. The

convergence zones where tributary glaciers or ice streams merge with a larger flow unit at a high angle may also lead to a

transition in dynamic conditions that is problematic for the assumption of tertiary compatibility. Of course the more highly35

9



dynamic the evolving flow regime, the more rapidly a new compatible anisotropy will be established, so that the spatial interval

where the flow relations are inapplicable may be limited. While there is little guidance on how to extend empirical flow relations

to parametrise ice rheology in these transition regions, we note that similar difficulties exist for a Glen-type flow relation, which

unlike ESTAR does not have the benefit of being able to correctly describe anisotropic enhancement throughout the remainder

of the ice sheet.5

3.3 Empirical scalar tertiary anisotropic rheology (ESTAR)

3.3
::::::::

Empirical
::::::
Scalar

::::::::
Tertiary

::::::::::
Anisotropy

::::::
Regime

:::::::::
(ESTAR)

::::
flow

:::::::
relation

Here, we summarise the anisotropic rheology

::::
Here,

:::
we

:::::::::
summarise

:::
the

::::::::::
generalised

::::::::::
constitutive

:::::::
relation

::
for

:::
ice

::
in

:::::::
tertiary

::::
flow

:::
(the

:::::::
ESTAR

::::
flow

:::::::
relation)

:
proposed by Budd et al. (2013)– ESTAR – that we are implementing .

:::
We

::::
are

:::::::::::
implementing

::::
this

in ISSM as an alternative to the Glen flow relation , to provide a relation

::
as

:::
the

:::::::
ESTAR

::::
flow

:::::::
relation

::
is

:
more applicable to10

the tertiary creep of anisotropic polycrystalline ice typical of ice sheetsand glaciers. ESTAR

:
in

:::
ice

::::::
sheets.

::::
The

:::::::
ESTAR

::::
flow

::::::
relation

:
is a scalar power law formulation based on tertiary creep rates measured in laboratory ice deformation experiments

under various combinations of simple shear and compression that has been generalised to arbitrary stress configurations.

Recasting Eqs. 62 and 63 of Budd et al. (2013) to more closely resemble Eq. 2, ESTAR is given by the following expression:

"̇= E(�
S

)A(T 0)⌧2
e

�0
.15

Assuming n= 3 in Eq. 2, Eq. 3 only differs from the Glen flow relation by the form of the functional enhancement factor

E(�
S

), which explicitly depends on the nature of the applied stresses via the shear fraction, �

S

, and could be regarded as

providing a variable enhancement function for the Glen relation that incorporates the effect of anisotropy. We note in passing

that in contrast to ISSM, flow relations in Budd et al. (2013) are couched in terms of the octahedral shear stress, ⌧

o

=
p
2/3⌧

e

,

which provides a more physically meaningful scalar measure of the overall stress magnitude than ⌧

e

(Jaeger, 1969) .20

E(�
S

) in Eq. 3 is defined as

E(�
S

) = E

C

+(E
S

�E

C

)�2
S

,

where E

C :::
The

:::::
main

:::::::
features

::
of

::::::::::::::::
Budd et al. (2013) and E

S

are the enhancement factors above the minimum or secondary

deformation rate of isotropic ice under compression alone or simple shear alone, respectively. The shear fraction �

S

in Eq. 4

is a non-dimensional variable taking values in [0,1], which characterises the contribution of simple shear (⌧ 0
) to the effective25

stress (⌧

e

)

�

S

=
k⌧ 0k
⌧

e

.

The essence of Budd et al. (2013) and ESTAR is

::
the

:::::::
ESTAR

::::
flow

::::::
relation

:::
are

:
the observation that tertiary strain rates depend

on the nature of the applied stresses, and the identification of the shear fraction �

S

is

:::::::::
proportion

::
of

:::
the

::::::
overall

:::::::::::
deformation

::::
stress

::::
that

::::
can

::
be

::::::::
regarded

::
as

::::::
simple

:::::
shear

::
as

:
the appropriate variable to characterise that pattern

:::::::::
dependency. Accordingly,30

10



determining the portion of the overall deformation stress that can be regarded as simple shear

::::
shear

::::::::
fraction,

:::
�

S

,

:
is the main

ingredient in implementing ESTAR

:::
task

::
in

::::::::::::
implementing

:::
the

:::::::
ESTAR

::::
flow

:::::::
relation. This involves the identification of a par-

ticular local plane – the local non-rotating shear plane – and the determination of the shear acting on that plane, ⌧ 0
, as the

measure of simple shear. As discussed in Budd et al. (2013) , the

::::::::
indicated

::
in

::::
Sect.

::
4

:::::
below

:::::::::::::::::::
Budd et al. (2013) also

:::::::::
prescribed

:
a

::::::
further

:::::::::
projection

::
to

:::::::
remove

:::
any

::::::::::
component

::
of

:::
⌧ 0

:::::::
parallel

::
to

:::
the

::::::::::::
deformational

::::::::
vorticity.

::::
The importance of moving be-5

yond strain rates to consider other aspects of flow – the ‘movement picture’ – has been recognised since at least the 1970s

(e.g., Budd, 1972; Kamb, 1973; Duval, 1981)

::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Budd, 1972; Kamb, 1973; Duval, 1981; Budd et al., 2013) . Duval (1981)

identified the plane normal to the velocity gradient in a simple shear regime as the ‘permanent shear plane’ and discussed its

role in the evolution of crystal fabrics. Budd et al. (2013) proposed a

::::
local

:
definition for this local plane in an arbitrary flow as

the plane containing the

::::::
velocity

::::::
vector

:::
and

:::
the vorticity vector associated solely with deformation.

:
10

::::::::
Recasting

::::
Eqs.

:::
62

:::
and

:::
63

::
of

::::::::::::::::::
Budd et al. (2013) to

::::
more

:::::::
closely

::::::::
resemble

:::
Eq.

::
2,

:::
the

:::::::
ESTAR

::::
flow

:::::::
relation

::
is

:::::
given

:::
by

:::
the

::::::::
following

:::::::::
expression:

:

"̇= E(�
S

)A(T 0)⌧2
e

�0
.

::::::::::::::::::
(3)

::::::::
Assuming

:::::
n= 3

:::
in

:::
Eq.

::
2,

::::
Eq.

:
3

::::::
differs

:::::
from

:::
the

::::
Glen

:::::
flow

::::::
relation

:::::
only

::
by

:::
the

:::::
form

::
of

:::
the

:::::::::
functional

:::::::::::
enhancement

::::::
factor

::::::
E(�

S

),
:::::
which

:::::
could

:::
be

:::::::
regarded

::
as

::::::::
providing

::
a

::::::
variable

:::::::::::
enhancement

::::::::
function

::
for

:::
the

:::::
Glen

::::::
relation

::::
that

::::::::::
incorporates

:::
the

:::::
effect15

::
of

:::::::::::
flow-induced

:::::
fabric

:::::::::
anisotropy.

::::::
E(�

S

)
::
in

:::
Eq.

::
3

::
is

::::::
defined

::
as

:

E(�
S

) = E

C

+(E
S

�E

C

)�2
S

.

:::::::::::::::::::::::::
(4)

::::
Here,

::::
E

C

and the velocity vector.As discussed below they also prescribed a further projection to remove any component of ⌧ 0

parallel to the deformational vorticity. The

:::
E

S:::
are

:::
the

:::::::::::
enhancement

::::::
factors

:::::
above

:::
the

::::::::
minimum

::
or

:::::::::
secondary

::::::::::
deformation

::::
rate

::
of

:::::::
isotropic

:::
ice

:::::
under

:::::::::::
compression

:::::
alone

::
or

::::::
simple

::::
shear

::::::
alone,

::::::::::
respectively,

::::
and

:::
�

S :
is

:::
the

:::::
shear

:::::::
fraction,

::::::
which

:::::::::::
characterises20

::
the

:::::::::::
contribution

::
of

::::::
simple

::::
shear

::
to

:::
the

::::::::
effective

:::::
stress.

::::
The

:::::
shear

::::::
fraction

:::
�

S:::
can

::::
then

:::
be

::::::
written

::
as

:

�

S

=
k⌧ 0k
⌧

e

.

:::::::::

(5)

:::
The

:
collinear nature of ESTAR

::
the

:::::::
ESTAR

::::
flow

:::::::
relation (Eq. 3) allows �

S

to be written in terms of the corresponding strain

rates, which is more convenient for Stokes flow modelling, as

�

S

=
"̇

0

"̇

e

, (6)25

where "̇

0
is the magnitude of the shear strain rate on the locally non-rotating shear plane, as defined in Eq. 7 below. In

compression-alone scenarios, including three-dimensional uniaxial compression and two-dimensional plane compression and

extension, �

S

= 0, so that E(�
S

) = E

C

. Similarly, for simple shear alone, �

S

= 1 and E(�
S

) = E

S

.

Analysis of tertiary creep rates for experiments conducted in simple shear-alone and compression-alone suggests that a

suitable ratio of E

S

to E

C

for ice sheets is ⇠ 8/3 (Treverrow et al., 2012). The same study also suggests that E /p
⌧

e

30
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for tertiary creep rates determined over a range of stress magnitudes. A flow relation incorporating such a stress dependent

enhancement could be achieved by employing a creep power-law stress exponent of n= 3.5, rather than the more commonly

used n= 3, assuming both E

S

and E

C

are described by functions of

p
⌧

e

. For simplicity, we have excluded the apparent

stress dependence of E

S

and E

C

in our initial implementation of ESTAR

::
the

:::::::
ESTAR

::::
flow

:::::::
relation

:
in ISSM since further

work is required to verify the stress dependence of E

S

and E

C

experimentally for complex, combined stress configurations.5

Accordingly, we use scalar enhancement factors of E

S

= 8 and E

C

= 3 for the idealised scenarios examined in this study.

These values may be at the higher end of the anticipated range in E

S

and E

C

for an ice sheet (see e.g., Russell-Head and Budd,

1979). However, the strength of anisotropy and its influence on ice dynamics in comparison to the enhanced Glen flow relation

depends on the ratio E

S

/E

C

and its spatial variation, i.e., the dynamically controlled distribution of E(�
S

).

If the enhancement parameters are selected so that E

C

= E

S

= E

G

, where E

G

is the Glen enhancement factor, ESTAR10

becomes isotropic and equivalent

::
the

:::::::
ESTAR

::::
flow

:::::::
relation

::::
loses

::
its

::::::::::
dependence

:::
on

:::
the

:::::
stress

::::::
regime,

:::::::
reducing

:
to the Glen flow

relation since E(�
S

)⌘ E

G

. However, the viscous creep behaviour of polycrystalline ice is highly anisotropic and regional

variations in the relative proportions of shear and normal strain rates, which are driven by variations in the distribution of the

stresses responsible for deformation, mean that spatial contrasts in anisotropy are common and widespread in ice sheets. For

this reason, a spatially varying enhancement factor is required for ice sheet modelling (e.g., Morgan et al., 1998; Wang and15

Warner, 1999; Wang et al., 2002a).

Comparisons of simulations of ice sheet dynamics using ESTAR and the Glen flow relation

::
the

:::::::
ESTAR

::::
and

::::
Glen

:::::
flow

:::::::
relations will be influenced by: the choice of the Glen enhancement parameter, E

G

; the ESTAR parameters E

C

and E

S

; and

the spatial distribution of �

S

. The most significant differences between Glen- and ESTAR-based simulations are expected

:::::::::
simulations

:::::
using

:::::
Glen

::::
and

::::::
ESTAR

:::::
flow

:::::::
relations

:::
are

::::::::
expected

:::
to

::::
arise

:
where there are regional contrasts in �

S

. Specific20

regions where these conditions are likely to arise include: the progression with increasing depth in the ice sheet from a regime

of normal stresses to one dominated by bed parallel shear; the contrasts between lateral margins of embayed ice shelves and

ice streams and their central flows; and where there is significant relief in the bedrock topography.

A caveat is that as stated earlier, for ESTAR the assumptions of

:::
the

::::::
ESTAR

:::::
flow

::::::
relation

:::
to

::::
hold,

:::
the

::::::::::
assumption

:::
of

:::
the

::::::
tertiary

::::
state

::::
(i.e.,

:
crystallography and deformation rates being compatible with the instantaneous stress/deformation regime

:
)25

requires that this does not change too rapidly along the flow. That is to say, for a compatible (tertiary) anisotropy to be present,

the present deformation regime needs to be a suitable indicator of the recent strain history of the flowing ice.

4 Implementation of ESTAR

The magnitude of the

3.1
::::::

Domain
::
of

::::::::::::
applicability

::
of

:::::::
tertiary

:::::
creep

::::
and

:::
the

:::::::
ESTAR

::::
flow

:::::::
relation30

::
As

::::::::
discussed

:::
in

::::
Sect.

::
2

:::
two

:::::::::
conditions

:::::
need

::
to

::
be

:::::::
satisfied

:::
for

:::
the

:::::::::::
applicability

::
of

:::
the

:::::::
tertiary

:::::
creep

::::::
concept

::::
and

:::
the

:::::::
ESTAR

::::
flow

::::::
relation

::
–

::::::::
activation

::
of

:::
the

::::::::::
appropriate

::::::::::::
microstructural

:::::::::
processes

::
to

:::::::
generate

::::::::::
steady-state

::::::
fabrics,

::::
and

:::::::::
sufficiently

:::::::
gradual

12



::::::
changes

:::
in

::
the

:::::
stress

::::::
regime

:::::::::::
experienced

::
by

:::
the

:::::::
flowing

::
ice

:::
to

:::::
permit

::
a

::::::::::
quasi-steady

::::::::
transition

::
in

:::
the

:::::
fabric

::::
and

::::::::::::
corresponding

::::::::::
deformation

:::
rate

::
as

:::::::::
controlled

:::
by

::
the

:::::
shear

:::::::
fraction

:::
�

S

.

:

:::::
Within

:::
an

:::
ice

::::
sheet

:::::
there

:::
will

::
be

:::::
zones

::::::
where

:::
the

:::::::::
assumption

::
of

::::::::::
compatible

::::::
tertiary

::::
flow

:::
will

:::
not

::::::
apply;

:::::::
however,

:::::
these

:::::
zones

:::
will

:::
be

::::::::
restricted

::
in

:::::
extent

::::::::::::::::::::::::
(Thorsteinsson et al., 2003) .

:::
We

:::::::
contend

::::
that

:::
the

::::::
ESTAR

:::::
flow

::::::
relation

::::
will

:::::
apply

::
to

:::
the

::::::::
majority

::
of

:::
the

:::::::::::
dynamically

:::::
active

:::::::
regions

::
of

:::
an

:::
ice

:::::
sheet,

:::
in

::::::::
particular

:::::
those

::::::
zones

:::::
where

:::::
creep

:::::::::::
deformation

::::::
makes

::
a

:::::::::
significant5

::::::::::
contribution

::
to

:::
the

::::::
overall

::::
flow.

:::::::
Specific

:::::
zones

:::::
where

:::
the

::::::::::
assumption

::
of

::::::
tertiary

:::::
creep

::::
may

::
be

:::::::::::
inappropriate

:::
can

:::
be

::::::::::
summarised

::
as

:::::
those

::::::
where

:::
the

:::::
fabric

::::
has

:::
not

::::
yet

:::::::
evolved

:::::::::::
compatibility

:::::
with

:::
the

:::::
flow,

:::::
where

:::::
there

::
is

::
a

:::::
rapid

:::::::::
transition

::
in

:::
the

:::::
flow

:::::::::::
configuration,

::
or

::::::
where

:::::
creep

::::::::::
deformation

:::::
makes

::::
only

::
a

:::::
minor

::::::::::
contribution

::
to

:::
the

::::::
overall

:::::::::
dynamics.

:

:::::::
Regions

:::::
where

:::::
rapid

:::::::::
transitions

::
in

:::::::
dynamic

:::::::::
conditions

::::
can

::::
lead

::
to

::::::
abrupt

:::::::
changes

::
in

:::
the

::::::
pattern

::
of

:::::::
applied

:::::::
stresses

:::
and

::
a

:::::::
potential

:::::::::
breakdown

:::
in

::::::
tertiary

::::
flow

:::::::::::
compatibility

:::::::
include

:::
ice

::::
shelf

:::::::::
grounding

:::::
zones

:::
and

:::::
other

::::::::
locations

:::::
where

:::::
basal

:::::::
traction10

:
is

::::
lost

::
or

:::::::
abruptly

::::::::
changes,

::::
e.g.,

:::::
where

:::
ice

:::::
flows

::::
over

::
a

::::::::
subglacial

:::::
lake,

::
or

::::
with

:::
the

:::::
onset

::
of

:::::
basal

::::::
sliding

::
in

:::
ice

:::::::
streams.

::::
The

::::::::::
convergence

:::::
zones

:::::
where

:::::::
tributary

:::::::
glaciers

::
or

:::
ice

::::::
streams

::::::
merge

::::
with

:
a

:::::
larger

::::
flow

:::
unit

::
at

:
a

::::
high

:::::
angle

::::::::::::::::::::::::::
(Thorsteinsson et al., 2003) may

:::
also

::::
lead

::
to

::
a

::::::::
transition

::
in

::::::::
dynamic

:::::::::
conditions

:::
that

::
is

::::::::::
problematic

:::
for

:::
the

::::::::::
assumption

::
of

:::::::
tertiary

:::::::::::
compatibility.

:::
Of

::::::
course

:::
the

::::
more

::::::
highly

:::::::
dynamic

:::
the

::::::::
evolving

::::
flow

::::::
regime,

:::
the

:::::
more

::::::
rapidly

::
a

:::
new

::::::::::
compatible

:::::::::
anisotropy

:::
will

:::
be

::::::::::
established,

::
so

::::
that

:::
the

:::::
spatial

:::::::
interval

:::::
where

:::
the

:::::
flow

:::::::
relations

:::
are

:::::::::::
inapplicable

::::
may

::
be

:::::::
limited.

::::
The

:::::
effect

::
of

:::::
these

:::::::
localised

::::::::::
encounters

::
of

:::::::
stresses15

::::
with

:::::::::::
incompatible

::::::
fabrics

::
on

:::
the

::::::
overall

:::::
flow

:
is

::::::::
unclear;

:::::::
however,

:::
we

::::
note

::::
that

::::::
similar

:::::::::
difficulties

:::::
exist

:::
for

:
a

:::::::::
Glen-type

::::
flow

:::::::
relation,

:::::
which

::::::
unlike

:::
the

:::::::
ESTAR

::::
flow

:::::::
relation

::::
does

:::
not

::::
have

::::
the

::::::
benefit

::
of

:::::
being

::::
able

::
to

::::::::
correctly

:::::::
describe

:::::::::
enhanced

::::
flow

::::
rates

:::::::::
throughout

:::
the

:::::::::
remainder

::
of

:::
the

:::
ice

:::::
sheet.

:::::
Under

:::
the

::::
very

::::
cold

:::
and

::::
low

:::::
stress

::::::::
conditions

:::::::::
occurring

::
in

:::
the

:::::::::
uppermost

:::::
layers

::
of

:::
the

:::::
polar

::
ice

::::::
sheets,

::::::::::
particularly

:::::::
towards

::
the

:::::::
interior

::
at

:::::
high

:::::::::
elevations,

::::
any

:::::::
increase

::
in

::::
the

::::::::::
accumulated

::::::
strain

::::::::
necessary

:::
to

:::::::
develop

:
a

::::::::::
compatible

:::::
fabric

:::::
may

::::
lead20

::
to

:
a

:::::::::::
near-surface

::::
zone

::
in

::::::
which

:::
the

::::::::::
assumption

::
of

:::::::
tertiary

:::::
creep

::
is

:::
not

:::::
valid.

::::::
Since

:::
the

:::::::::::
development

::
of

::::::::::
anisotropic

::::::
fabrics

:::::::
provides

:::
an

::::::::
indication

:::
of

:::
the

::::::::
existence

:::
of,

:::
or

:::
the

::::::::
approach

:::::::
towards

:::::::
tertiary

::::
flow,

::::
the

::::::::::
observation

::
of

::::::::
evolving

::::::::::
anisotropic

:::::
fabrics

:::
at

::::::
modest

:::::::
depths,

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., ⇠ 100� 200 m; DiPrinzio et al., 2005; Montagnat et al., 2014; Treverrow et al., 2016) allows

::
the

:::::::::
maximum

::::::
extent

:::
of

:::
the

::::
zone

::::::
where

:::::::
tertiary

:::::
creep

::
is

::::
not

::::::::
occurring

::
to

:::
be

:::::::::
estimated.

::::::::
Because

:::
the

::::::::
nonlinear

::::::
nature

:::
of

::::::::::::
polycrystalline

:::
ice

::::::::::
deformation

:::::
rates

:::::
leads

::
to

::::
very

::::
high

:::::::::
viscosities

:::
in

:::
low

:::::::::::
temperature

:::
and

:::::
stress

::::::::::::
environments,

::::::::::
incorrectly25

::::::::
estimating

:::::::::::
deformation

::::
rates

:::
due

::
to

:::
the

::::::::::
assumption

::
of

::::::
tertiary

::::
flow

::
in

::::
such

::::::
regions

::::
may

::
be

:::
of

::::::
limited

:::::::::
importance

::
to

::::::::::
simulations

::
of

::
ice

:::::
sheet

:::::::::
evolution.

3.2
:::
The

:::::::::
semantics

::
of

:::::::::
anisotropy

:::
We

:::::::
conclude

::::
this

::::::
section

::::
with

:::::
some

:::::::
remarks

:::::
about

:::
the

:::::::
seeming

:::::::
paradox

::
of

:::::
using

::
an

::::::::
isotropic

::::::::::
constitutive

::::::
relation

:::
to

:::::::
describe

::
the

:::::::::::
deformation

::
of

:::
ice

:::
that

:::
has

:::
an

:::::::::
anisotropic

::::::
pattern

::
of

::::::
c-axis

::::::::::
orientations.

:
30

:::::::::
Anisotropy

::
in

:::::
broad

:::::
terms

::::::::
describes

::::::::::
differences

::
in

:::::::
physical

:::::::
systems

:::::::::
associated

::::
with

::::::::
different

::::::::
directions.

::::
The

:::::::
various

::::
flow

:::::::
relations

::
in

:::::::::::::::::::::
Budd et al. (2013) involve

::
a

::::::
specific

::::::::
direction,

::::::
namely

:::
the

::::::
normal

::
to

:::
the

:::::::::::
non-rotating

::::
shear

:::::
plane

::::
that

:
is

::::::::::
determined

::
by

:::
the

:::::::::::
combination

::
of

:::
the

:::::
stress

::::::
regime

:::
and

:::
the

:::::
flow,

:::
and

::::
also

:::::::
connect

:::
the

:::::
strain

::::
rates

::::
with

:::
the

::::::::
character

:::
of

:::
the

:::::
stress

::::::
regime

::::::
through

:::
the

:::::
shear

:::::::
fraction

:::
�

S

.
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::
In

::::::::
materials

:::::::
science,

:::::::::
anisotropy

::
is

::::
used

::
to

:::::
refer

::
to

:::::::
material

:::::::::
properties

::::::
which

::::
have

::::::::
different

:::::
values

:::::
when

:::::::::
measured

:::::
along

:::::::
different

:::::::::
directions.

::::::
Indeed,

::::
the

::::
term

::
is

:::::
often

:::::::::
introduced

::::::::::::::::::::::
(e.g., Kocks et al., 1998) as

:::
the

::::::::
opposite

::
to

:::::::
isotropy

::
or

:::::::::::
indifference

::
to

::::::::
rotations.

::::::::::::
Polycrystalline

:::
ice

::::
with

::
a

:::::
c-axis

::::::::::
distribution

:::
that

:::::::
exhibits

::::::
certain

::::::::
preferred

::::::::
directions

::::::
clearly

:::::::
displays

::::::::::
anisotropy,

::::::
though

:::
the

::::::::::::
manifestation

::
of

:::
this

:::::::::
physically

:::::::::
discernible

::::::
feature

:::
in

:::::::::::
deformational

:::::::::
properties

:::::::
requires

::::::::::::
demonstration.

:

::::::::::::
Microstructural

::::::::::
approaches

::
to

:::
ice

:::::::::::
deformation,

:::::
such

::
as

:::::
those

::::::::
discussed

:::
in

::::
Sect.

::::
3.1

::::::
above,

:::::::
typically

::::
aim

::
to

::::::::
describe

:::
the5

::::::
prompt

:::::::
response

::::::::
(ignoring

:::::::
transient

:::::::
primary

:::::
creep)

:::
of

::
ice

::::
with

::::
any

:::::
crystal

:::::
fabric

::
to

:::
an

:::::::
arbitrary

::::::::::
arrangement

::
of

:::::::
applied

:::::::
stresses,

:::::
where

:::
the

::::::::
emphasis

::
on

::::::::::
promptness

::::::
covers

:::::::
ignoring

:::
any

::::::::
resultant

:::::
fabric

::::::::
evolution.

::
In

::::
this

::::::
context

::
it

::
is

:::::::
variation

::
in

:::
the

::::::::
response

::
to

::::::
applied

::::::
stresses

::::::
under

:::::::
rotations

::
of

:::
the

:::::::::
anisotropic

:::::::
material

:::::::
relative

::
to

:::
the

:::::
stress

:::::::::
distribution

::::
that

:::::
could

::
be

::::
said

::
to

::::::::::
characterise

::
an

:::::::::
anisotropic

::::
flow

:::::::
relation.

:

::
In

:::::::
contrast,

:::
the

:::::::::::
applicability

::
of

:::
the

::::
flow

:::::::
relation

:::
we

:::
are

:::::::::::
implementing

:::::
from

:::::::::::::::::
Budd et al. (2013) is

::::::
limited

::
to

:::
ice

::::::::::
undergoing10

::::::
tertiary

::::
flow,

:::
i.e.,

:::
ice

::::
with

:::
an

:::::::::
anisotropic

::::::
crystal

:::::
fabric

::::::
induced

:::
by

::::::::
prolonged

:::::::::::
deformation

:::::
under

::
the

:::::
same

:::::
stress

::::::
regime.

:::::::
Indeed,

::
the

::::::::::
directional

::::
sense

:::
of

:::::::::
anisotropy

::
of

:::
the

::::::
fabric,

::
its

::::::::
character

:::
and

:::
the

::::::::
resultant

:::::::::
mechanical

::::::::::
properties,

:::
are

::
all

:::::::::::
characterised

:::
by

::
the

::::::
nature

::
of

:::
the

:::::
stress

::::::
regime.

::::
This

::
is

:::
not

::
a

:::::::
situation

::::::::
amenable

::
to

::::::::::
considering

:::::::
arbitrary

::::::::
rotations

::
of

:
a

::::::::
material

::::::
element

:::::::
relative

::
to

:::
the

:::::::
stresses.

:::::::::::
Accordingly,

::
as

::::::::
presented

:::::::::
completely

:::
in

:::::
terms

::
of

:::
the

:::::::
stresses,

::
it

:
is

:::
an

:::::::
isotropic

::::
flow

::::::::
relation,

:::
for

:::::::
material

::::
with

:
a

:::::::::::::
flow-compatible

:::::::
induced

::::::::::
anisotropy.15

:::
The

:::::::
general

::::
flow

:::::::
relation

:::::::::
constructed

:::
by

::::::::::::::
Glen (1958) was

::::::::::
empirically

:::::::::
formulated

:::
on

:::
the

::::
basis

:::
of

:::::::
isotropy,

:::::::::
involving

::::
only

::
the

:::::::
tensors

::
of

:::::::::
strain-rates

:::
and

:::::::::
deviatoric

:::::::
stresses,

:::
and

::::
their

::::::
scalar

::::::::
invariants.

:::
In

::
the

:::::
most

::::::
general

:::::::::
expression

::::::::
provided,

::::
(Eq.

::
4

::
of

::::::::::
Glen, 1958 )

:::
the

::::
flow

::::::
relation

::::
was

:::
not

::::::::
collinear,

:::
and

::
by

::::::::
including

:::::::
possible

::::::::::
dependence

:::
on

::
the

:::::
cubic

::::::::
invariant

::
of

:::
the

::::
stress

::::::
tensor

:
it

::::
also

::::::::
contained

::
a

:::::::
measure

::
of

:::
the

::::::::
character

::
of

:::
the

::::::
pattern

::
of

:::::::
stresses

::
as

::::
well

::
as

:::
the

:::::::::
magnitude

::::::
(given

::
by

:::
the

::::::
second

:::::::::
invariant).

::::::
Indeed,

:::::::::::
consideration

:::
of

:
a

::::::::
possible

::::::::::
dependence

::
on

:::
the

:::::
third

::::::
(cubic)

::::::::
invariant

::
of

:::
�0

::
as

:::
an

::::::::::
explanation

::
of

:::
the

::::::::::
dependence

:::
of20

::::::
tertiary

::::
flow

::::
rates

:::
on

:::::::
different

:::::
stress

:::::::
regimes

:
is

::
a

::::::::
recurrent

:::::::::
suggestion

:::::::::::::::::::::::::::::
(e.g., Baker, 1987; Morland, 2007) .

:

::
As

::::::::::::::::
Faria (2008) points

:::
out

:::
in

:::::::::
discussing

:::
the

:::::::
CAFFE

::::
flow

:::::::
relation,

:::
this

::
is

::
a

:::::::
different

:::::
issue

:::::
from

:::::::
whether

:::
the

::::
flow

:::::::
relation

:::::::
involves

:
a

::::::::
rank-four

:::::
tensor

:::::::::
connecting

:::::
strain

::::
rates

::::
and

::::::::
deviatoric

:::::::
stresses.

:::
The

:::::::
CAFFE

:::
and

:::::::
ESTAR

::::
flow

:::::::
relations

:::
are

::::
both

:::::
scalar

::::::::
(collinear)

::::::::
relations

:::::::
between

:::::::::
deviatoric

:::::::
stresses

:::
and

::::::
strain

:::::
rates,

:::
yet

::::
only

:::
the

:::::::
CAFFE

::::
flow

::::::::
relation,

:::::
whose

::::::::::::::
“deformability”

::::::::
parameter

:::::::
involves

:::::
both

::::::
stresses

::::
and

:::
the

::::::::::
anisotropic

::::::
crystal

::::::::::
orientations

::
is

:::
an

:::::::::
anisotropic

::::::::::
constitutive

:::::::
relation

::
in

::::
the

:::::
sense25

::::::::
discussed

:::::
above.

:

4
::::::::::::::
Implementation

::
of

:::
the

:::::::
ESTAR

::::
flow

:::::::
relation

:::
The

:::::::::
magnitude

::
of

:::
the

:
shear strain rate defined on the local non-rotating shear plane, "̇

0
for Eq. 6, is central to the formulation

of ESTAR

::
the

:::::::
ESTAR

::::
flow

:::::::
relation (Eqs. 3-4). The full prescription, following Budd et al. (2013), involves the expression

"̇

0 = k"̇ ·n� (n · ("̇ ·n))n� (!̂
D

· ("̇ ·n)) !̂
D

k, (7)30

where: n is the unit normal to the non-rotating shear plane, !̂
D

is the unit vector parallel to that part of the vorticity that is

associated solely with deformation (!
D

), and "̇ is the strain rate tensor. The unit normal to the non-rotating shear plane, n, is
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defined as the normalised cross product of the velocity and the deformational vorticity

n=
v⇥!

D

kv⇥!
D

k . (8)

The last projection term in Eq. 7 was proposed in Budd et al. (2013) to prevent any shear component parallel to the defor-

mational vorticity from contributing to the measure of simple shear.

The vorticity of a flow, whether viewed as the anti-symmetrised part of the velocity gradient tensor or as the usual vector5

! =r⇥v, contains motions associated with both deformation and local rigid-body rotation. The locally non-rotating shear

plane is intended to be rotating with any rigid rotation portion of the flow field, so it is only vorticity associated with the

deformation process that is relevant to determining the shear fraction. Accordingly we formally decompose vorticity into

deformational and rotational parts:

! =r⇥v = !
D

+!
R

. (9)10

For the present implementation it is convenient to decompose the vorticity further, into vectors perpendicular and parallel to

the velocity direction as follows:

! = !?
D

+!?
R

+!k
D

+!k
R

. (10)

From Eq. 8, only the perpendicular projection !?
D

of the deformational vorticity is relevant in determining the direction of the

normal to the non-rotating shear plane. This is fortunate since

:::
!?

R:
the perpendicular projection of the rotational vorticity can15

be calculated directly for steady flow from the flow speed and the curvature of the local flowline

:::::::::
streamline, and is oriented

along the bi-normal to the flow-line

:::::::
binormal

::::
(the

:::
unit

::::::
vector

:::::::::
orthogonal

::
to

:::::
both

:::
the

::::::
tangent

::::::
vector

:::
and

:::
the

::::::
normal

:::::::
vector)

::
to

::
the

:::::::::
streamline. The decomposition of the component of vorticity parallel to the flow direction, conventionally termed swirling

motion, into deformational and rotational pieces is not so straightforward, but we can use the following expression, which can

be calculated using variables available within an individual element of ISSM to generate a vector suitable for computing n:20

!̃
D

=r⇥v� 2v⇥ ((v ·r)v)

kvk2 . (11)

This vector contains the correct perpendicular component !?
D

to compute n using Eq. 8, but contains all of !k
D

+!k
R

. We can

obviously also project out the component parallel to velocity to find

!?
D

= !̃
D

� (v · !̃
D

)
v

kvk2 . (12)

In the present implementation of ESTAR

::
the

:::::::
ESTAR

::::
flow

::::::
relation, we assume that swirling effects are small for flows with the25

relevant spatial scales, aspect ratios etc., which can be verified from the modelled flow-fields in our test cases, and hence !k
D

is also expected to be small. We use the unit vector corresponding to !?
D

(i.e., !̂
D

) in Eq. 7 for our computation of "̇

0
. This

corresponds to extracting the component of the shear resolved on the non-rotating shear plane which is parallel to the velocity

direction, which could be regarded as an alternative generalisation for the simple shear to that proposed by Budd et al. (2013).
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No approximation is involved for flows that are exactly two dimensional in character, since vorticity is always orthogonal to

velocity in such situations.

The ESTAR description

:::::::::
description

::
of

:::
the

:::::::
ESTAR

::::
flow

::::::
relation above is implemented in ISSM for the full-Stokes (FS) model

of flow. We also extended the implementation of ESTAR to ISSM versions of the higher-order (HO) three-dimensional model

of Blatter (1995) and Pattyn (2003), and the shallow-shelf approximation (SSA) of MacAyeal (1989). The HO

::::::::::
higher-order5

model is derived from the FS

:::::::::
full-Stokes

:
model by assuming that horizontal gradients in the vertical velocities are negligible

(@v

z

/@x << @v

x

/@z and @v

z

/@y << @v

y

/@z

::::::::::::::::::
@v

z

/@x= @v

z

/@y = 0) compared with vertical gradients in the horizontal ve-

locities

:::::
when

:::::::::
computing

::::::
vertical

:::::
shear, and longitudinal derivatives of vertical shear stress (bridging effects van der Veen and

Whillans, 1989) are ignored. The HO

::::::::::
higher-order

:
vertical velocities are recovered directly through incompressibility. Extend-

ing on the HO

::::::::::
higher-order model assumptions, for the SSA model, vertical shear is assumed to be negligible ("̇

xz

= "̇

yz

= 0).10

For both the HO

::::::::::
higher-order and SSA models, the approximations will affect calculations of the total vorticity and hence the

magnitude of the shear strain rate on the non-rotating shear plane (Eq. 7) and �

S

(Eq. 6).

5 Analytical verification

We perform convergence tests in order to verify the implementation of ESTAR

:::
the

::::::
ESTAR

::::
flow

:::::::
relation

:
within the ISSM FS

and HO

:::::::::
full-Stokes

:::
and

:::::::::::
higher-order models. The objective of these tests is to compare the model results to analytical solu-15

tions for different mesh resolutions. As the mesh becomes finer, the error between the model and the analytical solution (i.e.,qR
⌦(X �X

a

)2/
R
⌦X

2
a

, for model solution X , analytical solution X

a

, and domain ⌦) should decrease, with a cubic depen-

dence on resolution for FS

:::::::::
full-Stokes

:
(quadratic for ice pressure) when using Taylor-Hood finite elements, and a quadratic

dependence for HO

::::::::::
higher-order

:
using P1⇥P1 finite elements (e.g., Ern and Guermond, 2004).

We designed our analytical solutions by considering a three-dimensional, grounded, isothermal ice slab of unit dimension20

lying on a flat bed topography, with cartesian coordinates (x,y,z), where z is vertically upward and where there is no gravita-

tional force. The FS

:::::::::
full-Stokes

:
three-dimensional velocity field is given by

v

x

(x,y,z) = 3z, (13)

v

y

(x,y,z) = 2x+ y, (14)

v

z

(x,y,z) =�z, (15)25

and the HO

::::::::::
higher-order velocity field by

v

x

(x,y,z) = x

2
, (16)

v

y

(x,y,z) = 3z+ y. (17)

In the case of the HO

::::::::::
higher-order

:
model, v

z

(x,y,z) is recovered by incompressibility. For both FS and HO

:::::::::
full-Stokes

:::
and

::::::::::
higher-order

:
models, we use ESTAR shear and compression enhancement factors of E

S

= 3 and E

C

= 1, and the flow30

parameter A(T 0) = 2/3 Pa

�3
s

�1
. The open source mathematics software system SageMath (http://www.sagemath.org/) is
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used to calculate analytical solutions for the force balance equations based on the above velocity fields:

f

x

(x,y,z) =�
✓
@�

0
xx

@x

+
@�

xy

@y

+
@�

xz

@z

◆
, (18)

f

y

(x,y,z) =�
✓
@�

xy

@x

+
@�

0
yy

@y

+
@�

yz

@z

◆
, (19)

f

z

(x,y,z) =�
✓
@�

xz

@x

+
@�

yz

@y

+
@�

0
zz

@z

◆
. (20)

Here, the deviatoric stress fields are calculated using ESTAR

::
the

:::::::
ESTAR

::::
flow

:::::::
relation

:
as specified in Eq. 3. When the total,5

rather than deformational, vorticity (i.e., without inclusion of the rigid body correction or removal of the vorticity component

aligned with the flow) is used in the calculation of ESTAR, the FS

:::
the

::::::
ESTAR

::::
flow

:::::::
relation,

:::
the

::::::::::
full-Stokes analytical solution

for (f
x

,f

y

,f

z

) comprises (20 521, 9 190, 20 523) characters. By contrast, non-trivial analytical solutions for the forcing

functions that are calculated from an anisotropic enhancement factor that is based on the deformational, rather than total,

vorticity are at minimum 200 000 characters, well in excess of the character limits for most compilers. Accordingly, we verify10

ESTAR

::
our

:::::::::::::
implementation

:::
of

::
the

:::::::
ESTAR

::::
flow

:::::::
relation using the total, rather than the deformational, vorticity.

To test the numerical implementation of ESTAR, ISSM is forced using the analytical expressions for f

x

, f

y

, and f

z

in

Eqs. 18-20 and the resulting three-dimensional flow field is compared with the relevant analytical specification in Eqs. 13-17.

Since the aim is to verify correct coding of the ESTAR modifications within ISSM ,

::
for

:::
the

:::::::
ESTAR

::::
flow

:::::::
relation we apply

the analytic velocities on the faces as the boundary conditions. Four sets of element sizes are used for each of the FS and15

HO

:::::::::
full-Stokes

::::
and

::::::::::
higher-order

:
models, increasing in resolution from 0.2 (272 elements over 5 vertical layers) to 0.08 (4656

elements over 13 vertical layers). We find convergence powers of 2.5 (v

x

), 3.1 (v

y

), and 2.6 (v

z

) for FS

:::::::::
full-Stokes, respectively,

and 1.4 (v

x

) and 1.1 (v

y

) for HO

::::::::::
higher-order

:
(Fig. 2), which are consistent with theory

::::::::::::::::::::::::::
(e.g., Ern and Guermond, 2004) and

verify our implementation.

6 Application of
::
the

:
ESTAR

:::
flow

:::::::
relation

:
to idealised scenarios20

ESTAR

:::
The

::::::
ESTAR

:::::
flow

::::::
relation

:
was applied to a suite of test cases. The first case we present simulates flow in an embayed

ice shelf; the second two are based on experiments from the Ice Sheet Model Intercomparison Project for Higher Order Models

(ISMIP-HOM; Pattyn et al., 2007). The ISMIP-HOM experiments describe idealised scenarios of ice flow where the bed

topography or basal friction vary. ISSM has already been validated against the ISMIP-HOM experiments (Larour et al., 2012).

In each experiment, the velocity, surface, and thickness fields were allowed to run to steady-state, as defined in the corre-25

sponding section below (the original ISMIP-HOM experiments were simply diagnostic). The ice sheet is isothermal in each

case.

As mentioned above, we use ESTAR shear and compression enhancement factors of E

S

= 8 and E

C

= 3, respectively

(Treverrow et al., 2012). For each experiment, we performed simulations using a range of Glen enhancement factors (1, 3,

5, and 8), but since these idealised experimental systems have simple scaling properties under global changes in flow rates,30
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we present only results for E

G

= 8 since that proved the most directly relevant value. The ISMIP-HOM experiments used the

original parameter values (Pattyn et al., 2007) unless otherwise indicated.

6.1 Flow through an embayed ice shelf

The first experiment simulates three-dimensional flow through a rectangular embayed ice shelf. The experiment was carried

out for model domains with transverse spans x 2 [0,L], for L= 20, 60, and 100

::
km

:
and along-flow dimension y 2 [0,100]

::
km.5

The initial ice thickness decreases uniformly from 1000

::
m at the grounded zone to 300, 600, and 850

::
m at the ice front for the

L= 20, 60, and 100

::
km

:
cases, respectively. The main features of the anisotropic effects are similar regardless of aspect ratio.

This is principally because wider embayed ice shelves are flatter so that the influence of simple shear stresses on the dynamics

is not particularly sensitive to aspect ratio. Accordingly, we focus our discussion on one transverse length scale: L= 20 km.

The plan view mesh is extruded ten quadratically-spaced layers in the vertical. A no-slip boundary condition is applied along10

the x= 0 and x= L side boundaries. At the inflow boundary, the y-component of velocity is set to

v

y

(x,0) = V0e
�
⇥

5(x�x

mid

)
2L

⇤8
,

::
by

:

V (x)
::::

= V0e
�
⇥

5(x�x

mid

)
2L

⇤8
,

:::::::::::::::
(21)

v

y

(x,0)
::::::

= V (x)�V (0),
:::::::::::::

(22)15

where V0 = 100 m yr�1
and x

mid

= L/2.

::::
This

::::::
ensures

::::
that

:::::::
v

y

(x,0)
::::::
satisfies

:::
the

::::::
no-slip

::::::::
boundary

::::::::
condition

:::
on

:::
the

:::::::
margins.

:
As

is standard, ocean water pressure is applied at the ice-ocean interface where tangential (traction) stresses vanish. It is assumed

that there is no surface or basal melting or accumulation over the ice shelf domain. The flow parameter A(T 0) = 1.74⇥ 10�25
Pa

�3
s

�1
,

is set using the Budd and Jacka (1989) value for an isothermal ice shelf of �20 �C. We consider the case where the Glen en-

hancement factor is equal to the ESTAR shear enhancement factor, i.e., E

G

= E

S

= 8.20

We run the HO

::::::::::
higher-order

:
ice flow model for each of the ESTAR and Glen rheologies

::::
flow

:::::::
relations to steady-state, which

we define to be reached when the mean velocity change over the surface mesh points is less than 1⇥ 10�2 m yr�1
between

two consecutive time steps (of 4t= 2 yr).

The Glen and ESTAR HO

::::::::::
higher-order

:
steady-state surface velocity magnitudes are compared in Fig. 3. The patterns of

ice flow are similarfor the two rheologies: in each case the ice velocity increases as it flows through the ice shelf, reaching25

its maximum at the ice front. Over most of the domain the velocities are in close agreement, reflecting the dominance of the

shear flow. However, the Glen velocities are up to 17% larger than the ESTAR velocities at the ice front, where the flow field

is predominantly extensive

:::::
tensile

:
in accordance with the ice front boundary conditions. The differences in velocities can be

attributed to differences in flow enhancement factors for simple shear and compression. Near the centre line of the ice shelf

and across the ice front, where longitudinal and vertical normal stresses dominate, the Glen enhancement is as much as 8/330

times larger than the corresponding ESTAR enhancement.
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The steady-state thickness ratio for the two rheologies is shown in Fig

::::::
patterns

:::
for

:::::
each

::::
flow

:::::::
relation,

::::
and

::::
their

:::::
ratio

:::
are

:::::
shown

::
in

:::::
Figs. 3d

::
d-f. In both cases, the equilibrated ice shelf is thicker along the centre line and thinner towards the side

margins where ice flow is slower, and thicknesses agree within 5% over much of the domain. However, the Glen ice shelf is

consistently thinner than the ESTAR ice shelf, particularly along the centre line where Glen velocity is enhanced relative to

ESTAR

:::
the

::::::
ESTAR

::::
case, and it is up to 20% thinner at the ice front.5

The ESTAR strain rate components are presented in Fig. 4. As expected, shear strain rate in the x� y plane is very high

near the lateral boundaries (Fig. 4d). However, it dominates the effective strain rate (and hence �

S

) well beyond those margins

(Fig. 5), before decreasing towards the centre line, where it identically vanishes. Towards the ice-ocean front, each of the normal

strain rates – "̇

xx

, "̇

yy

, and "̇

zz

– increase in magnitude, reaching their maxima at the front. The (approximately) longitudinal

"̇

yy

is the dominant normal strain rate component and is extensive

:::::::::
extensional towards the front. Due to the confined geometry,10

towards the front "̇

yy

is largely balanced by "̇

zz

, which drives ice shelf thinning. Transverse normal strain rate "̇

xx

plays a lesser

role at the ice-ocean front than the other normal strain rates. It is extensive

::::::::::
extensional along the front as the streamlines diverge,

but changes sign to compressive towards the corners. The patterns in the component strain rates, including the dominance of

normal strain rates in the centre of the ice shelf and at the ice-ocean front, are evident in the strain rate on the non-rotating shear

plane ("̇

0
) and the effective strain rate ("̇

e

), the ratio of which sets the magnitude of �

S

(Fig. 5). In the ESTAR embayed ice15

shelf simulation

:::::
using

:::
the

::::::
ESTAR

::::
flow

:::::::
relation, the vanishing of basal traction and the depth independent nature of the inflow

velocity lead to an almost 2D flow field with local non-rotating shear planes essentially vertical where they can be defined –

there being neither x� y plane shear nor vorticity along the centre line. We note that "̇

yy

decreases in magnitude with depth at

the ice-ocean front, coincident with ice front tilting (Weertman, 1957), which also gives rise to some local shear deformation

in the y� z plane.20

To assess the computational demands of the full ISSM model with ESTAR, the FS

:::
the

::::::
ESTAR

::::
flow

::::::::
relation,

::
the

::::::::::
full-Stokes

ice flow model was computed for one model year (i.e., steady state had not yet been reached) and the results compared with

the HO

::::::::::
higher-order simulation results for the same model period (results not shown). At the ice front, the HO

::::::::::
higher-order

velocities are everywhere within 5% of the FS

::::::::
full-Stokes

:
velocities, with the maximum differences occurring near the lateral

boundaries. Across the shelf, the HO

::::::::::
higher-order component velocities accord well with the FS

:::::::::
full-Stokes

:
velocities. The25

magnitude and spatial patterns of "̇

0
, "̇

e

, and �

S

also agree well between the FS and HO

::::::::
full-Stokes

::::
and

::::::::::
higher-order

:
models.

Computation times for FS

:::::::::
full-Stokes simulations using each of the two rheologies

:::
flow

:::::::
relation, and for increasing mesh

resolutions, are summarised in Table 1. In each case, the model was run for 1 month with a time step of 4t= 1⇥10�4 yr. The

ESTAR simulation computation times are no more than 3% slower

:::::
longer

:
than the corresponding Glen times

:::::
times

:::
for

::
the

:::::
Glen

::::::
relation, and the simulation times for the two rheologies

:::
flow

::::::::
relations converge as the mesh resolution increases. This result30

gives us confidence that ESTAR

:::
the

:::::::
ESTAR

::::
flow

::::::
relation

:
is essentially as computationally-efficient

:::::::::::::
computationally

:::::::
efficient

as the Glen rheology

::::::
relation.

19



6.2 ISMIP-HOM experiment B: two-dimensional flow over a bumpy bed

ISMIP-HOM Experiment B (ISMIPB) describes two-dimensional flow (x horizontal, z vertical) over a bed topography that

varies sinusoidally, according to the following equation

z

b

(x) = z

s

(x)� 1000+500sin

✓
2⇡x

L

◆
. (23)

where z

s

(x) =�xtan↵, for a mean bed slope of ↵= 0.5�, and L controls the scale of the bedrock undulation. We take5

z

s

(x) as the initial surface so that the mean initial ice thickness is 1000 m. We present results for two different aspect ratios,

L= 20 km and L= 5 km, to explore the influence of different longitudinal stresses. In each case we used the full-Stokes (FS)

version of ISSM. The flow parameter is fixed at 3.96⇥ 10�25
Pa

�3
s

�1
, corresponding to an ice temperature of approximately

�14� C (Budd and Jacka, 1989). The value for the flow parameter in the original ISMIPB was 3.17⇥ 10�24
Pa

�3
s

�1
, which

corresponds to a Budd and Jacka (1989) ice temperature of approximately �3.6� C. We have reduced the original flow param-10

eter by a factor of 8 (i.e., equal to E

S

) to ensure our results are as close as possible to the original ISMIP-HOM experiments.

Periodic boundary conditions are applied at the vertical edges of the domain and a no-slip boundary condition is applied at the

base. In this and the following two-dimensional test case, the normal to the non-rotating shear plane is simply the direction

perpendicular to the velocity and there is no uncertainty about the vorticity (which has only one non-vanishing component)

being perpendicular to the velocity. Steady-state is regarded as reached when the mean velocity change over the surface mesh15

points is less than 1⇥ 10�2 m yr�1
between two consecutive time steps of 4t= 1 yr for this and the following ISMIP-HOM

experiment.

In what follows, we consider the case when the Glen enhancement factor is equal to the ESTAR shear enhancement factor,

i.e., E

G

= E

S

= 8. This is the most relevant case for the ISMIPB experiment as the dynamics here are driven by bed-parallel

shear, as discussed below.20

The ESTAR and Glen FS

::::::::
full-Stokes

:
steady-state horizontal velocities (v

x

) for ISMIPB for L= 20 km are shown in Fig. 6a

and b, with their ratio in Fig. 6c. The shear fraction (�

S

) used to calculate the ESTAR enhancement is shown in Fig. 6d. The

ESTAR velocities are marginally slower than the Glen velocities throughout the domain, regionally by as much as 6%. While

in a real-world situation, a local difference of 6% may not be significant to overall flow, clearly unless the Glen enhancement

factor is approximately E

S

there would be a significant and widespread difference in velocities. One major contrast occurs25

either side of the topographic bump in the near-surface layers (Fig. 6c) where normal stresses dominate (�

S

< 1; Fig. 6d) and

E(�
S

) tends to E

C

<E

G

, as �

S

tends to 0. This reduces the shear deformation in the upper-layers for ESTAR compared to

Glen, leading to slightly lower horizontal velocities near the surface. We will discuss the relevance of this in Sect. 7. Another

major velocity contrast occurs in the lowest part of the ice sheet directly above the topographic depression. Since deformation

here is clearly shear dominated (�

S

= 1 for essentially the whole column), the differences must arise from a varying but30

consistently lower shear stress profile in the ESTAR case, reflecting indirectly the distributed effect of the stiffer ice in the

upper layers where E(�
S

)<E

G

and a slightly different final geometry of the ice surface. In contrast, the closest agreement

between the two velocity distributions is in the basal region over the topographic high.

20



Figure 6 also shows the FS

:::::::::
full-Stokes "̇

xz

and "̇

xx

strain rates for the ESTAR simulation

::::::::
simulation

:::::
using

:::
the

:::::::
ESTAR

::::
flow

::::::
relation: effectively the shear and normal strain rates. The dominance of high values of �

S

indicates that bed-parallel simple

shear is the main driver of ice flow in ISMIPB with the expected transition through the ice column from compression/extension-

dominated flow near the surface to shear-dominated flow near the non-slip bed. Note that while the component strain rates are

presented in the background cartesian frame, �

S

denotes the relative importance of simple shear on local non-rotating shear5

planes. Peaks in �

S

appear directly over the topographical bump and depression, extending further into the surface layers

than in surrounding regions. The locations of the peaks in �

S

correspond to the transitions between extensive

:::::
tensile

:
and

compressive longitudinal stresses, centred on “transition curves” (Fig. 6e), along which normal strain rates are identically zero.

In addition to the case where L= 20 km, we also investigated the impact of reducing the horizontal extent to L= 5 km. In

this steeper bed scenario (Fig. 7), the ESTAR surface velocities

:::::
surface

:::::::::
velocities

::
in

:::
the

::::::
ESTAR

::::
case

:
are at least 11% slower10

than the Glen velocities in the surface layers across the whole domain, as much as 20% slower around the topographic bump,

and up to 25% slower in the topographic depression (Fig. 7c). The much greater reductions in the magnitude of the ESTAR

velocities for L= 5 km are a consequence of the increasing importance of longitudinal stresses in the stress balance equations

for the smaller aspect ratio (Fig. 7e), and also in some areas the lower strain rates, which lead to correspondingly stiffer ice.

Indeed we see a clear decline in the shear strain rate in the lower part of the bed depression in Fig. 7f, in contrast to Fig. 6f. The15

qualitative pattern of the longitudinal strain-rates in Fig. 7e is similar to the L= 20 km case, although the horizontal gradients

are naturally accentuated, and the “transition curves” are displaced.

In order to examine the dynamics giving rise to the high shear-dominance peaks in Fig. 6d and Fig. 7d, we consider the

following exact form of �

2
S

(for these two-dimensional flow fields) expressible using the cartesian frame strain rate components

20

�

2
S

=
↵"̇

2
xx

+�"̇

2
xz

+ �"̇

xx

"̇

xz

"̇

2
xx

+ "̇

2
xz

, (24)

for some spatially varying coefficients ↵, �, and �. Since there is no surface accumulation, velocities and hence local non-

rotating shear planes at the ice sheet surface are parallel to the surface. The traction free surface boundary condition implies

that the numerator ("̇

02
) in Eq. 24, and accordingly �

S

, vanishes at the surface, except that if "̇

e

also vanishes, �

S

is technically

undefined. Our implementation sets �

S

= 0 for vanishing "̇

0
in such situations. It is apparent from Eq. 24 that along the25

transition curves, i.e., where "̇

xx

= "̇

zz

= 0, �

2
S

= �, independent of (non-zero) "̇

xz

strain rate. One can show that � ! (1�
S

2
x

)2 towards the surface (i.e., for surface slope in the x-direction S

x

) along the transition curve, in order to satisfy the surface

boundary condition. This indicates that �

S

would be finite along the transition curves all the way to the surface, except that

we enforced its vanishing there. For these locations, the Glen and ESTAR viscosities corresponding to Eqs. 2-3 would tend to

infinity as "̇

e

vanished approaching the surface, but are limited to a maximum value in the ISSM implementation.30

Note that away from the transition curves �

S

goes to zero as we approach the surface, associated with vanishing shear on

the non-rotating shear plane and the corresponding dominance of normal deformations. We return to these near-surface spikes

in �

S

in the discussion.
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6.3 ISMIP-HOM experiment D: two-dimensional flow over a sticky spot

ISMIP-HOM experiment D (ISMIPD) describes a two-dimensional domain over which the basal friction coefficient � varies

sinusoidally in the horizontal direction. A Paterson-type friction law (Paterson, 1994)

::::::::::::::
(Paterson, 1994 ,

::::::
p.151) of the following

form is used

⌧

b

=��

2
v

b

, (25)5

where ⌧

b

is the basal stress and v

b

the basal velocity, and the friction coefficient, �

2
(Pa a m

�1
), varies according to the equation

�

2 = 1000+1000 sin

✓
2⇡

L

x

◆
. (26)

The bed topography and the initial ice surface are inclined planes with a slope of 0.1

�
, and the initial thickness is 1000

::
m

throughout the domain. As in the preceding ISMIPB experiments, the flow parameter is taken as A(T 0) = 3.96⇥ 10�25
Pa

�3
s

�110

(the ISMIPB and ISMIPD original flow parameters were equal). Periodic boundary conditions are applied at the edges of the

domain. Once again, we present results for steady-state solutions for two different horizontal scales: L= 20 km and L= 5 km.

As with the ISMIPB experiments above, we employ the full-Stokes (FS) solver in ISSM. Consistent with ISMIPB, the con-

trol of the final deformation flow in the ISMIPD experiment is bed-parallel shear, so we consider the case when the Glen

enhancement factor is equal to the ESTAR shear enhancement factor, i.e., E

G

= E

S

= 8.15

The Glen and ESTAR FS

:::::::::
full-Stokes

:
results for ISMIPD when L= 20 km are shown in Fig. 8. For both rheologies

::
In

::::
both

::::
cases, the fastest velocities develop in the upper part of the column over the sticky spot (centred around 5

::
km). This is

required by continuity, given the lower basal velocities over the sticky spot, to balance the block flow over the slippery section

(basal friction coefficient vanishes at 15

:::
km). The basal velocities increase as the basal friction coefficient decreases. The total

steady-state ESTAR velocities are everywhere within 1% of the corresponding Glen velocities (see Fig. 8c), with the maximum20

difference occurring in the near-surface layers over the sticky spot, where the ESTAR ice is stiffer

:
in

:::
the

:::::::
ESTAR

::::
case, as shown

by the corresponding contrast in viscosities (Fig. 8e). Sliding occurs throughout the domain and the deviations from block flow

are modest throughout, so to explore what differences might be associated with the departure from block flow we calculated

“deformational velocities” from v

x

by subtracting the basal motion, and examined the ratio between ESTAR and Glen cases

(Fig. 8d). The most notable feature of this ratio is a localised 50% decrease in deformational velocity for ESTAR compared25

to Glen through the entire column, peaking directly over the point where the basal friction coefficient (Eq. 26) vanishes. This

major band of difference coincides with the band of higher viscosity for ESTAR, relative to Glen, (see Fig. 8e) over the slippery

region.

The ESTAR component strain rates and shear fraction �

S

are illustrated in Fig. 9 for ISMIPD, for the L= 20 km case. The

plot of �

S

(Fig. 9d) depicts transitions in the deformation regime from shear-dominated to compression/extension-dominated30

and back over a few kilometres around the slippery spot. These transitions extend all the way to the bed, becoming perpen-

dicular to the ice flow direction and reflect the low shear over the slippery region. This is in marked contrast to the ISMIPB

experiments, where the shear deformation regime dominated except near the free surface. We

::
in

:::
the

::::
next

::::::
section

:::
we discuss the

22



implications of these abrupt transitions for the assumptions that underpin ESTAR in the next section

::
the

:::::::
ESTAR

::::
flow

:::::::
relation

. Shear dominates much of the ice column (�

S

> 0.5) throughout the rest of the domain (over the region where values of the

basal friction coefficient exceed 10% of the maximum value). The shear strain rates are greatest in the region of maximum

stickiness at approximately 5

:::
km, and a steep profile in the shear strain rate is present there. Naturally, transitions between

extensive

:::::
tensile

:
and compressive flows occur around the sticky spot and the transition curves (vanishing normal strain rates)5

resemble the ISMIPB cases (Fig. 6e). Here the transition curves reach the surface as the friction coefficient increases, and

just downstream of its peak value (the sticky spot), leading to near surface

::::::::::
near-surface spikes of high values �

S

analogous to

ISMIPB. It should be noted that the strain rates here are very small compared to the ISMIPB experiments. The viscosity ratio

in Fig. 8e reveals that there are also lower strain rates for ESTAR

::
the

:::::::
ESTAR

::::
case in the compression dominated regions, as

the ratios there are higher than the factor of 1.39 that would be produced by the influence of E(�
S

) alone.10

The results of a FS

:::::::::
full-Stokes

:
prognostic run to steady-state for the ISMIPD experiment for L= 5 km are presented in

Fig. 10. The v

x

velocity ratio (Fig. 10c) shows that very little difference is seen between results for the two flow relations,

unlike the ISMIPB experiments in the previous section, where differences up to 25% between ESTAR and Glen cases emerged

for the shorter bedrock periodicity. The tiny differences in overall velocities are enhanced but the patterns in Fig. 8c and Fig. 10c

are similar. However, there is a significantly different picture in the ratio of deformation velocities seen in Fig. 10d, compared15

to Fig. 8e. The largest differences are now limited to the lower portion of the ice column and for much of the region over the

slippery bed the ratio is almost unity.

The pattern of deformation regimes mapped by �

S

(Fig. 10f) is also more complex than that seen in the preceding L= 20 km

case (see Fig. 9d). The general structure of the normal strain rates is similar to previous experiments, but here the persistence of

a band of shear (Fig. 10h) above the slippery spot at intermediate depths prevents the establishment of a vertical block of flow20

dominated by normal stresses. The shear profile above the sticky spot is also much weaker in the upper layers. Accordingly, �

S

reveals a band of unevenly shear-dominated deformation which is continuous across the periodic domain. Once again, shear

dominated spikes extend towards the surface in association with the vanishing of the normal strain rates.

The spatial variations in the viscosity ratio (Fig. 10e) depart significantly from those of �

S

, reflecting more strikingly than

for L= 20 km (Fig. 8e) the combined influence of the pattern of enhancement (controlled by E(�
S

)) and the effect of different25

strain rates, with values both above and below the range (1.0-1.39) directly controlled by E(�
S

)/E
G

.

7 Discussion

In this study we conducted various ice flow simulations, comparing ESTAR with the isotropic Glen flow relation. ESTAR

:::
the

::::::
ESTAR

::::
and

::::
Glen

::::
flow

::::::::
relations.

:::
The

:::::::
ESTAR

::::
flow

:::::::
relation incorporates the observed differences between tertiary deformation

rates for shear dominated and normal stress dominated stress regimes.30

Our simulations of embayed ice shelf flow showed that no single Glen enhancement factor (E

G

) can reproduce the anisotropic

flow characteristic of the various stress regimes encountered. Significantly, while a choice of E

G

= E

S

was necessary to repro-

duce the same overall velocities and ice thicknesses, which are largely controlled by lateral shear, this overestimated velocities
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near the ice front by up to 17% compared to ESTAR

::
the

::::::
results

:::::
using

:::
the

::::::
ESTAR

::::
flow

:::::::
relation. This is a consequence of softer

ice in the Glen case for the zone near the ice front, where extensional longitudinal stresses dominate. The steady-state Glen

ice shelf was accordingly up to 20% thinner than the ESTAR ice shelf in this region. Even with this thinner ice influencing the

ocean pressure boundary condition at the ice front, the softer ice in the Glen case meant that the longitudinal strain rates there

were higher.5

These results highlight one of the key failures of the Glen flow relation: an inability to account for complex, spatially

varying stress regimes in its prescription of ice flow. The addition of an enhancement factor E

G

to the Glen flow rela-

tion permits some compensation for the flow enhancement associated with microstructural development (i.e., rescaling the

minimum creep rate data conventionally used in prescribing the Glen flow relation, e.g., Table 3.3, Cuffey and Paterson,

2010

::::::::::::::::::::::
Cuffey and Paterson, 2010 ). However, such a modification does nothing to allow for the anisotropic (stress configuration10

dependent ) aspects of ice rheology

::::::::::
deformation

:::::
rates,

:::::::::
associated

::::
with

:::
the

:::::::::::
development

:::
of

:::::::::
anisotropic

::::::
crystal

:::::::
fabrics,

:
that

are characteristic of tertiary creep. The improvement offered by ESTAR

:::
the

::::::
ESTAR

::::
flow

:::::::
relation

:
is that the specification of

the pattern and degree of enhancement is physically based, varying spatially as a function of the stress configuration. This is

achieved without the complication of a detailed treatment of microstructural information.

The ISMIP-HOM experiments B and D simulated scenarios in which the dominant control of flow was bed-parallel simple15

shear. In the prognostic runs with the larger aspect ratio (L= 20 km), only small differences were apparent between the Glen

and ESTAR velocities (< 6% for ISMIPB and < 1% for ISMIPD), again provided the Glen enhancement factor was chosen

equal to the ESTAR shear enhancement factor (E

G

= E

S

).

For more rapidly varying bed topography in ISMIPB, with L= 5 km, the differences in velocity for the two flow relations

reached 25%, with surface variations of 11%. For ISMIPD, which explored variations in basal friction, the L= 5 km experi-20

ments still showed < 1% differences in velocities with very low strain rates, so that although a complex pattern of deformation

regimes emerged, there was little effect on flow from the choice of flow relation.

These results suggest if major bed topography only varied

:::::
varied

::::
only on scales much longer than the ice thickness, close

agreement between ESTAR and the Glen flow relation

:::::::::
simulations

:::::
using

:::::::
ESTAR

:::
and

:::::
Glen

::::
flow

:::::::
relations

:
might be achieved

more generally by choosing the tertiary shear enhancement factor as the Glen enhancement factor (E

G

= E

S

). This might pro-25

vide a physical rationale to replace the ad hoc enhancement factors typically used in large-scale grounded ice sheet modelling

with the value appropriate to flow dominated by simple shear. However, larger differences between velocities and vertical shear

profiles emerged for the more rapid bedrock variation, where the importance of including longitudinal stresses in the momen-

tum balance is already recognised (Pattyn et al., 2008), suggesting that adopting ESTAR

::
the

:::::::
ESTAR

::::
flow

:::::::
relation would be

preferable.30

Our idealised test cases also provide some insights into the validity of the tertiary flow assumption underlying ESTAR

:::
the

::::::
ESTAR

::::
flow

:::::::
relation, and the development of anisotropic crystal fabrics compatible with the current deformation regime. In the

embayed ice shelf test the most significant change in the deformation regime is clearly the transition to extensive

:::::::::
extensional

flow on approach to the ice shelf front. The contours of �

S

here are relatively well aligned with the ice flow so that flowing

ice experiences gradual changes in stress regime, and the magnitudes of strain rates (e.g., Fig. 4b) and velocities (Fig. 3)35
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indicate that in the region near the ice front, where the

:::::
results

:::
for

:::
the

:
Glen and ESTAR results vary

::::
flow

::::::::
relations

:::::
differ

appreciably, a progression of essentially compatible fabrics would be maintained. Indeed, under the prevailing deformation

and flow conditions these would even develop from random fabrics over a few km.

The ISMIP-HOM experiments reveal potential violations of the tertiary flow assumption, although the significance for the

flow field of these apparent short-comings needs to be assessed with regard to the somewhat artificial nature of the tests. Indeed5

as we saw, the difference between the ESTAR predictions and the

:::::
results

::
of

::::
the

::::::
ESTAR

::::
and

:
Glen flow relations (provided

E

G

= E

S

) was small, except for ISMIPB with L= 5 km, although of course ESTAR

:::
the

::::::
ESTAR

::::
flow

:::::::
relation makes no claim

to correctly describe the transient rheology

::::::::::
deformation

::::
rates of ice with an evolving anisotropy.

The ISMIP experiments have a spatial periodicity, which could allow one portion of the repetitive basal conditions to domi-

nate the overall flow. Also, there is no surface mass budget in these experiments so that, as remarked earlier, the ice surface is a10

flow line

::::::::
streamline, whereas in a system with surface accumulation fresh snow is always being added and advected down into

the ice sheet where it makes the transition to solid ice. Accordingly, in the flow regime of these prognostic experiments even

the surface layers would be regarded as having developed some anisotropy just as the lower layers would, since they have in

principle been deforming over an arbitrarily long time.

The main issue about the establishment of tertiary flow conditions in the periodic environment of our ISMIP experiments15

concerns the possible cycling of the flowing ice through a variety of stress regimes. This leads to transition regions where the

stress regime and presumably the crystal anisotropy would be evolving, and the compatibility assumptions behind ESTAR could

::
the

:::::::
ESTAR

::::
flow

:::::::
relation

:::::
would

:
locally be violated. Clearly the spatial extent of transitional flow and the delay in attaining any

new tertiary state depends on the magnitudes of the strain rates and the velocity of the ice. By combining these with a threshold

for accumulated strain as the criterion for development of a compatible (tertiary) fabric under a persistent flow regime, the20

extent of a transition zone can be estimated. This scale can then be compared to the horizontal variation of the stress regime.

Selecting the 10% strain required to develop a compatible anisotropy from initially randomly oriented ice should provide a

conservative yardstick, when applied to gradual changes in stress regime.

The patterns of stress regimes revealed by the distributions of �

S

(Figs. 6d, 7d, 9a, and 10f) indicate where along-flow

variations in stress regime might be too rapid to sustain the assumption that a compatible crystallographic anisotropy had25

evolved. For the ISMIPB experiments this concern is essentially focussed to the near surface spikes in �

S

around the two

locations where longitudinal deformations vanish, since the anisotropy of deeper ice will be compatible with deformation

dominated by simple shear. There may be some complications with a slow cycling of the upper levels between extensive

:::::
tensile

:
and compressive flow. Very near the surface, the �

S

peak intervals are narrow and the shear strain rates there are very

small (corresponding to transition scales of several kilometres) so that there will be no appreciable development of a shear30

compatible fabric. Either side of the peaks, the main extensive

:::::
tensile

:
and compressive flow domains for L= 20 km (see

Fig. 6e) are ⇡ 5 km long and have transition scales of < 1 km which suggests that the strongly normal stress dominated upper

layer will be mainly in tertiary state. Turning to the transient shear intrusions into this layer: at 100 m depth over the bump the

shear transition scale is 3 km while at 200 m depth over the depression the shear transition scale is ⇡ 5 km, suggesting that

that the �

S

peaks do represent a local failure of ESTAR

:::
the

::::::
ESTAR

::::
flow

:::::::
relation’s tertiary assumption. Throughout the domain35
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the lower half of the ice column has transition scales of  300 m which, given the gradual variations in �

S

and the direction of

ice flow, indicates that region is in the tertiary state.

For ISMIPB with L= 5 km, which displays a generally deeper band of normal stress dominated regime (Fig. 7d), the

transition scales for the compressive and extensive

::::::
tensile regions are ⇠ 500 m for regions of ⇡ 1 km in extent, while the

shear transition scales at 100 m depth above the bump and 200 m depth above the depression are now ⇠ 10 km and ⇠ 1 km,5

respectively. For most of the domain the transition rates in the lower half of the ice column are  100 m, although this rises to

nearly 1000 m above the bedrock bump.

In the ISMIPD case, for L= 20 km, the pattern of �

S

(Fig. 9a) shows there are also transitions between simple shear

dominated and extension dominated deformation associated with the slippery region, with varying abruptness at different

depths, and some of the contours of �

S

in this instance almost orthogonal to the ice flow. A complication is that there is very10

little longitudinal deformation (Fig. 9e) occurring over the slippery region because the overall flow is controlled by the periodic

sticky spot. Accordingly, there would not be any significant fabric evolution across this ⇠ 4 km region (estimated transition

scales there are > 40 km) so that the tertiary assumption and using E

C

(since �

S

= 1) would be inappropriate. Once again,

the low strain rates here (Figs. 9e-f) translate into very stiff ice and might make the influence of ESTAR enhancement factors

relatively unimportant. A factor of 100 in "̇

e

changes viscosity by a factor of 21.5, whereas the maximum viscosity contrast15

from E(�
S

) is 1.39. The shear strain rates are also very low, with transition scales > 1 km except very close to the bed over

the sticky spot. Accordingly, while a compatible fabric could be expected where the large �

S

values are shown in Fig. 6a, its

presence would be due to the periodic flow, and the inability of the �

S

⇠ 0 region to modify it.

For the last test, ISMIPD with L= 5 km, strain-rates are once again very low, and there is no simple structure to the picture

of the stress regime portrayed by �

S

in Fig. 10f. Below mid-depth there is a periodically continuous band of shear that might20

favour the development of crystal anisotropy, but clearly the tertiary flow assumption of ESTAR

:::
the

:::::::
ESTAR

::::
flow

:::::::
relation

would not be particularly useful here.

The focus of this study was to explore the effect on the dynamic response of ice sheets of using an anisotropic (ESTAR)

description of rheology,

:
a

:::::::::
constitutive

:::::::
relation

::::::::::
appropriate

::
to

:::
the

::::::
tertiary

::::
flow

:::::::
regime,

:::
i.e. sensitive to the varying proportions

of simple shear and normal stresses, compared to using the standard (Glen) isotropic description of rheology

:::
flow

:::::::
relation. Our25

results, particularly with respect to the differences between the Glen and ESTAR simulations, are sensitive to the choice of

E

S

and E

C

. Experimental evidence (Treverrow et al., 2012) suggests that the ratio E

S

/E

C

= 8/3, rather than their overall

magnitude, is the dominant control in the level of enhancement E(�
S

) and corresponding dynamic response of grounded

and floating ice sheets. Here, we used values of E

S

= 8 and E

C

= 3, which are based on laboratory experiments of tertiary

creep (Treverrow et al., 2012), and which yield values for the overall enhancement that are compatible with estimates from30

borehole inclination measurements (e.g., Russell-Head and Budd, 1979) and modelling studies (e.g., Wang and Warner, 1999).

Nevertheless, further investigation into suitable values of E

S

and E

C

to use in numerical modelling studies of grounded and

floating ice sheets is warranted. Indeed, with the implementation of ESTAR

::
the

:::::::
ESTAR

::::
flow

:::::::
relation

:
in ISSM, it might be

possible to use inverse methods to infer

:::::
search

:::
for

:
values of E

S

and E

C

that improved the match between modelled and

observed surface velocities.35
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In order to examine the impact of an anisotropic rheology

:
a

::::
flow

::::::
relation

::::::::::
appropriate

::
to

:::
ice

::::
with

:
a

::::::::::
compatible

:::::::::::
flow-induced

:::::::::
anisotropic

::::::
crystal

:::::
fabric

:
on simulated ice dynamics, the ISMIP-HOM and embayed ice shelf experiments were carried out

assuming isothermal conditions. However, as discussed earlier, real ice sheets and ice shelves typically have cold, upper layers

and strong vertical gradients in temperature, and these will often be stronger controls on vertical contrasts in deformation rates,

through A(T 0) (Eqs. 2-3), than a factor of 3 to 8 produced by anisotropic enhancement

::::::::::::
enhancements

:::
for

::::::
tertiary

::::
flow.5

8 Conclusions

We have investigated some consequences of incorporating the flow properties of anisotropic ice into modelling flow in ice sheets

and ice shelves. Specifically, we have investigated the flow response to prolonged deformation under a constant or slowly chang-

ing stress regime and the associated development of an anisotropic crystal orientation fabric compatible with that deformation,

as represented by the empirical, scalar, tertiary , anisotropic rheology

::::::::::
constitutive

::::::
relation

:::
for

:::
ice

::::
with

:
a

:::::::::
compatible

::::::::::
anisotropic10

:::::
crystal

::::::
fabric of Budd et al. (2013) – ESTAR

:::
the

:::::::
ESTAR

::::
flow

:::::::
relation. Having implemented this rheology

::::
flow

::::::
relation

:
in

ISSM, we made initial studies in the context of idealised experiments: for an embayed ice shelf, and in two-dimensional mod-

els of grounded ice flow over varying topography and variable basal friction previously explored by ice flow modellers (Pattyn

et al., 2007, 2008). We have demonstrated that ESTAR is a computationally-efficient anisotropic rheology

:::
the

:::::::
ESTAR

::::
flow

::::::
relation

::
is

::::::::::::::
computationally

:::::::
efficient

:
for large-scale ice sheet models. We have highlighted that ESTAR

:
it

:
produces different15

flow responses compared with the prevailing rheological description based on the Glen flow relation, in regions where simple

shear and normal stresses, and combinations of these, are drivers of ice flow. We have also noted some possible limitations

of this empirical treatment of the tertiary flow regime, although their significance and whether there is scope for developing

the empirical approach to resolve them remain to be determined. It would also be interesting to compare ESTAR

::
the

:::::::
ESTAR

::::
flow

::::::
relation with the predictions of modelling that uses more complex rheological descriptions

::::
using

:::::::::::::::::::::
microstructure-controlled20

:::::::::
constitutive

::::::::
relations, even if the comparison was

::::::::::
comparisons

::::
were

:
limited to local domains or idealised cases.

Our embayed ice shelf results have significant implications for ice sheet model simulations that rely on the Glen flow relation

to simulate past, present, and future ice flow, which are used to constrain uncertainty in reconstructions and projections of sea

levels. In particular, the effect of unrealistically fast thinning ice near the calving front, as simulated with the Glen flow relation,

is to deform the ice shelf, which could lead to unrealistic ice shelf geometries and affect buttressing if it were to spread beyond25

the “passive ice” sector (Furst et al., 2016) near the ice front.

With the implementation of ESTAR

::
the

:::::::
ESTAR

::::
flow

::::::
relation

:
into ISSM completed, further investigation into the capabilities

of ESTAR

::
its

:::::::
capacity to replicate real-world ice sheet flow in Antarctic outlet glaciers is currently underway.

Code availability. The results from this work are reproducible using ISSM (from version 4.11). The current version of ISSM is available for

download at https://issm.jpl.nasa.gov. The ISMIP-HOM experiments are documented in Pattyn et al. (2007).30
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Figure 1. Strain

::::::::
Schematic

::::::::
illustrating

:::::
strain rate characteristics of polycrystalline ice undergoing deformation driven by single stresses as

measured in laboratory experiments. The part of the curve corresponding to tertiary (steady-state) anisotropic creep is relevant to the defor-

mation of ice masses in typical ice sheets and glaciers. The red (blue) curve illustrates the result of simple shear-alone (compression-alone)

stress configurations. Note that the

:::
The ratio of the shear enhancement factor E

S

to the compression enhancement factor E

C

is approximately

8/3
::::::::::::::::::
(Treverrow et al., 2012) , and the enhancement due to compression-alone is approximately three times that of the secondary (minimum)

creep rate.
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) to the analytical

solutions in Eqs. 13-17 for increasing mesh resolutions.
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Figure 3. Rectangular ice shelf HO

:::::::::
higher-order

:
steady-state surface fields. (a) Velocity magnitude (m yr

�1
) for the Glen flow relation

(E

G

= 8); (b) velocity magnitude (m yr

�1
) for ESTAR; (c) ratios (i.e., ESTAR/Glen) of velocity magnitudes; (d) thickness (m) for the Glen

flow relation (E

G

= 8); (e) thickness (m) for ESTAR; and (f) ratios (i.e., ESTAR/Glen) thicknesses. The black arrow indicates the direction

of flow.
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:::::::::
higher-order steady-state surface fields. (a) ESTAR shear ratio �
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; (b) shear strain rate resolved

on the non-rotating shear plane (NRSP) "̇

0
(s
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); and (c) effective strain rate "̇

e
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Figure 6. ISMIPB FS

:::::::
full-Stokes

:
steady-state results with horizontal extent L= 20 km. (a) Horizontal velocity v

x

(m yr

�1
) for the Glen

flow relation with E

G

= 8; (b) v
x

(m yr

�1
) for ESTAR with E

S

= 8 and E

C

= 3; and (c) ratio between the Glen and ESTAR v

x

fields; (d)

ESTAR shear enhancement factor �

S

(Eq. 6); (e) ESTAR normal strain rate (i.e., x�x strain rate; s

�1
); and (f) ESTAR shear strain rate (i.e.,

x� z strain rate; s

�1
). The black contours in (e) correspond to the curves where ✏̇

xx

= 0. Note the log scale in (f).
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Figure 7. ISMIPB FS

::::::::
full-Stokes steady-state results with horizontal extent L= 5 km. (a) Horizontal velocity v

x

(m yr

�1
) for the Glen

flow relation with E

G

= 8; (b) v
x

(m yr

�1
) for ESTAR with E

S

= 8 and E

C

= 3; and (c) ratio between the Glen and ESTAR v

x

fields; (d)

ESTAR shear enhancement factor �

S

(Eq. 6); (e) ESTAR normal strain rate (i.e., x�x strain rate; s

�1
); and (f) ESTAR shear strain rate (i.e.,

x� z strain rate; s

�1
). The black contours in (e) correspond to the curves where ✏̇

xx

= 0. Note the log scale in (f).
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Figure 8. ISMIPD FS

::::::::
full-Stokes steady-state results with horizontal extent L= 20 km. (a) Glen horizontal velocities v

x

(m yr

�1
); (b)

ESTAR v

x

(m yr

�1
); (c) ratios of ESTAR/Glen v

x

; (d) ratios of ESTAR/Glen deformation velocities (i.e., the difference between v

x

and the

sliding velocity, which is taken to be equal to the velocity along the basal mesh points); and (e) ratios of ESTAR/Glen viscosities.
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::::::::
full-Stokes steady-state enhancement factors and normal and shear strain rates with horizontal extent L=

20 km. (a) �
S

; (b) normal strain rates (s

�1
); and (c) shear strain rates (s

�1
). The black contour lines in (b) correspond to the curves where

✏̇

xx

= 0. Note the log scale in (c).
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::::::::
full-Stokes

:
steady-state results with horizontal extent L= 5 km. (a) Glen horizontal velocity v

x

(m yr

�1
, with

E

G

= 8); (b) ESTAR v
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(m yr

�1
); (c) ratio of ESTAR/Glen v
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; (d) ratio of ESTAR/Glen deformation v
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; (e) ratio of ESTAR/Glen viscosity;

(f) ESTAR �

S

; (g) ESTAR normal strain rate (s

�1
); and (h) ESTAR shear strain rate (s

�1
). The black contours in (g) correspond to the curves

where "̇

xx

= 0. Note the log scale in (h).
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Table 1. Computational times for full-Stokes simulations of the embayed ice shelf (Sect. 6.1) using Glen and ESTAR

:::
flow

:::::::
relations

:
for

increasing mesh resolution. The model is simulated for 1 month and for a total of 833 time steps in each case. Dof stands for model degrees

of freedom.

Dof Vertices CPUs Glen walltime (s) ESTAR walltime (s)

2210 10040 16 9084 9281

2760 15665 32 10467 10778

3310 22540 64 12920 13008

4410 40040 128 20852 21008

8820 80080 256 59057 59934
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