
Manuscript ID: tc-2017-54

Title: Implementing an empirical scalar tertiary anisotropic rheology (ES-

TAR) into large-scale ice sheet models

Authors: Felicity Graham, Mathieu Morlighem, Roland Warner, and Adam Treverrow

Overall response to the reviewers

We thank the reviewers for their initial comments, which have led to a substantially improved manuscript.
The two main points highlighted by both reviewers concern the philosophy underlying ESTAR,

specifically whether or not it can be regarded as a physically-based anisotropic rheology that is appli-
cable for most of the ice sheet. We recognise that an understanding of the conceptual basis behind
ESTAR, particularly how it relates to anisotropic properties of polar ice and tertiary creep, is important
and deserves discussion.

However, the main aim of this paper is not to provide a comprehensive review of anisotropic flow
relations, nor a justification of ESTAR or comparison of ESTAR with other anisotropic approaches
(e.g., fabric based rheologies). Instead, the aim of this manuscript is to present the implementation
and some initial testing of ESTAR within the context of a numerical ice sheet model. We are not
introducing ESTAR for the first time: it was derived and discussed in detail in Budd et al. (2013) and
a comparison of a simplified version of the generalised ESTAR from Budd et al. (2013) with some of
the leading anisotropic flow relations was undertaken by Treverrow et al. (2015). A detailed reprise of
Budd et al. (2013) is not feasible here, and would be inappropriate in the present context.

Nevertheless, we provide comments to the reviewer’s main points below, and have amended the
manuscript, where appropriate. In particular, we have expanded on the background to anisotropic
flow relations (Sect. 2), modified the results section (Sect. 5), included ISMIP-HOM experiments
investigating the impact of aspect ratios, as suggested. We have modified and reordered the discussion
section (Sect. 6) to discuss more broadly the relevance and applicability of ESTAR, and have expanded
on the conclusions (Sect. 7).

Our responses to each of the reviewers’ specific comments are below, with text from each reviewer’s
comments presented in italics. Where necessary, we have segmented the reviewers’ comments to deal
with specific issues sequentially.

All line number and figure references are to the revised manuscript unless otherwise indicated.
A version of the manuscript with all changes marked-up is provided at the end of this response

document.
Kind regards,

Dr Graham and coauthors

REVIEWER 1

Main point

R1: My main concern with this paper is that ESTAR is presented as a physically-based alternative to
represent the anisotropic rheological properties of polar ice. There is 2 problems with this presentation;
first ESTAR is not an anisotropic flow relation; second, ESTAR is based from laboratory measurements
for tertiary creep of polycrystalline ice and thus does not apply in large portions of the ice-sheet. I
detail these two points below.
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Point 1: Anisotropy:
R1: It can only be applied to properties that depend on the orientation of the material. Here the
flow relation (3) is stress-configuration dependant, but is isotropic; i.e. for a given stress state, the
mechanical response (the strain-rate state) does not change by rotation of the sample as, by definition
of ESTAR, the fabric instantaneously adapt to the stress state, and thus to any rotation of the stress
state. The dependance of the flow law to the stress state, results from the mechanical anisotropy of the
ice crystal and the anisotropy of the crystal orientations (the fabric) that develop during tertiary creep;
but the mechanical behaviour predicted by ESTAR is isotropic. Note that this property is not due to the
scalar relationship, the CAFFE model (e.g. Seddik et al., J. Glaciol. 2008) is anisotropic as its scalar
enhancement factor depends on the direction of the stress state with respect to the ice fabric, and thus
the mechanical response depends on the orientation of the stress state relative to the ice sample.

We are certainly presenting ESTAR as a physically-based alternative to the standard Glen flow
relation.

The reviewer is incorrect in stating that ESTAR is isotropic. The conceptual origin of the de-
scription of anisotropy in ESTAR is based on considerable observations from ice cores, boreholes and
laboratory experiments (e.g. Jacka and Maccagnan, 1984; Dahl-Jensen and Gundestrup, 1987; Gao and
Jacka, 1987; Budd and Jacka, 1989; Etheridge, 1989; Li and Jacka, 1998; Morgan et al., 1998; Wang
and Warner, 1999; Treverrow et al., 2012). Observations such as these demonstrate that if the stress
configuration is changed within a fixed reference frame then the compatible fabric that develops in re-
sponse to that stress is correspondingly altered, i.e. specific fabric patterns are associated with specific
stress configurations (note that in the following we use the term ‘fabric’ to describe the distribution
of crystallographic c-axis orientations). This is valid provided that the stress configuration remains
stable for a period that exceeds the time (or strain) required for the microstructure to adapt to that
state of stress. Since polycrystalline anisotropy is fundamentally linked to microstructure (including
fabric, but not exclusively so) the anisotropic response of an aggregate can be directly related to the
present stress configuration, if that is a suitable indication of a persistent recent strain history.

Identification of the local non-rotating shear plane (normal, n), the simple shear stress, ⌧ 0, acting
on that plane and its magnitude relative to the total effective stress, ⌧

e

, summarise the computational
framework for specifying the anisotropic enhancement factor, E(�

S

), in ESTAR (Equations 4-6). The
parameter �

S

also characterises the fabric pattern, i.e., when �

S

= 1 there will be a strong single
maximum, while when �

S

= 0, there will be c-axes concentrated around a conical surface centred
on the compression axis – a small circle girdle. The anisotropy of E(�

S

) is derived from the spatial
variability in the flow field and its dependence on the deformational component of the vorticity.

The concepts of rheology and its description in a flow relation can sometimes become confused.
ESTAR is the representation of the deformational response of ice with a crystal fabric anisotropy
compatible with prolonged deformation under a stable stress regime – this is the ‘tertiary’ aspect
of ESTAR. When the compatibility requirement is considered, it is clear that there is no sense in
contemplating arbitrary rotations between the stress configuration and anisotropic crystal fabrics –
this relates to the deformability of anisotropic ice. Regarded in this light, it seems to us that the
suggestions of both reviewers that one could meaningfully consider an arbitrary rotation of spatially
anisotropic material properties and the applied stresses breaks the intrinsic point of ESTAR. The point
also seems semantic – the rheology of polycrystalline anisotropic ice versus an anisotropic rheological
description for polycrystalline ice.

This reviewer notes correctly that the enhancement factor in the CAFFE flow relation is anisotropic
since it is defined by the local stress field and its orientation relationship with respect to a polycrys-
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talline aggregate, and rotation of one relative to the other produces a different effect. In CAFFE the
explicit inclusion of fabric in defining the deformability of polycrystalline ice allows the instantaneous
flow response for any arbitrary combination of stress and fabric to be calculated. CAFFE and ESTAR
are structurally similar in featuring a collinear relationship between stress and strain rate tensor com-
ponents and hence each can be interpreted as an enhancement factor, defined as a function of some
experimentally-based enhancement parameters and the local stress field. A key difference between the
two relations is that for ESTAR fabric is not explicitly included in specification of the enhancement.
By linking the enhancement directly to the relative magnitude of the components of �

0 via E(�
S

),
ESTAR is restricted to a subset of the fabric/stress combinations that can be contemplated with mi-
crostructure based approaches, such as CAFFE. Importantly, these combinations where ESTAR is
applicable are those where fabric has evolved to be compatible with the local stress field. Put another
way, ESTAR only allows contemplation of tertiary creep (addressed on P2L5-13; P5L5-18; P7L1-4).
This is not a problem since tertiary creep is relevant to the vast majority of the most dynamically
active regions of an ice sheet. In the revised manuscript, we have noted examples where this might
not be the case (P5L21-P6L12):

“There are of course zones within an ice sheet where the assumption of compatible tertiary
flow will not apply; however, we note that these zones will be restricted in their extent. We
contend that ESTAR will apply to the vast majority of the dynamically active regions of an ice
sheet, in particular those zones where creep deformation makes a significant contribution to the
overall flow. Specific zones where the assumption of tertiary creep may be inappropriate can be
summarised as those where fabric has not yet evolved compatibility with the flow, where there
is a rapid transition in the flow configuration, or where creep deformation makes only a minor
contribution to the overall dynamics.

For example, in very cold ice in a low stress setting, such as the uppermost layers of the polar
ice sheets, the time required to accumulate the strain necessary to develop a compatible fabric
may lead to a near-surface zone in which the assumption of tertiary creep is not valid. Since the
development of anisotropic fabrics provides an indication of the existence of tertiary flow, their
observation at modest depths, (e.g., . 100� 200 m; Morgan et al., 1997; DiPrinzio et al., 2005;
Treverrow et al., 2016) allows estimation of the maximum extent of the zone where tertiary
creep is not occurring. The observation within polar firn of microdeformation processes that are
necessary for the development of fabric throughout ice sheets (e.g. Kipfstuhl et al., 2009; Faria
et al., 2014) suggests that it may be appropriate to even further restrict the extent of the near-
surface zone for which the assumption of tertiary creep is not valid. Additionally, the nonlinear
nature of polycrystalline ice rheology leads to very high viscosities in low temperature and stress
environments, so that incorrectly estimating deformation rates due to the assumption of tertiary
flow in such regions may be of limited importance to simulations of ice sheet evolution.

Regions where rapid transitions in dynamic conditions can lead to abrupt changes in the
pattern of applied stresses and a potential breakdown in tertiary flow compatibility include ice
shelf grounding zones and other locations where basal traction is lost or abruptly changes, e.g.,
where ice flows over a subglacial lake, or with the onset of basal sliding in ice streams. The
convergence zones where tributary glaciers or ice streams merge with a larger flow unit at a high
angle may also lead to a transition in dynamic conditions that is problematic for the assumption
of tertiary compatibility. Of course the more highly dynamic the evolving flow regime, the more
rapidly a new compatible anisotropy will be established, so that the spatial interval where the
flow relations are inapplicable may be limited. While there is little guidance on how to extend
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empirical flow relations to parametrise ice rheology in these transition regions, we note that
similar difficulties exist for a Glen-type flow relation, which unlike ESTAR does not have the
benefit of being able to correctly describe anisotropic enhancement throughout the remainder
of the ice sheet.”

That tertiary creep is relevant to the majority of the ice sheet is crucial and is dealt with further
in responding to Point 2.

Point 2: Tertiary creep
R1: In the paper tertiary creep is presented as “the predominant mode of deformation in ice sheets”,
under the justification that it is usually reached after few percent of deformation in laboratory creep
experiments. For a detail review on the ductile deformation of ice and textures in polar ice masses one
can refer to the book “creep and fracture of ice” by Schulson and Duval. Tertiary creep in laboratory
experiments is explained by softening processes associated with migration recrystallization. Textures
resulting from migration recrystallization are indeed stress-configuration depend and the argument that
the microstructure evolves more rapidly than the flow configuration sufficiently robust to assume a
scalar isotropic relationship in the context of large scale ice flow modelling. In the central part of the
ice-sheets, temperature and strain energy can be too low to initiate migration recrystallization and there
is no evidence that it occurs except in the warm ice near the bed (the last 100-200 meters usually). See
texture measurements in all deep ice cores in the central regions of Greenland and Antarctica. There
is a general agreement that in the regions of normal grain growth and rotation recrystallization (most
of the ice thickness in the central regions) basically develops as the results of lattice rotation due to
intractrystalline slip; and thus reflect the deformation history.

The suggestion being made by the reviewer here seems to be that for laboratory experiments
conducted at relatively high temperatures, tertiary creep is heavily influenced by migration recrys-
tallisation, and that the results of such experiments are not representative of polar ice dynamics. The
extension of this argument is that at lower temperatures boundary migration (a process which allows
microstructural recovery during deformation) is less effective and does not contribute to fabric de-
velopment. It seems this line of reasoning is then used to discount our expectation that appropriate
fabrics, and perhaps tertiary creep conditions will be found in polar ice masses.

Following Schulson and Duval (2009), the reviewer states that fabric development at low tempera-
tures is largely attributed to rotation recrystallisation – a deformation process, without the accompa-
nying recovery afforded by boundary migration. Consequently for different polycrystalline aggregates,
deformed under identical conditions of stress, it is suggested that the resultant fabric patterns will
vary as a function of temperature due to the activity or otherwise of migration recrystallisation. As
per Schulson and Duval (2009) the temperature at which migration recrystallisation is claimed to be
sufficiently depressed, so that it no longer contributes significantly to fabric development, is ⇠ �15�C.
Differences in the fabrics that are supposed to form in uniaxial compression at various temperatures
are provided by Schulson and Duval (2009) as evidence to support this view. The small circle girdle
(or cone-type) fabrics that form at higher temperatures are claimed to give way to single maximum (or
cluster-type) fabrics at lower temperatures and stresses. The suggested implication of this for ESTAR
is that the enhancement parameter derived for uniaxial compression from laboratory experiments is
not valid for ice sheets. There are two problems with this argument and these appear to relate directly
to the reviewer’s concerns about how widespread tertiary creep is within an ice sheet. These issues
are addressed in detail below, following a summary reiterating our view, before returning to the rest
of the reviewer’s comments.
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More broadly, as described in Budd et al. (2013), tertiary creep describes a state of deformation
where the microstructure within a polycrystalline aggregate has evolved to be compatible with the
stress field, and this results in the development of polycrystalline anisotropy. A conspicuous feature of
tertiary creep is the development of a fabric and to an extent one can remain agnostic about the actual
microdeformation and recovery mechanisms that contribute to the development of this state. The
anisotropic nature of the macroscopic response, and its spatial variability, is of primary importance to
modelling large-scale ice sheet dynamics, not the specific mechanisms of microdeformation.

In short, we consider tertiary creep to be far more widespread than reviewer 1 claims it to be. Of
course there are zones within the ice sheet where tertiary creep is not relevant and the manuscript has
been altered to more clearly highlight these (e.g., P5L21-P6L12 – as quoted directly in our response
to Point 1 above).

Comment to the reviewer on fabric development and the extent of tertiary creep in ice
sheets

First we discuss the temperature range over which small circle girdle fabrics occur in response to
uniaxial compression and then we address the issue of whether or not a single maximum fabrics can
be associated with uniaxial compression.

Small circle girdle/cone-type fabrics

From laboratory experiments there is considerable evidence (e.g. Jacka and Maccagnan, 1984; Jacka,
1984; Gao and Jacka, 1987; Jacka and Li, 2000; Treverrow et al., 2012) supporting the formation of
small circle girdle fabrics in response to uniaxial compression. That this occurs is not in question here,
rather it is the issue of to what extent similar patterns have been observed in the polar ice sheets.

Law Dome in East Antarctica provides a good example of an approximately radial dome whose
dynamics are mostly isolated from the remainder of the Antarctic Ice Sheet. Observations from the
A001 core drilled at Law Dome summit, where the ice thickness is ⇠ 1200m show a distinct small
circle girdle fabric at a depth of 318m (see Fig. 3a, Budd and Jacka, 1989). At this depth uniaxial
compression is expected to be dominant and the in situ temperature is ⇠ �22�C. We highlight this
observation since it demonstrates that small circle girdle fabrics can form in response to uniaxial com-
pression at temperatures below the ⇠ �15�C threshold for the activity for migration recrystallisation
that is suggested by Schulson and Duval (2009). Small circle girdle fabrics have been recorded at many
other locations, e.g. cores drilled at Siple Dome (DiPrinzio et al., 2005), Byrd (Gow and Williamson,
1976), Dye 3, Greenland (Herron et al., 1985) and the Amery (Budd, 1972) and Ross ice shelves (Gow,
1963). Importantly, some of these observations correspond to locations where the in situ temperatures
were even lower than the ⇠ �22�C described for the Law Dome, A001 example.

Perhaps one reason why small circle girdle fabrics are considered by some to be the preserve of
uniaxial compression laboratory experiments conducted at high temperatures and/or stresses is that
these fabrics are not frequently identified in ice cores since ideal dome summits are uncommon, i.e.,
the vertical shortening is typically associated with different horizontal strain rate components in radial
directions, particularly at depth. Even at sites that provide a good approximation of a dome surface, the
inevitable depth-evolution of the flow configuration leads to correspondingly different fabrics. Indeed,
at ice divides a nearly 2D plane-strain flow can be expected.

Under conditions of plane-strain a restricted form of the cone-type fabric pattern is encountered.
These are 2-pole fabrics where the individual maxima are aligned in the direction of horizontal extension
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and separated by the small circle girdle cone angle (e.g. Gow, 1963; Wakahama, 1974). In laboratory
ice deformation experiments, similar levels of flow enhancement are observed for plane strain and
unconfined uniaxial compression (e.g. Wilson, 1982; Wilson and Peternell, 2012; Budd et al., 2013).
For ESTAR this means E

C

has a constant value for both plane strain and unconfined compression.
Assuming this equality holds for any combination of normal deformations allows the Budd et al. (2013)
flow relation (ESTAR) to be generalised via specification of the ⇣-parameter.

Single maximum/cluster-type fabrics

As noted above, strongly clustered vertical single maximum fabrics are routinely observed at depth in
polar ice sheets. Contrary to what we interpret as the opinion of reviewer 1, we do not suppose that
these fabrics form in response to uniaxial compression at temperatures where the deformation regime
is dominated by rotation recrystallisation and recovery by migration recrystallisation is negligible.
Where strong single maximum fabrics have been observed in polar ice sheets these can be explained by
the contribution of simple shear to the local dynamics – this includes ice-coring sites in central regions
of Antarctica and Greenland (e.g. Gow and Williamson, 1976; Russell-Head and Budd, 1979; Azuma
and Higashi, 1984; Tison et al., 1994; Gow et al., 1997; Morgan et al., 1997, 1998; Thorsteinsson et al.,
1997; Azuma et al., 1999; DiPrinzio et al., 2005; Durand et al., 2007; Montagnat et al., 2012, 2014;
Weikusat et al., 2016).

A primary concern when selecting a site to drill an ice core for a palaeoclimate record is that as far
as possible it should be dynamically quiescent. Despite this aim it is clear that considerable shear can
exist well above bedrock at the dome summit or ridge divide locations chosen for palaeoclimate studies.
At drilling sites where there are measurements of borehole inclination to accompany the corresponding
fabric data it is apparent that the development of distinct single maxima fabrics is associated with
increasing levels of a simple shear deformation in the overall flow regime at depth (e.g. Dahl-Jensen
and Gundestrup, 1987; Etheridge, 1989; Morgan et al., 1998; Jansen et al., 2017). No summit/divide
is ideal, nor are they necessarily stationary over glacial cycles. Combined, these factors increase the
likelihood of encountering single maximum fabrics (and simple shear) at depth at a palaeoclimate
coring site. Even at small distances (1-2 ice thicknesses) from an ideal summit, simple shear is present
at modest depths and makes a significant contribution to the overall deformation.

In Greenland the GRIP-NGRIP-NEEM ice cores were drilled along a ⇠ 700 km section of flow
line. The coring sites are located nearly equidistant along the flow line, with GRIP at the highest
elevation and NEEM furthest along the flow line. For the GRIP, NGRIP and NEEM sites Montagnat
et al. (2014) have estimated the depth at which the vertical and simple shear strain rates are equal.
Their estimates are 79%, 73% and 65% of the total ice thickness, respectively. As noted by Montagnat
et al. (2014), these estimates do not make any allowance for the effect of mechanical anisotropy on
enhancing strain rates. It is reasonable to expect that doing so would lead to a proportionally greater
increase in the shear strain rates relative to the vertical strain rates. This would shift estimates of
the depth where the simple shear and vertical strain rates are equal to lower values, i.e. closer to the
ice sheet surface. Results from Law Dome provide some interesting context for these estimates since
the simple shear strain rates have been quantified by repeat measurements of borehole inclination at
several locations and the vertical strain rate can be estimated by similar methods to those employed
by Montagnat et al. (2014). At the Law Dome, Dome Summit South (DSS) site an ice core was
drilled 4.7 km (< 4 ice thicknesses) SSW of the dome summit. Here the simple shear and vertical
strain rates are equivalent at ⇠1/2 the total ice thickness (Morgan et al., 1998; Treverrow et al., 2015),
demonstrating that considerable simple shear can develop throughout the depth profile very close to a
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dome summit. In accord with the experimental observations of Budd et al. (2013), observations from
ice cores reveal there is a progression towards increasingly strong single-maximum fabrics and relatively
higher strain rates as the proportion of simple shear within the deformation regime increases (even
when the effect of temperature on flow rates is considered, e.g. Etheridge, 1989; Wang and Warner,
1999; Morgan et al., 1997, 1998). These observations are part of the fundamental basis of ESTAR.

Laboratory experiments also demonstrate the formation single maximum fabrics in simple shear
(e.g. Bouchez and Duval, 1982; Li and Jacka, 1998; Li et al., 2000; Wilson and Sim, 2002; Budd et al.,
2013; Wilson and Peternell, 2012). As described in Schulson and Duval (2009) a two-maxima fabric
forms initially during simple shear experiments. The dominant maxima is normal to a plane referred
to as the permanent (Bouchez and Duval, 1982) or non-rotating (Budd et al., 2013) shear plane. With
increasing strain the second maxima rotates towards the dominant maxima and vanishes (e.g. Bouchez
and Duval, 1982).

The only experiments we are aware of which demonstrate that a single maximum fabric can form in
response to uniaxial compression have been conducted at very high deviatoric stresses in conjunction
with a high confining pressure. Prior et al. (2015) present a diffuse single maximum fabric for a sample
deformed in uniaxial compression to a strain of 0.37 with a deviatoric stress of 15MPa at �43�C where
the confining pressure was 50MPa. Similar experiments by Qi et al. (2017) at �10�C with 10MPa

confining pressure show that as the deviatoric stress increases from 1.30MPa to 4.31MPa the resultant
fabric undergoes a transition from a small circle girdle to a diffuse single maximum. This behaviour is
attributed to the increased activity of rotation recrystallisation at higher stresses. Importantly, these
experiments do not support for the concept of a single maximum forming in response to compression
within an ice sheet, since they clearly demonstrate that a small circle girdle is expected for deviatoric
normal stresses  1.30MPa.

To be clear, we are not suggesting that temperature and stress have no influence on the relative
activity of microdeformation and recovery processes occurring within polar ice sheets and the formation
of fabric. A detailed comparison of the fabrics encountered in Antarctic and Greenland ice cores and
laboratory experiments is beyond the scope of the present response. However, it is worth noting that
factors other than stress (both magnitude and configuration) can influence the development of fabric.
For example, the presence of soluble and insoluble impurities is related to fluctuations in fabric and
grain size over small spatial scales that are observed in ice cores (e.g. Morgan et al., 1997; DiPrinzio
et al., 2005).

The series of uniaxial compression experiments of Jacka and Li (2000) provide some insight into
the effects of temperature and stress magnitude on the rate at which fabric and strain rates evolve as a
function of accumulated strain. Their results suggest that for temperatures below �15�C fabrics do not
evolve into the distinct small circle girdles that are observed at higher temperatures. For accumulated
strains of ⇠ 10% (or less) the observed fabrics are weakly anisotropic, displaying a minimal degree
evolution from the initially isotropic distribution of c-axis orientations. Unfortunately these fabrics
do not provide strong support for the development of either a small circle girdle or single maximum
fabric.

Jacka and Li (2000) conducted a single experiment at �45 �C, that unlike other experiments in the
series, was conducted in two stages to allow higher strains to be accumulated (e.g. > 20%, Treverrow
et al., 2012). This experiment provides some support for reduced rates of fabric and strain rate
evolution at low temperatures and/or stresses. This experiment was incomplete when Jacka and Li
(2000) was published, but nevertheless was showing signs of a transition from secondary to tertiary
creep (E>1). At the end of the first stage the sample was machined back to a cylindrical shape prior to

7



recommencing deformation. The experiment was terminated some considerable time after the initial
results were published. Analysis of the sample (T.H. Jacka pers. comm) demonstrated that while a
weak small circle girdle fabric did eventually form with continued deformation, the strain required for
this at �45 �C was higher than the 8-10% observed in the experiments at higher temperatures and
stresses.

That lower rates of fabric evolution may be expected at lower temperatures (or stresses) is con-
sistent with the detailed assessment of dynamic recrystallisation within polar ice presented by Faria
et al. (2014). They describe how multiple microdeformation and recovery processes are active during
microstructural evolution, even in the very cold ice (T < �20 �C) present in the upper regions of the
polar ice sheets. Importantly, Faria et al. (2014) note that the relative contribution of these processes
to microstructural evolution can vary according to temperature and strain rate.

Since small circle girdle fabrics can form due to uniaxial compression in ice sheets – even if they
are not widespread – then allowances must be made for the activity of boundary migration processes
at lower temperatures than the suggested threshold values of ⇠ �10�C (Duval and Castelnau, 1995)
or ⇠ �15�C (Schulson and Duval, 2009). Observations from polar firn and ice cores, e.g., Kipfstuhl
et al. (2009); Weikusat et al. (2009b,a) reveal microstructural features which clearly demonstrate
that internal strain energy is sufficient to allow dynamic recrystallisation processes, including strain-
induced boundary migration, to contribute to microstructural evolution at temperatures below �20 �C.
Modelling of the microstructural evolution of firn (Steinbach et al., 2016) demonstrates the crucial role
of air bubbles in the development of the strain localisation and strain energies that are sufficient to
drive dynamic recrystallisation at low temperatures in firn.

The point of the preceding discussion is to demonstrate that tertiary creep and the development of
polycrystalline anisotropy is associated with the formation of a statistically steady state microstructure
(including fabric) that persists under stable conditions of temperature and stress. Kipfstuhl et al.
(2009) and Faria et al. (2014) demonstrate that tertiary creep cannot be simply defined according to
activity (or otherwise) boundary migration. Consequently it is incorrect to invoke this single specific
microdeformation process as the determinant of fabric variations observed with depth (or temperature)
in ice sheets. Kipfstuhl et al. (2009) demonstrate that strain-induced boundary migration is active
below the threshold temperatures proposed by Schulson and Duval (2009).

Regarding the issue of just how widespread tertiary creep is within polar ice sheets, Faria et al.
(2014) describe (with specific reference to the EDML site) how the densification of firn, driven by a
reduction in pore space, must be accommodated by ice deformation. Total accumulated strains within
firn are high enough to support the conclusion that tertiary creep is occurring there. Faria et al. (2014)
describe how the occurrence of tertiary creep, without the development of a corresponding pattern of
preferred c-axis orientations is due to the complex geometry of the pore space in the two-phase ice-air
system which produces localised heterogeneity in the stresses driving deformation. Thus, any localised
development of preferred c-axis orientations would be masked by the spatial variability in local stress
and strain.

There are some counter-intuitive aspects to the argument for single maximum fabrics forming in
response to compression. Firstly, for deformation largely accommodated by basal slip, the effective
viscosity will continually increase if a single maximum evolves in response to compression. Conse-
quently high levels of deformation would have to be accommodated by non-basal processes. Secondly,
if a single maximum forms in compression due to the inactivity of migration recrystallisation, then it is
hard to see why single maximum fabrics become stronger with increasing depth in an ice sheet where
the ice is is also warmer. If a single maximum did form in an ice sheet due to compression, as the
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ice becomes warmer we should see a transition to a cone-type fabric, since the activity of migration
recrystallisation would be increased. The problem is that we don’t see such a progression in fabrics.

The multiple maxima fabrics observed in zones closest to bed in an ice sheet don’t provide the answer
here, since they are not the same as the cone-type small circle girdle fabrics associated with uniaxial
compression. Multiple maxima fabrics form due to the high activity of migration recrystallisation in
temperate ice. In polar ice sheets this often corresponds to warm ice near the bed that has undergone
a stress relaxation due to the effect of underlying bedrock topography on disrupting the large-scale
flow. The high levels of strain energy in relatively warm ice can drive migration recrystallisation. The
existence of a topographic disturbance to the flow can be deduced from horizontal velocity profiles
obtained from borehole inclination measurements. The inflection in these profiles close to the bed is
consistent with boundary layer flows where there is an adverse pressure gradient, i.e. the reduction in
velocity close to the stationary surface (the bed) exceeds expectations associated with either a neutral
or favourable pressure gradient.

We now return to the latter part of the reviewer’s comment about textures and tertiary creep,
which we repeat for convenience:

R1: Textures resulting from migration recrystallization are indeed stress-configuration depend and
the argument that the microstructure evolves more rapidly than the flow configuration sufficiently robust
to assume a scalar isotropic relationship in the context of large scale ice flow modelling. In the central
part of the ice-sheets, temperature and strain energy can be too low to initiate migration recrystallization
and there is no evidence that it occurs except in the warm ice near the bed (the last 100-200 meters
usually). See texture measurements in all deep ice cores in the central regions of Greenland and
Antarctica. There is a general agreement that in the regions of normal grain growth and rotation
recrystallization (most of the ice thickness in the central regions) basically develops as the results of
lattice rotation due to intractrystalline slip; and thus reflect the deformation history.

We agree with the reviewer that all development of anisotropic fabric reflects the deformation
history, more particularly, the recent deformation history. It is certainly true that within the lowest
100� 200m warm ice, high levels of strain energy and stress relaxation due to the effect of underlying
bedrock topography on disrupting the large-scale flow can lead to significant migration recrystallisation
and formation of multiple-maxima fabrics. The topographic disturbance to the flow can be deduced
from horizontal velocity profiles obtained from borehole inclination measurements. Such profiles are
consistent with flows where an adverse pressure gradient exists. However, as discussed above, it is
incorrect to suggest that there is ‘general agreement’ on a depth-progression of specific zones of normal
grain growth and rotation recrystallisation etc throughout an ice sheet. A more up-to-date review on
microdeformation in ice sheets is provided by Faria et al. (2014). The observations of Kipfstuhl et al.
(2009); Weikusat et al. (2009a,b) demonstrate that strain energy sufficient to drive strain-induced
boundary migration occurs throughout ice sheets, including firn layers. This view is also supported by
the numerical simulations of Steinbach et al. (2016).

R1: The combination of anisotropic textures and the high mechanical anisotropy of the ice mono-
crystal makes the ice polycrystal highly anisotropic. This has been confirmed by laboratory experiments
that have shown that the strain-rates for secondary creep of polycrystalline ice depends on the fabric
and its orientation with respect to the test configuration; while the tertiary creep is independent of the
initial fabric and depends only on the test configuration.

Yes, this final point is precisely the basic tenet of our theory, but only because the stress configu-
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ration has been applied for long enough to achieve the tertiary state. Tertiary creep of polycrystalline
ice is dependent upon the stress configuration and whether or not it is occurring is not simply a matter
of the activity of migration recrystallisation.

R1: All the studies presented in Sec. 2.1 as ‘microstructure approaches’, where motivated by
representing the mechanical anisotropy of polycrystalline ice that develops as a result of the development
of strain-induced preferred orientations of the ice crystals. They can not be opposed or compared to
the flow law presented here, as they don’t represent the same physical processes.

We disagree with the reviewer. What all flow relations aim to do is represent the bulk deformation
of a polycrystalline aggregate. Microstructure based flow relations, where fabric is an input, can
be applied equally to predictions of secondary or tertiary creep, or by extension to any arbitrary
combination of stress and fabric. ESTAR only claims to represent tertiary creep – a subset of the
cases that can be compared with microstructure based flow relations. Consequently comparisons with
microstructure based approaches are entirely valid provided that the appropriate combinations of fabric
and stress/deformations are considered. Laboratory experiments and ice cores for which corresponding
strain rate data are available from repeat measurements of the borehole inclination are valuable sources
of data that can be applied in such comparisons. This is particularly true for laboratory measurements
of tertiary creep since the applied stresses, strain rates and microstructure data are all available.

R1: Laboratory experiments for tertiary creep are certainly relevant for the regions where migration
recrystallization occurs; i.e. in temperate glaciers, in the bottom part of the central regions of the ice-
sheets and certainly in the margins where temperature and stresses are sufficiently high. These areas
are potentially important for the flow dynamics of polar ice sheets. The flow law presented in this paper
must be presented in this perspective, and not as an empirical approach to represent the strain-induced
mechanical anisotropy that results from the development of ice fabrics as seen in all deep ice-cores.
This implies to largely rewrite large parts of the abstract, introduction and second section, to discuss
the validity of the assumptions of the flow law and their domain of applicability for large-scale ice flow
modelling.

Based on the preceding discussion, we do contend that ESTAR is a legitimate ‘...empirical approach
to represent the strain-induced mechanical anisotropy that results from the development of ice fabric’.
We have slightly modified the manuscript to more clearly highlight the ‘domain of applicability’ of
ESTAR (P4L31-P5L18):

“A second approach comprising experimental and observational approaches (Li et al., 1996; Wang
et al., 2002a,b), modelling (Wang and Warner, 1998, 1999; Hulbe et al., 2003; Wang et al., 2003,
2004; Breuer et al., 2006; Wang et al., 2012), and theoretical studies (Warner et al., 1999), has
focussed on the development and assessment of an anisotropic flow relation for polycrystalline
ice in which the nature of the crystal fabric and the magnitude of strain rate enhancement,
E, are both regarded as determined by the stress regime. This assumption is supported by
experimental observations for pure polycrystalline ice, which demonstrate that an accumulated
strain of ⇠ 10% is required for the microstructure to evolve to a state that is compatible with
the flow configuration, irrespective of its initial condition (Jacka and Maccagnan, 1984; Gao
and Jacka, 1987; Li and Jacka, 1998; Treverrow et al., 2012). Specifically, this approach regards
the fabric and the enhancement in tertiary flow as determined by the relative proportions of
the simple shear and normal deviatoric stresses. For such flow relations, it is typically assumed
that the spatial variation in dynamic conditions (e.g., flow configuration and temperature) only
occur gradually in an ice sheet, so that the microstructure evolves to maintain compatibility

10



with these conditions. Through most of an ice sheet we expect that the rate of microstructural
evolution generally exceeds the rate at which the flow configuration varies, and that the distances
travelled by a parcel of ice during the time taken to develop a compatible fabric are typically
small compared to the relevant ice sheet spatial scales.

The anisotropic flow relation proposed by Budd et al. (2013) represents a continuation of this
strand. They found that a scalar anisotropic flow relation, i.e., one maintaining the collinear
relationship between the components of ~"̇ and ~

�

0 (⌧
e

is a scalar function of the second invariant
of ~�0) provides a good fit to laboratory data from combined compression and shear experiments.
Such a scalar anisotropic rheology also simplifies the requirements for implementation within ice
sheet models that are already compatible with the (scalar) Glen rheological description. Budd
et al. (2013) proposed what we term ESTAR as a suitable candidate scalar anisotropic rheology
generalised to arbitrary stress configurations (i.e., not restricted in its application to the limited
set of experimental stress configurations described in Li et al. (1996) and Budd et al. (2013)).”

Rewriting ‘large parts of the abstract, introduction and second section’ is not required. It is
important to bear in mind that this is a paper about the implementation of a flow relation, not its
formulation (P3L12-17).

Point 3:
Application to the embayed ice shelf
R1: I think it would have been more interesting to test the model with larger transverse dimensions,
i.e. to represent non-embayed ice-shelves, as I assume that simple shear along the margin will be less
important and the difference with Glen and a uniform enhancement factor for shear should increase?

As mentioned in the manuscript (P11L17-22) we have carried out the embayed ice shelf experiment
for the cases where the transverse dimensions are L 2 [20, 60, 100] km. Figures 1-3 below show the
ESTAR to Glen velocity ratio, ESTAR to Glen thickness ratio, and �

S

for each of the three cases. Note
that the figures are plotted to approximately preserve their aspect ratio. It is clear from these figures
that as the real aspect ratio increases, the ice shelves become flatter, so the proportion of the ice shelf
that is shear dominated does not change markedly. Specifically, approximately 60% of the L = 20 km
ice shelf is shear dominated (i.e., �

S

> 0.5), 63% of the L = 60 km ice shelf is shear dominated, and
67% of the L = 100 km ice shelf is shear dominated. This is an important result, demonstrating that,
contrary to the reviewer’s expectations, changing the aspect ratio does not result in an embayed ice
shelf that approaches the unembayed situation (i.e., with free-slip at the side walls).

Furthermore, regardless of aspect ratio the pattern and magnitude of the velocity ratios is similar
in all cases, the maximum difference being approximately 15% near the ice-ocean front where normal
stresses dominate.

Hence, given the similarities in the influence of the rheology on the dynamics between the aspect
ratios, we prefer to focus our discussion in the manuscript on only one transverse dimension, L = 20 km.
We have updated the manuscript to be more explicit about the consequences of increasing the aspect
ratios, as per P11L17-22:

“The experiment was carried out for model domains with transverse spans x 2 [0, L], for L = 20,
60, and 100 km and along-flow dimension y 2 [0, 100] km. The initial ice thickness decreases
uniformly from 1000 m at the grounded zone to 300, 600, and 850 m at the ice front for the
L = 20, 60, and 100 km cases, respectively. The main features of the anisotropic effects are
similar regardless of aspect ratio. This is principally because wider embayed ice shelves are
flatter so that the influence of simple shear stresses on the dynamics is not particularly sensitive
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Figure 1: HO steady-state surface fields for the embayed ice shelf with transverse dimension L = 20 km.
From left: ratio of ESTAR/Glen velocity (E

G

= 8); ESTAR �

S

; Glen thickness (E
G

= 8; m); ESTAR
thickness (m); ratio of ESTAR/Glen thickness.

to aspect ratio. Accordingly, we focus our discussion on one transverse length scale: L = 20 km.”
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Figure 2: HO steady-state surface fields for the embayed ice shelf with transverse dimension L = 60 km.
From left: ratio of ESTAR/Glen velocity (E
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= 8); ESTAR �

S

; Glen thickness (E
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= 8; m); ESTAR
thickness (m); ratio of ESTAR/Glen thickness.
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Figure 3: HO steady-state surface fields for the embayed ice shelf with transverse dimension L =
100 km. From left: ratio of ESTAR/Glen velocity (E
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Point 4:
ISMIP-HOM experiments
R1: When discussing the results for Glen in the main text it is never clear for which value of the
enhancement factor. The fact that the velocity scales with the enhancement factor is not a result, but
as written in the manuscript follows from the definition of the experiment. So it would be more clear
for the reader, to discuss the results for only one value of the enhancement factor or maybe better, find
the value of the Glen enhancement factor that minimize the velocity difference with the tertiary creep
flow law, and discuss this value and the results for this value.

The ISMIP-HOM experiments are scenarios in which the bed-parallel shear is the main driver of the
flow. Hence, it emerges as appropriate that we choose a value for the Glen enhancement factor equal
to the shear enhancement factor, i.e., E

G

= E

S

= 8. Accordingly, we have adopted the reviewer’s
first suggestion and have deleted the paragraph from the manuscript that compares the results for
different values of E

G

. Since in response to Reviewer 2 we have introduced additional experiments (see
details later), and as an interested observer would recognise the overall scaling properties, we have not
considered it useful to take up the alternative suggestion of fine-tuning E

G

for each experiment. On
P13L23-25 of the manuscript for ISMIPB, we clarify that our discussion of the results concentrates on
the value E

G

= 8, which is the most appropriate overall choice for this experiment:
“In what follows, we consider the case when the Glen enhancement factor is equal to the ESTAR
shear enhancement factor, i.e., E

G

= E

S

= 8. This is the most relevant case for the ISMIPB
experiment as the dynamics here are driven by bed-parallel shear, as discussed below.”

For ISMIPD, we include the following lines, echoing the above lines regarding ISMIPB that here
we compare only the results from the case when E

G

= E

S

= 8 (P15L17-19):
“Consistent with ISMIPB, the control of the final deformation flow in the ISMIPD experiment
is bed-parallel shear, so we consider the case when the Glen enhancement factor is equal to the
ESTAR shear enhancement factor, i.e., E

G

= E

S

= 8.”

R1: The discussion in page 12 about the value of the shear fraction along the transition curve is
not very clear.

We have amended the discussion about the shear fraction along the transition curve on P14L23-
P15L5 to be clearer, as follows:

“In order to examine the dynamics giving rise to the high shear-dominance peaks in Fig. 6d
and Fig. 7d, we consider the following exact form of �2

S

(for these two-dimensional flow fields)
expressible using the cartesian frame strain rate components

�

2
S

=
↵"̇

2
xx

+ �"̇

2
xz

+ �"̇

xx

"̇

xz

"̇

2
xx

+ "̇

2
xz

, (23)

for some spatially varying coefficients ↵, �, and �. Since there is no surface accumulation,
velocities and hence local non-rotating shear planes at the ice sheet surface are parallel to the
surface. The traction free surface boundary condition implies that the numerator ("̇02) in Eq. 23,
and accordingly �

S

, vanishes at the surface, except that if "̇
e

also vanishes, �
S

is technically
undefined. Our implementation sets �

S

= 0 for vanishing "̇

0 in such situations. It is apparent
from Eq. 23 that along the transition curves, i.e., where "̇

xx

= "̇

zz

= 0, �2
S

= �, independent
of (non-zero) "̇

xz

strain rate. One can show that � ! (1 � S

2
x

)2 towards the surface (i.e., for
surface slope in the x-direction S

x

) along the transition curve, in order to satisfy the surface
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boundary condition. This indicates that �

S

would be finite along the transition curves all the
way to the surface, except that we enforced its vanishing there. For these locations, the Glen and
ESTAR viscosities corresponding to Eqs. 2-3 would tend to infinity as "̇

e

vanished approaching
the surface, but are limited to a maximum value in the ISSM implementation.

Note that away from the transition curves �
S

goes to zero as we approach the surface, asso-
ciated with vanishing shear on the non-rotating shear plane and the corresponding dominance
of normal deformations. We return to these near-surface spikes in �

S

in the discussion.”
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REVIEWER 2

Point 1:
Anisotropy
R2: I have had a chance to look at the other reviewer comments and I have to say that I fully agree
with him/her in the main two points of his/her review. First, the authors always refer to the method as
“anisotropic”, it is the “A” in the acronym. That is not simply misleading, it is wrong. In an isotropic
rheology the relation between stress and strain-rate is a scalar number, twice the viscosity, in a more
general anisotropic rheology it is a tensor. The method presented in the paper is simply not anisotropic.

The question of the anisotropic nature of ESTAR has already been addressed in our response to
Reviewer 1. ESTAR is an anisotropic flow relation. The fact that ESTAR describes the rheology
of anisotropic polycrystalline ice via a scalar enhancement factor does not preclude it from being
an anisotropic flow relation. Reviewer 2 is incorrect in claiming that a scalar (collinear) relationship
between the stress and strain rate tensor components is a necessary feature of an isotropic flow relation
and that a tensor relationship between the stress and strain rate tensors is a necessary condition for an
anisotropic rheological description. This issue has been addressed previously in the literature (Placidi
et al., 2010).

The Continuum-mechanical, Anisotropic Flow model, based on an anisotropic Flow Enhancement
factor (CAFFE) (Placidi et al., 2010) is an anisotropic flow relation that features an enhancement
factor that is scalar function of a deformability parameter that is defined in terms the fabric and stress
field. Faria (2008) provides a derivation of the anisotropy of CAFFE and Section 4 of (Placidi et al.,
2010) provides further verification of its anisotropy, despite its collinear nature. Conceptually the same
arguments apply to ESTAR, since it also features collinearity of the stress and strain rate tensors and
a scalar enhancement that is an anisotropic function of the stress configuration.

As discussed in the response to Reviewer 1, the required (‘tertiary’) compatibility of the anisotropy
with the stresses prevents any idea that stress can be rotated relative to the anisotropic material as
the reviewer implies – this is the essence of anisotropy.

R2: Also in this point, the authors refer to Glen flow relation vs ESTAR throughout the manuscript.
ESTAR as far as I can see is a Glen flow relation with a pre-exponential factor that varies spatially to
account for ice fabric. A in Equation 1 is known to depend on ice fabric and a myriad of other things
(not only on temperature as stated in the manuscript), the whole point of ESTAR is that it is giving a
method to estimate the effect of ice fabric on A.

One could regard the ESTAR flow relation as it is presented, as a fabric-dependent enhancement
factor for the Glen flow relation in tertiary flow. We regard this as essentially a semantic point since
the task of implementing this factor is identical regardless of the viewpoint, and the enhancement
function would still need a name that would encompass, empirical, tertiary and anisotropic. In terms
of tertiary flow, it is not entirely certain (e.g. Treverrow et al., 2012) that tertiary flow does only differ
from the Glen relation by this pre-factor. Regarding the “myriad of other things” known to influence
A in addition to temperature, we contend that these are usually persistent material properties, like
dissolved or particulate impurities, rather than dynamically evolving features such as crystal anisotropy.
We now make this distinction more clearly in the manuscript, as per P2L18-20:

“A(T 0) is a flow parameter (Pa�n s�1), dependent on homologous temperature T 0 and persistent
material properties, for which various parameterisations exist based on laboratory tests and field
measurements (e.g., Budd and Jacka, 1989; Cuffey and Paterson, 2010).”
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Point 2:
Tertiary creep
R2: And second, the empirical relation to extract the enhancement factor is based on laboratory ex-
periments of tertiary flow, and it may well be that it can not reproduce the widespread observations
of strain-induced anisotropy in polar ice. There is no discussion in the paper about how the proposed
method explain observations or even expectations of the effect of ice fabric in polar flow. Do the ver-
tical or horizontal variations of enhancement factor make sense according to observations of fabric or
strain-rate fields?

The aim of this paper is to describe the numerical implementation of a flow relation or ice rheology
within an ice sheet model (P3L12-17). While ESTAR is not directly concerned with determining strain-
induced anisotropy, there is a connection through the empirical observation that the flow-induced
anisotropy is connected to the stress regime, so incorporation of ESTAR into an ice dynamics model is
clearly an essential step in testing whether this can “reproduce the widespread observations of strain-
induced anisotropy in polar ice”.

This flow relation, ESTAR, has been previously described (Budd et al., 2013) and its performance
evaluated using ice core, borehole and laboratory data (Treverrow et al., 2015). It is outside the scope
of this paper to present a comprehensive review of how ESTAR “explain(s) observations or even
expectations of the effect of ice fabric in polar flow”, or to provide an even more general review on
the effects of polycrystalline anisotropy on polar ice sheet dynamics. The background to ESTAR is
described in Sects. 2.2-2.3. It is important to realise that implementation of ESTAR (or any other
rheological description) in an ice sheet model provides an additional quantitative means by which that
flow relation can be further tested and subsequently applied in simulating ice sheet dynamics. Regard-
ing the validity of the assumption that tertiary creep is the predominant mechanism of deformation
in the dynamically active region of polar ice sheets, we refer the reviewer to preceding comments
in this response document. We also slightly modify the sections from the previous manuscript de-
tailing conditions under which we expect ESTAR to be valid (P4L31-P5L18; quoted directly in the
response to Reviewer 1 above), and provide new paragraphs discussing regions where it might not hold
(P5L21-P6L12; again, quoted directly in the response to Reviewer 1 above).

In response to the last item above:
R2: Do the vertical or horizontal variations of enhancement factor make sense according to obser-

vations of fabric or strain-rate fields?

We refer the reviewer to Treverrow et al. (2012) and Budd et al. (2013) and references therein for
a detailed discussion on the variation in strain rate enhancement according to the stress configuration.
Wang and Warner (1999), Wang et al. (2002a), and Treverrow et al. (2015) each discuss the vertical
variations in enhancement that are required to explain observed strain rate profiles within an ice sheet
and also present fabric profile information.

Point 3:
ESTAR vs tuning hardness parameter
R2: I also miss an important point in the paper, what is the point of using ESTAR in a large-scale ice
sheet model?

We have interpreted this question as ‘what is the point of using any anisotropic flow relation in
any large-scale ice sheet model?’.

There has long been recognition that a flow relation that realistically incorporates the anisotropic
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rheology of polycrystalline ice is a necessary component of any ice sheet model. While a diverse range
of anisotropic flow relations have been proposed, implementing such a relation within an ice sheet
model in computationally efficient manner has proven challenging. Additionally, there has been a long
standing awareness that using a Glen-type flow relation with a spatially-invariant enhancement factor
does not provide an adequate description of polycrystalline ice rheology. What we are presenting is
our attempt at incorporating a description of anisotropic rheology into an ice sheet model (P3L12-17).

R2: I may be missing something here but large-scale models are capable to initialize the local
depth-averaged hardness parameter in the Glen flow law using satellite observations. What is ESTAR
adding?

While it is possible to “tune” a “local depth-averaged hardness parameter” as well as a basal friction
parameter using inverse methods to match modelled and observed surface velocities, such an approach
provides no physical insight into the local controls on deformation rates and no indication how the
“depth-averaged hardness” should change as the ice sheet evolves (note, we also do not want to invert
for both ice rheology parameters and basal friction, as there would be an infinite number of solutions
– they have “similar” effects on the surface velocities. This is why we only invert for B on floating
ice, and friction on grounded ice, but never both at the same place). ESTAR is adding the ability
to incorporate the spatial variability of large-scale anisotropy within ice sheets into simulations of ice
sheet evolution, with a physical basis, in a fashion that will remain valid as the system evolves. It
would be possible to explore using inverse methods to find appropriate global values for E

C

and E

S

,
since ESTAR describes the spatial variations, encoded in �

S

, e.g. (P19L32-34):
“Indeed, with the implementation of ESTAR in ISSM, it might be possible to use inverse methods
to search for values of E

S

and E

C

that improved the match between modelled and observed
surface velocities.”

However, there is clearly too little data in a 2D surface velocity field to determine a 3D varying
“hardness parameter” throughout an ice sheet.

R2: Could ESTAR inform the initialization of a large-scale model somehow? It could be applied
to simulations were there is no satellite observations but then, as I suggested in my previous point,
shouldn’t we check how well does it do in a case where we have observations? Also, are there any
significant vertical variations on enhancement factors that are captured by ESTAR but can’t be inverted
by a large-scale model? In any case, the paper needs be clearer about what is ESTAR and what can it
do.

The purpose of implementing and testing ESTAR in a large-scale ice sheet model is to explore what
advantages it offers. We have shown that it is a computationally-efficient, physically based description
of anisotropic flow (Sects. 5-7). We are reluctant to further expand Section 2.3 about the theory
underlying ESTAR, as this paper is about the implementation of a flow relation that has already been
discussed at length by Budd et al. (2013). In this manuscript, we have explained the implementation
and explored what ESTAR can do in some preliminary test examples; its implementation is a necessary
precursor to testing it in other more realistic situations, including the reviewer’s suggestion to "check
how well it does". Indeed, we are currently applying ESTAR to an Antarctic glacier system where
observations are available to validate our simulations and these are forthcoming. However, it is outside
the scope of this current manuscript to include full simulations of real glaciers.

As already discussed, large-scale models are capable of initialising the “local depth-averaged hard-
ness parameter” in the Glen flow relation (relying, of course, on also tuning of the basal traction
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parameter over grounded ice) using satellite observations. However, this sort of initialisation, without
physical insights into the processes controlling the tuned parameter, is problematic. As the system
evolves, the various physical processes that a “black box” parameter represents may change, rendering
the “initialisation” values inappropriate. ESTAR could potentially inform the initialisation of an ice
sheet model, through determining appropriate global values of enhancement factors E

S

and E

C

, using
the physics embodied in ESTAR through �

S

to include spatial variations in 3D (P19L32-34). Indeed,
in our ice shelf example, an essentially 2D flow problem in the absence of temperature effects, one could
attempt to invert for the values of E

S

and E

C

to see if this improved agreement between modelled
and observed velocities. However, the enhancement factor in ESTAR is not physically or dynamically
equivalent to the overall flow parameter in the Glen flow relation. Furthermore, in this study, we have
used the full-Stokes 3D implementation of ESTAR, which relies on more than just depth-averaged
parameters. Indeed, there is insufficient data in satellite-derived surface velocities to derive a local,
3D ice flow parameter.

R2: Also, are there any significant vertical variations on enhancement factors that are captured by
ESTAR but can’t be inverted by a large-scale model? In any case, the paper needs be clearer about what
is ESTAR and what can it do.

Wang et al. (2002a) demonstrate the need for a significant vertical variation in enhancement factor
– simply derived from observations – together with a convincing connection to both an ESTAR-type
prescription that yields that depth variation, and to the anisotropic crystal orientation fabrics observed.
Treverrow et al. (2015) continues this study by exploring how ESTAR compares with other candidate
flow relations. Both these studies advocate the need for a depth dependent enhancement factor, though
in the general context of an assumed driving stress. This further drives the motivation for implementing
ESTAR in an ice dynamics model that can solve for the full stress field to extend the testing of ESTAR
against observations.

Point 4:
Aspect ratios
R2: Finally, I find really intriguing that the authors state that results are very similar with different
aspect ratios in the experiments presented in Sections 5.1 (P9-L31) and 5.2 (P11-L25). What do they
mean? In the embayed ice-shelf, I would expect the ice fabric induced by extension and shear at the
margins to be different. The narrower the ice-shelf is I would expect that the overall effect of lateral
shearing should be more important. In the ice flow over a bumpy bed, L is the wavelength of the bedrock
undulations. I would expect the increase in basal roughness to have a strong control over the orientation
of the fabric. What does it mean that aspect ratios don’t affect ESTAR results? I would like to see
some discussion about the results presented.

For the embayed ice shelf, as discussed above in response to reviewer 1, we have focussed our dis-
cussion in the manuscript on the case when the transverse dimension is L = 20 km. Figures 1-3 in this
document show the Glen and ESTAR steady-state surface velocity ratio, the Glen to ESTAR thick-
ness ratio, and �

S

, for the cases when the transverse dimensions are L 2 [20, 60, 100] km, respectively.
The key point highlighted in these figures is that as the aspect ratio increases, the ice shelves become
flatter, and the overall proportion of the ice shelf that is shear dominated does not change markedly
(so the embayed ice shelf does not approach the unembayed situation). Hence, and in the interests of
constraining the length of the manuscript, we have omitted the results of the cases when L = 60 and
100 km. We have amended the manuscript to be clearer on the impact of increasing aspect ratio, as
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highlighted on P11L17-22:
“The experiment was carried out for model domains with transverse spans x 2 [0, L], for L = 20,
60, and 100 km and along-flow dimension y 2 [0, 100] km. The initial ice thickness decreases
uniformly from 1000 m at the grounded zone to 300, 600, and 850 m at the ice front for the
L = 20, 60, and 100 km cases, respectively. The main features of the anisotropic effects are
similar regardless of aspect ratio. This is principally because wider embayed ice shelves are
flatter so that the influence of simple shear stresses on the dynamics is not particularly sensitive
to aspect ratio. Accordingly, we focus our discussion on one transverse length scale: L = 20 km.”

Regarding the ISMIP-HOM experiments (Sects. 5.2 and 5.3), we wish to thank the reviewer for
encouraging us to explore more deeply the cases of bed variations with shorter wavelengths. We
did observe greater variations in the anisotropic case, and we have also developed a more extensive
discussion of the results (Sect. 6). The analysis also provides some indications of regions where the
assumptions of the ESTAR rheology may not hold and this is now addressed in the discussion (Sect. 6),
though the consequences of that type of lapse in realistic ice sheets requires further study.

Given that ESTAR does not directly calculate crystal orientations our interpretations do not di-
rectly address the reviewer’s interest in fabrics, though we do provide some interpretations in the
discussion (P17L31-P19L22):

“Our idealised test cases also provide some insights into the validity of the tertiary flow assump-
tion underlying ESTAR, and the development of anisotropic crystal fabrics compatible with
the current deformation regime. In the embayed ice shelf test the most significant change in
the deformation regime is clearly the transition to extensive flow on approach to the ice shelf
front. The contours of �

S

here are relatively well aligned with the ice flow so that flowing ice
experiences gradual changes in stress regime, and the magnitudes of strain rates (e.g., Fig. 4b)
and velocities (Fig. 3) indicate that in the region near the ice front, where the Glen and ESTAR
results vary appreciably, a progression of essentially compatible fabrics would be maintained.
Indeed, under the prevailing deformation and flow conditions these would even develop from
random fabrics over a few km.

The ISMIP-HOM experiments reveal potential violations of the tertiary flow assumption,
although the significance for the flow field of these apparent short-comings needs to be assessed
with regard to the somewhat artificial nature of the tests. Indeed as we saw, the difference
between the ESTAR predictions and the Glen flow relations (provided E

G

= E

S

) was small,
except for ISMIPB with L = 5 km, although of course ESTAR makes no claim to correctly
describe the transient rheology of ice with an evolving anisotropy.

The ISMIP experiments have a spatial periodicity, which could allow one portion of the
repetitive basal conditions to dominate the overall flow. Also, there is no surface mass budget
in these experiments so that, as remarked earlier, the ice surface is a flow line, whereas in a
system with surface accumulation fresh snow is always being added and advected down into the
ice sheet where it makes the transition to solid ice. Accordingly, in the flow regime of these
prognostic experiments even the surface layers would be regarded as having developed some
anisotropy just as the lower layers would, since they have in principle been deforming over an
arbitrarily long time.

The main issue about the establishment of tertiary flow conditions in the periodic environ-
ment of our ISMIP experiments concerns the possible cycling of the flowing ice through a variety
of stress regimes. This leads to transition regions where the stress regime and presumably the
crystal anisotropy would be evolving, and the compatibility assumptions behind ESTAR could
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locally be violated. Clearly the spatial extent of transitional flow and the delay in attaining any
new tertiary state depends on the magnitudes of the strain rates and the velocity of the ice. By
combining these with a threshold for accumulated strain as the criterion for development of a
compatible (tertiary) fabric under a persistent flow regime, the extent of a transition zone can
be estimated. This scale can then be compared to the horizontal variation of the stress regime.
Selecting the 10% strain required to develop a compatible anisotropy from initially randomly
oriented ice should provide a conservative yardstick, when applied to gradual changes in stress
regime.

The patterns of stress regimes revealed by the distributions of �
S

(Figs. 6d, 7d, 9a, and 10f)
indicate where along-flow variations in stress regime might be too rapid to sustain the assumption
that a compatible crystallographic anisotropy had evolved. For the ISMIPB experiments this
concern is essentially focussed to the near surface spikes in �

S

around the two locations where
longitudinal deformations vanish, since the anisotropy of deeper ice will be compatible with
deformation dominated by simple shear. There may be some complications with a slow cycling
of the upper levels between extensive and compressive flow. Very near the surface, the �

S

peak intervals are narrow and the shear strain rates there are very small (corresponding to
transition scales of several kilometres) so that there will be no appreciable development of a
shear compatible fabric. Either side of the peaks, the main extensive and compressive flow
domains for L = 20 km (see Fig. 6e) are ⇡ 5 km long and have transition scales of < 1 km which
suggests that the strongly normal stress dominated upper layer will be mainly in tertiary state.
Turning to the transient shear intrusions into this layer: at 100 m depth over the bump the shear
transition scale is 3 km while at 200 m depth over the depression the shear transition scale
is ⇡ 5 km, suggesting that that the �

S

peaks do represent a local failure of ESTAR’s tertiary
assumption. Throughout the domain the lower half of the ice column has transition scales of
 300 m which, given the gradual variations in �

S

and the direction of ice flow, indicates that
region is in the tertiary state.

For ISMIPB with L = 5 km, which displays a generally deeper band of normal stress dom-
inated regime (Fig. 7d), the transition scales for the compressive and extensive regions are
⇠ 500 m for regions of ⇡ 1 km in extent, while the shear transition scales at 100 m depth above
the bump and 200 m depth above the depression are now ⇠ 10 km and ⇠ 1 km, respectively.
For most of the domain the transition rates in the lower half of the ice column are  100 m,
although this rises to nearly 1000 m above the bedrock bump.

In the ISMIPD case, for L = 20 km, the pattern of �

S

(Fig. 9a) shows there are also
transitions between simple shear dominated and extension dominated deformation associated
with the slippery region, with varying abruptness at different depths, and some of the contours
of �

S

in this instance almost orthogonal to the ice flow. A complication is that there is very
little longitudinal deformation (Fig. 9e) occurring over the slippery region because the overall
flow is controlled by the periodic sticky spot. Accordingly, there would not be any significant
fabric evolution across this ⇠ 4 km region (estimated transition scales there are > 40 km) so
that the tertiary assumption and using E

C

(since �

S

= 1) would be inappropriate. Once again,
the low strain rates here (Figs. 9e-f) translate into very stiff ice and might make the influence
of ESTAR enhancement factors relatively unimportant. A factor of 100 in "̇

e

changes viscosity
by a factor of 21.5, whereas the maximum viscosity contrast from E(�

S

) is 1.39. The shear
strain rates are also very low, with transition scales > 1 km except very close to the bed over
the sticky spot. Accordingly, while a compatible fabric could be expected where the large �

S
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values are shown in Fig. 6a, its presence would be due to the periodic flow, and the inability of
the �

S

⇠ 0 region to modify it.
For the last test, ISMIPD with L = 5 km, strain-rates are once again very low, and there

is no simple structure to the picture of the stress regime portrayed by �

S

in Fig. 10f. Below
mid-depth there is a periodically continuous band of shear that might favour the development of
crystal anisotropy, but clearly the tertiary flow assumption of ESTAR would not be particularly
useful here.”

For the ISMIP-HOM experiments with larger horizontal extents (i.e., L > 20 km), the extent to
which the longitudinal stresses impact flow and the differences between ESTAR and Glen results both
decrease as L increases, such that the dominant sensitivity of the flow to the bed aspect ratio is similar
for both rheologies. This is generally consistent with the results concerning the longitudinal stresses
presented by Pattyn et al. (2008), allowing for the fact that our simulations have evolved to steady-
state whereas those tests were to find flows satisfying initial stress balance. By contrast, for smaller
horizontal extents (e.g., L = 5 km), the increasing importance of longitudinal stresses leads to greater
differences between Glen and ESTAR experiments. We overview the expanded ISMIPB and ISMIPD
results in turn.

In ISMIPB the more rapid bed variation shows greater reductions in ESTAR velocities (stiffer ice)
and higher spatial contrast in the velocity ratios. This is evident when comparing the L = 5 km results
in new Fig. 4 below (Fig. 7 from the updated manuscript) with the case when L = 20 km in Fig. 6
from the updated manuscript. The smaller aspect ratio (L = 5 km) leads to a difference of up to 25%
between the Glen and ESTAR velocities in the topographic depression, and a difference of almost 20%
in the surface layers over the topographic bump. We have amended the manuscript in section 5.2 for
ISMIPB to include discussion on this smaller aspect ratio, as follows (P14L14-22):

“In addition to the case where L = 20 km, we also investigated the impact of reducing the
horizontal extent to L = 5 km. In this steeper bed scenario (Fig. 7), the ESTAR surface
velocities are at least 11% slower than the Glen velocities in the surface layers across the whole
domain, as much as 20% slower around the topographic bump, and up to 25% slower in the
topographic depression (Fig. 7c). The much greater reductions in the magnitude of the ESTAR
velocities for L = 5 km are a consequence of the increasing importance of longitudinal stresses
in the stress balance equations for the smaller aspect ratio (Fig. 7e), and also in some areas
the lower strain rates, which lead to correspondingly stiffer ice. Indeed we see a clear decline in
the shear strain rate in the lower part of the bed depression in Fig. 7f, in contrast to Fig. 6f.
The qualitative pattern of the longitudinal strain-rates in Fig. 7e is similar to the L = 20 km
case, although the horizontal gradients are naturally accentuated, and the “transition curves”
are displaced.”

Note that while the contrast due to the ESTAR incorporation of anisotropy is greater for the
L = 5 km case, the structure and patterns of the results are broadly similar, e.g. compare Figs. 6 and
7 from the updated manuscript. We have extended the discussion section (as suggested) to cover these
additional results (P17L20-P17L30):

“For more rapidly varying bed topography in ISMIPB, with L = 5 km, the differences in velocity
for the two flow relations reached 25%, with surface variations of 11%...These results suggest if
major bed topography only varied on scales much longer than the ice thickness, close agreement
between ESTAR and the Glen flow relation might be achieved more generally by choosing the
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tertiary shear enhancement factor as the Glen enhancement factor (E
G

= E

S

). This might
provide a physical rationale to replace the ad hoc enhancement factors typically used in large-
scale grounded ice sheet modelling with the value appropriate to flow dominated by simple
shear. However, larger differences between velocities and vertical shear profiles emerged for
the more rapid bedrock variation, where the importance of including longitudinal stresses in the
momentum balance is already recognised (Pattyn et al., 2008), suggesting that adopting ESTAR
would be preferable.”

We do not observe similar dramatic changes in flow for ISMIPD when the horizontal extent is
reduced (Fig. 5 below). In the ISMIPD experiments, sliding dominates over deformation to an extreme
extent for both length scales. For L = 20 km (new Fig. 8 of the manuscript) the only difference between
the velocities for the Glen and ESTAR cases are observed over the sticky spot. The differences between
the horizontal velocities in ISMIPD tests are less than 1% in both cases, which already had prompted
us to examine the ratio of the deformational contributions to the velocities as well. While these are
clearly very small contributors to the flow, we observe that there is both a marked spatial contrast in
the ratio, and a considerable change in that contrast between the two spatial scales.

For L = 20 km the aspect ratio appears to favour a simple correlation between the variation in
bed friction coefficient and the deformational regime. Over the slippery spot the stiffer ice of the
ESTAR case correlates with stiffer ice a reduced horizontal deformational velocity, but for L = 5 km
a different, more complex picture emerges. The structure of the longitudinal strain rates is similar for
both aspect ratios, but the pattern of shear strain rates is more complex for L = 5 km. We note the
resulting interesting pattern in �

S

(Fig. 5 below) compared with �

S

for the L = 20 km case (Fig. 9

23



from the manuscript). This is commented on in the explanation of the surface spike structures (see
below). Again, and as remarked in the updated manuscript (P16L4-13), the only region for which �

S

is relevant and plays a role in the dynamics is the region over the sticky spot, where deformation is the
dominant control of flow near the bed. In this region, the proportion of shear-dominated deformational
flow does not increase markedly over the L = 20 km case. We have included discussion on the impact
of the smaller aspect ratio (P16L14-29):

“The results of a FS prognostic run to steady-state for the ISMIPD experiment for L = 5 km
are presented in Fig. 10. The v

x

velocity ratio (Fig. 10c) shows that very little difference is
seen between results for the two flow relations, unlike the ISMIPB experiments in the previous
section, where differences up to 25% between ESTAR and Glen cases emerged for the shorter
bedrock periodicity. The tiny differences in overall velocities are enhanced but the patterns in
Fig. 9c and Fig. 10c are similar. However, there is a significantly different picture in the ratio
of deformation velocities seen in Fig. 10d, compared to Fig. 9e. The largest differences are now
limited to the lower portion of the ice column and for much of the region over the slippery bed
the ratio is almost unity.

The pattern of deformation regimes mapped by �

S

(Fig. 10f) is also more complex than that
seen in the preceding L = 20 km case (see Fig. 9d). The general structure of the normal strain
rates is similar to previous experiments, but here the persistence of a band of shear (Fig. 10h)
above the slippery spot at intermediate depths prevents the establishment of a vertical block of
flow dominated by normal stresses. The shear profile above the sticky spot is also much weaker
in the upper layers. Accordingly, �

S

reveals a band of unevenly shear-dominated deformation
which is continuous across the periodic domain. Once again, shear dominated spikes extend
towards the surface in association with the vanishing of the normal strain rates.

The spatial variations in the viscosity ratio (Fig. 10e) depart significantly from those of �
S

,
reflecting more strikingly than for L = 20 km (Fig. 9e) the combined influence of the pattern
of enhancement (controlled by E(�

S

)) and the effect of different strain rates, with values both
above and below the range (1.0-1.39) directly controlled by E(�

S

)/E
G

.”
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Other modifications

As indicated at the start of this response document, we have considerably expanded the discussion
section as suggested (Sect. 6). The additional observations led to some alterations in ordering in that
section. We also introduced additional diagnostics in the results section (Sect. 5) – including ratios
of total and deformational velocities and of viscosities to assist our interpretation of the influence of
ESTAR versus Glen rheology. We changed the presentation of shear strain rates to use a logarithmic
colour scale to better capture the contrast and assist in the interpretation. The conclusion (Sect. 7)
has also been expanded to cover the additional insights and to respond to reviewers’ concerns.
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Abstract. The microstructural evolution that occurs in polycrystalline ice during deformation leads to the development of

anisotropic rheological properties that are not adequately described by the most common, isotropic, ice flow relation used

in large-scale ice sheet models – the Glen flow relation. We present a preliminary assessment of the implementation in the

Ice Sheet System Model (ISSM) of a computationally-efficient, empirical, scalar, tertiary, anisotropic rheology (ESTAR). The

effect of this anisotropic rheology on ice flow dynamics is investigated by comparing idealised simulations using ESTAR with5

those using the isotropic Glen flow relation, where the latter includes a
::
an

::::::
overall

:
flow enhancement factor. For an idealised

embayed ice shelf, the Glen flow relation overestimates velocities by up to 17% when using an enhancement factor equivalent to

the maximum value prescribed by ESTAR. Importantly, no single Glen enhancement factor can accurately capture the spatial

variations in flow over the ice shelf. For flow-line studies of idealised grounded flow over a bumpy topography or a sticky

base
::::::
varying

::::::::::
topography

::
or

:::::::
variable

:::::
basal

::::::
friction – both scenarios dominated at depth by bed-parallel shear – the differences10

between simulated velocities using ESTAR and the Glen flow relation vary according to the value of the enhancement factor

used to calibrate the Glen flow relation. These results demonstrate the importance of describing the anisotropic rheology of ice

in a physically realistic manner, and have implications for simulations of ice sheet evolution used to reconstruct paleo-ice sheet

extent and predict future ice sheet contributions to sea level.

1 Introduction15

An essential component of an ice sheet model is its formulation of ice rheology, which relates deformation rates to applied

stresses. Data from laboratory ice deformation experiments can be used to define flow relations suitable for implementation in

numerical ice sheet models. Previous experiments have demonstrated that under conditions of constant stress and temperature,

polycrystalline ice with a statistically random distribution of crystallographic c-axes (fabric) initially behaves as a mechanically

isotropic material (Budd and Jacka, 1989)
:::::
where

:::
the

:::
rate

::
of

::::::::::
deformation

::
is
:::
not

::::::::
sensitive

::
to

::
the

::::::::
character

::
of

:::
the

:::::::
applied

::::::
stresses.20

We use the term fabric to describe the distribution of crystallographic c-axis orientations within a polycrystalline aggregate.

At the commencement of deformation, during the primary stage of creep, the initially high strain rate rapidly decreases. A

minimum strain rate is reached during secondary creep (Fig. 1), which is associated with a transitory balance between strain

hardening and the strain-induced activation of microstructural recovery processes. With continued strain, a tertiary stage of
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creep is established (typically observed at strain of ⇠ 10% in laboratory experiments), which is characterised by a dynamic

balance between microdeformation and recovery processes, statistically steady-state anisotropic polycrystalline microstruc-

tures (e.g., crystal orientation fabric and grain size), and steady strain rates that are enhanced relative to the rate observed

during secondary creep.

Tertiary creep, with the associated development of polycrystalline anisotropy driven by the microstructural response to5

applied stresses, is the predominant mode of ice deformation in ice sheets . The
::::::::::::::::::::
(Budd and Jacka, 1989) .

:::
The

::::::
pattern

:::
of fabric

anisotropy and the tertiary strain rates
::::
both depend on the nature of the applied stresses (Fig. 1).

:::::::
Attaining

::
a
::::
state

::
of

:::::::
tertiary

::::
creep

:::::::
requires

::::
that

::
a
:::::
stable

::::::
pattern

:::
of

::::::
stresses

::::
acts

:::
for

::::::::
sufficient

:::::
time

::
to

:::::::
develop

:::
the

:::::::::
compatible

::::::
crystal

::::::::::
anisotropy.

:::
We

::::
can

:::::
expect

::::
this

::::::
tertiary

::::
state

:::
to

::
be

::::::::
common

:::::::::
throughout

:::
the

::::
bulk

:::
of

:
a
:::::
polar

:::
ice

:::::
sheet

::::
from

::::::
simple

::::::::::::
considerations

:::
of

:::
the

::::::::
observed

::::::::
velocities

:::
and

:::::
strain

:::::
rates,

::::::::
provided

:::
the

::::::
spatial

::::::
pattern

::
of

:::::::::::
deformation

:::::
varies

::::::
slowly

::::::::
compared

:::
to

:::
the

:::::::
passage

::
of

:::
ice

:::::::
through10

:::
that

:::::::
pattern.

::::::
Clearly

:::::
there

:::
are

::::
also

::::
some

:::::::
regions

:::::
where

:::::::
tertiary

::::
flow

::
is

:::
not

::::::::
expected

::
to

::
be

:::::::::
achieved.

:::
We

::::::
discuss

:::::::::::
applicability

::
of

:::
this

::::::
tertiary

:::::
creep

::::::::::
assumption

::
in

:::::
more

:::::
detail

::
in

:::::
Sects.

:::
2.2

:::
and

::::
2.3,

:::
and

:::
in

:::::::::
discussions

::
in

:::::
Sect.

:
6
::
in
:::::
light

::
of

:::
the

::::::
results

::
of

:::
the

:::::::
idealised

:::::::::::
experiments.

The prevailing description of ice rheology used in large-scale ice sheet models, the Glen flow relation (Glen, 1952, 1953,

1955, 1958; Nye, 1953), is a creep power law:15

"̇=A(T 0)⌧n�1
e

�0
, (1)

where "̇ is the strain rate tensor (s�1), ⌧
e

is the effective stress (Pa), proportional to the second invariant of the deviatoric stress

tensor �0, and n is a power law stress exponent (observations support a value of n= 3). A(T 0) is a temperature dependent

flow parameter (Pa�n s�1),
::::::::
dependent

:::
on

:::::::::::
homologous

::::::::::
temperature

::
T

0
::::

and
::::::::
persistent

::::::::
material

:::::::::
properties, for which various

parameterisations exist based on laboratory tests and field measurements (e.g., Budd and Jacka, 1989; Cuffey and Paterson,20

2010).

The Glen flow relation was empirically derived from secondary creep rates, determined under various conditions of constant

stress and temperature, for polycrystalline ice with an initially random distribution of c-axes and assuming mechanical isotropy.

While the Glen flow relation captures the observed nonlinear response of ice deformation to an applied stress
:::
the

:::::::::
magnitude

::
of

::::::
applied

:::::::
stresses, it is unable to account for the mechanical anisotropy of polycrystalline ice during

:::
that

::::::::
develops

::::::
during

:::
the25

::::::::
transition

::
to tertiary creep (e.g., Nye, 1953; Glen, 1958; Budd et al., 2013). That is, it cannot explain the dependence of tertiary

strain rates on the character of the applied stress. To account for the increased deformability associated with tertiary creep, a

common adaptation of the Glen flow relation is the inclusion of a constant flow enhancement factor, E
G

,

"̇= E

G

A(T 0)⌧n�1
e

�0
. (2)

The specification of E
G

is typically ad hoc: E
G

may be selected from reported experimental values (e.g., Duval, 1981; Jacka30

and Maccagnan, 1984; Pimienta et al., 1987; Treverrow et al., 2012), or used as a model tuning parameter(e. g., to alter

the relative contribution of viscous deformation and basal sliding to the overall dynamics of an ice sheet ). In either
:
.
::::
Such

::
a

::::::::
parameter

::
is

:::::::
included

::
in

::::
most

:::::::::
large-scale

:::
ice

::::
sheet

:::::::
models

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Saito and Abe-Ouchi, 2004; Greve, 2005; Huybrechts et al., 2007; Winkelmann et al., 2011) .
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::::::
Indeed,

::::::::::::::::::::::::::::
Greve and Blatter (2009) comment

::::
that

::
it

:
is
::::::
“often

:::::::::
introduced

:::::::
without

::::::::
explicitly

:::::::::
mentioning

:::::::::::
anisotropy”.

::
In

:::
any

:
case,

a value of E
G

that does not vary spatially in connection with the fabric and flow configuration, will lead to an unrealistic spatial

distribution of strain rates (Treverrow et al., 2015)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Wang and Warner, 1999; Wang et al., 2002a; Treverrow et al., 2015) . Pre-

vious studies have used anisotropic flow models or approximations to assign regional values to E

G

(e.g., Ma et al., 2010) that

may also vary according to the prevailing stress regime.5

Budd et al. (2013) recently proposed an anisotropic flow relation based on results from laboratory ice deformation ex-

periments in
:::::::
involving

:
simple shear, compression, and combinations of these. As tertiary creep rates and the corresponding

compatible fabrics were found to vary according to the relative proportions of the simple shear and compression stresses, Budd

et al. (2013) defined an enhancement factor E as an anisotropic function of the stress configuration, with
:::::
based

::
on

:::::::::::
interpolating

:::::::
between separate, experimentally-determined enhancement factors for simple shear-alone and compression-alone. We refer to10

the generalised form of the anisotropic flow relation proposed by Budd et al. (2013) as ESTAR (Empirical, Scalar, Tertiary,

Anisotropic Rheology), since it is based on tertiary (steady-state) creep rates
:::::::::
describing

:::
the

::::::::::
deformation

::
of

::::::::::
anisotropic

::
ice

:
and

features a scalar (collinear) relationship between the strain rate and deviatoric stress tensor components.

Here,
::
as

:
a
::::
first

::::
step

::::::
towards

:::::::::
exploring

:::
the

::::::::::
implications

::
of

::::
this

:::::::::
description

:::
of

::::::
tertiary

:::::
creep,

:
we describe how to implement

ESTAR in large-scale ice sheet models and apply the required changes to the Ice Sheet System Model (ISSM; Larour et al.,15

2012). ISSM is a thermomechanical finite element model that solves the full system of Stokes equations to describe ice flow.

We
::::
This

::::
will

::::::
permit

:::::::::
exploration

:::
of

:::
the

:::::::::::
ramifications

:::
of

::::::
ESTAR

:::
in

::::::
general

:::
ice

:::::
flow

:::::::::
situations.

::
In

:::
an

:::::
initial

:::::
study

:::::
here,

:::
we

examine the effect of anisotropy in simple, idealised scenarios of a floating ice shelf and of grounded ice sheets, comparing

simulated flow fields using ESTAR with the corresponding isotropic flow modelled by the Glen flow relation. Section 2 presents

an a
:::::

brief overview of anisotropic rheologies, including the experimental and theoretical basis for ESTAR. Section 3 details20

the implementation of ESTAR in ISSM and its verification
:::::
while

::::
Sect.

::
4
:::::::
verifies

:::
the

:::::::::::::
implementation

:
against an analytical

solution. In Sect. 5, we compare simulations of ice flow with ESTAR and the Glen flow relation using a suite of idealised

flow geometries, including selected experiments from the Ice Sheet Model Intercomparison Project for Higher Order Models

(ISMIP-HOM; Pattyn et al., 2007).
::::::
Section

:
6
::::::::

discusses
:::

the
:::::::

results,
:::
and

:::::::::::
implications

::
of

:::
the

:::::::
ESTAR

:::::::::
description

::
of

:::
the

::::
flow

:::
of

:::::::::
anisotropic

:::
ice.

:::::::::::
Conclusions

:::
are

:::::
drawn

:::::::
together

::
in

:::::
Sect.

::
7.25

2 Anisotropic ice rheology

A range of ice rheologies have been proposed to account for polycrystalline anisotropy. They can be broadly grouped in two

categories: (1) those defined at the individual ice crystal scale, where the effects of anisotropy are parameterised based on

specific properties of individual crystals, and (2) those that describe anisotropic aspects of deformation empirically: either

based on regional expectations about local crystallographic microstructure, or through an empirical function of the stress30

configuration. In this section, we briefly review these two approaches, and the underlying experimental and modelling basis

for ESTAR. In what follows, we distinguish between the Glen enhancement factor E
G

and the ESTAR enhancement factor

3



E(�
S

), which is a function of compression deviatoric and simple shear stresses, parameterised by the shear fraction �

S

. Where

necessary, we denote a more general enhancement factor, i.e., with unspecified form, as E.

2.1 Microstructure approaches

Experiments on single crystals of ice demonstrate that deformation occurs predominantly by slip on the crystallographic basal

plane, with the yield stress being geometrically related to the magnitude of the applied stress resolved onto the basal plane5

(Trickett et al., 2000) according to Schmid’s Law (Schmid and Boas, 1950). This observation, in conjunction with the develop-

ment of crystallographic preferred orientations during deformation of polycrystalline ice to high strains (e.g. Russell-Head and

Budd, 1979; Jacka and Maccagnan, 1984; Pimienta et al., 1987; Morgan et al., 1998; DiPrinzio et al., 2005; Durand et al., 2009;

Budd et al., 2013; Montagnat et al., 2014), has driven the development of rheological descriptions in which the connection be-

tween deviatoric stresses and resulting strain-rates is regarded as an intrinsic material property determined by the effects of10

microstructure on bulk deformation processes, (e.g. Lile, 1978; Lliboutry, 1993; Azuma and Goto-Azuma, 1996; Staroszczyk

and Gagliardini, 1999; Thorsteinsson, 2001; Gödert, 2003; Gillet-Chaulet et al., 2005; Pettit et al., 2007; Placidi et al., 2010).

See also the review by Gagliardini et al. (2009). In broad terms, the anisotropic nature of these rheological descriptions is

derived from the geometric relationship between the crystallographic c-axis
::::
-axes

:
and the stresses driving deformation, with

the role of misorientation relationships between nearest neighbour grains explicitly considered in some cases.15

The complexity of numerical flow relations varies according to the extent to which a physically realistic description of

microdeformation and recovery processes, or a parameterisation of these, enters into the relationship between strain rates

and the stresses driving deformation. Many of these rheological models are more complicated than a collinear flow relation

and involve a tensor coupling in place of Eq. 2. A further consideration is the quantitative description of fabric that is used

in flow relations. Those incorporating a discrete, c-axis vector based description of fabric (e.g. Lile, 1978; van der Veen20

and Whillans, 1994; Azuma and Goto-Azuma, 1996; Thorsteinsson, 2002) are only appropriate for highly localised studies

and are incompatible with large-scale ice sheet modelling. Flow relations based on a continuous description of fabric, e.g.,

a parameterised orientation distribution function (ODF) or c-axis orientation tensor are also possible (e.g. Staroszczyk and

Gagliardini, 1999; Gödert, 2003; Gillet-Chaulet et al., 2005; Pettit et al., 2007; Placidi et al., 2010). Including any fabric-based

rheological description in an ice sheet model requires a separate set of equations governing the fabric evolution. A drawback to25

::::::::::
complication

::
of
:
such an approach is the computational overhead and uncertainty associated with defining the spatial distribution

of fabric within ice sheets, which is poorly constrained by observations. Furthermore, for simplicity, restricted forms of the

ODF or orientation tensor are specified, which may not adequately describe all fabrics likely to be encountered in an ice sheet.

As such, flow relations utilising a fabric description that relies on fabric evolution equations or that is imposed as a function of

location within the ice sheet are currently restricted to regional simulations (e.g., Seddik et al., 2011; Martín and Gudmundsson,30

2012; Zwinger et al., 2014).
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2.2 Empirical approaches

A second approach comprising : experimental and observational approaches (Li et al., 1996; Wang et al., 2002a, b), modelling

(Wang and Warner, 1998, 1999; Hulbe et al., 2003; Wang et al., 2003, 2004; Breuer et al., 2006; Wang et al., 2012), and theo-

retical studies (Warner et al., 1999), has focussed on the development and assessment of an anisotropic flow relation for poly-

crystalline ice in which the nature of the crystal fabric and the magnitude of strain rate enhancement, E, are both
:::::::
regarded

::
as5

determined by the stress regime.
::::
This

:::::::::
assumption

::
is

::::::::
supported

:::
by

:::::::::::
experimental

::::::::::
observations

:::
for

::::
pure

::::::::::::
polycrystalline

:::
ice,

::::::
which

::::::::::
demonstrate

:::
that

:::
an

::::::::::
accumulated

:::::
strain

::
of

:::::::
⇠ 10%

:
is
::::::::
required

::
for

:::
the

:::::::::::::
microstructure

::
to

:::::
evolve

::
to
::
a
::::
state

:::
that

::
is
::::::::::
compatible

::::
with

::
the

::::
flow

::::::::::::
configuration,

::::::::::
irrespective

::
of

::
its

:::::
initial

::::::::
condition

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Jacka and Maccagnan, 1984; Gao and Jacka, 1987; Li and Jacka, 1998; Treverrow et al., 2012) .

Specifically, this approach regards the fabric and the enhancement
:
in

:::::::
tertiary

::::
flow as determined by the relative proportions

of the simple shear and normal deviatoric stresses. For such flow relations, it is typically assumed that the spatial variation10

in dynamic conditions (e.g., flow configuration and temperature) only occur gradually in an ice sheet, so that the microstruc-

ture evolves to maintain compatibility with these conditions. That is, throughout
:::::::
Through

:::::
most

::
of

:
an ice sheet

:::
we

::::::
expect

:::
that

:
the rate of microstructural evolution generally exceeds the rate at which the flow configuration varies. This assumption

is supported by experimental observations for pure polycrystalline ice, which demonstrate that an accumulated strain of

. 10% is required for the microstructure to evolve to a state that is compatible with the flow configuration, irrespective of15

its initial condition (Jacka and Maccagnan, 1984; Gao and Jacka, 1987; Li and Jacka, 1998; Treverrow et al., 2012)
:
,
:::
and

::::
that

::
the

::::::::
distances

::::::::
travelled

::
by

::
a
:::::
parcel

::
of

:::
ice

::::::
during

:::
the

::::
time

:::::
taken

::
to

:::::::
develop

:
a
::::::::::
compatible

:::::
fabric

:::
are

:::::::
typically

:::::
small

:::::::::
compared

::
to

::
the

:::::::
relevant

:::
ice

:::::
sheet

:::::
spatial

::::::
scales.

The anisotropic flow relation proposed by Budd et al. (2013) represents a continuation of this strand. They found that a scalar

anisotropic flow relation, i.e., one maintaining the collinear relationship between the components of "̇ and �0 (⌧
e

is a scalar20

function of the second invariant of �0) provides a good fit to laboratory data from combined compression and shear experiments.

Such a scalar anisotropic rheology also simplifies the requirements for implementation within ice sheet models that are already

compatible with the (scalar) Glen rheological description. Budd et al. (2013) proposed
::::
what

:::
we

::::
term

:
ESTAR as a suitable

candidate scalar anisotropic rheology generalised to arbitrary stress configurations (i.e., not restricted in its application to the

limited set of experimental stress configurations described in Li et al. (1996) and Budd et al. (2013)). A simplified version of25

ESTAR, called ESTAR-MFL (MFL: Minimal Flow Law), has also been incorporated into the ice sheet model SICOPOLIS

(SImulation COde for POlythermal Ice Sheets, http://www.sicopolis.net; Greve and Blatter, 2009, 2016).

:::::
There

:::
are

::
of

::::::
course

:::::
zones

:::::
within

:::
an

::
ice

:::::
sheet

::::::
where

::
the

::::::::::
assumption

::
of

::::::::::
compatible

::::::
tertiary

::::
flow

::::
will

:::
not

:::::
apply;

::::::::
however,

:::
we

:::
note

::::
that

::::
these

:::::
zones

::::
will

::
be

::::::::
restricted

::
in

::::
their

::::::
extent.

:::
We

:::::::
contend

:::
that

:::::::
ESTAR

:::
will

:::::
apply

::
to

:::
the

:::
vast

:::::::
majority

:::
of

::
the

:::::::::::
dynamically

:::::
active

::::::
regions

::
of

:::
an

::
ice

:::::
sheet,

::
in
:::::::::
particular

::::
those

:::::
zones

::::::
where

:::::
creep

::::::::::
deformation

:::::
makes

::
a
:::::::::
significant

::::::::::
contribution

::
to

:::
the

::::::
overall30

::::
flow.

:::::::
Specific

:::::
zones

::::::
where

:::
the

::::::::::
assumption

::
of

::::::
tertiary

:::::
creep

::::
may

:::
be

:::::::::::
inappropriate

::::
can

::
be

:::::::::::
summarised

::
as

:::::
those

:::::
where

::::::
fabric

:::
has

:::
not

:::
yet

:::::::
evolved

:::::::::::
compatibility

:::::
with

:::
the

::::
flow,

::::::
where

:::::
there

::
is

:
a
:::::
rapid

::::::::
transition

:::
in

:::
the

::::
flow

::::::::::::
configuration,

::
or

::::::
where

:::::
creep

::::::::::
deformation

:::::
makes

::::
only

::
a
:::::
minor

::::::::::
contribution

::
to
:::
the

::::::
overall

:::::::::
dynamics.
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:::
For

::::::::
example,

::
in

::::
very

::::
cold

:::
ice

::
in

:
a
::::
low

:::::
stress

::::::
setting,

::::
such

::
as

:::
the

:::::::::
uppermost

::::::
layers

::
of

:::
the

:::::
polar

::
ice

::::::
sheets,

:::
the

:::::
time

:::::::
required

::
to

:::::::::
accumulate

:::
the

::::::
strain

::::::::
necessary

::
to

:::::::
develop

::
a

:::::::::
compatible

:::::
fabric

::::
may

::::
lead

:::
to

:
a
:::::::::::
near-surface

::::
zone

::
in

::::::
which

:::
the

::::::::::
assumption

::
of

::::::
tertiary

:::::
creep

:
is
:::
not

:::::
valid.

:::::
Since

:::
the

::::::::::
development

::
of
::::::::::
anisotropic

::::::
fabrics

:::::::
provides

::
an

:::::::::
indication

::
of

::
the

::::::::
existence

::
of

::::::
tertiary

:::::
flow,

::::
their

:::::::::
observation

::
at

::::::
modest

::::::
depths,

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., . 100� 200 m; Morgan et al., 1997; DiPrinzio et al., 2005; Treverrow et al., 2016) allows

::::::::
estimation

:::
of

:::
the

:::::::::
maximum

:::::
extent

:::
of

:::
the

:::::
zone

:::::
where

:::::::
tertiary

:::::
creep

::
is

:::
not

:::::::::
occurring.

::::
The

::::::::::
observation

::::::
within

:::::
polar

:::
firn

:::
of5

::::::::::::::
microdeformation

::::::::
processes

::::
that

:::
are

::::::::
necessary

:::
for

::
the

:::::::::::
development

::
of

:::::
fabric

:::::::::
throughout

:::
ice

:::::
sheets

::::::::::::::::::::::::::::::::::::::::::::
(e.g. Kipfstuhl et al., 2009; Faria et al., 2014) suggests

:::
that

::
it

::::
may

::
be

::::::::::
appropriate

::
to

::::
even

::::::
further

::::::
restrict

:::
the

:::::
extent

::
of

:::
the

::::::::::
near-surface

:::::
zone

:::
for

:::::
which

:::
the

:::::::::
assumption

:::
of

::::::
tertiary

:::::
creep

:
is
:::
not

:::::
valid.

:::::::::::
Additionally,

:::
the

::::::::
nonlinear

::::::
nature

::
of

::::::::::::
polycrystalline

:::
ice

::::::::
rheology

::::
leads

::
to

::::
very

::::
high

:::::::::
viscosities

::
in

::::
low

::::::::::
temperature

:::
and

:::::
stress

::::::::::::
environments,

::
so

:::
that

::::::::::
incorrectly

::::::::
estimating

:::::::::::
deformation

::::
rates

:::
due

::
to

:::
the

::::::::::
assumption

::
of

::::::
tertiary

::::
flow

::
in

::::
such

:::::::
regions

:::
may

:::
be

::
of

::::::
limited

::::::::::
importance

::
to

:::::::::
simulations

:::
of

::
ice

:::::
sheet

:::::::::
evolution.10

:::::::
Regions

:::::
where

:::::
rapid

:::::::::
transitions

::
in

:::::::
dynamic

:::::::::
conditions

::::
can

::::
lead

::
to

::::::
abrupt

:::::::
changes

::
in

:::
the

::::::
pattern

::
of

:::::::
applied

:::::::
stresses

:::
and

::
a

:::::::
potential

:::::::::
breakdown

:::
in

::::::
tertiary

::::
flow

:::::::::::
compatibility

:::::::
include

:::
ice

::::
shelf

:::::::::
grounding

:::::
zones

:::
and

:::::
other

::::::::
locations

:::::
where

:::::
basal

:::::::
traction

:
is
::::
lost

::
or

:::::::
abruptly

::::::::
changes,

::::
e.g.,

:::::
where

:::
ice

:::::
flows

::::
over

::
a

::::::::
subglacial

:::::
lake,

::
or

::::
with

:::
the

:::::
onset

::
of

:::::
basal

::::::
sliding

::
in

:::
ice

:::::::
streams.

::::
The

::::::::::
convergence

:::::
zones

::::::
where

:::::::
tributary

:::::::
glaciers

:::
or

:::
ice

::::::
streams

::::::
merge

::::
with

::
a
:::::
larger

::::
flow

::::
unit

::
at

::
a

::::
high

:::::
angle

::::
may

::::
also

::::
lead

::
to

::
a

::::::::
transition

::
in

:::::::
dynamic

:::::::::
conditions

::::
that

::
is

::::::::::
problematic

:::
for

:::
the

::::::::::
assumption

::
of

:::::::
tertiary

:::::::::::
compatibility.

:::
Of

::::::
course

:::
the

:::::
more

::::::
highly15

:::::::
dynamic

:::
the

:::::::
evolving

::::
flow

:::::::
regime,

::
the

:::::
more

::::::
rapidly

:
a
::::
new

:::::::::
compatible

:::::::::
anisotropy

::::
will

::
be

::::::::::
established,

::
so

::::
that

:::
the

:::::
spatial

:::::::
interval

:::::
where

:::
the

::::
flow

:::::::
relations

:::
are

::::::::::
inapplicable

::::
may

::
be

:::::::
limited.

:::::
While

::::
there

::
is

::::
little

::::::::
guidance

::
on

::::
how

::
to

::::::
extend

::::::::
empirical

:::
flow

::::::::
relations

::
to

:::::::::
parametrise

:::
ice

::::::::
rheology

::
in

::::
these

::::::::
transition

:::::::
regions,

:::
we

:::
note

::::
that

::::::
similar

:::::::::
difficulties

::::
exist

:::
for

:
a
::::::::
Glen-type

::::
flow

:::::::
relation,

::::::
which

:::::
unlike

:::::::
ESTAR

::::
does

:::
not

::::
have

:::
the

::::::
benefit

::
of

:::::
being

::::
able

::
to

:::::::
correctly

::::::::
describe

:::::::::
anisotropic

:::::::::::
enhancement

:::::::::
throughout

:::
the

:::::::::
remainder

::
of

:::
the

::
ice

::::::
sheet.20

2.3 Empirical scalar tertiary anisotropic rheology (ESTAR)

Here, we summarise the anisotropic rheology proposed by Budd et al. (2013) – ESTAR – that we are implementing in ISSM as

an alternative to the Glen flow relation, to provide a relation more applicable to the tertiary creep of anisotropic polycrystalline

ice typical of ice sheets and glaciers. ESTAR is a scalar power law formulation based on tertiary creep rates measured in

laboratory ice deformation experiments under various combinations of simple shear and compression that has been generalised25

to arbitrary stress configurations. Recasting Eqs.
:
62 and 63 of Budd et al. (2013) to more closely resemble Eq. 2. ,

:
ESTAR is

given by the following expression:

"̇"̇
:
= E(�

S

)A(T 0)⌧2
e

�0
. (3)

Assuming n= 3 in Eq. 2. ,
:
Eq. 3 only differs from the Glen flow relation by the form of the functional enhancement factor

E(�
S

), which explicitly depends on the nature of the applied stresses via the shear fraction, �
S

,
::::

and
:::::
could

:::
be

:::::::
regarded

:::
as30

::::::::
providing

:
a
:::::::
variable

:::::::::::
enhancement

:::::::
function

:::
for

:::
the

:::::
Glen

::::::
relation

::::
that

::::::::::
incorporates

:::
the

:::::
effect

::
of
:::::::::

anisotropy. We note
:
in

:::::::
passing

that in contrast to ISSM, flow relations in Budd et al. (2013) are couched in terms of the octahedral shear stress, ⌧
o

=
p
2/3⌧

e

,

which provides a more physically meaningful scalar measure of the overall stress magnitude than ⌧

e

(Jaeger, 1969).
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E(�
S

) in Eq. 3 is defined as

E(�
S

) = E

C

+(E
S

�E

C

)�2
S

, (4)

where E

C

is a compression enhancement factor, E
S

is a simple shear enhancement factor, and
:::
E

S:::
are

:::
the

::::::::::::
enhancement

:::::
factors

::::::
above

:::
the

::::::::
minimum

:::
or

:::::::::
secondary

::::::::::
deformation

::::
rate

::
of

::::::::
isotropic

:::
ice

:::::
under

:::::::::::
compression

:::::
alone

::
or

::::::
simple

:::::
shear

::::::
alone,

::::::::::
respectively.

::::
The

::::
shear

:::::::
fraction �

S ::
in

:::
Eq.

::
4 is a non-dimensional variable that takes

:::::
taking

:
values in [0,1]. The shear fraction

:
,5

:::::
which characterises the contribution of simple shear (⌧ 0) to the effective stress (⌧

e

)

�

S

=
k⌧ 0k
⌧

e

. (5)

:::
The

:::::::
essence

::
of

::::::::::::::::::
Budd et al. (2013) and

:::::::
ESTAR

::
is

:::
the

:::::::::
observation

::::
that

::::::
tertiary

:::::
strain

::::
rates

::::::
depend

:::
on

:::
the

:::::
nature

::
of

:::
the

:::::::
applied

:::::::
stresses,

:::
and

:::
the

::::::::::::
identification

::
of

:::
the

:::::
shear

:::::::
fraction

:::
�

S ::
is

:::
the

::::::::::
appropriate

:::::::
variable

::
to

::::::::::
characterise

::::
that

:::::::
pattern. Accordingly,

determining the portion of the overall deformation stress that can be regarded as simple shear is the main ingredient in im-10

plementing ESTAR. This involves the identification of a particular local plane – the local non-rotating shear plane – and the

determination of the shear acting on that plane, ⌧ 0, as the measure of simple shear. As discussed in Budd et al. (2013), the

importance of moving beyond strain rates to consider other aspects of flow – the ‘movement picture’ – has been recognised

since at least the 1970s (e.g., Budd, 1972; Kamb, 1973; Duval, 1981). Duval (1981) identified the plane normal to the velocity

gradient in a simple shear regime as the ‘permanent shear plane’ and discussed its role in the evolution of crystal fabrics. Budd15

et al. (2013) proposed a definition for this local plane in an arbitrary flow as the plane containing the vorticity vector associated

solely with deformation and the velocity vector. As discussed below they also prescribed a further projection to remove any

component of ⌧ 0 parallel to the deformational vorticity. The collinear nature of ESTAR (Eq. 3) allows �
S

to be written in terms

of the corresponding strain rates, which is more convenient for Stokes flow modelling, as

�

S

=
"̇

0

"̇

e

, (6)20

where "̇

0 is the magnitude of the shear strain rate on the locally non-rotating shear plane, as defined in Eq. 7 below. In

compression-alone scenarios, including three-dimensional uniaxial compression and two-dimensional plane compression and

extension, �
S

= 0, so that E(�
S

) = E

C

. Similarly, for simple shear alone, �
S

= 1 and E(�
S

) = E

S

.

Analysis of tertiary creep rates for experiments conducted in simple shear-alone and compression-alone suggests that a

suitable ratio of E
S

to E

C

for ice sheets is ⇠ 8/3 (Treverrow et al., 2012). The same data also suggest
::::
study

::::
also

::::::::
suggests25

that E /p
⌧

e

for tertiary creep rates determined over a range of stress magnitudes. A flow relation incorporating
:::
such

::
a stress

dependent enhancement could be achieved by employing a creep power-law stress exponent of n= 3.5, rather than the more

commonly used n= 3, assuming both E

S

and E

C

are described by functions of
p
⌧

e

. For simplicity, we have excluded the

apparent stress dependence of E
S

and E

C

in our initial implementation of ESTAR in ISSM since further work is required to

verify the stress dependence of E
S

and E

C

experimentally for complex, combined stress configurations. Accordingly, we use30

scalar enhancement factors of E
S

= 8 and E

C

= 3 for the idealised scenarios examined in this study. These values may be at

the higher end of the anticipated range in E

S

and E

C

for an ice sheet (see e.g., Russell-Head and Budd, 1979). However, the

7



strength of anisotropy and its influence on ice dynamics in comparison to the enhanced Glen flow relation depends on the ratio

E

S

/E

C

and its spatial variation, i.e., the dynamically controlled distribution of E(�
S

).

If the enhancement parameters are selected so that E
C

= E

S

= E

G

, where E

G

is the Glen enhancement factor, ESTAR

becomes isotropic and equivalent to the Glen flow relation since E(�
S

)⌘ E

G

. However, the viscous creep behaviour of poly-

crystalline ice is highly anisotropic and regional variations in the relative proportions of shear and normal strain rates, which5

are driven by variations in the distribution of the stresses responsible for deformation, mean that spatial contrasts in anisotropy

are common and widespread in ice sheets. For this reason, a spatially varying enhancement factor is required for ice sheet mod-

elling (e.g., Morgan et al., 1998; Wang et al., 2002a)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Morgan et al., 1998; Wang and Warner, 1999; Wang et al., 2002a) .

Comparisons of simulations of ice sheet dynamics using ESTAR and the Glen flow relation will be influenced by: the choice

of the Glen enhancement parameter, E
G

;
::
the

:::::::
ESTAR

::::::::::
parameters E

C

;
:::
and E

S

; and the spatial distribution of �
S

. The most10

significant differences between Glen- and ESTAR-based simulations are expected where there are regional contrasts in �

S

.

Specific regions where these conditions are likely to arise include: the
:::::::::
progression

::::
with

:::::::::
increasing

:::::
depth

::
in

:::
the

::
ice

:::::
sheet

::::
from

::
a

::::::
regime

::
of

::::::
normal

::::::
stresses

::
to

::::
one

:::::::::
dominated

::
by

:::
bed

:::::::
parallel

:::::
shear;

:::
the

:::::::
contrasts

::::::::
between lateral margins of embayed ice shelves

and ice streams ; locations where there are changes in dynamic conditions at the bed, e.g., at the transition between bed-parallel

shear and basal sliding; ice shelf grounding zones; and
:::
their

::::::
central

::::::
flows;

:::
and

:
where there is significant relief in the bedrock15

topography.

A caveat is that as stated earlier, for ESTAR the assumptions of crystallography and deformation rates being compatible with

the instantaneous stress/deformation regime requires that this does not change too rapidly along the flow.
::::
That

::
is

::
to

::::
say,

:::
for

:
a
:::::::::
compatible

::::::::
(tertiary)

:::::::::
anisotropy

::
to

:::
be

::::::
present,

::::
the

::::::
present

::::::::::
deformation

::::::
regime

:::::
needs

:::
to

::
be

::
a

::::::
suitable

::::::::
indicator

::
of

:::
the

::::::
recent

::::
strain

::::::
history

:::
of

:::
the

::::::
flowing

::::
ice.20

3 Implementation of ESTAR

The magnitude of the shear strain rate defined on the local non-rotating shear plane, "̇0 from
::
for

:
Eq. 6, is central to the

formulation of ESTAR .
::::
(Eqs.

::::
3-4).

:
The full prescription, following Budd et al. (2013), involves the following expression

"̇

0 = k"̇ ·n� (n · ("̇ ·n))n� (!̂
D

· ("̇ ·n)) !̂
D

k, (7)

where: n is the unit normal to the non-rotating shear plane, !̂
D

is the unit vector parallel to that part of the vorticity that is25

associated solely with deformation
:::::
(!

D

), and "̇ is the strain rate tensor. The unit normal to the non-rotating shear plane
:
, n

:
, is

defined as the normalised cross product of the velocity and the deformational vorticity

n=
v⇥!

D

kv⇥!
D

k . (8)

The last projection term in Eq. 7 was proposed in Budd et al. (2013) to prevent any shear component parallel to the defor-

mational vorticity from contributing to the measure of simple shear.30

The vorticity of a flow, whether viewed as the anti-symmetrised part of the velocity gradient tensor or as the usual vector

! =r⇥v, contains motions associated with both deformation and local rigid-body rotation. The locally non-rotating shear

8



plane is intended to be rotating with any rigid rotation portion of the flow field, so it is only vorticity associated with the

deformation process that is relevant to determining the shear fraction. Accordingly we
:::::::
formally decompose vorticity into

deformational and rotational parts:

! =r⇥v = !
D

+!
R

. (9)

For the present implementation it is convenient to decompose the vorticity further, into vectors perpendicular and parallel to5

the velocity direction as follows:

! = !?
D

+!?
R

+!k
D

+!k
R

. (10)

From Eq. 8, only the perpendicular projection !?
D

of the deformational vorticity is relevant in determining the direction of the

normal to the non-rotating shear plane. This is fortunate since the perpendicular projection of the rotational vorticity can be

calculated directly for steady flow from the flow speed and
::
the

:
curvature of the local flowline, and is oriented along the bi-10

normal to the flow-line. The decomposition of the component of vorticity parallel to the flow direction, conventionally termed

swirling motion, into deformational and rotational pieces is not so straightforward, but we can use the following expression,

which can be calculated using variables available within an individual element of ISSM to generate a vector suitable for

computing n:

!̃
D

=r⇥v� 2v⇥ ((v ·r)v)

kvk2 . (11)15

This vector contains the correct perpendicular component !?
D

to compute n using Eq. 8, but contains all of !k
D

+!k
R

. We can

obviously also project out the component parallel to velocity to find

!?
D

= !̃
D

� (v · !̃
D

)
v

kvk2 . (12)

In the present implementation of ESTAR, we assume that swirling effects are small for flows with the relevant spatial scales,

aspect ratios etc., which can be verified from the modelled flow-fields
::
in

:::
our

:::
test

:::::
cases, and hence !k

D

is also expected to be20

small. We use the unit vector corresponding to !?
D

(i.e., !̂
D

) in Eq. 7 for our computation of "̇0. This corresponds to extracting

the component of the shear resolved on the non-rotating shear plane which is parallel to the velocity direction, which could

be regarded as an alternative generalisation for the simple shear to that proposed by Budd et al. (2013). No approximation

is involved for flows that are exactly two dimensional in character, since vorticity is always orthogonal to velocity in such

situations.25

:::
The

:::::::
ESTAR

::::::::::
description

:::::
above

::
is
::::::::::::

implemented
::
in

::::::
ISSM

:::
for

:::
the

::::::::::
full-Stokes

::::
(FS)

::::::
model

::
of

:::::
flow.

:::
We

::::
also

::::::::
extended

::::
the

:::::::::::::
implementation

::
of

::::::
ESTAR

::
to

:::::
ISSM

:::::::
versions

::
of

:::
the

::::::::::
higher-order

:::::
(HO)

:::::::::::::::
three-dimensional

:::::
model

::
of

:::::::::::::::
Blatter (1995) and

:::::::::::::
Pattyn (2003) ,

:::
and

:::
the

:::::::::::
shallow-shelf

::::::::::::
approximation

:::::
(SSA)

::
of

::::::::::::::::
MacAyeal (1989) .

:::
The

:::
HO

::::::
model

::
is

::::::
derived

::::
from

:::
the

:::
FS

:::::
model

::
by

::::::::
assuming

::::
that

::::::::
horizontal

::::::::
gradients

::
in

:::
the

:::::::
vertical

::::::::
velocities

:::
are

:::::::::
negligible

::::::::::::::::::::
(@v

z

/@x= @v

z

/@y = 0)
:::::::::
compared

::::
with

:::::::
vertical

:::::::
gradients

:::
in

:::
the

::::::::
horizontal

::::::::
velocities

:::::
when

:::::::::
computing

::::::
vertical

:::::
shear,

:::
and

::::::::::
longitudinal

:::::::::
derivatives

::
of
:::::::
vertical

::::
shear

:::::
stress

::::::::::::::::::::::::::::::::::::::::::::
(bridging effects van der Veen and Whillans, 1989) are30

:::::::
ignored.

:::
The

::::
HO

::::::
vertical

::::::::
velocities

:::
are

::::::::
recovered

:::::::
directly

::::::
through

:::::::::::::::
incompressibility.

:::::::::
Extending

::
on

:::
the

:::
HO

::::::
model

:::::::::::
assumptions,

9



::
for

:::
the

::::
SSA

::::::
model,

::::::
vertical

:::::
shear

::
is

:::::::
assumed

::
to

::
be

:::::::::
negligible

:::::::::::::
("̇

xz

= "̇

yz

= 0).
:::
For

::::
both

:::
the

:::
HO

::::
and

::::
SSA

::::::
models,

:::
the

:::::::::::::
approximations

:::
will

:::::
affect

::::::::::
calculations

:::
of

:::
the

::::
total

:::::::
vorticity

::::
and

:::::
hence

:::
the

:::::::::
magnitude

::
of

:::
the

:::::
shear

:::::
strain

::::
rate

::
on

:::
the

:::::::::::
non-rotating

:::::
shear

:::::
plane

:::
(Eq.

:::
7)

:::
and

:::
�

S ::::
(Eq.

::
6).

:

4 Analytical verification

We perform convergence tests in order to verify the ISSM implementation of ESTAR within the full Stokes (FS ) and higher5

order (HO )
::::
ISSM

:::
FS

::::
and

:::
HO

:
models. The objective of these tests is to compare the model results to analytical solutions

for different mesh resolutions. As the mesh becomes finer, the error between the model and the analytical solution (i.e.,qR
⌦(X �Xa)2/

R
⌦X

2
a , for model solution X , analytical solution Xa, and domain ⌦) should decrease, with a cubic depen-

dence on resolution for FS (quadratic for ice pressure) when using Taylor-Hood finite elements, and a quadratic dependence

for HO using P1⇥P1 finite elements (e.g., Ern and Guermond, 2004).10

We designed our analytical solutions by considering a three-dimensional, grounded, isothermal ice slab of unit dimension

lying on a flat bed topography, with cartesian coordinates (x,y,z), where z is vertically upward and where there is no gravita-

tional force. The FS three-dimensional velocity field is given by

v

x

(x,y,z) = 3z, (13)

v

y

(x,y,z) = 2x+ y, (14)15

v

z

(x,y,z) =�z, (15)

and the HO velocity field by

v

x

(x,y,z) = x

2
, (16)

v

y

(x,y,z) = 3z+ y. (17)

In the case of the HO model, v
z

(x,y,z) is recovered by incompressibility. For both FS and HO models, we use ESTAR20

shear and compression enhancement factors of E
S

= 3 and E

C

= 1, and the flow parameter A(T 0) = 2/3 Pa�3 s�1. The open

source mathematics software system SageMath (http://www.sagemath.org/) is used to calculate analytical solutions for the

force balance equations based on the above velocity fields:

f

x

(x,y,z) =�
✓
@�

0
xx

@x

+
@�

xy

@y

+
@�

xz

@z

◆
, (18)

f

y

(x,y,z) =�
✓
@�

xy

@x

+
@�

0
yy

@y

+
@�

yz

@z

◆
, (19)25

f

z

(x,y,z) =�
✓
@�

xz

@x

+
@�

yz

@y

+
@�

0
zz

@z

◆
. (20)

Here, the deviatoric stress fields are calculated using ESTAR
::
as specified in Eq. 3. When the total, rather than deformation

:::::::::::
deformational,

vorticity (i.e., without inclusion of the rigid body correction or removal of the vorticity component aligned with the flow) is

10

http://www.sagemath.org/


used in the calculation of ESTAR, the FS analytical solution for (f
x

,f

y

,f

z

) comprises (20 521, 9 190, 20 523) characters. By

contrast, non-trivial analytical solutions for the forcing functions that are calculated from an anisotropic enhancement factor

that is based on the deformation
:::::::::::
deformational, rather than total, vorticity are at minimum 200 000 characters, well in excess

of the character limits for most compilers. Hence
::::::::::
Accordingly, we verify ESTAR using the total, rather than the deformational,

vorticity.5

To test the numerical implementation of ESTAR, ISSM is forced using the analytical expressions for f

x

, f
y

, and f

z

in

Eqs. 18-20 and the resulting three-dimensional flow field is compared with the relevant analytical specification in Eqs. 13-17.

Since the aim is to verify correct coding of the ESTAR modifications within ISSM, we apply the analytic velocities on the faces

as the boundary conditions. Four sets of element sizes are used for each of the FS and HO models, increasing in resolution

from 0.2 (272 elements over 5 vertical layers) to 0.08 (4656 elements over 13 vertical layers). We find convergence powers of10

2.5 (v
x

), 3.1 (v
y

), and 2.6 (v
z

) for FS, respectively, and 1.4 (v
x

) and 1.1 (v
y

) for HO (Fig. 2), which are consistent with theory

and verify our implementation.

5 Application of ESTAR to idealised scenarios

ESTAR was applied to a suite of test cases. The first case we present simulates flow in an embayed ice shelf; the second two

are based on experiments from the Ice Sheet Model Intercomparison Project for Higher Order Models (ISMIP-HOM; Pattyn15

et al., 2007). The ISMIP-HOM experiments describe idealised scenarios of ice flow where the bed topography or basal friction

vary. ISSM has already been validated against each of these
:::
the

:::::::::::
ISMIP-HOM experiments (Larour et al., 2012).

In each experiment, the velocity, surface, and thickness fields were allowed to run to steady-state, as defined in each section

::
the

::::::::::::
corresponding

:::::::
section

:::::
below

:
(the original ISMIP-HOM experiments were simply diagnostic). The ice sheet is isothermal

in each case.20

As mentioned in the previous section
:::::
above, we use ESTAR shear and compression enhancement factors of E

S

= 8 and E

C

=

3, respectively (Treverrow et al., 2012). For each experiment, we perform simulations using
::::::::
performed

::::::::::
simulations

:::::
using

::
a

::::
range

:::
of Glen enhancement factors of

:
(1, 3, 5, and 8; this range of enhancement factors facilitates a 1:1 comparison with ESTAR

for different governing stress regimes, yet remains consistent with the broad range of enhancement factors used in previous

ice sheet model experiments (e.g., Greve, 1997; Parizek and Alley, 2004; Tarasov and Peltier, 2004; Martin et al., 2011)
:
),

:::
but25

::::
since

:::::
these

:::::::
idealised

:::::::::::
experimental

:::::::
systems

::::
have

::::::
simple

::::::
scaling

:::::::::
properties

:::::
under

::::::
global

:::::::
changes

::
in

::::
flow

::::
rates,

:::
we

:::::::
present

::::
only

:::::
results

:::
for

:::::::
E

G

= 8
:::::
since

:::
that

:::::::
proved

:::
the

::::
most

:::::::
directly

:::::::
relevant

:::::
value. The ISMIP-HOM experiments used the same

::::::
original

parameter values (Pattyn et al., 2007) unless otherwise indicated.

5.1 Flow through an embayed ice shelf

The first experiment simulates three-dimensional flow through a rectangular embayed ice shelf. The experiment was carried30

out for model domains with transverse spans x 2 [0,L], for L= 20, 60, and 100 km and along-flow dimension y 2 [0,100] km.

The initial ice thickness decreases uniformly from 1000 m at the grounded zone to 300, 600, and 850 m at the ice front for
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the L= 20, 60, and 100 km cases, respectively. The main features of the anisotropic effects are similar regardless of aspect

ratio, so
:
.
::::
This

::
is

:::::::::
principally

:::::::
because

:::::
wider

::::::::
embayed

:::
ice

:::::::
shelves

:::
are

:::::
flatter

::
so

::::
that

:::
the

::::::::
influence

::
of
::::::

simple
:::::

shear
:::::::
stresses

:::
on

::
the

:::::::::
dynamics

:
is
::::
not

:::::::::
particularly

::::::::
sensitive

::
to

:::::
aspect

:::::
ratio.

:::::::::::
Accordingly, we focus our discussion on one transverse length scale:

L= 20
:::
km. The plan view mesh is extruded ten quadratically-spaced layers in the vertical. A no-slip boundary condition is

applied along the x= 0 and x= L side boundaries. At the inflow boundary, the y-component of velocity is set to5

v

y

(x,0) = V0e
�
⇥

5(x�xmid)
2L

⇤8
, (21)

where V0 = 100 m yr�1 and xmid = L/2. As is standard, ocean water pressure is applied at the ice-ocean interface where

tangential (traction) stresses vanish. It is assumed that there is no surface or basal melting or accumulation over the ice shelf

domain. The flow parameter A(T 0) = 1.74⇥ 10�25 Pa�3 s�1, is set using the Budd and Jacka (1989) value for an isothermal

ice shelf of �20 �C.
:::
We

:::::::
consider

:::
the

::::
case

:::::
where

:::
the

:::::
Glen

:::::::::::
enhancement

:::::
factor

:
is
:::::
equal

::
to

:::
the

:::::::
ESTAR

::::
shear

:::::::::::
enhancement

::::::
factor,10

:::
i.e.,

::::::::::::
E

G

= E

S

= 8.
:

We run the HO ice flow model for each of the ESTAR and Glen rheologies to steady-state, which we define to be reached

when the mean velocity change over the surface mesh points is less than 1⇥10�2 m yr�1 between two consecutive time steps

(of 4t= 2 yr). ISSM uses the Blatter-Pattyn form of the HO approximation (Blatter, 1995; Pattyn, 2003) , which assumes that

horizontal gradients in the vertical velocities are negligible compared with vertical gradients in the horizontal velocities when15

computing vertical shear, and longitudinal derivatives of vertical shear stress (bridging effects) are ignored.

The Glen and ESTAR HO steady-state surface velocity magnitudes are compared in Fig. 3, where a Glen enhancement factor

of E
G

= 8 has been used. The patterns of ice flow are similar for the two rheologies: in each case the ice velocity increases

as it flows through the ice shelf, reaching its maximum at the ice front. Over most of the domain the velocities are in close

agreement, reflecting the dominance of the shear flow. However, the Glen velocities are up to 17% larger than the ESTAR20

velocities at the ice front, where the flow field is predominantly extensive in accordance with the ice front boundary conditions.

The differences in velocities can be attributed to differences in flow enhancement factors for simple shear and compression.

In the centre
::::
Near

:::
the

::::::
centre

:::
line

:
of the ice shelf and across the ice front, where longitudinal and vertical normal stresses

dominate, the Glen enhancement is as much as 8/3 times larger than the corresponding ESTAR enhancement.

The steady-state thickness ratio for the two rheologies is shown in Fig. 3d. In both cases, the equilibrated ice shelf is thicker25

along the centre line and thinner towards the side margins where ice flow is slower, and thicknesses agree within 5% over

much of the domain. However, the Glen ice shelf is consistently thinner than the ESTAR ice shelf, particularly along the

centre line where Glen velocity is enhanced relative to ESTAR, and it is up to 20% thinner at the ice front. Reducing the Glen

enhancement factor (i.e., for E
G

= 1,3,5) results in almost identical steady-state velocities to the E

G

= 8 case. However, the

ice shelf thicknesses for E
G

= 1,3,5 are then uniformly greater across the shelf than the E
G

= 8 case by approximately 100%,30

40%, and 17%, respectively.

The ESTAR strain rate components are presented in Fig. 4. As expected, shear strain rate in the x� y plane is very high

near the lateral boundaries (Fig. 4d). However, it dominates the effective strain rate (and hence �
S

) well beyond those margins

(Fig. 5), before decreasing towards the centre line, where it identically vanishes. Towards the ice-ocean front, each of the normal
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strain rates – "̇

xx

, "̇
yy

, and "̇

zz

– increase in magnitude, reaching their maxima at the front. The (approximately) longitudinal

"̇

yy

is the dominant normal strain rate component and is extensive towards the front. Due to the confined geometry, towards

the front "̇
yy

is largely balanced by "̇

zz

, which drives ice shelf thinning. Transverse normal strain rate "̇

xx

plays a lesser role

at the ice-ocean front than the remaining
::::
other

:
normal strain rates. It is extensive along the front as the streamlines diverge,

but changes sign to compressive towards the corners. The patterns in the component strain rates, including the dominance of5

vertical compression
::::::
normal strain rates in the centre of the ice shelf and at the ice-ocean front, are evident in the strain rate on

the non-rotating shear plane (NRSP strain rate
:̇
"

0) and the effective strain rate ("̇
e

; Fig. 5), the ratio of which sets the magnitude

of �
S

.
::::
(Fig.

:::
5). In the ESTAR embayed ice shelf simulation, the vanishing of basal traction and the depth independent nature

of the inflow velocity lead to an almost 2D flow field with local non-rotating shear planes essentially vertical where they can

be defined – there being neither x� y plane shear nor vorticity along the centre line. We note that "̇
yy

decreases in magnitude10

with depth at the ice-ocean front, coincident with ice front tilting (Weertman, 1957), which also gives rise to some local shear

deformation in the y� z plane.

The
::
To

:::::
assess

:::
the

::::::::::::
computational

::::::::
demands

::
of

:::
the

:::
full

:::::
ISSM

::::::
model

::::
with

:::::::
ESTAR,

:::
the

:
FS ice flow model was computed for 1

:::
one

:::::
model

:
year (i.e., steady state had not yet been reached) and the results compared with the HO simulation results for the

same model period (results not shown). At the ice front, the HO velocities are everywhere within 5% of the FS velocities, with15

the maximum differences occurring near the lateral boundaries. Across the shelf, the HO component velocities accord well

with the FS velocities. The magnitude and spatial patterns of "̇0, "̇
e

, and �

S

also agree well between the two flow equations
:::
FS

:::
and

:::
HO

:::::::
models.

Computation times for FS simulations using each of the two rheologies, and for increasing mesh resolutions, are summarised

in Table 1. In each case, the model was run for 1 month with a time step of 4t= 1⇥10�4 yr. The ESTAR simulation computa-20

tion times are no more than 3% slower than the corresponding Glen times, and the simulation times for the two rheologies con-

verge as the mesh resolution increases. This result gives us confidence that ESTAR is essentially as computationally-efficient

as the Glen rheology.

5.2 ISMIP-HOM experiment B: two-dimensional flow over a bumpy bed

ISMIP-HOM Experiment B (ISMIPB) describes two-dimensional flow (x horizontal, z vertical) over a bed topography that25

varies sinusoidally, according to the following equation

z

b

(x) = z

s

(x)� 1000+500sin

✓
2⇡x

L

◆
. (22)

where z

s

(x) =�xtan↵, for a mean bed slope of ↵= 0.5�, and L controls the scale of the bedrock undulation. We take z

s

(x)

as the initial surface so that the mean initial ice thickness is 1000 m. As for the embayed ice shelf experiment, we discuss only

the
:::
We

::::::
present

::::::
results

::
for

::::
two

:::::::
different

::::::
aspect

:::::
ratios,

:
L= 20 case since the anisotropic effects are similar regardless of aspect30

ratio
::
km

::::
and

:::::
L= 5

::::
km,

::
to

:::::::
explore

:::
the

::::::::
influence

::
of

::::::::
different

::::::::::
longitudinal

:::::::
stresses.

::
In

:::::
each

::::
case

:::
we

::::
used

:::
the

::::::::::
full-Stokes

::::
(FS)

::::::
version

::
of

:::::
ISSM. The flow parameter is fixed at 3.96⇥ 10�25 Pa�3 s�1, corresponding to an ice temperature of approximately

�14� C (Budd and Jacka, 1989). The value for the flow parameter in the original ISMIPB was 3.17⇥ 10�24 Pa�3 s�1, which
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corresponds to a Budd and Jacka (1989) ice temperature of approximately �3.6� C. We have reduced the original flow param-

eter by a factor of 8 (i.e., equal to E

S

) to ensure our results are as close as possible to the original ISMIP-HOM experiments.

Periodic boundary conditions are applied at the vertical edges of the domain and a no-slip boundary condition is applied at the

base. In this and the following two-dimensional test case, the normal to the non-rotating shear plane is simply the direction

perpendicular to the velocity and there is no uncertainty about the vorticity (which has only one non-vanishing component)5

being perpendicular to the velocity. Steady-state is
:::::::
regarded

::
as

:
reached when the mean velocity change over the surface mesh

points is less than 1⇥ 10�2 m yr�1 between two consecutive time steps of 4t= 1 yr for this and the following ISMIP-HOM

experiment.

::
In

::::
what

:::::::
follows,

:::
we

:::::::
consider

:::
the

::::
case

:::::
when

:::
the

:::::
Glen

:::::::::::
enhancement

:::::
factor

::
is

:::::
equal

::
to

:::
the

::::::
ESTAR

:::::
shear

:::::::::::
enhancement

::::::
factor,

:::
i.e.,

::::::::::::
E

G

= E

S

= 8.
::::
This

::
is
:::
the

:::::
most

:::::::
relevant

::::
case

::
for

:::
the

::::::::
ISMIPB

:::::::::
experiment

::
as

:::
the

:::::::::
dynamics

::::
here

:::
are

:::::
driven

:::
by

::::::::::
bed-parallel10

:::::
shear,

::
as

::::::::
discussed

::::::
below.

The ESTAR and Glen FS steady-state along-flow
::::::::
horizontal

:
velocities (v

x

) are compared
:::
for

:::::::
ISMIPB

:::
for

::::::
L= 20

::::
km

:::
are

:::::
shown

:
in Fig. ?? and the shear fraction

::
6a

:::
and

::
b,

::::
with

::::
their

::::
ratio

::
in

::::
Fig.

:::
6c.

:::
The

:::::
shear

:::::::
fraction

::::
(�

S

) used to calculate the ESTAR

enhancement is shown in Fig. ??a. When E

G

= E

S

= 8, the
::
6d.

::::
The

:
ESTAR velocities are marginally slower than the Glen

velocities throughout the domain, regionally by as much as 6%. Although, we note that
:::::
While in a real-world situation, a local15

difference of 6% may not be significant to overall flow,
::::::
clearly

::::::
unless

:::
the

::::
Glen

:::::::::::
enhancement

:::::
factor

::
is

::::::::::::
approximately

:::
E

S:::::
there

:::::
would

::
be

::
a
:::::::::
significant

:::
and

::::::::::
widespread

::::::::
difference

::
in

:::::::::
velocities. One major contrast occurs either side of the topographic bump

in the near-surface layers (Fig. ??
:
6c) where normal stresses dominate (�

S

< 1) and E

G

is greater than E

C

(;
:
Fig. ??) .

::
6d)

::::
and

:::::
E(�

S

)
:::::

tends
::
to
::::::::::
E

C

<E

G

,
::
as

:::
�

S :::::
tends

::
to

::
0. This reduces the shear deformation in the upper-layers for ESTAR compared to

Glen, leading to slightly lower horizontal velocities . Another
:::
near

:::
the

:::::::
surface.

:::
We

:::
will

:::::::
discuss

:::
the

::::::::
relevance

::
of

:::
this

::
in

:::::
Sect.

::
6.20

:::::::
Another

:::::
major

:
velocity contrast occurs

:
in

:::
the

::::::
lowest

::::
part

::
of

:::
the

:::
ice

:::::
sheet

:
directly above the topographic depression. Since

deformation here is clearly shear dominated (�
S

= 1 ; Fig. ??
::
for

:::::::::
essentially

:::
the

:::::
whole

:::::::
column), the difference

::::::::
differences

:
must

arise from a
::::::
varying

:::
but

::::::::::
consistently

:
lower shear stress

:::::
profile

:
in the ESTAR case, reflecting indirectly the

:::::::::
distributed

:::::
effect

::
of

::
the

:
stiffer ice in the upper layers because E(�

S

)<E

G

= 8.
::::
where

::::::::::::
E(�

S

)<E

G :::
and

::
a

::::::
slightly

:::::::
different

::::
final

:::::::::
geometry

::
of

:::
the

::
ice

:::::::
surface.

::
In

:::::::
contrast,

:::
the

::::::
closest

:::::::::
agreement

:::::::
between

:::
the

::::
two

:::::::
velocity

::::::::::
distributions

::
is

::
in

:::
the

::::
basal

::::::
region

::::
over

:::
the

::::::::::
topographic25

::::
high.

:

Figure ??
:
6
:
also shows the FS shear and normal

::
"̇

xz::::
and

:::
"̇

xx

strain rates for the ESTAR simulation
:
:
:::::::::
effectively

:::
the

::::
shear

::::
and

::::::
normal

:::::
strain

::::
rates. The dominance of high values of �

S

indicates that bed-parallel simple shear is the main driver of ice flow

in ISMIPB with the expected transition through the ice column from compression/extension-dominated flow near the surface to

shear-dominated flow near the non-slip bed. Note that while our
::
the

:
component strain rates are locked into a global

::::::::
presented30

::
in

::
the

::::::::::
background

:
cartesian frame, �

S

denotes the relative importance of simple shear on local non-rotating shear planes. High

shear peaks
::::
Peaks

:::
in

::
�

S:
appear directly over the topographical bump and depression, extending further into the surface layers

than in surrounding regions. The locations of the peaks correspond to
::
in

:::
�

S :::::::::
correspond

::
to
:::
the

:
transitions between extensive

and compressive longitudinal stresses, centred on “transition curves”
:::
(Fig.

::::
6e), along which normal strain rates are identically

zeroat some point.
:
.35
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::
In

:::::::
addition

::
to

:::
the

::::
case

:::::
where

:::::::
L= 20

:::
km,

:::
we

::::
also

::::::::::
investigated

:::
the

::::::
impact

::
of

::::::::
reducing

::
the

:::::::::
horizontal

::::::
extent

::
to

:::::
L= 5

::::
km.

::
In

:::
this

::::::
steeper

:::
bed

::::::::
scenario

::::
(Fig.

:::
7),

:::
the

::::::
ESTAR

:::::::
surface

::::::::
velocities

:::
are

::
at

::::
least

::::
11%

::::::
slower

::::
than

:::
the

::::
Glen

::::::::
velocities

::
in
:::

the
:::::::
surface

:::::
layers

:::::
across

:::
the

:::::
whole

:::::::
domain,

::
as

:::::
much

::
as

::::
20%

::::::
slower

::::::
around

:::
the

::::::::::
topographic

:::::
bump,

::::
and

::
up

::
to

::::
25%

::::::
slower

::
in

:::
the

::::::::::
topographic

:::::::::
depression

::::
(Fig.

::::
7c).

:::
The

:::::
much

::::::
greater

:::::::::
reductions

::
in

:::
the

:::::::::
magnitude

::
of

:::
the

:::::::
ESTAR

::::::::
velocities

:::
for

:::::
L= 5

::::
km

:::
are

:
a
:::::::::::
consequence

::
of

:::
the

::::::::
increasing

::::::::::
importance

::
of

::::::::::
longitudinal

:::::::
stresses

::
in

:::
the

:::::
stress

:::::::
balance

::::::::
equations

:::
for

:::
the

::::::
smaller

::::::
aspect

::::
ratio

:::::
(Fig.

:::
7e),

::::
and5

:::
also

::
in

:::::
some

:::::
areas

:::
the

:::::
lower

:::::
strain

:::::
rates,

:::::
which

::::
lead

::
to

::::::::::::::
correspondingly

:::::
stiffer

::::
ice.

::::::
Indeed

::
we

::::
see

:
a
::::
clear

:::::::
decline

::
in

:::
the

:::::
shear

::::
strain

::::
rate

::
in

:::
the

:::::
lower

::::
part

::
of

:::
the

::::
bed

:::::::::
depression

::
in

::::
Fig.

:::
7f,

::
in

:::::::
contrast

::
to

::::
Fig.

::
6f.

::::
The

:::::::::
qualitative

::::::
pattern

::
of

:::
the

:::::::::::
longitudinal

:::::::::
strain-rates

::
in

::::
Fig.

::
7e

::
is
:::::::

similar
::
to

:::
the

::::::
L= 20

::::
km

::::
case,

::::::::
although

:::
the

:::::::::
horizontal

::::::::
gradients

:::
are

::::::::
naturally

::::::::::
accentuated,

::::
and

:::
the

::::::::
“transition

:::::::
curves”

:::
are

:::::::::
displaced.

In order to examine the dynamics giving rise to the high shear peaks
::::::::::::::
shear-dominance

:::::
peaks

:::
in

:::
Fig.

:::
6d

::::
and

::::
Fig.

::
7d, we10

consider the following exact form of �2
S

(for this
::::
these two-dimensional flow field) expressible in

:::::
fields)

::::::::::
expressible

:::::
using the

cartesian frame
::::
strain

::::
rate components

�

2
S

=
↵"̇

2
xx

+�"̇

2
xz

+ �"̇

xx

"̇

xz

"̇

2
xx

+ "̇

2
xz

, (23)

for
::::
some

:
spatially varying coefficients ↵, �, and �. Since there is no surface accumulation,

::::::::
velocities

::::
and

:::::
hence

:
local non-

rotating shear planes
::
at

:::
the

::
ice

:::::
sheet

::::::
surface

:
are parallel to the ice sheet surface. The traction free surface boundary condition15

implies �

S

= 0 there,
:::
that

:::
the

:::::::::
numerator

::::
("̇02)

:::
in

:::
Eq.

:::
23,

::::
and

::::::::::
accordingly

:::
�

S

,
::::::::

vanishes
::
at

:::
the

:::::::
surface,

:
except that if "̇

e :::
also

vanishes, �
S

is technically undefined. We set
:::
Our

:::::::::::::
implementation

::::
sets �

S

= 0 for vanishing "̇

0 in such situations. It is apparent

from Eq. 23 that along
::
the

:
transition curves,

:::
i.e., where "̇

xx

= "̇

zz

= 0, �2
S

= �, independent of (non-zero) "̇
xz

strain rate. We

find
:::
One

:::
can

:::::
show

:
that � ! (1�S

2
x

)2 towards the surface (i.e., for surface slope in the x-direction S

x

) along the transition

curve, in order to satisfy the surface boundary condition. This indicates that �
S

should
:::::
would

:
be finite along the transition20

curve
:::::
curves all the way to the surface. The fact that �

S

! 0 along the transition curves towards the surface in Fig. ?? may also

be a consequence of mesh averaging over elements such that there is not necessarily an exact point in our finite mesh for which

"̇

xx

is identically equal to 0. ,
::::::
except

::::
that

::
we

::::::::
enforced

::
its

:::::::::
vanishing

:::::
there.

:::
For

::::
these

:::::::::
locations,

:::
the

::::
Glen

:::
and

:::::::
ESTAR

:::::::::
viscosities

:::::::::::
corresponding

:::
to

::::
Eqs.

:::
2-3

:::::
would

::::
tend

:::
to

::::::
infinity

::
as

::̇
"

e::::::::
vanished

:::::::::::
approaching

:::
the

::::::
surface,

:::
but

:::
are

:::::::
limited

::
to

:
a
:::::::::
maximum

:::::
value

::
in

:::
the

::::::
ISSM

:::::::::::::
implementation.

:
25

Note that away from the transition curves �

S

does go to zero at
:::
goes

:::
to

::::
zero

::
as

:::
we

::::::::
approach the surface, associated with

vanishing shear on the non-rotating shear plane there.

The FS spatial pattern of velocities is consistent for both ESTAR and Glen using each of the Glen enhancement factors

E

G

= 1,3,5,8. Naturally, the Glen velocities decrease with decreasing enhancement factor (as the ice becomes stiffer): for

E

G

= E

C

= 3, the Glen velocity magnitudes are 38-40% of the corresponding ESTAR velocities; for E
G

= 1, Glen velocities30

are only 16-17% of the corresponding ESTAR velocities. These results indicate that the velocities in the Glen case scale

exactly with the choice of E
G

. This follows from the nature of the boundary conditions here, so that one can rescale velocity

to compensate for changes in E

G

.
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In addition to the ESTAR FS simulation of ISMIPB, we performed an HO simulation to investigate the representation of

anisotropic flow in that approximation scheme. Figure ?? compares velocities, shear fractions �
S

, and anisotropic viscosities,

and their ratios, between HO and FS simulations. The HO velocities are slower than the FS velocities throughout the domain.

Generally, this is attributable to the neglect of strain rate components – notably the horizontal gradient of vertical velocity – in

the HO force balance equations, leading to stiffer ice in the HO approximation. The maximum differences between the HO and5

FS velocities occur in the basal layers. Consistent with Pattyn et al. (2008) , in the
::
and

:::
the

::::::::::::
corresponding

:::::::::
dominance

:::
of

::::::
normal

:::::::::::
deformations.

:::
We

:::::
return

::
to
:::::
these

:
near-surface layers, HO velocities are everywhere within 3% of the FS velocities, with larger

differences between HO and FS velocities directly over the topographic bump and depression. The differences between HO

and FS velocities are magnified in the near-surface layers over the topographic bump relative to the topographic depression. In

combination with the neglect of strain rate components in the HO approximation, this difference arises due to slight differences10

in the locations of vanishing longitudinal strain rates. The local viscosity maxima in the near-surface layers also correspond to

regions of vanishing longitudinal strain rates. For these locations, the Glen viscosities would be infinite, but are limited to a

maximum value in the ISSM implementation.
:::::
spikes

::
in

:::
�

S::
in

:::
the

:::::::::
discussion.

:

5.3 ISMIP-HOM experiment D: two-dimensional flow over a sticky spot

ISMIP-HOM experiment D (ISMIPD) describes a two-dimensional domain over which the basal friction coefficient ⌘
::
� varies15

sinusoidally in the horizontal direction. A Paterson-type friction law (Paterson, 1994) of the following form is used

⌧

b

=�⌘�

:

2
v

b

, (24)

where ⌧

b

is the basal stress and v

b

the basal velocity, and ⌘

::
the

:::::::
friction

:::::::::
coefficient,

:::
�

2
:::
(Pa

::
a
:::::
m�1),

:
varies according to the

equation

⌘�

:

2 = 1000+1000 sin

✓
2⇡

L

x

◆
. (25)20

The bed topography and the initial ice surface are inclined planes with a slope of 0.1�, and the initial thickness is 1000 m

throughout the domain. As before
:
in

:::
the

::::::::
preceding

:::::::
ISMIPB

::::::::::
experiments, the flow parameter is

::::
taken

::
as

:
A(T 0) = 3.96⇥ 10�25 Pa�3 s�1

(the ISMIPB and ISMIPD original flow parameters were equal). Periodic boundary conditions are applied at the edges of the

domain.

First, the Glen and ESTAR FS stress balance (diagnostic) results for ISMIPD are compared (upper panels, Fig. 8). Note25

that applied stresses from the initial slope are uniform for this solution type. Along-flow velocities (v
x

) are lowest over the

sticky spot (0-10 ), and greatest over the slippery spot (10-20 )
::::
Once

:::::
again,

:::
we

::::::
present

::::::
results

:::
for

::::::::::
steady-state

:::::::
solutions

:::
for

::::
two

:::::::
different

::::::::
horizontal

::::::
scales:

::::::
L= 20

::::
km

:::
and

:::::
L= 5

::::
km.

::
As

::::
with

:::
the

:::::::
ISMIPB

:::::::::::
experiments

:::::
above,

:::
we

:::::::
employ

::
the

::::::::::
full-Stokes

::::
(FS)

:::::
solver

::
in

::::::
ISSM.

:::::::::
Consistent

::::
with

::::::::
ISMIPB,

:::
the

::::::
control

::
of

:::
the

::::
final

:::::::::::
deformation

::::
flow

::
in

:::
the

:::::::
ISMIPD

::::::::::
experiment

::
is

::::::::::
bed-parallel

:::::
shear,

::
so

:::
we

::::::::
consider

:::
the

::::
case

:::::
when

::::
the

::::
Glen

::::::::::::
enhancement

:::::
factor

::
is
:::::
equal

:::
to

:::
the

:::::::
ESTAR

:::::
shear

:::::::::::
enhancement

::::::
factor,

::::
i.e.,30

:::::::::::
E

G

= E

S

= 8. However, the contribution from the deformation flow is the other way around since there is negligible vertical

shearwhere the basal friction vanishes. The Glen isotropic and ESTAR anisotropic viscosities in the basal layers directly over
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the sticky spot are approximately equal , but towards the surface the ESTAR ice becomes stiffer over the sticky spot.By contrast,

over the slippery spot, the ESTAR ice is on average 1.8 times stiffer than the Glen ice (see �

S

:::
The

:::::
Glen

:::
and

:::::::
ESTAR

::
FS

::::::
results

:::
for

:::::::
ISMIPD

:::::
when

:::::::
L= 20

:::
km

:::
are

:::::
shown

:
in Fig. 9a), leading to ESTAR velocities that are

up to 10% slower there. For the deformation velocities alone, the maximum difference between the ESTAR and Glen velocities

occurs over the sticky spot where ESTAR velocities are up to 7% faster (ignoring the region over the slippery spot where both5

the ESTAR and Glen deformation velocities are identically zero).

We next consider the FS prognostic results for Glen and ESTAR. Over the sticky spot, vertical shear develops, leading

to faster velocities
:
8.

::::
For

::::
both

:::::::::
rheologies,

::::
the

:::::
fastest

:::::::::
velocities

:::::::
develop in the upper part of the column (Fig. 8d-e

::::
over

:::
the

:::::
sticky

::::
spot

:::::::
(centred

::::::
around

:
5
:
km). This is required by continuity, given the low

::::
lower

:
basal velocities over the sticky spot, to

balance the block flow over the slippery section . Sliding occurs throughout the domain.
:::::
(basal

::::::
friction

:::::::::
coefficient

::::::::
vanishes

::
at10

::
15 km

:
).
:
The basal velocities increase over the interval where the

::
as

:::
the basal friction coefficient decreases, with a corresponding

adjustment in the upper layer velocities. This is part of the transition to block flow over the slippery spot.

With a Glen enhancement factor equal to the ESTAR shear enhancement factor, the total Glen FS
:
.
:::
The

:::::
total

::::::::::
steady-state

::::::
ESTAR

:
velocities are everywhere within 1% of the corresponding ESTAR velocities

::::
Glen

::::::::
velocities

::::
(see

::::
Fig.

:::
8c), with the

maximum difference occurring in the near-surface layers over the sticky spot(0-5 ), where the ESTAR ice is stiffer
:
,
::
as

::::::
shown15

::
by

:::
the

::::::::::::
corresponding

:::::::
contrast

::
in

:::::::::
viscosities

:
(Fig. 9). The

:::
8e).

::::::
Sliding

::::::
occurs

:::::::::
throughout

:::
the

:::::::
domain

:::
and

:::
the

:::::::::
deviations

:::::
from

::::
block

:::::
flow

:::
are

::::::
modest

::::::::::
throughout,

::
so

::
to

:::::::
explore

::::
what

::::::::::
differences

:::::
might

::
be

:::::::::
associated

::::
with

:::
the

::::::::
departure

:::::
from

:::::
block

::::
flow

:::
we

::::::::
calculated

:::::::::::::
“deformational

:::::::::
velocities”

:::::
from

::
v

x:::
by

:::::::::
subtracting

:::
the

:::::
basal

:::::::
motion,

:::
and

:::::::::
examined

:::
the

::::
ratio

:::::::
between

:::::::
ESTAR

::::
and

::::
Glen

:::::
cases

::::
(Fig.

::::
8d).

:::
The

:::::
most

::::::
notable

::::::
feature

:::
of

:::
this

::::
ratio

::
is

::
a

:::::::
localised

:::::
50%

:::::::
decrease

::
in
::::::::::::
deformational

:::::::
velocity

:::
for

:::::::
ESTAR

::::::::
compared

::
to

:::::
Glen

:::::::
through

:::
the

:::::
entire

::::::::
column,

:::::::
peaking

::::::
directly

:::::
over

:::
the

:::::
point

:::::
where

::::
the

::::
basal

:::::::
friction

:::::::::
coefficient

::::
(Eq.

::::
25)20

:::::::
vanishes.

::::
This

::::::
major

::::
band

::
of

:::::::::
difference

::::::::
coincides

::::
with

:::
the

::::
band

::
of
::::::

higher
::::::::
viscosity

:::
for

:::::::
ESTAR,

::::::
relative

::
to

:::::
Glen,

::::
(see

::::
Fig.

:::
8e)

:::
over

:::
the

:::::::
slippery

::::::
region.

:

:::
The

:::::::
ESTAR

:
component strain rates and shear fraction �

S

are illustrated in Fig. 9 . The distribution
:::
for

::::::::
ISMIPD,

:::
for

:::
the

::::::
L= 20

:::
km

:::::
case.

:::
The

::::
plot

:
of �

S

evolves primarily due to the evolution of normal stresses to steady-state. Shear dominates

::::
(Fig.

:::
9d)

::::::
depicts

:::::::::
transitions

:::
in

:::
the

::::::::::
deformation

::::::
regime

:::::
from

::::::::::::::
shear-dominated

::
to

::::::::::::::::::::::::::::
compression/extension-dominated

:::
and

:::::
back25

:::
over

::
a
:::
few

:::::::::
kilometres

::::::
around

:::
the

:::::::
slippery

:::::
spot.

:::::
These

:::::::::
transitions

::::::
extend

::
all

:::
the

::::
way

::
to

:::
the

::::
bed,

::::::::
becoming

::::::::::::
perpendicular

::
to

:::
the

::
ice

::::
flow

::::::::
direction

::::
and

:::::
reflect

:::
the

::::
low

:::::
shear

::::
over

:::
the

:::::::
slippery

::::::
region.

:::::
This

::
is

::
in

::::::
marked

:::::::
contrast

::
to
::::

the
:::::::
ISMIPB

:::::::::::
experiments,

:::::
where

:::
the

:::::
shear

:::::::::::
deformation

::::::
regime

:::::::::
dominated

::::::
except

::::
near

::::
the

::::
free

:::::::
surface.

:::
We

:::::::
discuss

:::
the

::::::::::
implications

:::
of

:::::
these

::::::
abrupt

::::::::
transitions

:::
for

:::
the

:::::::::::
assumptions

:::
that

::::::::
underpin

::::::
ESTAR

:::
in

:::
the

:::
next

:::::::
section.

:::::
Shear

:::::::::
dominates

:::::
much

::
of

:::
the

:::
ice

:::::::
column (�

S

> 0.5)

throughout most
::
the

::::
rest of the domain (i.e., for

:::
over

:::
the

::::::
region

:::::
where

:
values of the basal friction coefficient >

:::::
exceed

:
10% of30

the maximum value). In
:::
The

:::::
shear

:::::
strain

:::::
rates

:::
are

:::::::
greatest

::
in the region of maximum stickiness at approximately 5 km, the

shear stresses are greatest, while in the near-surface layers longitudinal stresses develop either side of the sticky spot.

In examining the evolution of the FS strain rates to steady-state, the shear is largely unchanged although a steeper profile

develops over the sticky spot, while longitudinal normal strain rates are reduced by about an order of magnitude over most of

the domain
:::
and

:
a
:::::

steep
::::::
profile

::
in

:::
the

:::::
shear

:::::
strain

::::
rate

::
is

::::::
present

:::::
there. Naturally, a compressive to extensive transition occurs35
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across
::::::::
transitions

:::::::
between

::::::::
extensive

::::
and

::::::::::
compressive

:::::
flows

:::::
occur

::::::
around

:
the sticky spot and the transition curves (vanishing

normal strain rates) now resemble the ISMIPB case
::::
cases

:
(Fig. ??b)rather than their diagnostic starting point (Fig. 9b)

::
6e).

The change in the normal strain rates increases the vertical extent of the shear enhancement
::::
Here

:::
the

::::::::
transition

::::::
curves

:::::
reach

::
the

:::::::
surface

::
as

:::
the

::::::
friction

:::::::::
coefficient

::::::::
increases,

::::
and

:::
just

:::::::::::
downstream

::
of

::
its

::::
peak

:::::
value

::::
(the

:::::
sticky

:::::
spot),

::::::
leading

:::
to

:::
near

:::::::
surface

:::::
spikes

::
of

::::
high

::::::
values

:::
�

S:::::::::
analogous

::
to

::::::::
ISMIPB.

::
It

::::::
should

::
be

:::::
noted

::::
that

:::
the

:::::
strain

:::::
rates

::::
here

:::
are

::::
very

:::::
small

::::::::
compared

:::
to

:::
the5

:::::::
ISMIPB

::::::::::
experiments.

::::
The

::::::::
viscosity

::::
ratio

::
in

:::
Fig.

:::
8e

::::::
reveals

:::
that

:::::
there

:::
are

::::
also

:::::
lower

::::
strain

:::::
rates

:::
for

::::::
ESTAR

::
in

:::
the

:::::::::::
compression

::::::::
dominated

:::::::
regions,

:::
as

:::
the

:::::
ratios

:::::
there

:::
are

::::::
higher

::::
than

:::
the

:::::
factor

::
of

:::::
1.39

:::
that

::::::
would

::
be

:::::::::
produced

::
by

:::
the

::::::::
influence

:::
of

::::::
E(�

S

)

:::::
alone.

:::
The

::::::
results

::
of

::
a
:::
FS

:::::::::
prognostic

:::
run

::
to

::::::::::
steady-state

:::
for

:::
the

::::::::
ISMIPD

:::::::::
experiment

:::
for

:::::
L= 5

::::
km

:::
are

::::::::
presented

::
in

::::
Fig.

:::
10.

::::
The

::
v

x:::::::
velocity

::::
ratio

:
(Fig. 9d) , except over the slippery spot.

::::
10c)

:::::
shows

::::
that

::::
very

::::
little

:::::::::
difference

::
is

::::
seen

:::::::
between

::::::
results

:::
for

:::
the10

:::
two

::::
flow

::::::::
relations,

:::::
unlike

:::
the

::::::::
ISMIPB

::::::::::
experiments

::
in

:::
the

:::::::
previous

:::::::
section,

:::::
where

::::::::::
differences

::
up

::
to

::::
25%

::::::::
between

::::::
ESTAR

::::
and

::::
Glen

:::::
cases

:::::::
emerged

:::
for

:::
the

::::::
shorter

:::::::
bedrock

:::::::::
periodicity.

::::
The

:::
tiny

::::::::::
differences

::
in

::::::
overall

::::::::
velocities

:::
are

::::::::
enhanced

:::
but

:::
the

:::::::
patterns

::
in

:::
Fig.

:::
8c

:::
and

::::
Fig.

:::
10c

:::
are

::::::
similar.

:::::::::
However,

::::
there

::
is

:
a
:::::::::::
significantly

:::::::
different

::::::
picture

::
in

:::
the

::::
ratio

::
of

:::::::::::
deformation

::::::::
velocities

::::
seen

::
in

:::
Fig.

::::
10d,

:::::::::
compared

::
to

::::
Fig.

::
8e.

::::
The

::::::
largest

:::::::::
differences

:::
are

::::
now

::::::
limited

:::
to

::
the

::::::
lower

::::::
portion

::
of

:::
the

:::
ice

::::::
column

::::
and

:::
for

:::::
much

::
of

:::
the

:::::
region

::::
over

:::
the

:::::::
slippery

:::
bed

:::
the

:::::
ratio

:
is
::::::
almost

:::::
unity.

:
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:::
The

::::::
pattern

::
of

::::::::::
deformation

:::::::
regimes

:::::::
mapped

::
by

:::
�

S::::
(Fig.

::::
10f)

::
is

:::
also

:::::
more

:::::::
complex

::::
than

:::
that

::::
seen

::
in
:::
the

:::::::::
preceding

::::::
L= 20

:::
km

:::
case

::::
(see

::::
Fig.

:::
9d).

::::
The

::::::
general

::::::::
structure

::
of

:::
the

::::::
normal

:::::
strain

::::
rates

::
is

::::::
similar

::
to

:::::::
previous

:::::::::::
experiments,

:::
but

:::
here

:::
the

::::::::::
persistence

::
of

:
a
::::
band

::
of

:::::
shear

:::::
(Fig.

::::
10h)

:::::
above

:::
the

:::::::
slippery

::::
spot

::
at

::::::::::
intermediate

::::::
depths

:::::::
prevents

:::
the

::::::::::::
establishment

::
of

:
a
:::::::
vertical

:::::
block

::
of

::::
flow

::::::::
dominated

:::
by

::::::
normal

:::::::
stresses.

::::
The

::::
shear

::::::
profile

:::::
above

:::
the

:::::
sticky

::::
spot

::
is

:::
also

:::::
much

:::::::
weaker

::
in

::
the

:::::
upper

::::::
layers.

:::::::::::
Accordingly,

:::
�

S

::::::
reveals

:
a
:::::
band

::
of

::::::::
unevenly

::::::::::::::
shear-dominated

::::::::::
deformation

:::::
which

::
is
::::::::::
continuous

:::::
across

:::
the

::::::::
periodic

:::::::
domain.

::::
Once

::::::
again,

:::::
shear20

::::::::
dominated

::::::
spikes

::::::
extend

::::::
towards

:::
the

:::::::
surface

::
in

:::::::::
association

::::
with

:::
the

::::::::
vanishing

:::
of

::
the

:::::::
normal

:::::
strain

::::
rates.

:

:::
The

::::::
spatial

::::::::
variations

::
in
:::
the

::::::::
viscosity

::::
ratio

:::::
(Fig.

::::
10e)

:::::
depart

:::::::::::
significantly

::::
from

:::::
those

::
of

::::
�

S

,
::::::::
reflecting

::::
more

:::::::::
strikingly

::::
than

::
for

:::::::
L= 20

:::
km

::::
(Fig.

:::
8e)

:::
the

::::::::
combined

::::::::
influence

::
of

:::
the

::::::
pattern

::
of

:::::::::::
enhancement

:::::::::
(controlled

:::
by

::::::
E(�

S

))
::::
and

::
the

:::::
effect

::
of

::::::::
different

::::
strain

:::::
rates,

::::
with

::::::
values

::::
both

:::::
above

:::
and

::::::
below

:::
the

:::::
range

::::::::
(1.0-1.39)

:::::::
directly

::::::::
controlled

:::
by

::::::::::
E(�

S

)/E
G

.
:

6 Discussion25

The ISMIP-HOM experiments B and D simulated scenarios in which the dominant control of flow was bed-parallel simple

shear. Only small differences (< 6% for ISMIPB and < 1% for ISMIPD) were apparent between the Glen and ESTAR

velocities for a Glen enhancement factor equal to the ESTAR shear enhancement factor (E
G

= E

S

). These results suggest

that close agreement with the ESTAR results might be achieved more generally by this choice of the Glen enhancement

factor.The results provide a physical rationale to replace the ad hoc enhancement factors typically used in grounded ice sheet30

modelling.Nevertheless, there remain scenarios of ice flow over grounded ice with more complicated stress regimes than those

simulated in the ISMIP-HOM experiments presented here (e.g. , ice stream flow with similar contrasts in shear dominated

margins and normal stress dominated central regions; flow close to rugged bedrock topography where combinations of shear
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and normal stressesmay be important; or, generally, regions in which �

S

demonstrates large spatial variations corresponding

to different stress regimes)

::
In

:::
this

:::::
study

:::
we

:::::::::
conducted

::::::
various

:::
ice

::::
flow

:::::::::::
simulations,

:::::::::
comparing

::::::
ESTAR

:::::
with

:::
the

:::::::
isotropic

:::::
Glen

::::
flow

:::::::
relation.

:::::::
ESTAR

::::::::::
incorporates

:::
the

::::::::
observed

:::::::::
differences

::::::::
between

::::::
tertiary

:::::::::::
deformation

::::
rates

:::
for

:::::
shear

:::::::::
dominated

::::
and

::::::
normal

::::::
stress

:::::::::
dominated

::::
stress

:::::::
regimes. In these instances, tuning the Glen enhancement factor may not be able to adequately account for multiple, or5

varying, controls on ice velocities, nor will it necessarily result in a physically realistic enhancement factor.

Our simulations of embayed ice shelf flow comparing ESTAR and isotropic rheology showed that no single Glen enhance-

ment factor (E
G

) can approximate
::::::::
reproduce the anisotropic flow characteristic of the

::::::
various stress regimes encountered. Our

most significant result indicated that for an embayed ice shelf,
:::::::::::
Significantly,

:::::
while a choice of E

G

= E

S :::
was

::::::::
necessary

:
to

reproduce the overall velocities
::::
same

:::::::
overall

::::::::
velocities

:::
and

:::
ice

::::::::::
thicknesses, which are

:::::
largely

:
controlled by lateral shear,

:::
this10

overestimated velocities near the ice front by up to 17%
::::::::
compared

::
to

::::::
ESTAR. This is a consequence of excessively soft ice for

:::::
softer

::
ice

::
in
:

the Glen case in
:::
for the zone near the ice frontwhere extensional normal

:
,
:::::
where

::::::::::
extensional

::::::::::
longitudinal

:
stresses

dominate. The steady-state Glen ice shelf was accordingly up to 20% thinner than the ESTAR ice shelf in this region.
::::
Even

::::
with

:::
this

::::::
thinner

:::
ice

::::::::::
influencing

:::
the

:::::
ocean

:::::::
pressure

::::::::
boundary

:::::::::
condition

::
at

:::
the

:::
ice

:::::
front,

:::
the

:::::
softer

:::
ice

::
in

:::
the

::::
Glen

::::
case

::::::
meant

:::
that

:::
the

::::::::::
longitudinal

:::::
strain

::::
rates

:::::
there

::::
were

::::::
higher.

:
15

These results highlight one of the key failures of the Glen flow relationin adequately accounting
:
:
::
an

:::::::
inability

::
to

:::::::
account for

complex, spatially varying stress regimes in its prescription of ice flow. The addition of an enhancement factor E
G

to the Glen

flow relation provides
::::::
permits some compensation for the flow enhancement associated with microstructural development (i.e.,

rescaling the minimum creep rate data conventionally used in prescribing the Glen flow relation, e.g., table
::::
Table

:
3.3, Cuffey

and Paterson, 2010). However, such a modification does nothing to allow for the anisotropic (stress configuration dependent)20

aspects of ice rheology that are characteristic of tertiary creep. The improvement offered by ESTAR is that the specification of

the pattern and degree of enhancement is physically based, varying spatially as a function of the stress configuration. This is

achieved without the complication of
:
a
:
detailed treatment of microstructural information. For near-surface regions of

:::
The

:::::::::::
ISMIP-HOM

:::::::::::
experiments

:
B
::::
and

::
D

::::::::
simulated

::::::::
scenarios

::
in

::::::
which

:::
the

::::::::
dominant

::::::
control

::
of

::::
flow

::::
was

::::::::::
bed-parallel

::::::
simple

:::::
shear.

::
In

:::
the

:::::::::
prognostic

::::
runs

::::
with

:::
the

:::::
larger

::::::
aspect

::::
ratio

:::::::
(L= 20

::::
km),

::::
only

:::::
small

:::::::::
differences

:::::
were

:::::::
apparent

:::::::
between

:::
the

:::::
Glen25

:::
and

:::::::
ESTAR

::::::::
velocities

::::::
(< 6%

:::
for

:::::::
ISMIPB

::::
and

:::::
< 1%

:::
for

::::::::
ISMIPD),

:::::
again

::::::::
provided

:::
the

::::
Glen

::::::::::::
enhancement

:::::
factor

::::
was

::::::
chosen

::::
equal

::
to
:::
the

:::::::
ESTAR

:::::
shear

:::::::::::
enhancement

:::::
factor

::::::::::
(E

G

= E

S

).
:

:::
For

::::
more

:::::::
rapidly

::::::
varying

::::
bed

:::::::::
topography

::
in
::::::::

ISMIPB,
::::
with

::::::
L= 5

:::
km,

:::
the

::::::::::
differences

::
in

:::::::
velocity

:::
for

:::
the

:::
two

::::
flow

::::::::
relations

::::::
reached

::::::
25%,

::::
with

::::::
surface

:::::::::
variations

::
of

:::::
11%.

:::
For

::::::::
ISMIPD,

::::::
which

:::::::
explored

:::::::::
variations

::
in

:::::
basal

:::::::
friction, the ice sheet, there

may be some lag in the development of anisotropy that is not captured by ESTAR. However, in this zone, both stresses and30

temperatures are low , so the resulting deformation rates are also low. As such, it is unlikely that an over-enhancement in this

zone will impact significantly on the overall dynamics of the ice sheet.
:::::
L= 5

:::
km

::::::::::
experiments

::::
still

::::::
showed

:::::
< 1%

::::::::::
differences

::
in

::::::::
velocities

::::
with

::::
very

:::
low

:::::
strain

:::::
rates,

::
so

:::
that

::::::::
although

:
a
::::::::
complex

::::::
pattern

::
of

::::::::::
deformation

:::::::
regimes

::::::::
emerged,

::::
there

::::
was

::::
little

:::::
effect

::
on

::::
flow

::::
from

:::
the

::::::
choice

::
of

::::
flow

:::::::
relation.

:
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:::::
These

::::::
results

::::::
suggest

::
if
:::::
major

::::
bed

::::::::::
topography

::::
only

:::::
varied

:::
on

:::::
scales

::::::
much

:::::
longer

::::
than

:::
the

:::
ice

:::::::::
thickness,

:::::
close

:::::::::
agreement

:::::::
between

:::::::
ESTAR

:::
and

:::
the

:::::
Glen

::::
flow

:::::::
relation

:::::
might

:::
be

:::::::
achieved

:::::
more

::::::::
generally

:::
by

::::::::
choosing

:::
the

:::::::
tertiary

::::
shear

::::::::::::
enhancement

:::::
factor

::
as

:::
the

::::
Glen

:::::::::::
enhancement

:::::
factor

:::::::::::
(E

G

= E

S

).
::::
This

:::::
might

::::::
provide

::
a
:::::::
physical

:::::::
rationale

:::
to

::::::
replace

:::
the

::
ad

::::
hoc

:::::::::::
enhancement

:::::
factors

::::::::
typically

:::::
used

::
in

:::::::::
large-scale

::::::::
grounded

:::
ice

:::::
sheet

:::::::::
modelling

::::
with

::::
the

::::
value

::::::::::
appropriate

:::
to

::::
flow

:::::::::
dominated

:::
by

::::::
simple

:::::
shear.

::::::::
However,

:::::
larger

:::::::::
differences

:::::::
between

::::::::
velocities

::::
and

::::::
vertical

:::::
shear

::::::
profiles

::::::::
emerged

:::
for

:::
the

::::
more

:::::
rapid

:::::::
bedrock

::::::::
variation,5

:::::
where

:::
the

:::::::::
importance

:::
of

::::::::
including

::::::::::
longitudinal

:::::::
stresses

::
in

:::
the

:::::::::
momentum

:::::::
balance

::
is

::::::
already

:::::::::
recognised

::::::::::::::::::
(Pattyn et al., 2008) ,

:::::::::
suggesting

:::
that

::::::::
adopting

::::::
ESTAR

::::::
would

::
be

:::::::::
preferable.

:

Our
:::::::
idealised

:::
test

:::::
cases

::::
also

::::::
provide

:::::
some

:::::::
insights

:::
into

:::
the

:::::::
validity

::
of

:::
the

::::::
tertiary

::::
flow

::::::::::
assumption

:::::::::
underlying

:::::::
ESTAR,

::::
and

::
the

:::::::::::
development

::
of

::::::::::
anisotropic

:::::
crystal

::::::
fabrics

::::::::::
compatible

::::
with

::
the

:::::::
current

::::::::::
deformation

::::::
regime.

::
In

:::
the

:
embayed ice shelf results

have significant implications for ice sheet model simulations that rely on the Glen flow relation to simulate past, present, and10

future ice flow, which are used to constrain uncertainty in reconstructions and projections of sea levels. In particular, the result

of unrealistically fast thinning ice, as simulated with the Glen flow relation, is to deform an ice shelf
::
test

:::
the

:::::
most

:::::::::
significant

::::::
change

::
in

:::
the

::::::::::
deformation

::::::
regime

::
is

::::::
clearly

:::
the

::::::::
transition

::
to

::::::::
extensive

::::
flow

::
on

::::::::
approach

::
to
:::
the

:::
ice

:::::
shelf

:::::
front.

:::
The

::::::::
contours

::
of

::
�

S::::
here

:::
are

::::::::
relatively

::::
well

:::::::
aligned

::::
with

:::
the

:::
ice

::::
flow

::
so

::::
that

::::::
flowing

:::
ice

::::::::::
experiences

:::::::
gradual

:::::::
changes

::
in

:::::
stress

::::::
regime,

::::
and

:::
the

:::::::::
magnitudes

:::
of

:::::
strain

::::
rates

:::::
(e.g.,

:::
Fig.

::::
4b)

:::
and

::::::::
velocities

:::::
(Fig.

::
3)

:::::::
indicate

::::
that

::
in

:::
the

::::::
region

::::
near

:::
the

:::
ice

:::::
front,

:::::
where

:::
the

:::::
Glen15

:::
and

:::::::
ESTAR

:::::
results

:::::
vary

::::::::::
appreciably,

:
a
::::::::::
progression

::
of
::::::::::

essentially
:::::::::
compatible

::::::
fabrics

::::::
would

::
be

::::::::::
maintained.

:::::::
Indeed,

:::::
under

:::
the

::::::::
prevailing

::::::::::
deformation

::::
and

::::
flow

:::::::::
conditions

::::
these

::::::
would

::::
even

:::::::
develop

::::
from

:::::::
random

:::::
fabrics

::::
over

::
a
:::
few

::::
km.

:::
The

:::::::::::
ISMIP-HOM

:::::::::::
experiments

:::::
reveal

::::::::
potential

::::::::
violations

::
of

:::
the

:::::::
tertiary

::::
flow

::::::::::
assumption,

::::::::
although

:::
the

::::::::::
significance

:::
for

:::
the

::::
flow

::::
field

::
of

::::
these

:::::::
apparent

::::::::::::
short-comings

:::::
needs

::
to
:::
be

:::::::
assessed

::::
with

:::::
regard

::
to
:::
the

:::::::::
somewhat

:::::::
artificial

:::::
nature

::
of

:::
the

:::::
tests.

::::::
Indeed

::
as

:::
we

::::
saw,

::
the

:::::::::
difference

:::::::
between

:::
the

:::::::
ESTAR

:::::::::
predictions

::::
and

:::
the

::::
Glen

::::
flow

::::::::
relations

::::::::
(provided

:::::::::
E

G

= E

S

)
::::
was

:::::
small,

::::::
except20

::
for

:::::::
ISMIPB

::::
with

::::::
L= 5

:::
km,

::::::::
although

::
of

::::::
course

::::::
ESTAR

::::::
makes

::
no

:::::
claim

::
to

::::::::
correctly

:::::::
describe

:::
the

:::::::
transient

::::::::
rheology

::
of

:::
ice

::::
with

::
an

:::::::
evolving

::::::::::
anisotropy.

:::
The

::::::
ISMIP

::::::::::
experiments

::::
have

::
a

:::::
spatial

:::::::::
periodicity, which could lead to unrealistic ice shelf geometries and affect buttressing

if it were to spread beyond the “passive ice” sector (Furst et al., 2016) near the ice front. Our findings motivate further enquiry

into the simulated ice sheet dynamics of glaciers,
:::::
allow

:::
one

:::::::
portion

::
of

:::
the

::::::::
repetitive

:::::
basal

::::::::
conditions

:::
to

::::::::
dominate

:::
the

::::::
overall25

::::
flow.

:::::
Also,

:::::
there

::
is

::
no

:::::::
surface

::::
mass

::::::
budget

:::
in

::::
these

:::::::::::
experiments

::
so

::::
that,

:::
as

::::::::
remarked

::::::
earlier,

:::
the

:::
ice

:::::::
surface

::
is

:
a
:::::

flow
::::
line,

:::::::
whereas

::
in

:
a
::::::
system

::::
with

::::::
surface

:::::::::::
accumulation

:::::
fresh

::::
snow

::
is
::::::
always

:::::
being

:::::
added

::::
and

:::::::
advected

:::::
down

::::
into

::
the

:::
ice

:::::
sheet

:::::
where

::
it

:::::
makes

:::
the

::::::::
transition

::
to

::::
solid

::::
ice.

::::::::::
Accordingly,

::
in
:::
the

::::
flow

::::::
regime

::
of

:::::
these

:::::::::
prognostic

::::::::::
experiments

::::
even

:::
the

::::::
surface

:::::
layers

::::::
would

::
be

:::::::
regarded

:::
as

::::::
having

::::::::
developed

:::::
some

:::::::::
anisotropy

:::
just

:::
as

:::
the

:::::
lower

:::::
layers

::::::
would,

:::::
since

::::
they

::::
have

::
in

::::::::
principle

::::
been

:::::::::
deforming

:::
over

:::
an

::::::::
arbitrarily

::::
long

:::::
time.30

:::
The

:::::
main

::::
issue

:::::
about

:::
the

::::::::::::
establishment

::
of

:::::::
tertiary

::::
flow

:::::::::
conditions

::
in

:::
the

:::::::
periodic

:::::::::::
environment

::
of

:::
our

::::::
ISMIP

:::::::::::
experiments

:::::::
concerns

:::
the

:::::::
possible

:::::::
cycling

::
of

::::
the

::::::
flowing

:::
ice

:::::::
through

::
a
::::::
variety

::
of

::::::
stress

:::::::
regimes.

::::
This

:::::
leads

::
to

:::::::::
transition

::::::
regions

::::::
where

::
the

:::::
stress

::::::
regime

::::
and

::::::::::
presumably

:::
the

:::::
crystal

:::::::::
anisotropy

::::::
would

::
be

::::::::
evolving,

::::
and

:::
the

:::::::::::
compatibility

::::::::::
assumptions

::::::
behind

:::::::
ESTAR

::::
could

::::::
locally

:::
be

:::::::
violated.

::::::
Clearly

:::
the

::::::
spatial

:::::
extent

::
of

::::::::::
transitional

::::
flow

:::
and

:::
the

:::::
delay

::
in

:::::::
attaining

::::
any

:::
new

:::::::
tertiary

::::
state

:::::::
depends

::
on

:
the flow of which is governed by anisotropy as captured in ESTAR rather than the Glen flow relation.

:::::::::
magnitudes

:::
of35
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::
the

::::::
strain

::::
rates

::::
and

:::
the

:::::::
velocity

::
of

:::
the

::::
ice.

:::
By

:::::::::
combining

:::::
these

::::
with

::
a
::::::::
threshold

:::
for

:::::::::::
accumulated

:::::
strain

::
as

:::
the

::::::::
criterion

:::
for

::::::::::
development

::
of
::

a
:::::::::
compatible

::::::::
(tertiary)

:::::
fabric

:::::
under

::
a
::::::::
persistent

::::
flow

:::::::
regime,

:::
the

:::::
extent

::
of

::
a
::::::::
transition

::::
zone

::::
can

::
be

:::::::::
estimated.

::::
This

::::
scale

:::
can

::::
then

:::
be

::::::::
compared

::
to
:::
the

:::::::::
horizontal

::::::::
variation

::
of

:::
the

:::::
stress

::::::
regime.

::::::::
Selecting

:::
the

:::::
10%

:::::
strain

:::::::
required

::
to

:::::::
develop

:
a
:::::::::
compatible

:::::::::
anisotropy

:::::
from

::::::
initially

::::::::
randomly

::::::::
oriented

::
ice

::::::
should

:::::::
provide

:
a
:::::::::::
conservative

::::::::
yardstick,

:::::
when

::::::
applied

::
to

:::::::
gradual

::::::
changes

::
in
:::::
stress

:::::::
regime.5

In order to measure the impact of an anisotropic rheology on simulated ice dynamics, the ISMIP-HOM and embayed iceshelf

experiments were carried out assuming isothermal conditions. However, strong vertical gradients in temperature, where they

exist, will be a stronger control on viscosity than the factor of 8/3 in anisotropic enhancement. This is particularly relevant

for the ISMIP-HOM experiments simulated here for simple shear dominated flow.
:::
The

:::::::
patterns

::
of

:::::
stress

:::::::
regimes

:::::::
revealed

:::
by

::
the

:::::::::::
distributions

::
of

:::
�

S:::::
(Figs.

:::
6d,

:::
7d,

:::
9a,

::::
and

::::
10f)

:::::::
indicate

:::::
where

:::::::::
along-flow

:::::::::
variations

::
in

:::::
stress

::::::
regime

:::::
might

:::
be

:::
too

:::::
rapid

::
to10

::::::
sustain

::
the

::::::::::
assumption

::::
that

:
a
:::::::::
compatible

::::::::::::::
crystallographic

:::::::::
anisotropy

:::
had

:::::::
evolved.

:::
For

:::
the

:::::::
ISMIPB

:::::::::::
experiments

:::
this

:::::::
concern

::
is

::::::::
essentially

::::::::
focussed

::
to

:::
the

::::
near

::::::
surface

:::::
spikes

::
in

:::
�

S::::::
around

:::
the

:::
two

::::::::
locations

:::::
where

::::::::::
longitudinal

:::::::::::
deformations

::::::
vanish,

:::::
since

:::
the

::::::::
anisotropy

:::
of

::::::
deeper

:::
ice

:::
will

:::
be

:::::::::
compatible

::::
with

:::::::::::
deformation

:::::::::
dominated

::
by

::::::
simple

:::::
shear.

::::::
There

::::
may

::
be

:::::
some

::::::::::::
complications

::::
with

:
a
::::
slow

::::::
cycling

::
of

:::
the

:::::
upper

:::::
levels

:::::::
between

::::::::
extensive

::::
and

::::::::::
compressive

::::
flow.

::::
Very

::::
near

:::
the

:::::::
surface,

:::
the

::
�

S:::::
peak

:::::::
intervals

:::
are

::::::
narrow

:::
and

:::
the

::::
shear

:::::
strain

:::::
rates

::::
there

:::
are

::::
very

:::::
small

::::::::::::
(corresponding

::
to

::::::::
transition

:::::
scales

:::
of

::::::
several

:::::::::
kilometres)

::
so

::::
that

::::
there

::::
will15

::
be

::
no

::::::::::
appreciable

:::::::::::
development

::
of

:
a
:::::
shear

:::::::::
compatible

::::::
fabric.

:::::
Either

::::
side

::
of

:::
the

::::::
peaks,

:::
the

::::
main

::::::::
extensive

:::
and

:::::::::::
compressive

::::
flow

:::::::
domains

:::
for

::::::
L= 20

:::
km

::::
(see

::::
Fig.

:::
6e)

:::
are

::::
⇡ 5

:::
km

::::
long

:::
and

:::::
have

::::::::
transition

:::::
scales

::
of

::::
< 1

:::
km

::::::
which

:::::::
suggests

::::
that

:::
the

:::::::
strongly

::::::
normal

:::::
stress

:::::::::
dominated

:::::
upper

::::
layer

::::
will

::
be

::::::
mainly

::
in

:::::::
tertiary

::::
state.

:::::::
Turning

::
to

:::
the

::::::::
transient

::::
shear

:::::::::
intrusions

:::
into

::::
this

:::::
layer:

::
at

:::
100

::
m

:::::
depth

::::
over

:::
the

:::::
bump

::::
the

::::
shear

:::::::::
transition

::::
scale

::
is

::
3
:::
km

::::::
while

::
at

:::
200

::
m

:::::
depth

::::
over

::::
the

:::::::::
depression

:::
the

:::::
shear

::::::::
transition

::::
scale

::
is

:::
⇡ 5

::::
km,

:::::::::
suggesting

:::
that

::::
that

:::
the

:::
�

S :::::
peaks

::
do

::::::::
represent

:
a
:::::
local

:::::
failure

:::
of

::::::::
ESTAR’s

::::::
tertiary

::::::::::
assumption.

::::::::::
Throughout

:::
the20

::::::
domain

:::
the

:::::
lower

::::
half

::
of

:::
the

:::
ice

:::::::
column

:::
has

::::::::
transition

::::::
scales

::
of

::::::
 300

::
m

::::::
which,

:::::
given

:::
the

:::::::
gradual

::::::::
variations

::
in

:::
�

S::::
and

:::
the

:::::::
direction

::
of

:::
ice

::::
flow,

::::::::
indicates

::::
that

:::::
region

::
is

::
in

:::
the

::::::
tertiary

:::::
state.

Many large-scale ice sheet model simulations are run using approximations to the full Stokes (FS)equations, notably

higher order (HO, e.g., Blatter, 1995; Pattyn, 2003) , shelfy-stream (e.g., MacAyeal, 1989; Morland and Zainuddin, 1987) , or

shallow ice (e.g., Hutter, 1982) approximations. We compared the ESTAR FS simulations for the embayed ice shelf, ISMIPB,25

and ISMIPD, with corresponding HO simulations. The local differences between the ESTAR FS and HO simulations were

typically smaller than the corresponding differences between ESTAR and the Glen rheology. However, we only performed

simulations in idealised situations where the approximations underlying the HO flowequations were generally expected to

hold. We anticipate more pronounced differences between the FS and HO flow equations in regions where these assumptions

fail.The magnitude of such differences will be explored in future studies
:::
For

:::::::
ISMIPB

::::
with

:::::
L= 5

:::
km,

::::::
which

:::::::
displays

:
a
::::::::
generally30

:::::
deeper

:::::
band

::
of

::::::
normal

:::::
stress

:::::::::
dominated

:::::::
regime

::::
(Fig.

::::
7d),

:::
the

::::::::
transition

:::::
scales

:::
for

:::
the

:::::::::::
compressive

:::
and

::::::::
extensive

:::::::
regions

:::
are

:::::
⇠ 500

::
m

:::
for

:::::::
regions

::
of

:::
⇡ 1

::::
km

::
in

::::::
extent,

:::::
while

:::
the

:::::
shear

::::::::
transition

:::::
scales

::
at

::::
100

::
m

:::::
depth

:::::
above

:::
the

:::::
bump

::::
and

::::
200

::
m

:::::
depth

:::::
above

:::
the

:::::::::
depression

:::
are

::::
now

::::
⇠ 10

:::
km

::::
and

:::
⇠ 1

::::
km,

::::::::::
respectively.

::::
For

::::
most

::
of

:::
the

:::::::
domain

:::
the

::::::::
transition

::::
rates

::
in

:::
the

:::::
lower

::::
half

::
of

:::
the

::
ice

:::::::
column

:::
are

:::::
 100

:::
m,

:::::::
although

::::
this

::::
rises

::
to

::::::
nearly

::::
1000

::
m

:::::
above

:::
the

:::::::
bedrock

::::::
bump.
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::
In

:::
the

:::::::
ISMIPD

:::::
case,

:::
for

:::::::
L= 20

::::
km,

:::
the

::::::
pattern

:::
of

:::
�

S ::::
(Fig.

:::
9a)

::::::
shows

:::::
there

:::
are

::::
also

:::::::::
transitions

::::::::
between

::::::
simple

:::::
shear

::::::::
dominated

::::
and

:::::::::
extension

:::::::::
dominated

::::::::::
deformation

:::::::::
associated

:::::
with

:::
the

:::::::
slippery

::::::
region,

:::::
with

:::::::
varying

:::::::::
abruptness

::
at

::::::::
different

::::::
depths,

:::
and

:::::
some

::
of

:::
the

::::::::
contours

::
of

:::
�

S ::
in

:::
this

:::::::
instance

::::::
almost

:::::::::
orthogonal

:::
to

:::
the

::
ice

:::::
flow.

::
A

:::::::::::
complication

::
is

:::
that

:::::
there

::
is

::::
very

::::
little

::::::::::
longitudinal

::::::::::
deformation

::::
(Fig.

:::
9e)

::::::::
occurring

::::
over

:::
the

:::::::
slippery

::::::
region

::::::
because

:::
the

::::::
overall

::::
flow

::
is

::::::::
controlled

:::
by

:::
the

:::::::
periodic

:::::
sticky

::::
spot.

:::::::::::
Accordingly,

:::::
there

:::::
would

::::
not

::
be

::::
any

:::::::::
significant

:::::
fabric

::::::::
evolution

::::::
across

:::
this

::::
⇠ 4

:::
km

::::::
region

:::::::::
(estimated

::::::::
transition5

:::::
scales

::::
there

:::
are

:::::
> 40

::::
km)

::
so

::::
that

:::
the

::::::
tertiary

::::::::::
assumption

::::
and

:::::
using

:::
E

C:::::
(since

::::::::
�

S

= 1)
:::::
would

:::
be

:::::::::::
inappropriate.

:::::
Once

::::::
again,

::
the

::::
low

:::::
strain

::::
rates

::::
here

:::::
(Figs.

:::::
9e-f)

:::::::
translate

::::
into

::::
very

::::
stiff

::
ice

::::
and

:::::
might

:::::
make

:::
the

::::::::
influence

::
of

:::::::
ESTAR

:::::::::::
enhancement

::::::
factors

:::::::
relatively

:::::::::::
unimportant.

::
A
::::::

factor
::
of

::::
100

::
in

::̇
"

e:::::::
changes

::::::::
viscosity

::
by

::
a
:::::
factor

::
of
:::::
21.5,

:::::::
whereas

:::
the

:::::::::
maximum

::::::::
viscosity

:::::::
contrast

::::
from

::::::
E(�

S

)
::
is

::::
1.39.

::::
The

:::::
shear

:::::
strain

::::
rates

:::
are

::::
also

::::
very

::::
low,

::::
with

::::::::
transition

::::::
scales

:::
> 1

:::
km

::::::
except

::::
very

:::::
close

::
to

:::
the

::::
bed

::::
over

::
the

::::::
sticky

::::
spot.

:::::::::::
Accordingly,

:::::
while

::
a

:::::::::
compatible

:::::
fabric

:::::
could

:::
be

:::::::
expected

::::::
where

:::
the

::::
large

:::
�

S::::::
values

:::
are

:::::
shown

:::
in

:::
Fig.

:::
6a,

:::
its10

:::::::
presence

:::::
would

:::
be

:::
due

::
to

:::
the

:::::::
periodic

:::::
flow,

:::
and

:::
the

:::::::
inability

::
of

:::
the

:::::::
�

S

⇠ 0
:::::
region

::
to

::::::
modify

:::
it.

:::
For

:::
the

:::
last

::::
test,

:::::::
ISMIPD

::::
with

:::::
L= 5

::::
km,

:::::::::
strain-rates

:::
are

:::::
once

::::
again

::::
very

::::
low,

::::
and

::::
there

::
is

::
no

::::::
simple

::::::::
structure

::
to

:::
the

::::::
picture

::
of

:::
the

:::::
stress

::::::
regime

::::::::
portrayed

::
by

:::
�

S::
in
::::
Fig.

::::
10f.

::::::
Below

::::::::
mid-depth

:::::
there

::
is

:
a
::::::::::
periodically

::::::::::
continuous

::::
band

::
of

:::::
shear

::::
that

:::::
might

:::::
favour

:::
the

:::::::::::
development

:::
of

::::::
crystal

:::::::::
anisotropy,

:::
but

::::::
clearly

::::
the

::::::
tertiary

::::
flow

::::::::::
assumption

::
of

:::::::
ESTAR

::::::
would

:::
not

:::
be

::::::::::
particularly

:::::
useful

::::
here.15

The focus of this study was to explore the effect of a contrast between the predicted
::
on

:::
the dynamic response of an ice sheet

to
::
ice

::::::
sheets

::
of

:::::
using

::
an

::::::::::
anisotropic

:::::::
(ESTAR)

::::::::::
description

::
of

::::::::
rheology,

:::::::
sensitive

::
to
:::
the

:
varying proportions of simple shear and

normal stresseswhen using isotropic ,
:::::::::
compared

::
to

:::::
using

:::
the

:::::::
standard

:
(Glen) and anisotropic (ESTAR) descriptions

:::::::
isotropic

:::::::::
description of rheology. Our results, particularly with respect to the differences between the Glen and ESTAR simulations, are

sensitive to the choice of E
S

and E

C

. Experimental evidence (Treverrow et al., 2012) suggests that the ratio E

S

/E

C

= 8/3,20

rather than their overall magnitude, is the dominant control in the level of enhancement E(�
S

) and corresponding dynamic

response of grounded and floating ice sheets. Here, we used values of E
S

= 8 and E

C

= 3, which are based on laboratory

experiments of tertiary creep (Treverrow et al., 2012), and which yield values for the overall enhancement that are compatible

with estimates from borehole inclination measurements (e.g., Russell-Head and Budd, 1979) and modelling studies (e.g., Wang

and Warner, 1999). Nevertheless, further investigation into suitable values of E
S

and E

C

to use in numerical modelling studies25

of grounded and floating ice sheets is warranted.
::::::
Indeed,

:::::
with

:::
the

:::::::::::::
implementation

::
of

:::::::
ESTAR

::
in

::::::
ISSM,

::
it

:::::
might

:::
be

:::::::
possible

::
to

:::
use

::::::
inverse

:::::::
methods

:::
to

:::::
search

:::
for

::::::
values

::
of

:::
E

S::::
and

:::
E

C::::
that

::::::::
improved

:::
the

::::::
match

:::::::
between

::::::::
modelled

::::
and

:::::::
observed

:::::::
surface

::::::::
velocities.

:

::
In

::::
order

::
to

:::::::
examine

:::
the

::::::
impact

::
of

::
an

::::::::::
anisotropic

:::::::
rheology

:::
on

::::::::
simulated

::
ice

:::::::::
dynamics,

:::
the

:::::::::::
ISMIP-HOM

:::
and

::::::::
embayed

::
ice

:::::
shelf

::::::::::
experiments

::::
were

::::::
carried

::::
out

::::::::
assuming

:::::::::
isothermal

:::::::::
conditions.

:::::::::
However,

::
as

::::::::
discussed

:::::::
earlier,

:::
real

:::
ice

::::::
sheets

:::
and

:::
ice

:::::::
shelves30

:::::::
typically

::::
have

:::::
cold,

:::::
upper

::::::
layers

:::
and

::::::
strong

:::::::
vertical

::::::::
gradients

::
in

:::::::::::
temperature,

::::
and

::::
these

::::
will

:::::
often

:::
be

:::::::
stronger

:::::::
controls

:::
on

::::::
vertical

::::::::
contrasts

::
in

::::::::::
deformation

:::::
rates,

::::::
through

::::::
A(T 0)

::::
(Eqs.

:::::
2-3),

::::
than

:
a
:::::
factor

::
of

::
3

::
to

:
8
::::::::
produced

::
by

::::::::::
anisotropic

:::::::::::
enhancement.

:
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7 Conclusions

We have investigated anisotropic flow
:::::
some

:::::::::::
consequences

::
of

:::::::::::
incorporating

:::
the

::::
flow

:::::::::
properties

::
of

:::::::::
anisotropic

:::
ice

:::
into

:::::::::
modelling

::::
flow

::
in

:::
ice

::::::
sheets

::::
and

:::
ice

:::::::
shelves.

:::::::::::
Specifically,

:::
we

::::
have

:::::::::::
investigated

:::
the

::::
flow

::::::::
response

:::
to

:::::::::
prolonged

::::::::::
deformation

::::::
under

:
a
:::::::
constant

:::
or

::::::
slowly

::::::::
changing

::::::
stress

::::::
regime

::::
and

:::
the

:::::::::
associated

:::::::::::
development

:::
of

:::
an

:::::::::
anisotropic

:::::::
crystal

:::::::::
orientation

::::::
fabric

:::::::::
compatible

::::
with

:::
that

:::::::::::
deformation, as represented by the empirical, scalar, tertiary, anisotropic rheology ESTAR,

::
of

::::::::::::::::
Budd et al. (2013) –5

:::::::
ESTAR.

::::::
Having

:::::::::::
implemented

::::
this

:::::::
rheology

:::
in

:::::
ISSM,

:::
we

:::::
made

::::::
initial

::::::
studies in the context of idealised experiments:

:
for an

embayed ice shelf, and in two-dimensional models of grounded ice flow over bumpy or sticky beds
::::::
varying

::::::::::
topography

::::
and

::::::
variable

:::::
basal

:::::::
friction

:::::::::
previously

:::::::
explored

:::
by

:::
ice

::::
flow

::::::::
modellers

::::::::::::::::::::::
(Pattyn et al., 2007, 2008) . We have demonstrated that ES-

TAR is a computationally-efficient anisotropic rheology for large-scale ice sheet models. We have highlighted that ESTAR

produces different flow responses compared with the prevailing rheological description based on the Glen flow relation, in10

regions where simple shear and normal stresses, and combinations of these, are drivers of ice flow. Further
:::
We

::::
have

::::
also

:::::
noted

::::
some

:::::::
possible

:::::::::
limitations

:::
of

:::
this

::::::::
empirical

::::::::
treatment

::
of

:::
the

:::::::
tertiary

::::
flow

::::::
regime,

::::::::
although

::::
their

::::::::::
significance

:::
and

:::::::
whether

:::::
there

:
is
:::::
scope

:::
for

:::::::::
developing

:::
the

::::::::
empirical

::::::::
approach

::
to

::::::
resolve

::::
them

::::::
remain

::
to
:::
be

::::::::::
determined.

:
It
::::::
would

:::
also

:::
be

::::::::
interesting

::
to
::::::::
compare

::::::
ESTAR

::::
with

:::
the

:::::::::
predictions

:::
of

::::::::
modelling

::::
that

::::
uses

::::
more

:::::::
complex

::::::::::
rheological

::::::::::
descriptions,

:::::
even

:
if
:::
the

::::::::::
comparison

::::
was

::::::
limited

::
to

::::
local

:::::::
domains

::
or

::::::::
idealised

:::::
cases.

:
15

:::
Our

::::::::
embayed

:::
ice

::::
shelf

:::::
results

:::::
have

::::::::
significant

:::::::::::
implications

::
for

:::
ice

:::::
sheet

:::::
model

::::::::::
simulations

:::
that

::::
rely

::
on

:::
the

::::
Glen

::::
flow

:::::::
relation

::
to

:::::::
simulate

::::
past,

:::::::
present,

:::
and

::::::
future

::
ice

:::::
flow,

:::::
which

:::
are

::::
used

::
to
::::::::
constrain

::::::::::
uncertainty

::
in

:::::::::::::
reconstructions

:::
and

:::::::::
projections

:::
of

:::
sea

:::::
levels.

::
In

:::::::::
particular,

:::
the

::::
effect

:::
of

:::::::::::
unrealistically

::::
fast

:::::::
thinning

::
ice

::::
near

:::
the

:::::::
calving

::::
front,

::
as

:::::::::
simulated

::::
with

::
the

:::::
Glen

::::
flow

:::::::
relation,

:
is
::
to
:::::::
deform

:::
the

::
ice

:::::
shelf,

::::::
which

::::
could

::::
lead

::
to

:::::::::
unrealistic

:::
ice

::::
shelf

::::::::::
geometries

:::
and

:::::
affect

:::::::::
buttressing

::
if

:
it
:::::
were

::
to

:::::
spread

:::::::
beyond

::
the

::::::::
“passive

:::
ice”

::::::
sector

:::::::::::::::::::
(Furst et al., 2016) near

:::
the

:::
ice

:::::
front.20

::::
With

:::
the

:::::::::::::
implementation

::
of

:::::::
ESTAR

::::
into

:::::
ISSM

:::::::::
completed,

::::::
further

:
investigation into the capabilities of ESTAR to replicate

real-world ice sheet flow in Antarctic outlet glaciers is currently underway.
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Figure 1. Strain rate characteristics of polycrystalline ice undergoing deformation driven by single stresses as measured in laboratory exper-

iments. The part of the curve corresponding to tertiary (steady-state) anisotropic creep is relevant to the deformation of ice masses in typical

ice sheets and glaciers. The red (blue) curve illustrates the result of simple shear-alone (compression-alone) stress configurations. Note that

the ratio of the shear enhancement factor E
S

to the compression enhancement factor E
C

is approximately 8/3, and the enhancement due to

compression-alone is approximately three times that of the secondary (minimum) creep rate.
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Figure 3. Rectangular ice shelf HO
:::::::::
steady-state surface velocity magnitudes

::::
fields.
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(a)

::::::
Velocity

::::::::
magnitude

:
(m yr�1) using (a)

::
for

:::
the Glen

and
:::
flow

::::::
relation

::::::::
(E

G

= 8);
:
(b)

::::::
velocity

::::::::
magnitude

:::
(m

::::
yr�1)

:::
for ESTAR, and the corresponding

:
;
::
(c) ratios (i.e., ESTAR/Glen) between

::
of

::::::
velocity

:::::::::
magnitudes;

:::
(d)

:::::::
thickness

:::
(m)

::
for

:
the steady-state (c) velocities

::::
Glen

:::
flow

::::::
relation

::::::::
(E

G

= 8);
:::
(e)

:::::::
thickness

:::
(m)

:::
for

::::::
ESTAR; and (d)

::
(f)

::::
ratios

::::
(i.e.,

:::::::::::
ESTAR/Glen) thicknesses. The black arrow indicates the direction of flow.
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Figure 6.
::::::
ISMIPB

:
FS steady-state (prognostic) along-flow velocities (v

x

) for ISMIPB
:::::
results

::::
with

::::::::
horizontal

:::::
extent

::::::
L= 20

:::
km. (a)

::::::::
Horizontal

::::::
velocity

:
v

x

(m yr�1) for the Glen flow relation with E

G

= 8; (b) v

x

(m yr�1) for ESTAR with E

S

= 8 and E

C

= 3; and

(c) ratio between the Glen and ESTAR v

x

fields
:
;
:::
(d)

::::::
ESTAR

::::
shear

::::::::::
enhancement

::::
factor

:::
�

S:::
(Eq.

:::
6);

::
(e)

:::::
ESTAR

::::::
normal

::::
strain

:::
rate

::::
(i.e.,

:::::
x�x

::::
strain

::::
rate;

::::
s�1);

:::
and

:::
(f)

::::::
ESTAR

::::
shear

:::::
strain

:::
rate

::::
(i.e.,

:::::
x� z

::::
strain

::::
rate;

:::::
s�1).

:::
The

:::::
black

::::::
contours

::
in
:::

(e)
::::::::
correspond

::
to

::
the

::::::
curves

:::::
where

::::::
✏̇

xx

= 0.
::::
Note

:::
the

:::
log

::::
scale

:
in
:::
(f).
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Figure 7. Enhancement factors and normal and shear strain rates for the ISMIPB FS steady-state simulations
::::
results

::::
with

::::::::
horizontal

:::::
extent

::::
L= 5

:::
km. (a) Shear

::::::::
Horizontal

::::::
velocity

::
v

x:::
(m

::::
yr�1)

:::
for

:::
the

::::
Glen

:::
flow

::::::
relation

::::
with

::::::
E

G

= 8;
:::

(b)
:
v
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(m

::::
yr�1)

:::
for

::::::
ESTAR

::::
with

::::::
E

S

= 8
:::
and

::::::
E

C

= 3;
:::
and

:::
(c)

:::
ratio

:::::::
between

::
the

::::
Glen

:::
and

::::::
ESTAR

::
v

x:::::
fields;

:::
(d)

::::::
ESTAR

::::
shear enhancement factor �

S

(Eq. 6); (b)
::
(e)

::::::
ESTAR normal strain

rate (i.e., x�x strain rate; s�1); and (c)
::
(f)

::::::
ESTAR shear strain rate (i.e., x� z strain rate; s�1). The black contours in (b)

::
(e) correspond to

the curves where ✏̇

xx

= 0.
::::
Note

::
the

:::
log

::::
scale

::
in

::
(f)

:
.

Steady-state (prognostic) results for ISMIPB HO and FS models. (a)-(b) HO and FS along-flow velocities (v
x

; m yr�1), respectively; (c)

ratio of the deformation velocities (HO/FS); (d)-(e) HO and FS enhancement factors �
S

, respectively, with their ratio in (f); and (g)-(h)

final HO and FS viscosities (µ; Pa s), with their ratio in panel (i).
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Figure 8. ISMIPD FS diagnostic (stress balance – SB; (a)-(c)) and prognostic (transient – TR; (d)-(f)) along-flow velocities (v
x

)
:::::::::
steady-state

:::::
results

:::
with

::::::::
horizontal

:::::
extent

::::::
L= 20

::
km. (a) and (d) Glen SB and TR

::::::::
horizontal

:::::::
velocities v

x

, respectively
::
(m

:::::
yr�1); (b) and (e) ESTAR SB

and TR v

x

, respectively
::
(m

::::
yr�1); and (c) and (f) ratios of

::::::
ESTAR/Glen to

:::
v

x

;
::
(d)

::::
ratios

::
of ESTARSB and TR

::::
/Glen

:
deformation velocities

(i.e., the difference between v

x

and the sliding velocity, which is taken to be equal to the velocity along the basal mesh points)
:
;
:::
and

::
(e)

::::
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:
of
::::::::::

ESTAR/Glen
::::::::

viscosities.
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km. (a) -(d) SB and TR �

S

; (b) -(e) SB and TR normal strain rates
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Figure 10.
:::::::
ISMIPD

::
FS

:::::::::
steady-state

:::::
results

::::
with

::::::::
horizontal

:::::
extent

:::::
L= 5

:::
km.

:::
(a)

:::
Glen

::::::::
horizontal

::::::
velocity

:::
v
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(m

:::::
yr�1,

::::
with

:::::::
E

G

= 8);
:::
(b)
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ESTAR
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v
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(c)
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of
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ESTAR/Glen

::
v

x

;
:::
(d)

:::
ratio

::
of

::::::::::
ESTAR/Glen

:::::::::
deformation

:::
v

x

;
::
(e)

:::
ratio

::
of

::::::::::
ESTAR/Glen

:::::::
viscosity;

:::
(f)

::::::
ESTAR
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ESTAR

::::::
normal

::::
strain

::::
rate
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(s�1);
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and
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(h)

::::::
ESTAR

::::
shear
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strain
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rate
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(s�1).
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The

::::
black

:::::::
contours
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in

::
(g)

::::::::
correspond
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to
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the
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where
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"̇

xx

= 0.
::::
Note

:::
the

:::
log

::::
scale

::
in

::
(h)

:
.
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Table 1. Computational times for full Stokes
::::::::
full-Stokes simulations of the embayed ice shelf (section

:::
Sect. 5.1) using Glen and ESTAR for

increasing mesh resolution. The model is simulated for 1 month and for a total of 833 time steps in each case. Dof stands for model degrees

of freedom.

Dof Vertices CPUs Glen walltime (s) ESTAR walltime (s)

2210 10040 16 9084 9281

2760 15665 32 10467 10778

3310 22540 64 12920 13008

4410 40040 128 20852 21008

8820 80080 256 59057 59934
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