1 Referee #1

— However, while the authors repeatedly state that they take the CD model at face
value, they should — when presenting that model — demonstrate in a comprehen-
sive way what the pros and cons of the model are. Moreover, as the CD model (and
derivatives) are widely used, some more criticism and lines for improvement are in
order. In that respect, Figure 3 is quite enlightening showing that grounding line po-
sitions for the CD model show this rather non-intuitive characteristic (as a function
of accumulation rate).

We have tried to be as comprehensive here as is possible without trying to derive a more
sophisticated calving model that incorporates the same basic physics as Nick et al (2010).
We now include the following paragraphs in section 2.2; much of this material already
appeared in the first draft, but the material highlighted in boldface below is new, adding
to our discussion of the pros and cons of the model (italicized for new text)

“In our view, the CD model is a cartoon version of the linear elastic fracture mechanics
explored in by Weertman (1973,1980) and van der Veen (1998a,b). These papers con-
sider the ‘mode 1’ (Zehnder, 2012) propagation of vertical cracks into ice under tensile
(extensional) stresses. This is done by computing stress levels around the crack tip from
known Green’s functions for parallel-sided elastic slabs with cracks penetrating from the
upper or lower surfaces, accounting for the pressure exerted by water in the cracks, and
applying a fracture toughness criterion. The CD model by contrast assumes that exten-
sional stress increases with depth in the ice in a linear, cryostatic fashion. The model then
computes crevasse penetration as being the distance from the upper and lower surfaces at
which that extensional stress becomes sufficiently negative (that is, sufficiently compres-
sive) to overcome the pressure exerted by water at the same depth. The CD model therefore
does not compute stress with the same level of sophistication as the papers by Weertman
(1973,1980) and van der Veen (1998a,b), but follows the same basic approach of com-
puting crevasse propagation based on a known ice geometry and known water pressures
applied inside the crevasses, and it has the advantage of tractability.
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The basic method in van der Veen (1998a,1998b) in principle allows for a constraint to
be computed that links ice thickness, applied extensional stress, crevasse water level and
fracture toughness at the moment that surface and basal crevasses together first penetrate
through the entire ice thickness. Given that extensional stress is a function of ice thick-
ness through (le), this constraint could be converted into a criterion for the thickness h,.
at which calving occurs,giving a more sophisticated version of the Nick et al (2010) CD
model. However, the papers by van der Veen do not deal with the case in which both, sur-
face and basal crevasses are present and interact with each other (so the relevant Green’s
functions are not given), and he does not explicitly compute a condition for calving that
could be put in the form (If). As a result, we confine ourselves to the simpler CD model
here.

One of the practical pitfalls of the CD model is that it predicts no calving at all if d,, =
0 and surface crevasses are free of water. It is possible that this is an artifact of the
simple representation of stress in the CD model, where the tensile stress driving crevasse
propagation is assumed to have the same dependence on depth below the ice surface
regardless of whether a crevasse is present or not. In reality, the formation of crevasses
that penetrate through a significant fraction of the ice shelf leads to extensional stress
becoming more concentrated around the crack tips than for shallow crevasses (see for
instance Fig. 4 of van der Veen (1998a)). This represents a positive feedback on crack
propagation, and could lead to calving even for the case of water-free surface crevasses
(see also Weertman, 1980).

More recently, others have extended the linear elastic fracture mechanics approach of
Weertman (1973,1980) and van der Veen (1998a,b) to include effects such as the role
distributed damage due to the formation of microcracks in initiating crevasse formation,
the blunting of cracks tips due to viscous deformation, and the presence of significant
torques near the calving front (Krug et al, 2014, Mobasher et al, 2016, Jimenez et al 2016,
Hongju et al, 2017). The complexity of these processes however makes them difficult to
parameterize in a model that does not resolve the scale of individual crevasses, and we do
not consider them here.



The Nick et al (2010) CD calving model, along with the work of Weertman (1973,1980)
and van der Veen (1998a,b), is based on tensile failure. We can contrast this with the
shear failure model of Bassis and Walker (2011) (see also Bassis and Jacobs (2013) and
Ma et al (2017)). The CD model requires d,, > 0 and predicts calving for any h below
the value given by (1f), instantaneously removing all parts of the glacier shelf that are
too thin. By contrast, the shear failure model of Bassis and Walker (2011) predicts that
calving will start at a critical calving front thickness and not occur below that thickness,
so the inequality in (1g) would need to be reversed. ...”

Throughout the paper, the authors investigate the case of a downward-sloping bed
(prograde slope). However, as shown in Schoof (2007), retrograde (upward-sloping)
beds do not allow for steady-state grounding line positions in absence of buttressing.
Gudmundsson et al (2013) demonstrated that stable steady states on such slopes may
occur due to ice shelf buttressing. Also in Greenland, where the CD calving law has
been mostly applied, retrograde slopes occur. Therefore, it would be interesting not
to limit the analysis to downward sloping beds, but to investigate

We have addressed this by adding a figure (Fig 4) to section 3.2, accompanied by the
following text (again, italics indicate new text):

“Fig. 4 shows analogous calculations to those in Fig. 3, but for an overdeepened bed shape
based on that used in Schoof (2007b). For the FL model, we invariably see that an increase
in accumulation rate makes the grounding line advance on a downward slope, and retreat
on a retrograde slope. This is again analogous to the unbuttressed case studied in Schoof
(2007b), where the grounding line is then unstable when located on an upward slope. For
the CD model, the behaviour becomes more complicated. We see that the grounding line
can either advance or retreat with increasing accumulation rate, on both the downward-
and upward-sloping parts of the bed. Qualitatively, shallow water depths at the grounding
line are more commonly associated with the standard, ‘unbuttressed’ behaviour (that is,
an increase in accumulation tends to cause the grounding line to advance on downward
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slopes, and retreat on retrograde slopes). The reverse behaviour is associated with larger
water depths at the grounding line. We also see that a decrease in \ leads to the ‘reverse’
behaviour being observed down to shallower water depths at the grounding line, and in
particular, through more of the overdeepened section. ”

In the conclusions section, we also refer back to this figure:

“Conversely, we may see grounding lines attain stable steady state positions on upward-
sloping beds if (), decreases with depth to bedrock —b: Fig. 4 shows several examples in
which the steady state grounding line advances up a reverse bed slope as accumulation
rates are increased. A second mechanism by which such stabilization on upward-sloping
beds can occur is the dependence of discharge w(@, on width w: a sufficiently narrow
bottleneck in the channel could stabilize a grounding line on an upward slope even if ),
did increase with depth —b, because w(), is an increasing function of w (this argument is
due to Jamieson et al, 2012). This second mechanism is however not responsible for the
behaviour shown in Fig. 4, where channel width is constant along the domain. It is worth
noting that simulations of Greenland outlet glaciers using the CD calving law (Nick et al,
2010) have similarly produced steady states located on upward-sloping beds. Our work
suggests that this may be due not only to narrowing of the channel but also to the calving
law.”

Detailed remarks:

Page 2, line 6: grounding line

Page 3, line 3: commas between references

Page 2, line 7: assumed constant in time

Page 4, line 4: even when neither of the two limits

We have corrected all of these

Page 4: line 5-7: Given that the use of this model is essential throughout the analysis,
it would be good to bring in some more solid arguments in favour its use. Stating
that the simplification works reasonable well and that you analyse the model at face
value is somehow weak.
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We believe we are simply being honest here and throughout the paper by pointing this
out directly. We describe our rationale for using the model at length in the introduction
and the conclusions (namely, that it has been widely used elsewhere — so the ability to
interpret existing results remains important — and is based on the physics involved, and
furthermore, that the model allows rapid computation over large sets of parameter values);
the passage flagged by the referee makes clear precisely what the downside of using the
model is. The alternative would be to use a much more sophisticated and costly model;
proceeding at “face value” is done in the hope that something useful can be learnt without
resorting to that alternative, which would make it much more difficult to explore parameter
space to the extent we are able to, and to come to qualitative conclusions. Of course, one
could assert that only the best type of model should ever be used and that flowline models
are dead. We would respectfully disagree, and point to simple box models in glaciology
and elsewhere as a tool still used to develop understanding. Our effort should be seen as
being in that spirit, but situated somewhere between box models and sophisticated three-
dimensional multiphysics models.

To expand on where we address the rationale for the model, we have in the introduction

“We investigate how two particular calving laws that are relatively widely used in models
for tidewater glaciers affect but- tressing in a simplified flowline model. The model lacks
the sophistication of models that resolve the cross-channel dimension. Instead, it relies on
a parameterization of lateral drag in terms of the mean along-channel velocity (Dupont
and Alley, 2005; Nick et al., 2010; Jamieson et al., 2012; Hindmarsh, 2012; Pegler et
al., 2013; Robel et al., 2014, 2016; Pegler, 2016). The chief advantages of the model are
that it allows flux through the grounding line to be computed rapidly as a function of ice
thick- ness through the use of a boundary layer theory (Schoof, 2007a) and that the role of
different physical mechanisms becomes comparatively easy to trace. Future work will be
required to address whether our results are reproduced qualitatively by more sophisticated
(and more computationally intensive) models, and we hope that this paper can motivate
such work.”

and in the conclusions



“Our aim has not been to be authoritative in establishing the existence of an anomalous
flux-depth relationship: our model contains at least two components that can be improved
upon. First, the parameterised description of lateral drag should eventually be dispensed
with, replacing our model with one that resolves the cross-channel dimension. The scaling
that underlies our boundary layer model should still be applicable in that case, but the
actual boundary layer model will consist of a set of coupled partial differential equations
(as opposed to ordinary differential equations) and is likely to be much more onerous to
solve for a large number of parameter combinations, as we have been able to do here.”

Note that this is not new text, but hopefully addresses the point adequately.

Page 9: bottom equation: [z] instead of |x]

Page 16, line 12: converges to the one (or state flux conditions instead)

Page 21, line 7: bigger — larger

Page 22, line 18: formula — eq.

We have corrected these. For the page 16, line 12 correction, we state

As expected, the flux solutions obtained from the full steady state problem (6) for the CD
and the calving at flotation models converge to those obtained from the boundary layer
problem



2 Referee # 2

— The main thing I would like is a bit more discussion surrounding the background
to the calving laws and why these ones were chosen. Perhaps introduce a subsection
into the model section describing the calving laws and their background in a bit
more detail and in a general context. Furthermore, I think it would be useful to
have some discussion towards the end of the paper about how, qualitatively, you
expect processes to be affected by e.g. different choice of calving laws, which include
different mechanisms, and basal melt (exclusion of it mentioned line 14, section 2).
Perhaps insert a separate discussion and conclusion. This would help make the paper
more accessible to a general reader who is interested in what the key parameters
really are.

We have included a much more detailed description of the literature on calving in the
model section (section 2.2). The text is already given above as one of the responses to
referee # 1, but we repeat it here (as before, italics indicate new or altered text)

“... We take the second condition to be a ‘calving law’. While a stress condition is suffi-
cient to close the force balance model (1a), a calving model can be understood as fixing
the free boundary location. The next section describes the different choices of calving laws
used here.

Calving model

In our view, the CD model is a cartoon version of the linear elastic fracture mechanics
explored in by Weertman (1973,1980) and van der Veen (1998a,b). These papers con-
sider the ‘mode 1’ (Zehnder, 2012) propagation of vertical cracks into ice under tensile
(extensional) stresses. This is done by computing stress levels around the crack tip from
known Green’s functions for parallel-sided elastic slabs with cracks penetrating from the
upper or lower surfaces, accounting for the pressure exerted by water in the cracks, and
applying a fracture toughness criterion. The CD model by contrast assumes that exten-
sional stress increases with depth in the ice in a linear, cryostatic fashion. The model then
computes crevasse penetration as being the distance from the upper and lower surfaces at
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which that extensional stress becomes sufficiently negative (that is, sufficiently compres-
sive) to overcome the pressure exerted by water at the same depth. The CD model therefore
does not compute stress with the same level of sophistication as the papers by Weertman
(1973,1980) and van der Veen (1998a,b), but follows the same basic approach of com-
puting crevasse propagation based on a known ice geometry and known water pressures
applied inside the crevasses, and it has the advantage of tractability.

The basic method in van der Veen (1998a,1998b) in principle allows for a constraint to
be computed that links ice thickness, applied extensional stress, crevasse water level and
fracture toughness at the moment that surface and basal crevasses together first penetrate
through the entire ice thickness. Given that extensional stress is a function of ice thick-
ness through (le), this constraint could be converted into a criterion for the thickness h.
at which calving occurs,giving a more sophisticated version of the Nick et al (2010) CD
model. However, the papers by van der Veen do not deal with the case in which both, sur-
face and basal crevasses are present and interact with each other (so the relevant Green’s
functions are not given), and he does not explicitly compute a condition for calving that
could be put in the form (If). As a result, we confine ourselves to the simpler CD model
here.

One of the practical pitfalls of the CD model is that it predicts no calving at all if d,, =
0 and surface crevasses are free of water. It is possible that this is an artifact of the
simple representation of stress in the CD model, where the tensile stress driving crevasse
propagation is assumed to have the same dependence on depth below the ice surface
regardless of whether a crevasse is present or not. In reality, the formation of crevasses
that penetrate through a significant fraction of the ice shelf leads to extensional stress
becoming more concentrated around the crack tips than for shallow crevasses (see for
instance Fig. 4 of van der Veen (1998a)). This represents a positive feedback on crack
propagation, and could lead to calving even for the case of water-free surface crevasses
(see also Weertman, 1980).

More recently, others have extended the linear elastic fracture mechanics approach of
Weertman (1973,1980) and van der Veen (1998a,b) to include effects such as the role
8



distributed damage due to the formation of microcracks in initiating crevasse formation,
the blunting of cracks tips due to viscous deformation, and the presence of significant
torques near the calving front (Krug et al, 2014, Mobasher et al, 2016, Jimenez et al
2016, Yu et al, 2017). The complexity of these processes however makes them difficult to
parameterize in a model that does not resolve the scale of individual crevasses, and we do
not consider them here.

The Nick et al (2010) CD calving model, along with the work of Weertman (1973,1980)
and van der Veen (1998a,b), is based on tensile failure. We can contrast this with the
shear failure model of Bassis and Walker (2011) (see also Bassis and Jacobs (2013) and
Ma et al (2017)). The CD model requires d,, > 0 and predicts calving for any h below
the value given by (1f), instantaneously removing all parts of the glacier shelf that are
too thin. By contrast, the shear failure model of Bassis and Walker (2011) predicts that
calving will start at a critical calving front thickness and not occur below that thickness,
so the inequality in (1g) would need to be reversed. ...”

We also make brief reference to this again in the discussion and conclusions section,
though it seemed inappropriate to speculate as to the results of using other calving models.
Consequently, we have limited ourselves to pointing out that the CD model for floating
calving fronts simply prescribes calving front thickness, independently of bed topography
below the shelf, in terms of a calving parameter (d,,), and the relationship between flux
and depth to bedrock at the grounding line obtained in that case will be the same for any
other calving model that also prescribes a calving front thickness independently of depth
to bedrock:

“For a floating ice shelf, calving cliff height is simply proportional to crevasse water depth
and independent of depth to bedrock. In other words, the CD model can then be thought
of as a generic calving model that imposes a fixed thickness at the floating glacier termi-
nus. ...As we have indicated, the thickness of floating calving fronts in the CD model is
uniquely controlled by the crevasse water depth parameter, and does not depend on depth
to bedrock. The same generic relationship between ice flux and depth to bedrock at the
grounding line will therefore be obtained for any other calving law that fixes the height
9



of a floating calving front independently of depth to bedrock. By contrast, the CD model
results are unlikely to be robust in the same way for grounded calving fronts. ”

As for the effect of melting, we reference melting again in the discussion and conclusions
section as a process that will affect results. We have already completed this work and are
preparing a second manuscript; unfortunately, incorporating this into the present paper
would simply make it unduly long. (The present paper is based on a manuscript previously
submitted to a fluids journal. That manuscript covered melting as well as calving, and it
was felt that it was not only too specific to glaciology but also too broad in scope, and
should be split into papers focusing on calving and on the additional effects of melting.):

“Our aim has not been to be authoritative in establishing the existence of an anomalous
flux-depth relationship: our model contains at least three components that can be improved
upon. ...

Second, we have neglected the effect of basal melting on the shelf here. This is tractable
in the framework we have developed here with a simple, prescribed basal melt rate, but
doing so still introduces sufficient complications to lie beyond the scope of a single paper;
a second manuscript that incorporates melting into our theory is in preparation.”

I would also really appreciate a table of variables being included. There were several
points in the manuscript where this would have been useful to reference as so many
different variables are used.

A table is now provided in the supplementary material

Abstract, line 3-4 Re-phrase as confusing ordering at the moment. I suggest *The
length of any floating ice shelf present also affects the lateral drag, hence calving is
an important process’.

Reworded to entire abstrract

We consider the flow of marine-terminating outlet glaciers that are laterally confined in
a channel of prescribed width. In that case, the drag exerted by the channel side walls on
a floating ice shelf can reduce extensional stress at the grounding line. If ice flux through
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the grounding line increases with both, ice thickness and extensional stress, then a longer
shelf can reduce ice flux by decreasing extensional stress. Consequently, calving has an
effect on flux through the grounding line by regulating the length of the shelf. In the ab-
sence of a shelf, it plays a similar role by controlling the height of the calving cliff. Using
two calving laws, one due to Nick et al based on a model for crevasse propagation due
to hydrofracture, and the other simply asserting that calving occurs where the glacier ice
becomes afloat, we pose and analyse a flowline model by two methods: direct numerical
solution and matched asymptotic expansions. The latter leads to a boundary layer for-
mulation that predicts flux through the grounding line as a function of depth to bedrock,
channel width, basal drag coefficient, and a calving parameter. By contrast with unbut-
tressed marine ice sheets, we find that flux can decrease with increasing depth to bedrock
at the grounding line, reversing the usual stability criterion for steady grounding line lo-
cation. Stable steady states can then have grounding lines located on retrograde slopes.
We show how this anomalous behaviour relates to the strength of lateral versus basal drag
on the grounded portion of the glacier, and to the specifics of the calving law used.

Abstract, line 9 ‘increasing depth to bedrock’ - better at this point to refer to as
’retrograde bed slope’ as this how people usually think of it?

This is not limited to retrograde slopes: if the grounding line moves from shallower to
deeper water, regardless of whether the grounding line has to move seaward or inland to
achieve that, the flux can decrease rather than increase. We have therefore left the wording
as was.

Intro, line 19-23 Sentence far too long. Insert full stop after first part. i.e. ‘...that can
alter the flux-to-bedrock-depth relationship. These include...’

Changed

Intro, line 15 onwards Can you insert a sentence or two justifying choosing these two

calving laws over others? Or say you’ll do this in model description section and add
discussion in there as mentioned above.
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Reworded as

“We investigate how two particular calving laws that are relatively widely used in models
for tidewater glaciers affect buttressing in a simplified flowline model. The ice flow model
itself lacks the sophistication of models that resolve the cross-channel dimension. Instead,
it relies on a parameterization of lateral drag in terms of the mean along-channel velocity.
... The rationale for the calving models used here is described in greater detail in section
22....¢

page 3, line 10 Why using B, rather than more standard choice of A for Glen coeffi-
cient?

From the continuum mechanics perspective, writing stress as a function of strain rate is
more natural than the other way around (because that’s how a Stokes flow model is usually
written, as a second order elliptic problem for velocity). Given that, using A introduces
unneccessary powers of n.

page 3, line 24 Can you extend discussion here with a couple of sentences about
limitations of this parameterisation?

The description of this parameterization and its limitations go all the way to equation (1e)
on page four, and we refer to the discussion in Pegler (2016) for more detail. We are also
attempting to be honest in describing the heuristic nature of flowline models of this kind,
both here, in the introduction and the discussion and conclusions. To reiterate the point
made in the response to referee # 1, the point is that this kind of flowline model has been
widely used elsewhere — so the ability to interpret existing results remains important —
that it is based on the basic physics involved, and furthermore, that the model allows rapid
computation over large sets of parameter values). The alternative would be to use a much
more sophisticated and costly model; proceeding at “face value” is done in the hope that
something useful can be learnt without resorting to that alternative, which would make it
much more difficult to explore parameter space to the extent we are able to, and to come
to qualitative conclusions. Of course, one could assert that only the best type of model
should ever be used and that flowline models are dead. We would respectfully disagree,
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and point to simple box models in glaciology and elsewhere as a tool still used to develop
understanding. Our effort should be seen as being in that spirit, but situated somewhere
between box models and sophisticated three-dimensional multiphysics models.

To expand on where we address the rationale for the model (in addition to the text in
section 2.1, from “The second term B’w~'/"~1p|u|l/?=1% > to equation (le)), we have
in the introduction

“We investigate how two particular calving laws that are relatively widely used in models
for tidewater glaciers affect but- tressing in a simplified flowline model. The model lacks
the sophistication of models that resolve the cross-channel dimension. Instead, it relies on
a parameterization of lateral drag in terms of the mean along-channel velocity (Dupont
and Alley, 2005; Nick et al., 2010; Jamieson et al., 2012; Hindmarsh, 2012; Pegler et
al., 2013; Robel et al., 2014, 2016; Pegler, 2016). The chief advantages of the model are
that it allows flux through the grounding line to be computed rapidly as a function of ice
thick- ness through the use of a boundary layer theory (Schoof, 2007a) and that the role of
different physical mechanisms becomes comparatively easy to trace. Future work will be
required to address whether our results are reproduced qualitatively by more sophisticated
(and more computationally intensive) models, and we hope that this paper can motivate
such work.”

and in the conclusions

“Our aim has not been to be authoritative in establishing the existence of an anomalous
flux-depth relationship: our model contains at least two components that can be improved
upon. First, the parameterised description of lateral drag should eventually be dispensed
with, replacing our model with one that resolves the cross-channel dimension. The scaling
that underlies our boundary layer model should still be applicable in that case, but the
actual boundary layer model will consist of a set of coupled partial differential equations
(as opposed to ordinary differential equations) and is likely to be much more onerous to
solve for a large number of parameter combinations, as we have been able to do here.”
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Note that this is not new text, but hopefully addresses the point adequately; we feel that
anything else we might say would amount to repetition of the material already in the paper.

— Figure 1 Table of variables would certainly help reader when looking at this figure.
Also, for a grounded terminus shouldn’t inequality for h actually read hf < hc as
still grounded if calving happens at flotation. Alternatively, perhaps you could insert
a third lower diagram illustrating hf = hc = hg since this could then be used as a
reference when describing the second calving law you use (page 5, lines 1-2)?

A table has been provided at the end of section 2. Inequality has been changed — though
we left the figure as was with two lower panels in order not to crowd things.

— Figure 2 Grey shaded regions do not show at all when printed. Make darker. Figure
2 Insert space ‘Panel (b)’ in caption
Done

— equation 1h I think this is the first time dw is used but you do not explicitly state that
it is water depth. At least have in table.
Corrected and included in table

— equations 1h/1li Can you line these up properly so ‘at and if’ are in line (and do
similarly at several other points in paper).

We are using the standard
\begin{align} ... \end{align}

environment, which the TCD documentclass seems to align in the fashion shown here.
That appears to be a Copernicus / cryosphere style and documentclass issue, and beyond
our control.

— page 7, lines 1-12 As mentioned above I think you want more discussion and context
here. Given the length of this section I think it would also be helpful to split section
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2 up into a couple of subsections e.g. ‘ice flow model’, ‘calving laws’. This would
help remind reader where to reference back to when thinking about the different
parameterisations later.

We have split this into subsections, see above for discussion and context.
section 3.1 a few more words reminding us what equations are e.g. page 8 line 5 ‘if
rh > b i.e. flotation.

To avoid cumbersome extra text inline with the equation, we have now prefixed equation
(4c) by

“with 0 the indicator function for flotation”

page 9, line 9 ‘...glacier terminus, which are of the form’
Changed

page 9, line 14 change to ‘monotonically downward’

’downward monotonically’ is not ok? Especially if it’s *'monotonic in z’?

page 11, line 24ish confusing now having ‘B’ as a rescaled b and having the B etc
earlier for Glen. Preferably change Glen to A but at least introduce table

Included in table — this was one of the reasons for using B rather than just the straight-
forward B

page 12, line 27 Physical interpretation of \ being small?

We’ve restructured this and moved the rescaling in A up in the text, to say

“In order for the rescaling in H above to be consistent, we also require that the calving
. .. . . 2 2
front thickness be similarly small. This turns out to require that X ~ O(¢™/("*17) "and

we define
A= T—le—nQ/('rL—}—l)Z)\
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assuming that A = O(1); all this implies is that water depths in surface crevasses are not
so large as to create calving cliff heights much larger than the expected depth to bedrock
at the grounding line. ”

page 13, line 4-8 Long sentence, difficult to take in. Split up.

Split at ‘first’, ‘second’ and ‘third’:

“Physically, the first condition states that the flux near the grounding line in the ‘outer’
problem is the flux that enters the boundary layer at its upstream end. The second con-
dition states that near that upstream end of the boundary layer, extensional stress gra-
dients have become insignificant and flux is given by a shallow ice type formula (with
U = Q/H, the condition can be re-written as Q ~ —H|Hx|" ' Hx, the appropriate
local-force-balance formula in our case). Lastly, the third condition states that veloci-

ties in the interior of the boundary layer are large compared with those in the rest of the
glacier”

page 14, line 1-2 ‘on the then-redundant parameter A to write alternatively’ — ‘on
the now-redundant parameter A to simplify the expression to’

Changed as suggested

page 14, line 25 ‘the CD model produces the same result as..., which is reassuring’

Not sure whether ‘reassuring’ is the right word, that seems subjective

page 17, eqn 11 insert fullstop.
Done
page 22, line 13ish Sentence between the two equations (line numbering gone askew

here) should read ’Integrating and applying the boundary condition shows that ex-
tensional stress...’

Corrected
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— page 22, eqn 23 insert fullstop.

Done

— page 25, line 16 You seem to sometimes talk in terms of the rescaled B (like here)
and at other points in terms of depth to bedrock b (e.g. line 20). I would stick to the
variable b?

‘We have tried to correct all instances of B in the discussion

— page 26, line 16 onwards Yes, this and the following discussion are good points but
then the paper ends rather suddenly. Could you put this into a bit more context and
suggest extensions/alternative approaches.

We are not entirely sure how to address this point. What is ‘this’ in particular — the depen-
dence of calving cliff height on water depth as a control parameter? We have elaborated a
little on this, as follows:

“We have chosen to take the calving model at face value, simply prescribing the crevasse
water depth control parameter. This is worth emphasizing as the dependence of calving
cliff height on flotation thickness predicted by the calving model turns out to be key to
the anomalous flux-depth relationship. It is likely that other, more sophisticated calving
models (for instance one based on the formulation in van der Veen (1998a,1998b) can
also be written in the form of a calving cliff height as a function of crevasse water depth,
though presumably with a different specific from the CD model: as in the latter, surface
hydrology becomes a key component in understanding calving.”

— page 27, line 8 ‘may be possible at least in principle’ - awkward wording.

Probably not just awkward but downright incorrect — an ‘and’ was missing

“Since an anomalous flux-depth-to-bedrock relationship may be possible and would have
significant consequences for stable outlet glacier configurations, and it may be worth
testing this before embarking on simulations of actual glaciers using different calving
laws.”
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— page 27, line 12 ‘At issue’ change to ‘An important issue’

We believe ‘at issue’ to be correct: Collins dictionary defines the phrase as meaning ‘The
question or point at issue is the question or point that is being argued about or discussed.’
— in this case, hopefully, discussed.

— page 28, line 13 ‘meaning a functional relationship’ change to ‘giving a functional
relationship’

Corrected
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3 Reviewer #3

— If the Nick et al crevasse depth calving model is to be referred to as ‘CD’ (as in Nick
et al 2010 IIRC) then why not have a similar acronym for the other model (I think
Nick called it ‘FL’?)

We have relabelled ‘calving at flotation’ as the ‘FL’ calving law throughout the text.

— P5-6, eqns 1h,1i: Although the derivations of these expression is in the supplement,
would it not make sense to say at this point that the arise from combining the relation-
ship between stress and thickness at the calving front and the relationship between
‘dry’ crevasse depth and stress.

As part of other revisions, we have reworded this as

“In our view, the CD model is effectively a simpler version of the linear elastic fracture
mechanics explored in by Weertman (1973,1980) and van der Veen (1998a,b). These pa-
pers consider the ‘mode 1’ (Zehnder, 2012) propagation of vertical cracks into ice under
tensile (extensional) stresses. This is done by computing stress levels around the crack tip
from known Green’s functions for parallel-sided elastic slabs with cracks penetrating from
the upper or lower surfaces, accounting for the pressure exerted by water in the cracks,
and applying a fracture toughness criterion to determine whether a crack will propagate.
The CD model by contrast assumes that extensional stress increases with depth in the ice
in a linear, cryostatic fashion. The model then computes crevasse penetration as being
the distance from the upper and lower surfaces at which that extensional stress becomes
sufficiently negative (that is, sufficiently compressive) to overcome the pressure exerted
by water at the same depth. The CD model therefore does not compute stress with the
same level of sophistication as the papers by Weertman (1973,1980) and van der Veen
(1998a,b), but follows the same basic approach of computing crevasse propagation based
on a known ice geometry and known water pressures applied inside the crevasses, and it
has the advantage of tractability.”
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— P6, L15: I don’t dispute that sensitivity to dw (and the requirement that dw h) is a problem
for CD: in fact I would go further and say it that in current applications it might be
standing in for physics that has nothing to do with hydrology at all.

We are inclined to agree. The main question is whether the dependence of h. on b is
appropriate, given that d,, may be a degree of freedom that is difficult to pin down. We
refer to this briefly in the discussion and conclusions section, where we point out that (new
text in bold face)

“For a floating ice shelf, calving cliff height in the CD model is simply proportional to
crevasse water depth and independent of depth to bedrock. In other words, the CD model
can then be thought of as a generic calving model that imposes a fixed thickness at the
floating glacier terminus. ...

As we have indicated, the thickness of floating calving fronts in the CD model is uniquely
controlled by the crevasse water depth parameter, and does not depend on depth to bedrock.
The same generic relationship between ice flux and depth to bedrock at the grounding line
will therefore be obtained for any other calving law that fixes the height of a floating calv-
ing front independently of depth to bedrock. By contrast, the CD model results are unlikely
to be robust in the same way for grounded calving fronts.”

— P9, L24: ‘Our aim in what follows. . . ¢ rather than a single sentence, it might be
helpful to quickly sketch out the line of thought. It was not until about P15 that I got
the sense of that.

We have expanded this as follows:

“Our aim in what follows is to explain the results in Figs. 3—4 using the same boundary
layer approach as in Schoof (2007b). In particular, we will show that flux through the
grounding line can be computed to leading order in the parameter € as a function depth
to bedrock and channel width at the grounding line, as well as of the calving parameter A,
friction coefficient vy and the remaining physical parameters (r, m, n). Given such a rela-
tionship, it is then possible to determine how the grounding line location in a steady state
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depends on accumulation rates, purely by balancing net accumulation over the domain
with outflow of ice through the grounding line.”

— P12,1.15: ‘Despite working at leading order in we have retained two terms that con-
tain factors of in (9) ‘. Slightly odd phrasing, which might give the impression that
the terms are retained even though they are < O(1) ? Both factors are (for the case
n=3,m=1/3¢%1 > O(1). In the paragraph that requires v and \ < O(1) so for
all terms to appear at the same order.

Good point. We have restructured and reworded this as follows: First, the rescaling in A
has been moved up in the text, to say

“In order for the rescaling in H above to be consistent, we also require that the calving
. .. . . 2 2
front thickness be similarly small. This turns out to require that X ~ O(¢™/("*17) " and

we define
A= temn?/(nHD)? )

assuming that A = O(1); all this implies is that water depths in surface crevasses are not
so large as to create calving cliff heights much larger than the expected water depth at the
grounding line.”

and thereafter we deal with the rescaling in 7 by saying

“In order to make the balances in (9) work with € < 1, we have to deal with the remaining
coefficient that contains a power of € in (9). We now make further assumptions about the
physics of the flow near the grounding line.”

The fact that the power of ¢ is negative is made clear later, where we state

“ We confine our analysis to parameter regimes where this is the case. Note that with
m > 0 and n > 1, this implies strictly speaking that v < 1, and basal friction upstream of
the boundary layer is formally small in the parameter regime we are considering. ”

— P13, eq 9g. Does the factor |hw]1/ ™1 arise in general? Or just because m = 1/n? Per-
haps I missed a trick here, but if v and b, are small in (7a), the flux expression just
depends on the wall drag and driving stress (so m does not enter).
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No, that is an apparently careless error, the expression should be

Q ~ lim (—w" " hlh.|" " th,)

(l‘—>fL’g

in agreement with the
Q ~ _Wn+1H|HX|n—1HX

in the next paragraph (where a W"*! was also missing). The error does not propagate
further, however.

- P19: typo? H}, — H in expressions above (14)
Indeed. Corrected.
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Boundary layer models for calving marine outlet glaciers
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of the-glacierand-to-the-specifies-of theecalvingtaw-ased: We consider the flow of marine-terminating outlet glaciers that are
laterally confined in a channel of prescribed width. In that case, the drag exerted by the channel side walls on a floating ice
shelf can reduce extensional stress at the grounding line. If ice flux through the grounding line increases with both, ice thickness
and extensional stress, then a longer shelf can reduce ice flux by decreasing extensional stress. Consequently, calving has an
effect on flux through the grounding line by regulating the length of the shelf. In the absence of a shelf, it plays a similar role by
controlling the above-flotation height of the calving cliff. Using two calving laws, one due to Nick et al based on a model for
crevasse propagation due to hydrofracture, and the other simply asserting that calving occurs where the glacier ice becomes
afloat, we pose and analyse a flowline model for a marine-terminating glacier by two methods: direct numerical solution and
matched asymptotic expansions. The latter leads to a boundary layer formulation that predicts flux through the grounding line
as a function of depth to bedrock, channel width, basal drag coefficient, and a calving parameter. By contrast with unbuttressed
marine ice sheets, we find that flux can decrease with increasing depth to bedrock at the grounding line, reversing the usual
stability criterion for steady grounding line location. Stable steady states can then have grounding lines located on retrograde
slopes. We show how this anomalous behaviour relates to the strength of lateral versus basal drag on the grounded portion of

the glacier, and to the specifics of the calving law used.
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1 Introduction

In the theory of laterally unconfined marine ice sheet flow, a standard result is that flux through the grounding line is an increas-
ing function of bedrock depth (Weertman, 1974; Thomas and Bentley, 1978; Schoof, 2007a). This leads to the conclusion that
grounding lines can have stable steady states only when the ice sheet bed has sufficiently steep down-flow slope (Fowler, 2011;
Schoof, 2012): a slight advance in grounding line position into deeper water leads to an increase in flux through the grounding
line, causing the ice sheet retreat back to its original position. Analogously, a slight retreat leads to a reduction in flux through
the grounding line and a re-advance of the ice sheet.

There are a number of mechanisms that can alter the flux-to-bedrock-depth relationship;-ineluding. These include the ap-
pearance of ‘hoop stresses’ in an ice shelf fringing the ice sheet (see Pegler and Worster, 2012; Pegler, 2016, though these may
require unrealistically large ice shelves), the fact that bedrock elevation can actually change due to loading and unloading of
the lithosphere (Gomez et al., 2010), thermomechanically mediated changes in basal friction (Robel et al., 2014, 2016), and
lateral drag due to geometrical confinement of the flow into a channel (Dupont and Alley, 2005; Jamieson et al., 2012). The
latter is probably the most significant mechanism; when ice flows through a channel, drag can be generated by the side walls
of the channel. Drag at the channel side walls of the floating ice shelf reduces the extensional stress acting at the grounding
line and, therefore, reduces the grounding line flux.

Goldberg et al. (2009) and Gudmundsson et al. (2012) demonstrate that sidewall drag can lead to the formation of stable
steady states with grounding lines on upward-sloping (or ‘retrograde’) beds. Both papers have channels of uniform width and
fix the edge of the ice shelf, which suggests the following physics: for a steady-state grounding line on an upward-sloping
bed, a slight retreat in grounding line position will cause an increase in ice thickness at the grounding line. In isolation, this
would lead to increased discharge and continued ice sheet retreat. However, the retreat in grounding line position also leads to
a longer shelf, which therefore experiences more lateral drag and reduces extensional stress at the grounding line. This process
is known as ‘buttressing’ and, by itself, would lead to reduced discharge and a re-advance of the ice sheet. Which of the two
mechanisms dominates presumably depends on the specifics of the channel and the fixed shelf front position.

An open question is whether an evolving calving front can lead to a similar stabilization, as we are no longer guaranteed that
a retreat in the grounding line position leads to the same increase in shelf length and, therefore, to the same increase in lateral
drag. To answer that question conclusively, we would need a universal ‘calving law’ that can robustly predict the location of
the calving front. Such a calving law is currently not available.

We investigate how two particular calving laws that are relatively widely used in models for tidewater glaciers affect buttress-
ing in a simplified flowline model. The ice flow model itself lacks the sophistication of models that resolve the cross-channel
dimension. Instead, it relies on a parameterization of lateral drag in terms of the mean along-channel velocity (Dupont and
Alley, 2005; Nick et al., 2010; Jamieson et al., 2012; Hindmarsh, 2012; Pegler et al., 2013; Robel et al., 2014, 2016; Pegler,
2016). The chief advantages of the model are that it allows flux through the grounding line to be computed rapidly as a function
of ice thickness through the use of a boundary layer theory (Schoof, 2007a) and that the role of different physical mechanisms



10

15

20

25

becomes comparatively easy to trace. Future work will be required to address whether our results are reproduced qualitatively
by more sophisticated (and more computationally intensive) models, and we hope that this paper can motivate such work.

The rationale for the calving models used here is described in greater detail in section 2.2. One calving law simply states
that calving occurs at the local flotation thickness at the grounding line. The calving front is at flotation when calving occurs
but no floating ice shelf ever forms. We use this calving law as a simple reference case that should give results analogous to
previous work on unconfined marine ice sheet flow (Schoof, 2007a), where the formation of a floating shelf has no effect on
flux through the grounding line. The other calving law that we investigate is the ‘CD’ calving law due to Nick et al. (2010).
Simulations of outlet glaciers in Greenland with this calving law have predicted stabilization of grounding lines on areas of
upward-sloping bed (Nick et al., 2013), suggesting that it may indeed predict a relationship between flux and bedrock depth
that differs from theories for unconfined marine ice sheet flow. We do, however, stress that our aim is not an exhaustive survey
of all calving models. We anticipate that the analysis presented below can be applied to other calving models, but doing so is

beyond the scope of our paper.

2 Model
2.1 Ice flow

We consider a flowline model for a rapidly sliding, channelized outlet glacier with a parameterized representation of lateral
drag. The model has the same essential ingredients as those in Dupont and Alley (2005), Jamieson et al. (2012), Nick et al.
(2010), Hindmarsh (2012), Pegler et al. (2013) and Pegler (2016). Fig. 1 shows the physical domain. Mass accumulates over
the glacier and is advected seaward by ice flow. Mass is ultimately lost by flow across the grounding line and eventual calving
of icebergs. Our notation is summarized in a table given in the supplementary material: let x be the along-flow coordinate and
t time, while u(z,t) and h(x,t) are width-averaged ice velocity and thickness, respectively. If b(z) is bed elevation and w(z)

the width of the outlet channel, each assumed constant in time, then we model force balance and mass conservation as

2(Bhlug| Y uy)p — B'w Y Yy — 0C ™ — pig (1 — (1= 0)pi/ puw) h(he +6b,) =0 (1a)
why + (wuh), =w(a— (1 —0)m)

(1b)

for 0 < x < x.(t), where subscripts x and ¢ denote partial derivatives. Here, p; and p,, are the densities of ice and water,

respectively, and g is acceleration due to gravity, while a is surface mass balance and m is the melt rate at the base of the

floating ice.The indicator function 6 is given by

0 otherwise;

in other words, # = 1 if and only if the ice thickness is above flotation and the glacier is grounded.
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Note that we have included the melt rate m in (1) for completeness only. While the numerical code included with the sup-
plementary material permits computations of steady state solutions in section 3.2 and of the boundary layer problem described
in section 4.2 with a non-zero basal melt rate under floating ice, a full exploration of the extended parameter space would make
this paper unmanageable. In what follows, we set m = 0 throughout, and address the effect of incorporating non-zero m in a
separate paper.

The parameters B and n are the usual parameters in the Glen’s law rheology for ice (Paterson, 1994). We neglect any
complications associated with the dependence of ice viscosity on temperature or moisture content, and treat 53 as well as n
as constant. C' is a drag coefficient in a power-law basal friction law, with m the corresponding exponent (e.g. Budd et al.,
1979; Fowler, 1981); on theoretical grounds, it is often assumed that m = 1/n. Note that other friction laws have also been
considered in boundary layer models for unconfined ice sheets (Tsai et al., 2015). The basal drag term only applies where ice
is grounded, corresponding to 6 = 1. For simplicity, we neglect the possibility that C' may depend on additional degrees of
freedom such as basal water pressure or temperature.

The second term B'w~'/"~1h|u|'/"~14 is a parameterization of lateral drag, with B’ another constant. We assume that
lateral drag is exerted on both, grounded and floating ice. A more sophisticated treatment of lateral drag would require a
domain with two horizontal dimensions, and an additional equation representing force balance in the direction perpendicular
to the channel axis (e.g. Wearing et al., 2015).

It is worth noting however that (1a) becomes accurate in one of two mutually incompatible limits: (i) a wide channel where
lateral drag vanishes (this is the one-dimensional flow case previously studied in e.g. Schoof (2007a)), or (ii) a long and narrow
glacier where extensional stress is insignificant and there is no significant flow transverse to the channel axis. By ’extensional
stress’, we mean the non-cryostatic part of normal stress on a vertical surface placed across the flow, that is, 2B \ux|1/ n=ly.
In the narrow-channel case, assuming no slip at the channel side walls, (1) predicts the correct width-averaged velocity if we

put (see also e.g. Raymond, 1996, for details on flows dominated by lateral shear)
B' = (n+2)Y/n2nt/n B, (1d)

smaller values of B’ can be justified if there is actual sliding at the lateral margins of the ice. We use (1a) even when the neither
of the two limits above apply. As discussed in Pegler (2016), this is a simplification that works reasonably well and allows
at least semi-analytical progress to be made. The simplicity of the model has also led to a large number of authors adopting
versions of it. We proceed in that spirit, analysing the model at face value.

We denote the glacier terminus by x.(t); this is the location where ice cover ends. Since z.. is a free boundary, two boundary
conditions are required. One is needed to close the elliptic problem (la) and another to determine the evolution of z.. The

former is a condition on extensional stress at the ice front (e.g. Schoof, 2007b, appendix B):
23h|u$|1/"_1u$:pi(l—(1—9)pi/pw)h2/2—9pwgb2/2 at z = x.(t). (le)
We take the second condition to be a ‘calving law’. While a stress condition is sufficient to close the force balance model (1a),

a calving model can be understood as fixing the free boundary location. The next section describes the different choices of

calving laws used here.
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Figure 1. Schematic of the model domain and variables used. Not shown is the lateral dimension: the glacier occupies a channel of width
w, potentially variable along the glacier flowline. The upper ice surface shown is at an elevation s = (1 — (1 — 0)p;/pw)h + 0b, the lower
surface at | = s — h. The lower two diagrams are enlargements of the vicinity of a grounded terminus (left) and a floating terminus (right),
illustrating the meaning of calving front position x., grounding line position x4, calving front height h., grounding line thickness hy and
flotation thickness hs. The dashed line indicates where the upper ice surface would need to be at a given position x in order for the ice to be

just about to float.

2.2 Calving model

The process of calving remains relatively poorly understood, but several calving laws have been developed on theoretical
grounds. Our aim is to illustrate how different calving laws can lead to qualitatively, rather than quantitatively, different dy-
namics in the outlet glacier. We consider two possible calving laws. The first is the ‘CD’ model due to Nick et al. (2010), and
the second is a calving law that states that ice breaks off when the glacier reaches its flotation thickness. To streamline our
notation, we refer to the latter as the ‘FL’ calving law.

The CD model works based on the assumption that water in surface crevasses affects the depth to which those crevasses can
penetrate. When they penetrate deeply enough to connect with basal crevasses, calving occurs. When they do not, there is no
calving and the ice front simply moves at the velocity of the ice. Algebraic manipulation of the Nick et al. (2010) CD model
shows that connections with basal crevasses occur instantly in the model when ice thickness is at (or below) a value A.. In

other words, the evolution of the calving front z. satisfies

either h = h, atx =z, if & < ulx.), (1)

or L. =1u atx = x.if h > h,, (1g)

where the dot indicates differentiation with respect to time. Note that the domain lies to the left of x., so ©. < w implies that

ice is removed by calving. h. itself can be written as a function of the crevasse water depth d,, and of local bedrock depth —b.
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Figure 2. Calving laws. In all three panels, a solid line refers to the CD calving law, a dashed line to the FL law. The grey shaded region
refers to parts of parameter space where the calving front is grounded for the CD law, white background to a floating calving front. r = 0.9
throughout. Panel (a): the calving-front-thickness-to-bedrock-depth ratio ¢ as a function of normalized water depth —d., /b. For the FL
law, the ratio is simply »~*. Panel (b): normalized calving front thickness h./d,, as a function of normalized flotation thickness h s /d., =

—b/(rdw) at the grounding line. Panel (c): normalized grounding line thickness hg/d,, as a function of normalized flotation thickness h ¢.

This function can be expressed as

he = —bd (—d,, /D) (1h)

where ¢ (—dy /b) = 2(pw/pi)(—dw/b)  —du/b<1/2 "

v+ \/v2 = (pw/pi) —dw/b>1/2,

and v is
v=1+[(pw/pi) = 1] (—=dw/b).

The function ¢ is the ratio of calving front thickness to depth to bedrock; the form of ¢ is illustrated in panel a of Fig. 2.

As an alternative to the CD model, in which the function ¢ is defined through (1i), we consider the FL law, in which the
glacier calves ‘at flotation.” This means that calving occurs when h = —(p,,/p; )b at the calving front, but not when h is larger.
This is easy to incorporate into the calving framework (1f)—(1h) above: we simply have to replace the definition of ¢ in (1i)

with the simpler

¢ = pw/pi- 13

This condition is effectively what applies in previous work on marine ice sheet flow without sidewall drag as considered in e.g.
Schoof (2007a).

Note that Nick et al. (2010) do not formulate their calving law directly in the form (1f)—(1i); a derivation of the thickness
condition (1f) based on their formulation is given in the supplementary material. There are two cases in (1i): —d,, /b < 1/2
corresponds to a floating terminus and —d,, /b > 1/2 to a grounded terminus. Note that ¢ and h. are continuous (in fact,

continuously differentiable, as shown in Fig. 2) at —d,,/b =1/2, where calving occurs at the critical floatation thickness
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he = (pw/pi)b. Once the calving front is afloat, h. no longer depends on bedrock depth: when —d,,, /b < 1/2, we simply have
he = 2(pw/pi)dyw. In other words, for a fixed water depth parameter d,, and sufficiently large bedrock depths the Nick et al.
(2010) CD model is actually a calving law that simply states that ice breaks off a floating glacier shelf at a critical thickness
that is determined purely by the parameter d,, (panel b of Fig. 2).

To complete the notation for our model, we also define the grounding line position & = x,. For a glacier with a floating shelf,

this is the point = x4(t) at which 6 changes discontinuously:

h<x9(t)vt) = _(pi/pw)b(xg(t)); (1k)

For the FL calving law, there is no floating shelf; the grounding line and calving front coincide. The CD calving model goes
further, permitting cases where there is no floating ice shelf and the flotation condition h = —(p;/p., )b is attained nowhere
along the glacier, including at the calving front. To keep our terminology as simple as possible, we identify the grounding line

in that case with the terminus location,
P (1)

For later convenience, we also define the ice thickness h, at the grounding line and the flotation thickness h at the grounding

line through

hg = h(zg(t),1),  hy=—=(pi/pw)b(z,())- (1m)

For glaciers with a floating shelf, we always have h, = hy, and for that reason, existing theories for marine ice sheets generally
do not make a distinction between hy and hs (e.g. Schoof, 2007a). The distinction becomes relevant when there is no floating
ice shelf, in which case we only have hy, > hy. We will use hy frequently below, as it is a simple function of bedrock depth
at the grounding line, and therefore determined purely by the geometry of the glacier channel. h, additionally depends on the
calving process as shown in panel c of Fig. 2.

In our view, the CD model is a cartoon version of the linear elastic fracture mechanics explored in by Weertman (1973,
1980) and van der Veen (1998a, b). These papers consider the ‘mode 1’ (Zehnder, 2012) propagation of vertical cracks into
ice under tensile (extensional) stresses. This is done by computing stress intensity factors at the crack tips from known Green’s
functions for parallel-sided elastic slabs with cracks penetrating from the upper or lower surfaces, accounting for the pressure
exerted by water in the cracks, and applying a fracture toughness criterion. The CD model by contrast assumes that extensional
stress increases with depth in the ice in a linear, cryostatic fashion. The model then computes crevasse penetration as being the
distance from the upper and lower surfaces at which that extensional stress becomes sufficiently negative (that is, sufficiently
compressive) to overcome the pressure exerted by water at the same depth. The CD model therefore does not compute stress
with the same level of sophistication as the papers by Weertman (1973, 1980) and van der Veen (1998a, b), but follows the
same basic approach of computing crevasse propagation based on a known ice geometry, extensional stress and crevasse water
pressure, and it has the advantage of tractability.

The basic method in van der Veen (1998a, b) in principle allows for a constraint to be computed that links ice thickness,

applied extensional stress, crevasse water level and fracture toughness at the moment that surface and basal crevasses together



10

15

20

25

30

35

first penetrate through the entire ice thickness. Given that extensional stress is a function of ice thickness through (1e), this
constraint could be converted into a criterion for the thickness h. at which calving occurs, giving a more sophisticated version
of the Nick et al. (2010) CD model. However, the papers by van der Veen do not deal with the case in which both, surface and
basal crevasses are present and interact with each other (so the relevant Green’s functions are not given), and he does not
explicitly compute a condition for calving that could be put in the form (1f). As a result, we confine ourselves to the simpler
CD model here.

One of the practical pitfalls of the CD model is that it predicts no calving at all if d,, = 0 and surface crevasses are free
of water. It is possible that this is an artifact of the simple representation of stress in the CD model, where the tensile stress
driving crevasse propagation is assumed to have the same dependence on depth below the ice surface regardless of whether
a crevasse is present or not. In reality, the formation of crevasses that penetrate through a significant fraction of the ice shelf
leads to extensional stress becoming more concentrated around the crack tips than for shallow crevasses (see for instance Fig.
4 of van der Veen (1998a)). This represents a positive feedback on crack propagation, and could lead to calving even for the
case of water-free surface crevasses (see also Weertman, 1980).

More recently, others have extended the linear elastic fracture mechanics approach of Weertman (1973, 1980) and van der
Veen (1998a, b) to include effects such as the role distributed damage due to the formation of microcracks in initiating crevasse
formation, the blunting of cracks tips due to viscous deformation, and the presence of significant torques near the calving front
(Krug et al., 2014; Mobasher et al., 2016; Jiménez et al., 2017; Yu et al., 2017). The complexity of these processes however
makes them difficult to parameterize in a model that does not resolve the scale of individual crevasses, and we do not consider

them here.

model, along with the work of Weertman (1973, 1980) and van der Veen (1998a, b), is based on tensile failure. We can contrast
this with the shear failure model of Bassis and Walker (2011) (see also Bassis and Jacobs (2013) and Ma et al. (2017)). The

CD model requires d,, > 0 and predicts calving for any h below the value given by (1f), instantaneously removing all parts of
the glacier shelf that are too thin. By contrast, the shear failure model of Bassis and Walker (2011) predicts that calving will
start at a critical calving front thickness and not occur below that thickness, so the inequality in (1g) would need to be reversed.
It also predicts that once initiated, the calving front will continue to fracture as it moves into thicker ice inland. This is the
basis of the catastrophic calving cliff instability mechanism for marine ice sheet collapse advocated by Pollard et al. (2015),
but cannot be captured by an analogue of (1f). It is clear that ice sheets whose calving cliff is larger than the critical thickness
for shear failure simply cannot persist: they are guaranteed to disintegrate completely or to stabilize in some shape where the
calving front thickness is below the critical thickness for shear failure, and the shear failure model by itself does not provide
a timescale for that disintegration. We exclude such shear failure from consideration here and focus purely on the CD calving

model.



Hewevereven Even taking the Nick et al. (2010) CD model at face value, as we do here, the sensitivity to the parameter d,,
remains problematic. In fact, one of our results below will be that flux through the grounding line is more sensitive to d,, than

to any other model parameter. At present, we do not have a surface hydrology model that can predict d,,. It is plausible that a
future hydrology model could compute a water table height near the calving cliff (ds — d,, if measured relative to the local ice

5 surface, where d; is the depth of surface crevasses as discussed in the supplementary material) rather than using d,, itself. Such
a model would likely be based on drainage being driven by gradients in hydraulic head, but this awaits future development. We

persist with the basic Nick et al. (2010) model, treating d,, as given.

3 Solution of the model
3.1 Non-dimensionalisation

In the remainder of this paper, we will consider the problem (1) in dimensionless form. The purpose of doing so is two-fold.
Non-dimensionalisation (i) reduces the number of free parameters and (ii) allows systematic approximations based on the
relatively small size of some dimensionless parameters. We assume that we know scales [a] for accumulation rate and [z] and

[w] for glacier length and width, respectively. We choose scales [u], [h], and [t] based on the balances

B'[w] VR[]V = piglh?/[2], ][k =[all],  [u]lt] = [2].

10 We define dimensionless variables as u = [u]u*, h = [h)h*, x = [z]a*, t = [t]t*, . = [x]z}, and also put

B B[w]l/n+1 - C[w]l/n+1[u]m71/n B dw pi
€= QB/[m]l/n-&-l’ V= B/[h] ’ A_m’ T_p:’ 2)
a w b
* = -, *— T, b* - . 3
T Y T 7] )

Dropping asterisks on the dimensionless variables immediately, we obtain

15 de(hlug|Y " ug)e —w Y hju)Y " — 40 u| ™ u — (1 — 7 4 0r)h(hy + 0b,) = 0, (4a)

why + (wuh), = wa (4b)
for 0 < < x.(t), with-6-the-indicator function-for flotation
=1 if rh > —b, =0 otherwise (4¢)
and the boundary conditions at the terminus being

20 deh|ug |y, = (1=7)h?/24 6 (r*h> —b*) /(2r) atx = x.(t), (4d)
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and either

h=—bp(—Ab"1) atx =z, if &, <wu(z.), (4e)
ori.=u atz = x.if h > —be(—d,, /b), (4f)

with ¢ given by (1i) for the CD calving model, or by (1j) (which states that ¢ = r 1) for the FL calving law.
3.2 Direct numerical solution

The system (4) can be solved numerically as posed. In this paper, we focus on solutions of the steady-state version of the
problem by a shooting method, which provides a straightforward alternative to a solution by more established time-stepping
methods. As our method has not been used previously in this context, we sketch it here for completeness; results are presented
at the end of this section and in Figs. 3 and 4.

We can write the steady state problem as a four-dimensional, first-order autonomous system of differential equations if, in

addition to h, we define the phase space variables ¢, o and x through
q = uhw, o = |ug " uy, X = 2. 5)

For technical reasons associated with singular behaviour of the steady state problem near ice divides, we also define a new

independent variable 7 through
Ty =¢
to obtain a first order system of differential equations from (4):
hy == h*w(x)|o|" " o + hw(x)a(x) — hqw'()w(x) ™" (6a)
oy =(4e) hT g w(x) TR 4y 0h T g w(x) T

+(46) 7 [1 = (1= 0)r] [-R*w(x)|o " o + hw(x)a(x) — hquw' (x)w(x) "]

— (4¢) 1V (x) + hlo|" T w(x) — cw(x)alx) + ow’ () w(x) ™" (6b)
qn :anJ(X) (6C)
Xn =4 (6d)

with §(h,x) = 1if h > —b(x)/r and 6 = 0 otherwise; here a, w and b are treated as prescribed functions, and the prime simply
indicates their first derivative.

We assume there is an ice divide at x = 0, where u = ¢ = 0. Technically, the ice divide then becomes a fixed point of the
system (6) approached as 1 — —oc, at which (h,,q,x) = (ho,[a(0)/h]*/™,0,0) with the ice divide thickness ko > 0 not
known a priori. The trick is to determine the value of hg for which the boundary conditions at the glacier terminus are satisfied
by means of a shooting method. Given hg, the fixed point has a unique orbit that emerges from it. In other words, if hg is

known, then the solution to (6) can be computed uniquely. A constraint on h therefore arises from imposing the boundary
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(d)

Figure 3. Steady state profiles, withw =1,n=1/m=3,r=0.9,7v=0,e =0.01, A\ = 7.03047"6”2/(”"'1)2, b(z) = 5"2/(”+1)(1 - 2.’E2).
Panel (e) shows grounding line positions x4 against surface accumulation rate a for the CD calving model (solid line, grounded where the
background is shaded grey) and FL calving law (dashed line). Panels (a)—(d): steady state profiles, same colour scheme as in Fig. 1, same
horizontal axis as in (e). Panel (a): The FL calving law, a = 2.08. Panels (b)—(d): CD calving law with a = 0.134 (b), 4.18 (c), 3.54 (d). Red

diamonds in panel (e) refer to the steady state in the panel indicated by the letter label.

conditions at the glacier terminus, which are of the form
deho = (L—r)h?/2+ 0 (r*h® —b(x)?) /(2r),  h=—bp(—Ab(x)™") (6¢e)

at some finite 77 = 7). (6e) is dealt with simply by integrating along the orbit until the first condition is satisfied. The second
then acts as a single constraint on the degree of freedom h that uniquely determines the solution. The code used to compute

solutions here is included in the supplementary material.
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Figure 4. Steady state profiles, with w=1 n=1/m=3, r=0.9, v=0, ¢=0.001, , b(zx) = 8"2/(”“)(944665 —28.37102% +
13.3975z* — 1.97021z°). Panel (b) shows the geometry of the bed, which is a scaled version of the sixth-order polynomial bed shape
used in Schoof (2007b). Panel (a) shows grounding line positions x4 against surface accumulation rate a (note the logarithmic scale) for the
FL model (dashed line) and the CD calving model (solid line, shown in black where the calving front is grounded, blue where it is afloat) at
values of X = 4.7486r<™"/("+1? 5.51227e7”/ (+D? 6 97587en”/(n+D? 7 0304pem?/(n4D)? 7 8030rem*/ (D g 5666/ (1),

To identify the curves, note that for a given grounding line position, larger values of A invariably correspond to larger values of a.

Fig. 3 shows a synthetic example, not based on trying to emulate any specific glacier geometry. Parameter values are given
in the figure caption. Importantly, the bed slopes downward monotonically in x. For ‘unbuttressed’ glaciers subject to basal but
not lateral drag (e.g. Schoof, 2007b), this would lead to steady state grounding line position x, increasing monotonically with
accumulation rate a: increased accumulation inland must be balanced by increased discharge of ice across the grounding line,
which happens for unbuttressed glaciers when the grounding line moves into deeper water. The most notable feature in panel
b is that this behaviour persists if we use the FL. model (dashed line). For the Nick et al. (2010) CD model, we see a partial
reversal of this behaviour: for accumulation rates larger than a certain value, there appear to be no steady state solutions at all.
For smaller accumulation rates, there are two steady state solutions: (i) a large ice sheet for which x, shrinks as a increases,
and (ii) a small ice sheet for which z, increases with a. The larger solution branch also contradicts existing understanding
of marine ice sheet dynamics, precisely because an increase in surface mass balance causes the grounding line to retreat into
shallower water. Such steady states are likely to be unstable (see Schoof, 2012, and section 6 below)

Fig. 4 shows analogous calculations to Fig. 3, but for an overdeepened bed shape based on that used in Schoof (2007b).
For the FL model, we invariably see that an increase in accumulation rate makes the grounding line advance on a downward
slope, and retreat on a retrograde slope. This is again analogous to the unbuttressed case studied in Schoof (2007b), where the
grounding line is then unstable when located on an upward slope. For the CD model, the behaviour becomes more complicated.
We see that the grounding line can either advance or retreat with increasing accumulation rate, on both the downward- and

upward-sloping parts of the bed. Qualitatively, shallow water depths at the grounding line are more commonly associated with

12



10

15

20

25

the standard, ‘unbuttressed’ behaviour (that is, an increase in accumulation tends to cause the grounding line to advance on
downward slopes, and retreat on retrograde slopes). The reverse behaviour is typically associated with larger water depths at
the grounding line. We also see that a decrease in \ leads to the ‘reverse’ behaviour being observed down to shallower water
depths at the grounding line, and in particular, through more of the overdeepened section. (Note also that the solid (CD model)
solution curves in Fig. 3 end at finite values of a at x4 = 0.6386, the location where water depth goes to zero: as shown in
panel (b) of Fig. 2, an oddity of the CD model is that it predicts a non-zero calving front thickness even when the water depth
is zero, and hence there is a non-zero calving flux even where the ‘grounding line’ is on dry land; we have only computed
solutions where the grounding line remains in the water.)

Our aim in what follows is to explain the results in Figs. 3—4 using the same boundary layer approach as in Schoof (2007a).
In particular, we will show that flux through the grounding line can be computed to leading order in the parameter € as a
function depth to bedrock and channel width at the grounding line, as well as of the calving parameter ), friction coefficient v
and the remaining physical parameters (r, m, n). Given such a relationship, it is then possible to determine how the grounding
line location in a steady state depends on accumulation rates, purely by balancing net accumulation over the domain with

outflow of ice through the grounding line.
4 Approximation: a small lateral aspect ratio

4.1 A local force balance version of the model

If we take ¢ as defined in (2) with B’ given by (1d), we have
(n+1)/n
[w]
e = (n+2)/n2t/n < .
[]
In other words, ¢ is a measure of the lateral aspect ratio [w]/[z]. A narrow channel ensures that ¢ is small, which is the basis

for our approximation scheme. With € small, we can neglect gradients of the depth-integrated extensional stress in (4a) (that

is, gradients of 4h|u,|'/™'u,) everywhere except close to the terminus, and find
—w P Yy — | — h(hg 4+ by) =0, (7a)
why + (wuh),; = wa. (7b)

For the case of m = 1/n (which arises naturally from theories of hard-bed sliding, see e.g. Weertman (1957), Fowler (1981)),
we get a diffusive model for ice thickness evolution,
wn+2 hn+1

n—1 .
(h—l—fyw(n-l-l)/n)n ‘(h+b)f€| (h+b)m =wa. @®

x

’UJht —

This is essentially analogous to ‘shallow ice’ models in ice sheet flow (Fowler and Larson, 1978): we have a local balance of
forces, and an ice flux that depends on ice thickness and ice surface slope (see also Kowal et al., 2013). Other choices of m > 0
also imply an ice flux uh that is an increasing function of width w, thickness h and surface slope —(h, + b,.), but that flux

cannot be computed in closed form.
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4.2 The grounding line boundary layer

The model (7) holds everywhere except near the grounding line and in the floating ice shelf. Following Schoof (2007a), we
can use the method of matched asymptotic expansions (Holmes, 1995) to capture the behaviour of ice flow in that region. This
requires us to rescale the dimensionless model (4) to bring back extensional stress at leading order while maintaining an O(1)

ice flux ¢ = uh. The appropriate rescaling turns out to be
X :E—n/(n+1)(x_xg)’ T =t, HZE_nZ/(n+1)2h7 U=En2/(n+l)2u,
By contrast with Schoof (2007a), we also have to include a potentially non-zero ice shelf length here, so we put
X, =e (g, — ).

We treat H and U as functions of (X,T") and X, as a function of T". The rescaling in H implies that ice thickness at the
grounding line must be small compared with the interior of the glacier. If there is a floating portion, the glacier must however
also reach its flotation thickness at the grounding line. We assume that the glacier is at least near flotation if it has a calving
front that remains above flotation. This implies that bed elevation must be small compared with ice thickness in the interior.
Specifically, we rescale
B=c /()%

and assume that B ~ O(1); the analogous case of laterally unconfined flow discussed in Schoof (2007a) also requires shallow
bed topography. In addition, we assume that thickness b and width w change significantly only over length scales associated
with the glacier length as a whole. Over the short length scale associated with the boundary layer coordinate X, we treat
B=¢""/ ("+1)2b(xg) and width W = w(z,) as constant. These additional constraints are again analogous to those made in
Schoof (2007a), and imply that we should treat b and b, as small in the outer problem (7). With B constant at leading order in

the boundary layer, we can also define a scaled flotation thickness
Hy=-r"'B,

which we will use throughout the rest of the paper as a proxy for water depth to bedrock.
In order for the rescaling in H above to be consistent, we also require that the calving front thickness be similarly small.

This turns out to require that \ ~ 0(5"2/(””‘1)2), and we define

A= lemnt/ Dy
assuming that A = O(1); all this implies is that water depths in surface crevasses are not so large as to create calving cliff
heights much larger than the expected depth to bedrock at the grounding line.

The result is a boundary layer model at leading order in . We do not give the detailed derivation here but merely state its

form:
4(H|UX|1/n—1UX)X _ W_l/n_1H|U‘1/n_1U _ 7€7L[1—n(77L+1)]/(n+1)29|U|m—1U _ [1 _ (1 _ 9)7"] HHyx = 0, (93)
(HU)x =0, (9b)
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for X < X, where
=1 for H > Hy, =0 otherwise. (9¢)
The additional boundary condition at the calving front takes the form

AH|Ux V" 'Ux = (1— (1 - 0)r)H?/2 — 0rH3 /2 at X = X, (9d)
H=rH (AH;l) at X = X, (%)

Note that the boundary layer is in a pseudo-steady state. This is again analogous to Schoof (2007a); the time scale for dynamic
adjustment of ice thickness in the boundary layer and of calving front position relative to the grounding line is much shorter
than the time scale relevant to the evolution problem (7) (see also Pattyn et al., 2012). We emphasize that there is no assumption
here that the glacier as a whole is in steady state.

- In order to make the

balances in (9) work with € < 1, we have to deal with the remaining coefficient that contains a power of € in (9). We now make
further assumptions about the physics of the flow near the grounding line. Our fundamental assumption will be that lateral
drag —w /"~ 1h|u|*/"~1u plays a leading order role in force balance at the grounding line, but that the floating ice shelf, if
it exists, is not so long as to fully buttress the grounding line. By this, we mean that the depth-integrated extensional stress
4h|u£|1/ n—1y, is comparable in magnitude to h? all the way up to the grounding line, as is the case at the terminus z.. by dint
of the boundary condition (4d), but that sidewall drag cannot be neglected.

In that physical regime (termed a ‘distinguished limit’, in which all physical processes are potentially active), we have
to assume that the basal drag coefficient in (9a) and the calving coefficient in (9¢) are both of O(1), meaning that the twe
parameter [" and-A defined through

[ = enli=n(m+1)]/(n+1)?, )

is of O(1). We confine our analysis to parameter regimes where this is the case. Note that with m > 0 and n > 1, this implies
strictly speaking that v < 1, and basal friction upstream of the boundary layer is formally small in the parameter regime we
are considering.

Asymptotic matching is the mathematical formalism by which the boundary layer problem and the ‘outer’ problem (7)
for the dynamics of the bulk of the glacier are connected (Holmes, 1995). With the assumptions on I' in place, this leads to

so-called matching conditions between the boundary layer and the outer problem:
Jm UH=Q= lim (—w" P hlhe " hy),  WTYPTIQIUIY T~ —(Q/UNQ/U) x,
——00 T—Ty
U—0 as X = —oc. %9g)

Here @ is the flux at the boundary of the domain of the outer problem, to be determined through the solution of the boundary

layer problem. Ph
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= Physically, the first
condition states that the flux near the grounding line in the ‘outer’ problem is the flux that enters the boundary layer at its
upstream end. The second condition states that near that upstream end of the boundary layer, extensional stress gradients
have become insignificant and flux is given by a shallow ice type formula (with U = Q/H, the condition can be re-written
as Q ~ —W" H|Hx|""YHy, the appropriate local-force-balance formula in our case). Lastly, the third condition states
that velocities in the interior of the boundary layer are large compared with those in the rest of the glacier. Structurally, the
boundary layer problem above is very similar to that in Schoof (2007a), with additional physics due to lateral shearing and
calving accommodated at the cost of a more complicated formulation.

From the perspective of the model (8) for the dynamics of the glacier as a whole, the purpose of the boundary layer is to
provide the relevant boundary conditions at x = x4. As (8) is a diffusion model for A, it requires two boundary conditions at
any moving boundary. Where a floating portion exists, a condition on h at the grounding line arises straightforwardly from
(1k); for a grounded calving front, an equivalent condition is provided by (4e).

As in previous work (Schoof, 2007a), we can show that the second boundary condition takes the form of a flux condition that
can be found by solving the boundary layer problem: the problem (9) has a solution only if @ satisfies a functional relationship
with flotation thickness Hy, width W, friction coefficient I and the calving parameter A. It is important to emphasize again
that H ; need not be the ice thickness at what we have termed the ‘grounding line’. Instead, H is the flotation thickness there,
determined purely by bedrock depth, and ice thickness equals H at the grounding line only if the glacier has a floating shelf
or is at the point of forming one. The flotation thickness Hy = —B/r is of course prescribed for any given grounding line
position, as is the channel width . We therefore end up with ice flux as a function of grounding line position, basal drag
coefficient I" and the calving parameter A, itself a proxy for water depth in surface crevasses.

We give additional detail on how to compute that relationship between flux, geometry and model parameters in appendix
B and in the supplementary material, and the code used to solve the problem is also included in the supplementary material.
Importantly, we are able to show the relationship takes the form

Hf Fw(nm+n+m+1)/(n+1)
T7 A27nm an7m7r) .

The practical use of this form is that it reduces the complexity of the flux formula: for a given set of constants n, m and r,

Q=WHIGy ( (10)

what we primarily need to calculate is the dependence of flux on the first two arguments of the function G 5. Fer-the—ealving

alternatively For the FL law, we can in fact go further and use the fact that flux cannot depend on the nowredundant parameter
A to simplify the expression to

Fw(nm+n+m+1)/(n+1)
2= ,n,m,r | .
f

Q=WH;"Gr ( (10b)
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5 Solutions of the boundary layer problem

Equation (10a) allows us to collapse solutions for flux onto a one-parameter family of plots for each of the two calving
laws considered (the FL and CD calving laws). Specifically, we can plot Q/(WA™T!) against H;/A for fixed values of
[ (mmendmt1)/(n+1) fA2=nm Roughly speaking, we can think of this as plotting flux @ against flotation thickness H s for
different values of the basal drag coefficient. Solutions are plotted in this way in panel a of Fig. 5. The black curves signify
solutions with vanishing basal friction (I' = 0), while coloured curves show solutions with non-zero values of I" as specified
in the figure caption. The dashed line in each case corresponds to the FL. model, while the solid line corresponds to the CD
calving model.

As already suggested by the steady-state solutions to the full problem in Fig. 3, Fig. 5 confirms that flux is not a mono-
tonically increasing function of flotation thickness H ; for the CD model. We have what we term an anomalous flux-flotation-
thickness relationship for large enough values of H: flux @ actually decreases with increasing flotation thickness H y for all
but relatively small H ¢, at least for moderate or small basal drag coefficients. For large values of the basal drag coefficient (the
rw+/n /A =25 and 125 cases shown), the relationship between () and H is even more complicated. We have the same
anomalous flux-flotation-thickness relationship as for small basal drag while the calving front is grounded, but for a floating
calving front, we find that flux () increases again with H s (this is even clearer in panel a of Fig. 7, which is a zoomed-in version
of Fig. 5). In all cases, the flux for the CD calving model approaches the same limit for large H ;, independently of the calving
law.

By contrast, the flux always increases with flotation thickness in the calving at floatation model, just as it does in laterally
unconfined marine ice sheet flow (Schoof, 2007a). In fact, equation (10b) already told us as much for the case of vanishing
basal friction coefficient I'. Note that the flux curve for the CD model and for the FL. model always have a point of intersection
at Hy /A = 2. From the definition of ¢ in (1), it is easy to see that this is the point at which the calving front is just at flotation
in the CD model. Therefore, the model produces the same result as the FL. model. For smaller values of H s /A, the CD model
has a grounded calving front, while the calving front becomes the terminus of a floating ice shelf at larger values of H¢/A.
Note that flux in the CD model is always a decreasing function of H¢ /A for Hy /A slightly less than the critical value of 2 for
changeover from a grounded to a floating terminus. This observation will be key to our interpretation of the physics involved
in the anomalous flux-thickness relationship.

Other features of our solutions are also shown in panels a—c of Fig. 5. Each panel isolates one parameter (Hf, A, W) on the
horizontal axis, but normalizes it as dictated by (10), and plots it against an also normalized flux (again as dictated by (10))
on the vertical axis. Apart from the dependence of ) on Hy, panel a also shows that flux always decreases with increasing
friction coefficient I', while panel ¢ shows that flux increases with channel width W. This holds regardless of the calving model
used, and is what one expects intuitively: wider channels and lower basal drag ought to speed up ice flow and lead to larger
ice discharge. Panel b shows that for the CD calving law, flux also increases with the calving parameter A: recall that A is a

dimensionless version of water depth in surface crevasses, and larger values of A lead to taller calving cliffs and hence to larger
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Figure 5. Solutions of the boundary layer problem. r = 0.9, n = 1/m = 3. Dashed lines represent the FL law, solid lines the CD calv-
ing law. Grey shading indicates a grounded calving front in the CD model, white background a floating shelf. Panel (a): normalized flux
against normalized thickness at different basal friction parameter values, I' Wt/ ™ /A = 0 (black line), 1 (blue), 5 (red), 25 (green), 125
(magenta). Panel (b): logarithm of normalized flux against normalized crevasse water depth at different basal friction parameter values,
rw b/ /Hy = 0 (black line), 1 (blue), 5 (red), 25 (green) and 125 (magenta). Panel (c): normalized flux against normalized channel
width at different (grounded) ice thickness: Hy/A = 2 (black), 5/3 (blue), 4/3 (red), 1 (green) and 2/3 (magenta). Panel (d): same as panel,
but floating ice thickness values: H¢/A =2 (black), 7/3 (blue), 8/3 (red) and 10/3 (green).
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Figure 6. Comparison of the solution of the boundary layer problem with I' = 0 (black lines, solid for the CD model, dashed for FL) and
solutions of the steady state problem (6), solved with the parameter values given in the caption of Fig. 3. Plotted is scaled, normalized ice
flux against scaled normalized ice thickness for € = 102 (blue symbols) and € = 10~* (red symbols). Diamonds show solutions for the CD

model, circles for the calving model.

extensional stresses near the grounding line. In fact, the flux is far more sensitive to changes in A than in any other parameter:
notice that panel b plots the logarithm of the flux on the vertical axis.

We can also confirm our boundary layer results by direct comparison with numerical solutions of the full ice flow problem,
computed by the method in section 3.2. This is shown for the case of vanishing basal friction in Fig. 6. Here we use the same
parameter values as in Fig. 3, but for two different values of . Different solutions to the steady state problem are again obtained
by varying a. For each a, we plot ice flux across the grounding line in the steady state solution, scaled as in section 4.2, against
flotation thickness at the grounding line, also scaled as in section 4.2. As expected, the flux solutions obtained from the full
steady state problem (6) for the CD and FL models converge to those obtained from the boundary layer problem as ¢ is made
smaller: for e = 10~*, the flux curves are virtually indistinguishable, confirming the accuracy of the boundary layer solution.

There are two aspects of the CD model flux solution that we still need to explain in more detail: (i) why flux decreases with
increasing flotation thickness H in some circumstances and (ii) why flux approaches a constant limit for large Hy and so
becomes independent of depth to bedrock in the channel, depending instead only on the calving parameter A. We turn to these

problems next.
5.1 The role of extensional stress at the grounding line
Key to the flux-flotation-thickness relationship is that flux depends on the extensional stress at the grounding line, and that

extensional stress in turn depends on the geometry of the calving front and floating ice shelf. For relatively small extensional
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stresses X defined by
S =4|Ux | Ux

(‘small’ meaning, > much smaller than H), it is possible to derive an approximate formula for flux in terms of ice thickness
H, = H(0) and extensional stress X, = ¥(0) at the grounding line X = 0. For the remainder of this section, we will use the

commonly assumed friction exponent m = 1/n. We obtain from (9b) that
—Hx =HUx/U
and if we neglect gradients of X in force balance, then (9a) leads to
\U|(”+1)/" ~ HQUX/(F + W—(n-l-l)/nH).

Therefore, with the condition 4|UX\1/”’1UX =Y, H=Hjat X =0,

n?/(n+1) (3n+1)/(n+1)n?/(n+1)
1 H, by
Q~ < ) g g (11

4 (T + W00 /nH )n/ (et D)
This formula is essentially a modification of formula (29) in Schoof (2007b), and its derivation is a translation of appendix A of
Schoof (2007a) to our modified boundary layer problem. The omission of the extensional stress gradient can also be formalized
on the basis that the density difference (1 — r) between ice and water is small, leading to gradients of HY. being negligible in
the balance of forces (see the supplementary material).

For the FL model, it is easy to extract an analytical formula for flux as a function of channel width and depth to bedrock

from (11). Specifically, we have H, = H; and ¥, = (1 —r)H /2, so we get

n2/(n+1) (n?43n+1)/(n+1)
1-— H
Q~ ( 7") ; )

8 (L + W0 /m g )/ 1

which simply generalizes formula (3.51) in Schoof (2007a) with m = 1/n to the case of lateral as well as basal drag. With

I' =0, we can also immediately recognize a version of formula (10b) with
n?/(n+1)
- 1—7r 1
Q= (8) WH;™. (13)
Panels b and c of Fig. 7 shows that (12) performs well for I' = 0 and I" = 125. Clearly, (12) predict flux increasing with

flotation thickness; this is the result of both grounding line thickness H, and extensional stress X, increasing with flotation

thickness H at the grounding line. Next, we will use (11) to explain the anomalous behaviour with the CD calving law.
5.2 Grounded calving fronts

Here, we are interested in the anomalous relationship between () and the flotation thickness H¢. Recall that Hy = —B /ris
given by depth to bedrock B, and is therefore prescribed for a given grounding line location. The actual ice thickness H, at the

grounding line is equal to H; when the glacier has a floating ice shelf or calves at flotation; for a grounded calving cliff, H
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Figure 7. Limiting forms of ice flux near the critical ice thickness H /A = 2 and for large H¢/A. Panel (a): a zoomed-in version of panel (a)
of Fig. 5, same colour scheme. The black, red and blue curves exhibit the anomalous relationship between flux and flotation thickness for a
floating calving front, the green and magenta curves (with larger basal friction coefficients) do not. The ‘dominant stress’ labels refer to terms
in the force balance of the shelf that balance the depth-integrated extensional stress gradient (HX)x for different basal drag coefficients I,
see section 5.3. Red markers correspond to profiles shown in Fig. 9. Panel (b): Solution to the boundary layer problem for rwt/n J/A=0
plotted in black (same as in panel (a)). Formula (12) is shown as a blue dashed line, formulae (16) and (20) as blue solid lines, while the
dot-dashed blue line indicates the long shelf limit (24). Red markers correspond to the profiles shown in panels a and b of Fig. 8. Panel(c):
same as panel (b), but with the boundary layer solution for W/ ("+1/n /A =125 shown in magenta, and red markers corresponding to

profiles in panel (c) of Fig. 8.

may exceed H,. However, as Fig. 2 shows, H, always increases with H y. Equation (11) further shows that flux @) increases
with ice thickness H, and extensional stress ¥, at the grounding line. The anomalous relationship must therefore hinge on X
decreasing sufficiently rapidly as flotation thickness H ¢ increases.

Note that the anomalous decrease in flux with increasing flotation thickness is most pronounced around the critical value
Hy /A =2, where the calving front goes from grounded to floating. We can understand the behaviour of ice flux near that value
by considering the effect of small perturbations in H; away from that critical value. Again, recall the actual thickness at the
calving front is given by H. = H(X.) = erqb(AHf’l). Let the critical value of Hf be H g = 2A, for which H, = Hq. Now
consider perturbing H ¢ slightly, say to Hyo+ H ]Q We can use a first-order Taylor expansion of ¢ to compute the perturbed
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Figure 8. Boundary layer solutions » = 0.9, n = 1/m = 3, A = W = 1. Top row: boundary layer ice geometry, same colour scheme as in
Fig. 1. Bottom row: the corresponding extensional stress profiles. Dashed lines correspond to the FL. model with H; = 2 (the ‘unperturbed’
flotation thickness H s in sections 5.2 and 5.3), solid profiles to perturbed flotation thicknesses. Panels (a) and (b): I" = O (the dashed profiles
are identical), with the solid line showing (a) Hy = 1.9 (grounded cliff) and (b) H; = 2.1 (floating calving front). Panel (c): I' = 125, the
solid line showing Hy = 2.1.

calving front thickness as

A
H,=r(Hspo+ H)o | ——
r(Hyo f)¢<HfO+H}>

A / A AH} 12
()¢ () m, T O ﬂ

where the prime on ¢ denotes an ordinary derivative. For the CD model, (1i) shows that ¢(A/H o) = ¢(1/2) =r~!, and
@' (A/Hpo) =2r=1, so

=r(Hyo+ Hy)

H.=Hpo+O(H}?) (14)

In other words, at linear order, a small perturbation in bedrock depth has no effect on ice thickness at the calving front in the
CD model. Note that because ¢ in the CD model is continuously differentiable, this holds regardless of whether H } is positive
or negative, that is, regardless of whether the perturbation causes a calving cliff thicker than flotation or a floating ice shelf to
form.

Maintaining constant ice thickness at the calving front while bedrock depth changes has a significant effect on the extensional

stress at the grounding line. Consider the case of a grounded calving front when H } < 0; the grounding line thickness is the
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calving front thickness Hy, = H. ~ Hq. The stress condition (9d) can also be approximated to first order in H JQ as
Sy =AlUx|""'WUx ~(1—r)Hypo/2—H}  atX=0. (15)

As we have assumed that the flotation thickness perturbation H } is negative, we see an increase in extensional stress relative
to the unperturbed flotation thickness H . Even for small H } the increase can be very significant: with 1 —r =0.1, H } only
needs to be 1/20 of the unperturbed flotation thickness H g in order for the stress perturbation to be the same size as the
unperturbed stress (1 — ) H yo/2. An illustration of this effect is given in panel a of Fig. 8, where a slight decrease in flotation
thickness (panel al) clearly leads to a substantial increase in extensional stress (panel a2).

The extensional stress perturbation occurs because the calving cliff ice thickness has not changed at first order, but bedrock
depth is shallower. The calving cliff now protrudes further above the water line and the depth-averaged normal stress exerted
on it by the water is smaller. As a result, the extensional stress in the ice has to increase. This increase in stress is what leads to

the increase in flux caused by the decrease in flotation thickness H ¢. In fact, for small } < 0, (11) then becomes

r?/(nﬂ)

Lo\ ) B T 21— )~ ]
o~ (" (16)

T+ Wf<n+1>/an0)”/("“)

and () increases as H } becomes more negative.

This is consistent with the behaviour shown in Fig. 5. For grounded calving, we always find the anomalous relationship
between () and H ¢, regardless of the basal friction parameter. Panels b and ¢ of Fig. 7 also show that (16) is accurate only for
very small H JQ; this is presumably a result of the fact that 1 —r = 0.1 is not extremely small, and of the fact that the quadratic
term in (14) starts to become large enough to affect results (indeed, panel a of Fig. 2 indicates that a linearization of ¢ is

unlikely to be accurate for grounded calving fronts except very close to Hy /A =2.)
5.3 Floating calving fronts

We can conversely take the case of H } > 0, which leads to the formation of a floating ice shelf. As the calving front thickness

does not change to first order, the extensional stress at the calving front remains equal to
(X)) =4|Ux |V Ux = (1 —r)Hyo/2 (17)

Suppose that basal drag is not so large as to render lateral drag insignificant on the grounded portion of the boundary layer.
In that case, even though the ice at the grounding line is slightly thicker than at the calving front (by H }), the driving stress
in the floating ice shelf is small compared with the other forces acting on the shelf. In particular, the surface slope of the
ice shelf is small because of the small density difference between ice and water. Most of the reduction in thickness between
grounding line and calving front is accounted for by the bottom of the ice shelf sloping upwards (see panel bl of Fig. 8). The
surface slope of the ice shelf (which causes the driving stress) is only (1 —r)/r times the bottom slope. Since the driving stress

is weak, the dominant balance of forces on the ice shelf is then between the gradient of depth-integrated extensional stress
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(HY)x = 4(H|Ux|"/"~'Ux)x and the lateral drag W~ ("+1/" {|U|Y/"=1U: in other words, (9a) becomes approximately
(HE)x — W= D/n g |tn=1y ~ 0, (18)

with the driving stress an O(1 —r) correction. It follows that the floating ice shelf acts to reduce extensional stress at the
grounding line relative to its value at the calving front; this is the ‘buttressing’ effect of the ice shelf.

For small H }, we obtain a short ice shelf and can treat H ~ H o and U ~ ()/H s in the shelf as constant, so that
S(X) ~ (1 =r)Hypo/2 - W D/mQUn g 1V (X, — X),

X being the length of the floating ice shelf. This effect — the linear reduction in extensional stress in the floating shelf with
distance from the calving front — is illustrated in panel b of Fig. 8.

The shelf length is dictated by H } A larger flotation thickness requires a longer ice shelf before the calving front thickness
H y is reached, potentially leading to more buttressing. The ice shelf thickness gradientis —Hx = HUx /U ~ H ?OE" /(4"Q),
and the shelf length X is constrained by the fact that the decrease in ice thickness between grounding line and calving front is

H } = fOX ¢ —HxdX. This allows us to compute X, and hence the stress at the grounding line

1/(n+1)
1—VH n+1 n41)4n (n+1)/nH/
%, = 2(0) ~ (A=r)Hyo _ (A0 f . (19)
2 W(n+1)/nH}%n+1)/n
Substituting this in (11), flux satisfies for small H } >0,
3n+1)/(n+1 n . n®/(n+1)?
(F n W—("“)/"Hfo)”/(nH) 8 W(n+1)/nH}20n+1)/n

At first glance, it does not seem that (20) is much use — it defines ) implicitly. However, from (19), it is not difficult to show
that an increase in H } leads to a decrease in extensional stress X, at the grounding line and, therefore, to a decrease in flux
Q. The stress decreases because the ice shelf lengthens as H } increases and the total amount of lateral drag on the ice shelf
increases.

Again, we have given an ad hoc derivation for (20). We can formalize that derivation as shown in the supplementary material,
once more based on the small density difference 1 —r. Panel b of Fig. 7 shows that (20) is more qualitatively than quantitatively
accurate for the case of no basal friction I' = 0. Again, this is presumably the result of 1 — r not being extremely small, and of
higher order terms in the approximation scheme above becoming important.

However, as panel a of Fig. 7 also shows, the anomalous behaviour disappears entirely for floating ice shelves when the basal
friction coefficient I" becomes large. In such cases, the argument above must become qualitatively incorrect. The change-over
from the anomalous behaviour for flow dominated by lateral drag to the ‘normal’ behaviour obtained with significant basal
drag occurs because when the basal friction coefficient is large, ice velocities near the grounding line become small. This has
two effects: it (i) reduces the lateral drag term W (ntD)/n U |1/ "=17J in (9a) and (ii) increases the thickness gradient and,

therefore, the driving stress. Specifically, conservation of mass in the floating shelf dictates that

Hy =—HUx /U =—-H|Z|""'S/(4"U), 21
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so that Hx becomes large when U is small. The driving stress —(1 — ) H Hx can then no longer be ignored in (9a); (18) is
no longer applicable, and neither is (20). An increase in flotation thickness can now potentially cause an increase in ice flux,
at least when the calving front is afloat. This is shown in panel c of Fig. 8, and is also described in more formal detail in the
supplementary material.

It is relatively straightforward to estimate how large I" needs to be in order for driving stress to appear at leading order
in the shelf. Note that thickness, velocity, and stress are continuous across the grounding line. As a result of (21), so is the
thickness gradient Hx, but not the surface slope. With large I" on the grounded side, driving stress balances basal shear,
—HHyx ~T|U[*"=1U. In order for driving stress to appear at leading order in the shelf, it should be comparable to lateral
drag, so —(1 —r)HHx ~ W~04+0D/n (|7 |V/»=17 1t follows that

rw D/ g T D/ f(9A) ~ (1 —7) 7L (22)

With r = 0.9, this corresponds to T'W (»+1)/n /A ~ 20, consistent with panel a in Fig. 7, where the green line corresponds to
LW Hh/n /A = 25,

Finally, consider the limiting case of very large basal friction coefficient (meaning, TW (**1)/" /[ > (1 —r)~') combined
with an ice shelf that has limited extent. By an extension of the argument above, this corresponds to a large driving stress and
to lateral drag playing an insignificant role in force balance. In this case, we can make our theory agree with previous work for

laterally unconfined flow in Schoof (2007a) by simply ignoring lateral drag in (9a),
(HY)x —(1—r)HHx =0.
Integrating and applying the boundary condition (17) shows that extensional stress at the grounding line is simply given by
Yg=1—r)Hys/2.

This is the same extensional stress at the grounding line as we would expect in the case of the FL. model. The flux increases

monotonically with floatation thickness when this is substituted into (11) and I' is assumed large,

~

n2 n n
QN<1T>n2/(n+1) H} +3n4+1)/(n+1)

8 (D + W 1)/n )/ (D

2/(n n?43n+1)/(n+1)
1— n®/(n+1) H( v
~ ( 7‘) / (23)

8 Fn/(n+1)

Since we are assuming that m = 1/n, this is actually nothing more than a scaled version of equation (3.51) in Schoof (2007a).
As panel a of Fig. 7 shows, we do get agreement between the CD calving law results and the FL. model for large basal friction
coefficients, at least while H /A remains close enough to the critical value of 2: the flux curves then agree well with each (as
indicated by the arrow labelled ‘driving stress dominant’).

For larger Hy/A, this agreement ceases. The shelf gets long enough that, even with large enough basal friction on the
grounded portion, lateral drag on the floating shelf cannot be ignored. The next section describes in more detail the mechanics

of a very long ice shelf.
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5.4 The finite flux limit for large flotation thickness

For a fixed value of A and large flotation thickness H s, the flux () appears to approach a finite limit in panel a of Fig. 5. That

limit is of the form
Q~ (1—7)"C(n)W(2A)" (24)

with C' 2 8.67 x 1073 for n = 3, regardless of the choice of basal drag parameter I'. The physics behind this is relatively
simple: a large value of Hy corresponds to a large difference between ice thickness at the grounding line and at the calving
front, which in turn requires a long ice shelf. With a long ice shelf, most of the floating ice shelf becomes fully ‘buttressed,’
in the sense that extensional stress gradients are weak and there is a balance between driving stress and lateral drag as well
as basal drag in the grounded part of the glacier. In other words, a local force balance persists around the grounding line, and
extensional stresses only become significant in the floating shelf close to the calving front. Moreover, since we are assuming
that the floating shelf is still short compared with the length of the glacier and do not include basal melting in our model,
ice flux also varies insignificantly along the floating shelf. Hence, the flux through the grounding line is the same as the flux
through the calving front. Importantly, we now have a situation in which ice flux through the grounding line is determined
entirely by the calving parameter A, and independent of depth to bedrock at the grounding line.

This situation was previously explored by Hindmarsh (2012) and Pegler (2016). These authors find that ice flux through
the calving front is determined in a boundary layer around the calving front in which extensional stress is significant. In our

notation, the boundary layer takes exactly the same form as (9) for floating ice (f = 0), but with different matching conditions:

AH|Ux |V WUx)x =W~/ " HIU V=10 — (1 —r)HHx =0 (252)
(UH)x =0 (25b)

for X < X, with
4H|Ux |V 'Ux =(1—r)H?/2, H=H, atX=X, (25¢)
where H. is the prescribed calving front thickness, and

UH—Q, WY 1QUY" ! ~ —(1-1)(Q/U)(Q/U)x,

U—0 as X — —o0. (25d)

The analysis of this boundary layer (a formal derivation of which is included in the supplementary material) is much the same
as for (9), and @ satisfies a power law relationship with ice thickness H, and channel width W at the calving front, of the form

Q x (1 —7)"C(n)WH?*L. In the CD model, the ice thickness at a floating calving front is H,. = 2A, which gives the flux
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Figure 9. Solutions for a long shelf, same plotting scheme and parameter values as in Fig. 8. The dashed line shows the solution with
I' =125, Hy = 3.9, the solid line shows I' = 0, Hy = 3. Both are marked with red diamonds in panel a of Fig. 7. The red line shows the

solution to the near-calving-front boundary layer (25). All three solutions agree closely with this boundary layer near the calving front.

relationship (24). A more detailed derivation of the relationship (24) is given in the supplementary material, and a numerical
value computed from the reduced boundary layer model presented there agrees very well with that given above, obtained from
the solutions to the full boundary layer problem (9) for large values of H/A. In fact, convergence to that value is very rapid
as H;/A increases, as shown in panel a of Fig. 7. Fig. 9 shows that for even moderately large values of H;/A (so when the
ice shelf still has relatively limited extent), the thickness and stress profile near the calving front is well-approximated by the
solution to (25), regardless of the amount of basal friction in the grounded part of the glacier. The fluxes in all three examples
shown in Fig. 9 are almost identical.

Consider the special case of no basal drag on the grounded part of the glacier. We can show how (24) confirms that we
expect an anomalous flux-depth-to-bedrock relationship due to buttressing in the ice shelf. Take a grounded calving cliff just
at flotation, with thickness Hy = H. The flux is given by (12) with I" = 0. Compare this with the flux through a long floating
ice shelf that terminates in a calving cliff of the same thickness H.. The solution (24) then predicts that the flux through the
floating shelf is smaller than through the grounded calving front, even though the two have the same thickness. This is true
at least when the density difference 1 —r is small, because the exponent n2/(n+ 1) on (1 —7) in the formula for flux for
the grounded cliff in (13) is smaller than the exponent n for the floating cliff in (24). This provides further evidence for the

buttressing action of the ice shelf leading to an anomalous flux-flotation-thickness relationship.
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6 Discussion and conclusions

In this paper, we have applied the boundary layer analysis of Schoof (2007a) to a model for channelized outlet glacier flow,
incorporating a parameterised description of lateral drag (Dupont and Alley, 2005) and a simple calving law due to Nick et al.
(2010). The purpose of this work has been to show how calving and lateral drag can potentially combine to produce a very
different relationship between ice flux at the grounding line and glacier bed geometry from that for laterally unconfined marine
ice sheet flow. For the latter, ice flux is an increasing function of depth to bedrock, while for a channelized outlet glacier, we
find that an ‘anomalous’ relationship in which flux decreases with increasing depth to bedrock is possible (panel a of Fig. 5
above).

Such an anomalous relationship has significant consequences for stable glacier margin positions. Consider the model (8) for
the flow of the glacier as a whole. Two boundary conditions apply at the free boundary x = x,. One of these is a thickness

condition, while the second is the flux condition (10a), which can be written in the form

q(mg(t)7t) = Qg (_b(‘rg(t))7w(‘rg(t))’ )\7’}/,57’)’)7,77177‘) )

where g = —w" LA (B + wM /M) =0 (B4 1), [P~ (R + b)), is ice flux, and Q is the flux @ predicted by the boundary
layer problem, written in terms of the original dimensionless parameters and the channel geometry at the grounding line.

Steady states can now be computed easily from (8). To determine their stability, the theory of Fowler (2011) and Schoof
(2012) can be extended straightforwardly to the present case, the only modification required being the generalization of the
thickness variable h and flux variable @) in Schoof (2012) to our wh and wgq, respectively. It then follows that a steady state is
linearly stable if and only if (see e.g. condition (5.1) in Schoof (2012))

dig 0(g) Qg (—b(arg) w(irg), Ay, )] > wlag)alirg) 26)

If Q4 does not necessarily increase with b,then steady grounding lines located on a downward-sloping beds can become
unstable. This is illustrated in Fig. 3, where steady grounding line positions on a downward-sloping bed are plotted against
the accumulation rate a over the ice sheet, which is assumed to be spatially uniform, as is channel width w. The steady state

grounding line position of (8) is defined implicitly by
wQ (=b(zy),w, A\, y,m,n,r) = awx,.

Treating x4, as a function of a and differentiating both sides with respect to a, we have

dig [wQgy (=b(xy),w(wy),\,y,m,n,7)] — aw % ~wa,,

and when the stability condition (26) is satisfied, dz,/da > 0, so that a stable grounding line must advance when a is increased:
a stable ice sheet gets larger when it receives more surface snowfall. Fig. 3 shows a solution branch for which this is not the
case, even though the grounding line is located on a downward-sloping bed.

Conversely, we may see grounding lines attain stable steady state positions on upward-sloping beds if (), decreases with

depth to bedrock —b: Fig. 4 shows several examples in which the steady state grounding line advances up a reverse bed slope
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as accumulation rates are increased. A second mechanism by which such stabilization on upward-sloping beds can occur is
the dependence of discharge w(), on width w: a sufficiently narrow bottleneck in the channel could stabilize a grounding line
on an upward slope even if ), did increase with depth —b, because w(@, is an increasing function of w (this argument is due
to Jamieson et al., 2012). This second mechanism is however not responsible for the behaviour shown in Fig. 4, where channel
width is constant along the domain. It is worth noting that simulations of Greenland outlet glaciers using the CD calving law
(Nick et al., 2010) have similarly produced steady states located on upward-sloping beds. Our work suggests that this may be
due not only to narrowing of the channel but also to the calving law.

Our aim has not been to be authoritative in establishing the existence of an anomalous flux-depth relationship: our model
contains at least twe three components that can be improved upon. First, the parameterised description of lateral drag should
eventually be dispensed with, replacing our model with one that resolves the cross-channel dimension. The scaling that under-
lies our boundary layer model should still be applicable in that case, but the actual boundary layer model will consist of a set
of coupled partial differential equations (as opposed to ordinary differential equations) and is likely to be much more onerous
to solve for a large number of parameter combinations, as we have been able to do here.

Second, we have neglected the effect of basal melting on the shelf here. This is tractable in the framework we have developed
here with a simple, prescribed basal melt rate, but doing so still introduces sufficient complications to lie beyond the scope of
a single paper; a second manuscript that incorporates melting into our theory is in preparation.

Third, the calving law we have employed is relatively poorly constrained by observation and is based on a number of simple
assumptions about how cracks form near a calving front. Furthermore, it relies entirely on water depth in surface crevasses as
a control parameter that should itself be determined by additional physics governing the drainage of surface melt water.

We have chosen to take the calving model at face value, simply prescribing the crevasse water depth control parameter. This
is worth emphasizing as the dependence of calving cliff height on flotation thickness predicted by the calving model turns out
to be key to the anomalous flux-depth relationship. It is likely that other, more sophisticated calving models (for instance one
based on the formulation in van der Veen (1998a, b)) can also be written in the form of a calving cliff height as a function
of crevasse water depth, though presumably with a different specific from the CD model: as in the latter, surface hydrology
becomes a key component in understanding calving.

For a floating ice shelf, calving cliff height in the CD model is simply proportional to crevasse water depth and independent of
depth to bedrock. In other words, the CD model can then be thought of as a generic calving model that imposes a fixed thickness
at the floating glacier terminus. Moving the grounding line to a location with greater flotation thickness (or equivalently, depth
to bedrock) therefore leads to a longer ice shelf forming before it can reach the prescribed calving cliff height. If the mechanical
effect of the ice shelf is primarily to provide lateral drag, then a longer shelf leads to a greater reduction in extensional stress
between calving front and grounding line, and therefore to lower ice flux despite a greater depth to bedrock at the grounding
line. Whether this occurs or not is a function of basal drag on the grounded part of the glacier: if basal drag upstream of the
grounding line is moderate compared with lateral drag, then the surface slope and driving stress of the floating shelf will be
small, so the effect of the shelf is mostly to generate lateral drag. By contrast, if basal drag is large upstream of the grounding

line, then the floating shelf will be relatively steeply sloped and lateral drag will play a lesser role in force balance there, leading
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to the possibility that the floating shelf does not cause a reduction in extensional stress and hence flux through the grounding
line. The changeover between the two regimes happens when, in the notation of section 3.1, the basal drag coefficient is
approximately (see equation (22) above)

v~ (L=r) hw= D/,
and A ~ b.

As we have indicated, the thickness of floating calving fronts in the CD model is uniquely controlled by the crevasse water
depth parameter, and does not depend on depth to bedrock. The same generic relationship between ice flux and depth to
bedrock at the grounding line will therefore be obtained for any other calving law that fixes the height of a floating calving
front independently of depth to bedrock. By contrast, the CD model results are unlikely to be robust in the same way for
grounded calving fronts. Specifically, for Ber a grounded calving front, the Nick et al. (2010) calving law predicts that calving
cliff height decreases relatively slowly when the calving front is moved to a location with shallower depth to bedrock. In turn,
this leads to more of the calving cliff being exposed above the water line, and consequently to larger extensional stresses acting
on the calving front, and these larger extensional stresses cause ice flux to increase as depth to bedrock is decreased.

This contrasts with an alternative ‘calving at flotation’ (FL) calving law, in which calving front height is always proportional
to depth to bedrock and no floating shelf forms. In that case, extensional stress at the grounding line increases with depth to
bedrock, and so does ice flux.

We close by noting that our approach can potentially be used to study the effect of other calving laws relatively simply
in future, by replacing the function that specifies ice thickness at the calving front. Since-an-anemalousflux-depth-to-bedrock

- Since an anomalous flux-

depth-to-bedrock relationship may be possible and would have significant consequences for stable outlet glacier configurations,

and it may be worth testing this before embarking on simulations of actual glaciers using different calving laws.

7 Code availability

The MATLAB code used in the computations reported is included in the supplementary material.

Appendix A: A note on direct solutions of the steady state problem

At issue is the uniqueness of the orbit that emerges from the fixed point of the dynamical system (6), at which (h,0,q,x) =
(ho,[a(0)/ho]*/™,0,0): only when uniqueness is guaranteed does the shooting method of section 3.2 make sense. Linearising

the dynamical system around the fixed point leads to a problem with eigenvalues 0 (repeated), a(0)w(0) > 0 and
—[4e  nho(a(0)/ho)Y™ — (n — 1)]a(0)w(0).

The sign of this last eigenvalue is negative when e is small enough. In that case, the fixed point has a two-dimensional centre

manifold, a stable and an unstable manifold (Wiggins, 2003). The centre manifold has no dynamics (it consists of other fixed
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points, corresponding to different values of hg, or orbits that do not satisfy lim,,_,_ . x = 0), so that the fixed point must be

approached in the limit  — —oo along the unique unstable manifold.

Appendix B: The boundary layer problem
The simplified forms of the flux law in (10) can be derived by a transformation of the boundary layer problem (9), using
5 U=QWwl/nty — g=QVrw-Vinty - X =wx (B1)

and
C= 1"1/[/'(m+n+3)/(n+1)/Q(2—mn)/(n+1)7

Hp=Hy(W/QY D, L=AW/Q"Y" D, X =WAX. (B2)
With these definitions, it is easy to show that (9) is invariant under the transformation
(U.H,X, X, Hg,W,Q,T',A) = (U,H, X, Xe, Hy,1,1,C, L).

The parameters in this re-scaled version of the model are r, n, m, H¢, C and L, while U, H and X" are dependent and

independent variables, respectively. It then can be shown that the transformed boundary layer problem has a solution if and

10 only if the parameters 7, n, m, H s, C and L satisfy some functional relationship with each other. Using this fact, it is easy to
show that the simplified flux laws (10) must hold.

Deriving that functional relationship between r, n, m, H, C and £ can be done by a further coordinate transform of the

dependent variables (see also appendix A in Schoof (2011))
Q:Z/[’H, U = Q—lu—(2n+1)/n2 |Z/{X|1/n_1uz'\,’7 fzu(”+1)2/"2, ®3)

and switching to an independent variable ¢ defined through
EY
¢= / Q)X g(x) T A,
0

15 This transforms the boundary layer problem into a non-singular dynamical system in which the matching conditions (9g)
correspond to a fixed point (¥,£, Q) = (1,0,1) being attained as ( — —oo, and there is a unique orbit along which this can
happen; to prove the uniqueness of that orbit, an additional transformation to v = ¢ (n?(m+1)=n)/(2(n+1)*) may be required,
but the basic argument remains the same as in Schoof (2011). The boundary conditions (9d)—(9¢) then provide two further
constraints: one on the location of the point along the orbit that corresponds to the calving front, and another to relate the

20 parameters of the model, leading to a functional relationship between r, n, m, H ¢, C and L. In practice, this must be solved

31



for numerically by integrating the transformed dynamical system. More complete details on the solution of the boundary layer

problem can be found in the supplementary text and the numerical code provided as supplementary material for this paper.
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