
Response to Interactive comment on “A Weekly Arctic Sea-Ice Thickness Data Record 
from merged CryoSat-2 and SMOS Satellite Data” by Robert Ricker et al. 

Anonymous Referee #2 

This is an interesting study which merges two sea ice thickness data sets from CryoSat- 2 
and SMOS since both provide distinct information on sea ice of different thickness ranges. 
The study is well organized and described. Some of the main points I suggest to address 
are listed below. 

- A detailed description of uncertainties needs to be included since it is a key component to 
the weighting of the different data sets. In particular the CryoSat-2 uncertainty is not dis-
cussed in the manuscript but should be. 

We thank the reviewer for the thoughtful comments, which significantly helped to improve 
the manuscript. We agree that the information about the CryoSat-2 uncertainties are spar-
se and since they are crucial for the methodical approach, we added more information in 
section 2.

In the following we briefly list major changes in the document:

- We shifted the discussion about the complementarity of both thickness products from 
the Introduction to Data and Methods and inserted a new subsection there: 2.1.3 Com-
plementarity of CryoSat-2 and SMOS Sea-Ice Thickness Products. Therefore, also 
the order of Figure 1 and Figure 2 has switched.

- Figure 1 has been updated, we accidentally plotted the SMOS relative uncertainty of 
March also for November. This has been fixed.

- For the background field, we now also included SMOS retrievals from the week after the 
target week in order to avoid a potential bias. As a consequence, also Figures 5 and 6 
have been updated. However, the effect is minimal as shown by the changes of statis-
tics in Tables 2 and 3. 

- Figure 12 has been updated, since we found a bug in the plotting routine. Therefore, va-
lues have slightly changed.

NOTE: All tracked changes in the manuscript are attached to this response letter.

- The abstract and conclusion both state that a 0.7 m reduction in RMS deviation in the 
Barents Sea was observed though it is unclear where this number came from. The data 
from the Beaufort Sea should be mentioned as well in the abstract if that from the Barents 
Sea is provided. 

This number refers to Table 3, where the difference between rmsd (AEM-CS2SMOS) and 
rmsd (AEM-CS2) is about 0.7 m  for the mean ice thickness in the Barents Sea. It is true 
that the 0.7 m reduction in rmsd ist not stated explicitly in the test and therefore we added 
a sentence. Moreover, we now also refer to the results in the Beaufort Sea in the conclusi-
on and the abstract.

- I’m not sure if data exists, but a comparison between the CS2SMOS data and the AEM 
data would be interesting towards the outer edge of the ice pack where one might expect a 



different weighting between CS2 and SMOS than in the comparisons done in the central 
Arctic. 

Unfortunately, AEM measurements mainly exist for the central Arctic. However, for this re-
ason we have chosen Barents Sea and Beaufort Sea as validation sites. The Barents Sea 
is dominated by the SMOS ice thickness product, while in the Beaufort Sea, we find scat-
tered multiyear ice floes (up to 5 m thickness) within an area of about 1 m thick first-year 
ice. Such an area with mixed ice types and high drift rates is very challenging but a perfect 
test case for the data merging, since both data products contribute significantly.      

- Some minor grammar mistakes need to be fixed throughout the text. 

Thank you for pointing on this. We tried to improve the grammar throughout the manu-
script.

P2L3-4: CS-2 has been used to retrieve thickness over first year ice as well, the Wing- 
ham reference doesn’t necessarily support the exclusion of this as well. 

We added a sentence here and now also state that CS2 can be used for retrieving first-
year ice thickness, though the uncertainties over thin ice regimes and in the marginal ice 
zones are considerably high.

Figure 1: How are the uncertainties derived? This needs to be explained in the text. 

We added further explanation in section 2. Moreover, we followed the suggestions of re-
viewer #1 and moved the discussion about uncertainties and product complementarity to 
section 2.

P6 eqn 3: Is a freeboard correction due to the lower speed of light in snow applied? 

Yes, such a correction is applied. We added a short note in the text.

P8L2-3: Given the need for cold temperatures, was a mask applied for this or were certain 
time periods with the data excluded? P10L15: It is stated that the CS-2 data are used from 
October/November, but what is the starting date used or does it vary? It is not clear in the 
text. 

The SMOS data product is available from mid October on (October 15). CS-2 data are 
processed from October on as well. Since we use calendar weeks, the starting date of the 
merged product will vary but corresponds with the second week of SMOS thickness retrie-
vals (second half of October), since the first week of SMOS thickness retrievals is used for 
the background field. We corrected the text and now state that the starting date is end of 
October.

Eqn. 5: If your observation, analysis, and background fields are all ice thickness you 
shouldn’t need the H operator. 

The H Operator here only projects (interpolates) the grid cells of the background field 
thickness onto the locations of the observations, which can be different. For example, the 
SMOS (observations) are provided on a 12.5 km polarstereographic grid. Finally, H formal-
ly just ensures that for each point of the observational vector, we have exactly one (inter-
polated) point from the background field.    



Section 2.3.1: It’s not clear to me why you need to construct a spatially continuous back-
ground field. If your uncertainties are dependent on distance then you can produce an 
analysis from the CS-2 and SMOS data at any given point considering the distance bet-
ween the observations. Presumably this must have been done to fill in the pole hole.

The background field is needed as a “first guess” (see equation 5). For each observational 
data point, a background value is needed. the pole hole of the background field is filled by 
an inverse-distance interpolation. In other words, the observations of the target week are 
used to “update” the background field. The background field is also important for the gaps 
between orbits in the weekly CS-2 product. Without the background field, they would be 
just filled by linear interpolation, causing significant biases.     

P11L8: It was stated previously that the SMOS algorithm assumes a 100% ice con- centra-
tion otherwise the measurements are expected to be biased, yet you are using a 15% ice 
mask in your data. What is the uncertainty introduced by this assumption and how does it 
impact your retrieval?

This assumption leads to a underestimation of ice thickness in the merged product when 
ice concentration is low. It is our goal to correct this effect in a future revision of the pro-
duct, but before, the relationship between low ice concentration and underestimation of 
SMOS ice thickness needs to be investigated in more detail. Roughly, assuming 10 cm 
SMOS ice thickness when ice concentration is about 70 %, the true ice thickness is rather 
14 cm. However, the uncertainties in the ice concentration products make it difficult to cor-
rect for this accordingly.  

Eqns 8-9: I don’t understand these equations. What is H in this equation? Equation 9 is 
defined using matrices on the left-hand side but as a single number on the right hand side, 
it should be re-written to be mathematically correct.

Thank you for pointing on this. Indeed, on the right-hand side we refer to the elements of 
the matrices on the left-hand side. We corrected this. 

P14L18: What is the iterative procedure? Optimal interpolation shouldn’t involve an iterati-
ve method since the solutions are defined equations.

Thank you for reviewing the equations. Basically, the OI can be accomplished just using 
matrices but the they would become too large, which would prevent or significantly slowing 
down computation on a common machine. However, the formal notation here is wrong and 
we corrected this. The iterative procedure involves the iterative calculation of each analy-
sis grid point, instead of computing it in one step.     

P15L31-32: How is the background field constructed over the pole hole since no data is 
present there?

Here we use an inverse distance interpolation with a weighting power of the distance of 3.  

Section 3.1: The mean ice thickness values presented, particularly those in Table 2, are for 
the entire Arctic domain? It would be interesting to see the numbers presented for just the 
central Arctic Ocean as well since this would give a basis of comparison for other ice 
thickness data which are typically done for that region.

Yes, these values are for the entire Arctic domain. We agree that investigating the thick-
ness distributions of different regions would be interesting. This could be done in follow-on 



studies. In this study, we want to focus on methodical approach. Moreover, we provide 
these data on a public server, mean values for the central Arctic or any other regions can 
be calculated by the user.
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Abstract. Sea-ice thickness on
:
a global scale is derived from different satellite sensors using independent retrieval methods.

Due to the sensor and orbit characteristics, such satellite retrievals differ in spatial and temporal resolution as well as in the

sensitivity to certain sea-ice types and thickness ranges. Satellite altimeters, such as CryoSat-2 (CS2), sense the height of the ice

surface above the sea level, which can be converted into sea-ice thickness. However, relative
::::::
Relative

:
uncertainties associated

with this method are large over thin ice regimes. Another retrieval strategy is realized by
::::::
method

::
is

:::::
based

:::
on the evaluation5

of surface brightness temperature in L-Band microwave frequencies (1.4 GHz) with a thickness-dependent emission model,

as measured by the Soil Moisture and Ocean Salinity (SMOS) satellite. While the radiometer based method looses sensitivity

for thick sea ice (> 1m), relative uncertainties over thin ice are significantly smaller than for the altimetry-based retrievals. In

addition, the SMOS product provides global sea-ice coverage on a daily basis unlike the narrow-swath altimeter data. This

study presents the first merged product of complementary weekly Arctic sea-ice thickness data records from the CS2 altimeter10

and SMOS radiometer. We use two merging approaches: a weighted mean and an optimal interpolation scheme (OI). While

the weighted mean leaves gaps between CS2 orbits, OI is used to produce weekly Arctic-wide sea-ice thickness fields. The

benefit of the data merging is shown by a comparison with airborne electromagnetic induction sounding measurements. When

compared to airborne thickness data in the Barents Sea, the merged products reveal a reduced
::::::
product

:::
has

:
a
:
root mean square

deviation
:::::
(rmsd)

:
of about 0.7 m compared to

:::
less

::::
than

:
the CS2 retrieval

::::::
product

:
and therefore demonstrate the capability to15

enhance the CS2 retrieval
:::::::
product in thin ice regimes.

::::::::
However,

::
in

::::::
mixed

::::::::::::::::
first-year/multiyear

:::
ice

:::::::
regimes

::
as

::
in

:::
the

::::::::
Beaufort

:::
Sea,

:::
the

::::
CS2

:::::::
retrieval

::::::
shows

:::
the

:::::
lowest

:::::
bias.

1 Introduction

Sea ice is an essential climate variable and affects many climate related processes, such as heat transfer between ocean and

atmosphere or ocean circulation, but also marine operations (Meier et al., 2014). For decades, the variability and changes of the20

ice covered region have been routinely observed by satellite remote sensing of sea-ice extent and area. However, the thickness

1



of sea ice is a crucial parameter for the ice mass balance and is more difficult to observe. Recent satellite altimeter missions

such as ICESat or CryoSat-2 (CS2) demonstrated the capability to provide Arctic sea-ice thickness and volume estimates

(Kwok et al., 2009; Laxon et al., 2013). They are used to measure freeboard, the height of the ice or snow surface above

the water level, which can be converted into sea-ice thickness assuming hydrostatic equilibrium. CS2 was launched in 2010

and was primarily designed to measure the thickness of thick, perennial ice, since
:::
but

:::
can

::::
also

:::
be

::::
used

::
to

:::::::
retrieve

::::::::
first-year5

::
ice

::::::::
thickness

:::::::::::::::::
(Laxon et al., 2013).

:::::::::::
Nonetheless,

:
the retrieval method has large

:::::
shows

:::::::::::
considerable

:
uncertainties over thin ice

regimes (Wingham et al., 2006)
:::
and

:::::::
certainly

::
in
:::
the

::::::::
marginal

::
ice

:::::
zones

:::::::::::::::::::::::::::::::::::
(Wingham et al., 2006; Ricker et al., 2014). On the other

hand, the Soil Moisture and Ocean Salinity (SMOS) mission, launched in 2009, provides brightness temperature observations

at microwave frequencies (L-band), which can be exploited for thin ice thickness retrieval (Kaleschke et al., 2012).

Kaleschke et al. (2010) and Kaleschke et al. (2015) drew attention to
:::::::::::
demonstrated the complementary nature of the relative10

uncertainties of CS2 and SMOS ice thickness retrieval methods. Figure 1 shows typical uncertainty maps and the relative

uncertainties of CS2 and SMOS monthly mean thickness retrievals from November 2015 and March 2016. While with SMOS

:::
The

:::::::::
CryoSat-2

::::::::
thickness

:::::
sea-ice

::::::::
thickness

:::::::
product

:::::
relies

::
on

:::::::
accurate

::::::::::::
measurements

::
of

:::
the

:::::
height

::
of

:::
the

:::
sea

:::
ice

::::::
surface

:::::
above

:::
the

::::
water

:::::
level

:::
and

::::::::
therefore,

:
relative uncertainties are lowest for

::::
larger

::::
over

:
thin ice (< 1 m), CS2 relative thickness uncertainties

are smaller over thick ice and rise asymptotically towards thinner ice less than .
::
In

:::::::
contrast,

:::
the

::::::
SMOS

::::::
sea-ice

::::::::
thickness

:::::::
retrieval15

::::
relies

:::
on

:::
the

:::::::::
sensitivity

::
of

:::
the

:::::::::
brightness

:::::::::::
temperature

::
to

::::::
sea-ice

:::::::::
thickness.

:::::
While

::::::::
accuracy

::
is

::::
high

:::::
over

:::
thin

::::
ice,

:::::::::
sensitivity

:::
gets

::::
lost

::::
over

:::::
thick

:::
ice

::
(>

:
1 m thick. This is due to the fact that CS2 thickness estimates over thin ice rely on the retrieval

of small surface elevations slightly higher than sea level while freeboard of thicker ice is much larger (Ricker et al., 2014).

Note that the CS2 uncertainties shown here represent statistical uncertainties only. Systematic errors as associated with the

usage of a snow climatology or due to variable snow penetration will increase the uncertainty of altimetry based thicknesses20

(Ricker et al., 2014; Kwok, 2014; Ricker et al., 2015; Armitage and Ridout, 2015).

Besides the different sensitivity to different thickness ranges
:::
m).

::::::::
Moreover, both sensor concepts have significantly different

swath widths and revisit times, and therefore provide different update rates of sea-ice thickness observations. While CS2

grids are usually based on data composites from one month, SMOS based retrievals provide daily global coverage. Figure 2

compares weekly means of CS2 and SMOS for November 2015 and March 2016. While valid SMOS ice thickness estimates25

are found mostly in the marginal ice zones,
:::::::::::::::::::::::::
Kaleschke et al. (2015) suggest

::::
that

:::
due

::
to

::::
their

:::::::
different

:::::::::::::
spatiotemporal

::::::::
sampling

:::
and

:::::::::
resolution,

::::
and

:::::::
because

::
of

:::
the

:::::::::::::
complementary

::::::::::
uncertainty

::::
due

::
to

:
the CS2 ice thickness retrieval covers major parts of

the Arctic multiyear ice (MYI). In November, during the freeze-up, SMOS retrievals cover major parts of the Beaufort Sea,

Chuckchi Sea, and East Siberian Sea. Towards spring, due to continued ice growth in these regions, the regions with SMOS

retrievals retreat southwards, covering major parts of the Bering Sea and the Sea of Okhotsk (Figure 2b). Figure 3 illustrates30

the number of valid grid cells of the weekly means as shown in Figure 2. The number of grid cells with co-located SMOS and

CS2 estimates is less than 2000, while the number of grid cells that contain thickness estimates from CS2 or SMOS only is

about 5000, highlighting the complementary coverage of both sensors
::::::::::
fundamental

::::::::
difference

:::
of

::
the

::::::::::
radiometric

::::
and

::::::::
altimetric

:::::::::::
measurement

::::::::
principle,

:
a
:::::::::::
combination

::
of

::::
both

::::::::
products

:::
has

:::
the

::::::::
capability

::
to
::::::

reduce
:::::::::::
uncertainties

::
in

:::::::
relation

::
to

:::
the

:::::::::
individual

:::::::
products.35
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The spatial and interannual variability of sea-ice thickness is driven by dynamics and thermodynamics (Zhang et al., 2000;

Kwok and Cunningham, 2016). For an accurate description of the Arctic sea-ice thickness distribution, it is necessary that

thick and deformed ice as well as thin ice regimes are represented adequately. Moreover, particularly the formation of new

thin ice during the freeze-up characterizes a large area of the ice cover in autumn. In order to detect changes and interannual

variabilities in such areas, accurate thin ice thickness estimates with high temporal and spatial resolution are required.5

Wang et al. (2016) evaluate six different sea-ice thickness products, including SMOS and CS2, and find that all satellite

products as well as the Pan-Arctic Ice-Ocean Modeling and Assimilation System (PIOMAS) overestimate the thickness of thin

ice compared to airborne laser altimetry retrievals of NASA’s Operation IceBridge. The smallest bias of 0.26 m over thin ice

has been found when using the SMOS product.

Considering the depicted complementarity of CS2 and SMOS retrievals and the need for a better representation of thin ice10

regimes in global-scale sea-ice thickness
:::
data

:
products, the goal of this study is to provide a merged product of CS2 and SMOS

sea-ice thickness retrievals, which has the capability to complete
:::::::
provide Arctic sea-ice thickness distributions over the entire

thickness range with reduced uncertainties. We also aim for a weekly update rate of the merged product. This ensures that we

obtain a sufficient coverage of CS2 observations over perennial sea ice, while at the same time, we benefit from the daily update

rates of SMOS observations in order to capture ice growth rates in thin ice regions during the freeze-up. We apply two different15

merging schemes. The first is represented by a weighted mean, based on the individual uncertainties, which only provides

estimates at grid cells where weekly observations are available. The second approach uses an optimal interpolation scheme

(OI) for Arctic-wide estimates. Table 1 summarizes the input thickness products and the merged products, their temporal and

spatial resolution, as well as coverage and applicability depending on study purposes. In order to assess the improvement of

the merged products, we use airborne sea-ice thickness data to
:::
and compare them with co-located data of the merged products.20

::::
This

:::::
paper

:
is
::::::::

outlined
::
as

:::::::
follows:

::
in

::::::
section

::
2,
:::

we
::::
first

::::::
present

:::
the

:::::::::
individual

::::::
sea-ice

::::::::
thickness

::::::::
products

::::::
derived

:::::
from

::::
CS2

:::
and

::::::
SMOS

::::::::::::
measurements,

::::::::
including

:::::::
detailed

:::::::::
description

:::
of

::::
input

::::
data

:::
and

:::::::::::
highlighting

:::
the

::::::::::::::
complementarity

::
of

::::
both

::::::::
thickness

:::::::
products.

::::::
Then,

:::
we

::::::
present

::::::::
methods

::
to

::::::
merge

::::
both

::::::
sea-ice

:::::::::
thickness

::::
data

::::
sets,

:::::
based

:::
on

::
a

::::::::
weighted

:::::
mean

:::
and

:::
an

:::::::
optimal

::::::::::
interpolation

:::::::::
approach.

::
In

::::::
section

::
3,
:::

the
:::::::

merged
::::::::
products

:::
are

::::::::
evaluated

::
by

::
a
::::::::::
comparison

::::
with

:::::
input

:::::::
products

::::
and

::
by

::
a
:::::
cross

::::::::
validation

::::::::::
experiment.

:::
In

::::::
section

::
4,

:::
the

:::::::
merged

::::::::
products

:::
are

::::::::
evaluated

:::::
using

::::::::
airborne

:::::::::::::
electromagnetic

:::::::::
thickness

::::::::
sounding25

::::::::::::
measurements.

::::::
Finally,

::::::::::
conclusions

:::
are

::::::
drawn

::
in

::::::
section

::
5.

:

a) Typical monthly sea-ice thickness uncertainty maps of the CryoSat-2 and SMOS retrievals from November 2015 and

March 2016. The SMOS thickness uncertainty is masked where uncertainty is > 1 m. b) Relative uncertainties from November

2015 and March 2016.

Example of weekly input data grids for November 2015 and March 2016. a) Gridded weekly CryoSat-2 retrievals. b) Gridded30

weekly mean SMOS retrievals derived from daily data. SMOS data are rejected over multiyear ice and when uncertainties are

more than 1 m. The background fields indicate first-year and multiyear ice coverage.
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Table 1. Summary of properties of input and output sea-ice thickness products in this study, including CryoSat-2 (CS2), SMOS, the weighted

mean (WM) and the OI product (CS2SMOS).

Product Temporal res. Spatial res. Coverage Notes and applicability

CS2 (monthly) 1 month 25 km Arctic wide For studies of multiyear ice and thick

first-year ice (> 1 m), high uncertain-

ties for thin ice and in the marginal ice

Zone
::::::
Marginal

:::
Ice

:::::
Zone,

::::::::
constraints

::
in

:::::
regions

::::::
where

:
a
:::::

snow
:::::::::
climatology

::
is

::::::::
inadequate

CS2 (weekly) 1 week 25 km Gaps between

orbits, sparse at

lower latitudes

For studies of multiyear ice and thick

first-year ice (> 1 m) where measure-

ments are available, high uncertainties

for thin ice (< 1 m) and in the marginal

ice Zone
:::::::
Marginal

:::
Ice

::::
Zone,

::::::::
constraints

:
in
::::::

regions
:::::
where

:
a
:::::
snow

:::::::::
climatology

:
is

::::::::
inadequate

SMOS 1 day 12.5 km Arctic wide For studies of thin ice (< 1 m)

WM 1 week 25 km Gaps between

CS2 orbits

For studies of multiyear ice and of thin

ice, where measurements are available

CS2SMOS 1 week 25 km Arctic wide For Arctic-wide studies on the entire

thickness range, uses optimal interpola-

tion

2 Data and Methods

This section is structured as follows: first, a description of the input data (Section 2.1) , then merging
::::::
section

:::
2.1)

:::
are

:::::::::
presented,

:::
then

:::
the

::::::::
merging

::
of weekly CS2 and SMOS data by applying a weighted mean based on the individual uncertainties with the

product referred to as WM (Section 2.2), followed by merging
:
is
::::::::
described

:::::::
(section

::::
2.2).

:::::::
Finally,

:::
the

:::::::
merging

::
of

:
weekly CS2

and SMOS data by applying an OI scheme with the product referred to as CS2SMOS
:
is

::::::::
explained

:
(section 2.3).5

2.1 Input Data

We use the AWI CS2 product (processor version 1.2) (Ricker et al., 2014; Hendricks et al., 2016) and the SMOS sea-ice

thickness retrieval from the University of Hamburg (processor version 3.1) (Tian-Kunze et al., 2014; Kaleschke et al., 2016) as
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Figure 1.
::::::
Example

::
of

::::::
weekly

::::
input

::::
data

::::
grids

:::
for

::::::::
November

::::
2015

:::
and

::::::
March

::::
2016.

::
a)

:::::::
Gridded

:::::
weekly

::::::::
CryoSat-2

::::::::
retrievals.

::
b)

:::::::
Gridded

:::::
weekly

:::::
mean

:::::
SMOS

:::::::
retrievals

::::::
derived

::::
from

::::
daily

::::
data.

:::::
SMOS

::::
data

:::
are

::::::
rejected

::::
over

:::::::
multiyear

:::
ice

:::
and

::::
when

::::::::::
uncertainties

::
are

:::::
more

:::
than

::
1

::
m.

:::
The

:::::::::
background

::::
fields

:::::::
indicate

::::::
first-year

::::
and

:::::::
multiyear

::
ice

::::::::
coverage.

input ice thickness data. Auxiliary data of ice concentration and ice type were obtained from the Ocean and Sea Ice Satellite

Application Facility (OSI SAF).

2.1.1 CryoSat-2 Weekly Sea-Ice Thickness Retrieval

In the first step we use CS2 SIRAL Level-1b orbit data files that are provided by ESA. They contain geolocation information

and time of the Doppler beam formed radar echoes. SIRAL is operated in two different modes over sea ice. The Synthetic5

Aperture Radar (SAR) mode covers major parts of the ice covered area, while the Interferometric Mode (SIN) is applied

mostly in coastal areas. Both modes serve for retrieving ice thickness, but must be processed separately
:
,
::
as

:::
we

:::::::
discard

:::
the

:::::
phase

:::::::::
information

:::
of

:::
SIN

::::::::::
waveforms

:::::::::::::::
(Kurtz et al., 2014).

The radar echoes (waveforms) are processed for each CS2 orbit according to Hendricks et al. (2016) and Ricker et al.

(2014). A 50% threshold-first-maximum retracker (Ricker et al., 2014; Helm et al., 2014) is used to obtain ellipsoidal surface10

elevations (L), which are corrected for geophysical perturbations like tides and atmospheric effects (Ricker et al., 2016). Geoid

undulations and the mean sea-surface height (MSS) are removed by subtracting the Danish Technical University version 2015
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Figure 2.
:
a)

::::::
Typical

::::::
monthly

::::::
sea-ice

:::::::
thickness

:::::::::
uncertainty

::::
maps

::
of
:::

the
::::::::
CryoSat-2

:::
and

::::::
SMOS

:::::::
retrievals

::::
from

::::::::
November

::::
2015

:::
and

::::::
March

::::
2016.

:::
The

::::::
SMOS

:::::::
thickness

:::::::::
uncertainty

::
is

::::::
masked

:::::
where

::::::::
uncertainty

::
is
::
>

:
1
:::
m.

::
b)

::::::
Relative

::::::::::
uncertainties

::::
from

::::::::
November

::::
2015

:::
and

::::::
March

::::
2016.

(DTU15) MSS height:

LMSS = L�MSS. (1)

Ice and water are spatially separated by the pulse peakiness of the CryoSat waveforms. This is based on the fact that radar

returns from surfaces that contain open water leads, i.e. openings in the ice pack, appear as specular echoes and can be

separated from diffuse echoes that contain reflections from sea ice only
::::::::::::::::
(Laxon et al., 2003). The lead elevations are used5

to derive the instantaneous sea-surface height anomaly (SSHA) by interpolation. Finally, the SSHA is subtracted from the ice
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surface elevations to retrieve the freeboard (Fb):

Fb= LMSS �SSHA. (2)

Fb
:
is
::::::::
corrected

:::
for

::
a

:::::
lower

::::
wave

:::::::::::
propagation

:::::
speed

:::::
inside

:::
the

:::::
snow

::::
layer

::::
and can be converted into sea-ice thickness (Z) by

assuming hydrostatic equilibrium (Laxon et al., 2003):

Z
cs2 = Fb · ⇢W

⇢W � ⇢I
+S · ⇢S

⇢W � ⇢I
, (3)5

where S is the snow depth and ⇢S, ⇢I, and ⇢W are the densities of snow, sea ice and sea water. S
:
S

:
and ⇢S are represented by the

modified Warren snow climatology (W99) (Warren et al., 1999). S
:
,
:::::::
meaning

::::
that

::
S is reduced by 50 % over FYI

:::::::
first-year

:::
ice

:::::
(FYI) to accommodate the recent change towards a seasonal Arctic ice cover (Kurtz and Farrell, 2011). FYI and MYI

::::::::
multiyear

::
ice

::::::
(MYI)

:
are separated by adopting the daily OSI SAF ice type product (Eastwood, 2012). We exclude CS2 measurements

over Hudson Bay and Baffin Bay as they are not located within the domain of the W99 climatology,
::::::
refered

::
to

::
the

:::::
area, which is10

constrained by in-situ measurements from Soviet drifting stations and airborne landings from the 1950’s to 1990 (Warren et al.,

1999).
:
In

:::::
areas

:::::
where

:::
no

::::::::::
observations

:::
are

:::::::::
available,

::
the

:::::
W99

::::::::::
polynomial

::
fit

::
is

:::
not

:::::::
reliable,

:::::
being

:::::
based

::::
only

::
on

::::::::::::
extrapolation.

We use ice densities of 916.7 kg/m3 and 882.0 kg/m3 for FYI and MYI (Alexandrov et al., 2010), and 1024 kg/m3 for the sea

water density. Z is calculated for each individual CS2 measurement along each orbit. All these retrievals are averaged on a 25

km EASE2 grid (Brodzik et al., 2012) within one calendar week (Figure 2
:
1a).15

:::
CS2

:::::::
sea-ice

::::::::
thickness

:::::::::::
uncertainties

:::
can

:::
be

::::::::
separated

::::
into

:::::::::::
observational

:::::::::::
uncertainties

::::
and

:::::::::
systematic

::
or

::::
bias

:::::::::::
uncertainties

:::::::::::::::::
(Ricker et al., 2014).

:::::
While

:::::::::::
observational

:::::::::::
uncertainties

:::
of

::::::::
individual

::::::::::::
measurements

::::
can

::
be

:::::::
reduced

::::
due

::
to

::::::
spatial

:::::::::
averaging,

:::::
biases

:::::::
remain.

:::
The

:::::::::::
observational

:::::::::::
uncertainties

:::
of

::
ice

::::::::
thickness

::::::::
retrievals

:::::
from

::::::::
individual

::::::::::::
measurements

:::::::
contain

:::::::::::
uncertainties

:::::
caused

:::
by

::::::
speckle

:::::
noise,

::::::::::
sea-surface

:::::
height

:::::::::
estimation

:::
and

::::::::
densities

::
of

::
ice

::::
and

::::
snow

:::::::::::::::::
(Ricker et al., 2014).

:::::
They

:::
can

:::::
easily

:::::
reach

:::::
values

::
of

::
>

:
1
:::
m,

:::
but

:::
will

::
be

:::::::
reduced

::
to

:::
the

:::::
range

::
of

::::::::::
centimeters

::
by

::::::
spatial

::::::::
averaging.

::::::
Figure

::
2a

::::::
shows

::::::
typical

::::
CS2

:::::::::::
observational20

:::::::::
uncertainty

:::::
maps

:::
for

::::::
autumn

::::
and

::::::
spring,

::::::
mainly

:::::::
ranging

:::::::
between

:::
0.1

::
m

::::
and

:
1
:::
m.

:::::
Here,

::::
data

:::::
points

:::
are

::::::::
averaged

:::
on

:
a
:::
25

:::
km

::::
grid.

:::
The

:::::::::
latitudinal

::::::::::
dependency

::::::
results

::::
from

:::
the

::::::
denser

:::::
orbit

:::::::
coverage

:::::::
towards

:::
the

:::::
pole.

::
In

:::
the

:::::::
marginal

:::
ice

::::::
zones,

:::::
when

:::
ice

:::::::::::
concentration

:::::::::
decreases,

::::
many

::::::::
openings

::
in

:::
the

:::
sea

:::
ice

:::::
cover

:::
can

::::
lead

::
to

::
an

:::::::::::::::::
underrepresentation

::
of

:::
sea

:::
ice.

:::::::::
Moreover,

:::::
when

:::
the

:::
sea

::
ice

:::::
cover

::
is

:::::::::::
characterized

:::
by

::::
many

:::::::::
openings,

::
so

:::::
called

::::::::
snagging

::::
leads

::
to

::::::::
increased

:::::::::::
uncertainties

::
in

:::
the

:::::
range

::::::::::::
measurements

::::::::::::::::::::::::::
(Armitage and Davidson, 2014).

::::::
Biases

::::::
mainly

::::
occur

::::
due

::
to

::::::::
waveform

::::::::::
processing,

:::
and

:::
the

:::
lack

::
of
::::::::::::
representation

::
of

::::::::::
interannual25

::::::::
variability

::
in

:::
the

:::::
W99

::::
snow

::::::::::
climatology

:::::::::::::::::
(Ricker et al., 2014).

:

2.1.2 SMOS Weekly Sea-Ice Thickness Retrieval

Thin sea-ice thickness has been retrieved from the 1.4 GHz (L-band) brightness temperatures measured by SMOS for the winter

seasons (15 Oct -15 Apr) from 2010 to present (Mecklenburg et al., 2016). The retrieval method consists of a thermodynamic

sea-ice model and a one-ice-layer radiative transfer model (Tian-Kunze et al., 2014). The resulting plane layer thickness is30

multiplied by a correction factor assuming a log-normal thickness distribution. The algorithm has been used for the operational

production of a SMOS-based sea-ice thickness data set from 2010 on (Tian-Kunze et al., 2014). In this study we use the most
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Figure 3. a) Numbers of valid 25 km grid cells each month from November 2015 to April 2016. Here, ’valid’ grid cells are grid cells that

contain a valid thickness estimate. b) Spatial distribution of valid weekly thickness retrievals by CryoSat-2 and SMOS.

up-to-date version (v3.1) of ice thickness data set, which has been produced operationally since October 2016. The v3.1 data

for the previous winter seasons had been reprocessed using the same algorithm.

The v3.1 SMOS ice thickness data are based on v620 L1C brightness temperature data. Brightness temperatures (TB) used

in the algorithm are the daily mean intensities averaged over incidence angles from 0� to 40�. The intensity is the average of

horizontally and vertically polarized brightness temperatures, equal to 0.5 (TB
h

+TB
v

). Over sea ice, the intensity is almost5

independent of incidence angle. By using the whole incidence angle range of 0-40�, we can reduce the brightness temperature

uncertainty to about 0.5 K.

SMOS measurements are strongly influenced by Radio Frequency Interference (RFI), especially in the first two years after

its launch. In the previous processor RFI contaminated snapshots have been discarded using a threshold value of 300 K, ap-

plied either to TB
h

or TB
v

. The new quality flags given in the v620 L1C data have been implemented to identify the data10

contaminated by RFI, by sun, or by geometric effects to improve the quality of the radiometric data used for the version 3.1.

To estimate the bulk ice temperature (Tice) and bulk ice salinity (Sice), which are the important input parameters in the

radiation model, we need surface air temperature and sea surface salinity (SSS) data as
:
a boundary condition. 2m surface air

temperature is extracted from JRA-25 atmospheric reanalysis (Onogi et al., 2007). SSS data used in the retrieval results from an

integration of the MIT General Circulation Model (MITgcm) (Marshall et al., 1997), including interannually varying surface15

forcing. From the daily surface salinity outputs from the model for the years 2002-2009, a weekly climatology was produced

(Tian-Kunze et al., 2014).

Brightness temperatures over sea ice are simulated with the sea-ice radiation model adapted from (Menashi et al., 1993;

Kaleschke et al., 2010, 2012). The TB depends on the dielectric properties of the ice layer, which are a function of brine

volume (Vant et al., 1978). The brine volume is a function of Sice and Tice (Cox and Weeks, 1983). For a thin ice layer, the ice20

temperature gradient within the ice can be assumed to be linear. The penetration depth of L-band in the sea ice depends on the

ice temperature and ice salinity. The retrieval algorithm works only under cold conditions. For the cold and less saline ice, the

maximum retrievable ice thickness from SMOS can be up to 1.5 m.

8



Figure 4. Weighted means of CryoSat-2 and SMOS weekly means during the target week, produced from fields shown in Figure 2
:
1.

Ice thickness uncertainties are given pixel-wise each day in the data set. There are several factors that cause uncertainties in

the sea-ice thickness retrieval: the uncertainty of the SMOS TB, the uncertainties in the
:::
The

::::::
SMOS

::::::::::
uncertainty

:::::
given

::
in

:::
the

::::
v3.1

::::::
product

::
is

::::::::
estimated

:::::
based

::
on

:::
the

::::::::::
uncertainty

::
in

:::
the

::::
input

:::::::::
parameters

::
in
:::
the

:::::::::::::
thermodynamic

::::
and

:::::::
radiation

::::::
model

::
as

::::
well

::
as

::
in

:::
the

::::::::
thickness

:::::::::
distribution

::::::::
function

:::::::::::::::::::::
(Tian-Kunze et al., 2014).

::
At

:::::::
present,

:::
the

:::::::::
estimation

::::
was

::::::
carried

:::
out

:::
for

::::
each

:::::::::
parameter

:
-
:::::::::
brightness

::::::::::
temperature,

:
ice temperature and ice salinity , and the assumptions made for the radiation and thermodynamic5

models (Tian-Kunze et al., 2014)
:::::::::
respectively,

:::
by

:::::::
keeping

:::
the

:::::
other

:::::::::
parameters

::::::::
constant.

:::
The

::::::::::
uncertainty

:::::
given

::
in

:::
the

:::::::
product

:
is
::::
then

:::
the

::::
sum

:::
of

::::::::::
uncertainties

::::::
caused

:::
by

::::
each

:::::::::
parameter. In v3.1, we also consider the uncertainty caused by the

:::::
varied

:::
the

:::::
sigma

::
in

:::
the

::::::::
lognormal

:::
ice

:
thickness distribution function,

::::::
which

::
is

::::
used

::
to

::::::
convert

:::::
plane

::::
layer

:::
ice

::::::::
thickness

::::
into

:::::::::::
heterogenous

::::
layer

:::::
mean

:::
ice

::::::::
thickness

::
in

:::
the

:::::::
retrieval. The average ice thickness uncertainty caused by the distribution function is less than

10 cm. A
::::
This

:::::::::
uncertainty

::
is
:::::

then
:::::
added

::
to
::::

the
::::::
overall

:::::::::::
uncertainties

::::::
caused

:::
by

:::
the

:::::::::
brightness

::::::::::
temperature,

:::
ice

:::::::::::
temperature10

:::
and

:::
ice

:::::::
salinity.

:::::
Errors

::::::
caused

:::
by

:::
the

::::::::::
assumptions

:::::
about

:::::
fluxes

::::
and

::::
snow

::::::::
thickness

:::::
have

:::
not

:::
yet

::::
been

::::::::
included.

::::
The 100% ice

coverage assumption made in the retrieval can cause underestimation of ice thickness if the condition is not met.

For the merging, daily SMOS retrievals are averaged weekly and are projected on an EASE2 25 km grid to be co-located

with the CS2 retrievals. Here, we only allow SMOS thickness values with a corresponding uncertainty < 1m which corresponds

to a maximum theoretical thickness of about 1.1 m. Furthermore we expect strong biases for the SMOS ice thickness in thicker15

MYI regimes. Therefore we use the OSI SAF ice type product (Eastwood, 2012) to discard any SMOS grid cells that are

indicated as MYI. The weekly composites are shown in Figure 2
:
1b.

2.1.3
:::::::::::::::
Complementarity

::
of

::::::::::
CryoSat-2

::::
and

::::::
SMOS

:::::::
Sea-Ice

:::::::::
Thickness

::::::::
Products

:::
The

::::
two

::::
main

::::::
factors

:::
that

:::::
drive

:::
the

::::::::::::::
complementarity

:::::::
between

:::
the

:::::::::
CryoSat-2

:::
and

::::::
SMOS

::::::
sea-ice

::::::::
thickness

:::::::
products

:::
are

:::
the

::::
data

:::::::
coverage

:::
on

:::
the

:::
one

:::::
hand,

:::
and

:::
the

::::::
sea-ice

::::::::
thickness

:::::::::::
uncertainties

::
on

:::
the

:::::
other

:::::
hand.20

:::::
Figure

::
2

:::::
shows

::::::
typical

::::::::::
uncertainty

::::
maps

::::
and

:::
the

::::::
relative

:::::::::::
uncertainties

::
of

::::
CS2

:::
and

::::::
SMOS

:::::::
monthly

:::::
mean

::::::::
thickness

::::::::
retrievals

::::
from

:::::::::
November

::::
2015

::::
and

::::::
March

:::::
2016.

:::::
While

::::
with

::::::
SMOS

:::::::
relative

:::::::::::
uncertainties

:::
are

:::::
lowest

:::
for

::::
thin

:::
ice

::
(<

::
1
:::
m),

::::
CS2

:::::::
relative
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:::::::
thickness

:::::::::::
uncertainties

:::
are

::::::
smaller

::::
over

:::::
thick

:::
ice

:::
and

::::
rise

::::::::::::
asymptotically

:::::::
towards

::::::
thinner

::
ice

::::
less

::::
than

:
1
::
m
:::::
thick.

::::
This

::
is
::::
due

::
to

::
the

::::
fact

:::
that

::::
CS2

::::::::
thickness

::::::::
estimates

::::
over

::::
thin

:::
ice

:::
rely

:::
on

:::
the

:::::::
retrieval

::
of

:::::
small

::::::
surface

::::::::
elevations

:::::::
slightly

:::::
higher

::::
than

:::
sea

:::::
level

::::
while

:::::::::
freeboard

::
of

::::::
thicker

:::
ice

::
is
:::::
much

:::::
larger

::::::::::::::::::
(Ricker et al., 2014).

::
As

::
a
:::::::::::
consequence,

:::
the

:::::::
relative

::::::::::
uncertainty

::::::::
increases

::::
over

:::
thin

:::
ice,

:::
as

:::::::::::
measurement

:::::::::::
uncertainties

::
do

:::
not

::::::::
decrease

::::
over

::::::
thinner

:::
ice.

:::::
Note

:::
that

:::
the

::::
CS2

:::::::::::
uncertainties

::::::
shown

::::
here

::::::::
represent

:::::::::::
observational

::::::::::
uncertainties

:::::
only.

:::::::::
Systematic

:::::
errors

::
as
:::::::::
associated

::::
with

:::
the

:::::
usage

::
of

::
a
::::
snow

:::::::::::
climatology

::
or

:::
due

::
to

:::::::
variable

:::::
snow5

:::::::::
penetration

:::
will

:::::::
increase

:::
the

::::::::::
uncertainty

::
of

:::::::
altimetry

:::::
based

::::::::::
thicknesses

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Ricker et al., 2014; Kwok, 2014; Ricker et al., 2015; Armitage and Ridout, 2015).

:::
Due

::
to
:::
the

::::::::
different

:::::
update

:::::
rates

::
of

::::::
sea-ice

::::::::
thickness

:::::::::::
observations,

::::
CS2

::::
grids

:::
are

::::::
usually

:::::
based

:::
on

::::
data

:::::::::
composites

::::
from

::::
one

::::::
month,

:::::
while

::::::
SMOS

:::::
based

::::::::
retrievals

:::::::
provide

::::
daily

::::::::
complete

::::::::
coverage

::
of

::::
the

:::::::::
ice-covered

::::::
ocean

::
up

:::
to

:::::
about

:::::
85�N.

::::::
Figure

::
1

::::::::
compares

::::::
weekly

::::::
means

::
of

::::
CS2

:::
and

::::::
SMOS

:::
for

:::::::::
November

:::::
2015

:::
and

::::::
March

:::::
2016.

:::::
While

:::::
valid

::::::
SMOS

:::
ice

::::::::
thickness

::::::::
estimates10

::
are

::::::
found

:::::
mostly

:::
in

::
the

::::::::
marginal

:::
ice

:::::
zones,

:::
the

::::
CS2

:::
ice

::::::::
thickness

:::::::
retrieval

:::::
covers

::::::
major

::::
parts

::
of

:::
the

:::::
Arctic

:::::
MYI.

::
In

::::::::::
November,

:::::
during

:::
the

:::::::::
freeze-up,

::::::
SMOS

::::::::
retrievals

:::::
cover

:::::
major

:::::
parts

::
of

:::
the

:::::::
Beaufort

::::
Sea,

:::::::::
Chuckchi

::::
Sea,

:::
and

::::
East

:::::::
Siberian

::::
Sea.

::::::::
Towards

::::::
spring,

::::
due

::
to

::::::::
continued

:::
ice

::::::
growth

::
in

:::::
these

::::::
regions,

:::
the

:::::::
regions

::::
with

:::::
SMOS

::::::::
retrievals

::::::
retreat

::::::::::
southwards,

:::::::
covering

:::::
major

:::::
parts

::
of

:::
the

::::::
Bering

:::
Sea

:::
and

:::
the

::::
Sea

::
of

:::::::
Okhotsk

::::::
(Figure

::::
1b).

:

:::::
Figure

::
3

::::::::
illustrates

:::
the

:::::::
number

::
of

::::
valid

::::
grid

::::
cells

:::
of

::
the

:::::::
weekly

:::::
means

:::
as

:::::
shown

::
in
::::::
Figure

::
1.

::::
The

::::::
number

:::
of

:::
grid

:::::
cells

::::
with15

::::::::
co-located

::::::
SMOS

::::
and

::::
CS2

::::::::
estimates

::
is

::::
less

::::
than

:::::
2000,

:::::
while

:::
the

:::::::
number

::
of

::::
grid

::::
cells

::::
that

::::::
contain

::::::::
thickness

::::::::
estimates

:::::
from

:::
CS2

:::
or

::::::
SMOS

::::
only

:
is
:::::
about

:::::
5000,

:::::::::::
highlighting

:::
the

:::::::::::::
complementary

:::
data

::::::::
coverage

::
of

::::
both

:::::::
sensors.

:

2.1.4 OSI SAF Ice Concentration and Type

We use the OSI SAF sea-ice concentration (OSI-401-b) and type (OSI-403-b) products (Eastwood, 2012) in order to identify

grid cells that contain � 15 % sea ice and to classify them as first-year (FYI ) or multiyear (MYI) sea ice
::::
FYI

::
or

::::
MYI. The20

products are delivered daily, projected on a 10 km polar stereographic grid. To combine these data with the CS2 and SMOS

thickness grids, we calculate weekly means that are projected on the EASE2 25 km grid (Brodzik et al., 2012) to be co-located

with the thickness retrievals. The original ice type product contains grid cells that are flagged as ambiguous. We apply an

inverse-distance interpolation to those grid cells to obtain FYI or MYI flags for all ice-covered grid cells, because it is needed

for further processing steps.25

2.2 Weighted Mean

We compute the weighted mean sea-ice thickness Z using weekly CS2 and SMOS ice thickness grids during the target week:

Z =

Z
cs2/�

2
cs2 +Z

smos

/�2
smos

1/�2
cs2 +1/�2

smos

, (4)

where � represents the statistical
::::::::::
observational

:
uncertainty of the individual products. Figure 4 shows the weighted means

for weeks in November 2015 and March 2016. In contrast to the OI approach, presented in the next section, the weighted30

mean only provides thickness estimates where observations are available during the target week, leaving data gaps in the CS2

domain. In the following we refer to the weekly weighted mean product as WM.
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Figure 5. Optimal interpolation processing scheme.
::::
Week [i] represents the target week. The cycle is repeated for each week.

Figure 6. a) The scheme illustrates how the background field and the observation field are generated from weekly input grids.
::::
Week

:
[i] rep-

resents the target week. b) Interpolated
::::::
Typical

:::::::::
interpolated and low-pass filtered background field as it is used for the optimal interpolation.

2.3 Optimal Interpolation

To achieve complete spatial coverage, we use an OI scheme similar to Böhme and Send (2005) and McIntosh (1990) that

enables the merging of datasets from diverse sources on a predefined, so-called analysis grid. The input data are weighted
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based on their individual uncertainties and the modeled spatial covariances. OI minimizes the total error of observations and

provides ideal weighting for the observations at each grid cell
::
in

::
the

:::::
least

:::::
square

:::::
sense. In this section we present the processing

methods, on which our OI approach is based. Figure 5 shows the processing scheme, which will be described in more detail in

the following.

The OI scheme is used to get an objective estimate of values at observed or unobserved locations. The basic equation is:5

Z
a

=Z
b

+K[Z
o

�H(Z
b

)], (5)

where the vector Z
a

is the analysis field, i.e. each element represents a grid cell of the merged CS2SMOS ice thickness retrieval

to be produced. Z
b

is a background field vector and Z
o

the vector that contains all SMOS and CS2 observations. Here we use

already gridded, weekly mean CS2 and SMOS thickness estimates as observations, as shown in Figure 2
:
1 and as described

above. Using gridded data as observations reduces their statistical
:::::::::::
observational uncertainties and provides equally distributed10

observations, which improves the performance of the OI. In addition, gridding of raw data reduces the number of available

observations used for the OI, increasing the efficiency of the OI routine. We assume that the observations are static, i.e. remain

temporally coherent within a week and do not change due to ice deformation and motion. Therefore, we neglect any temporal

correlations. H is an operator that transforms the background field into the observation space. To be more specific, this is

realized by an inverse distance interpolation method. K represents a weight matrix and is derived from error covariances. We15

aim to retrieve weekly analysis fields, based on calendar weeks from Monday to Sunday. Wet and warm snow or ice prevent

the retrieval of summer sea-ice thickness estimates from CS2 or SMOS. Hence, the CS2SMOS product is limited to the period

from October/November
:::::::::::::
end-of-October to April.

2.3.1 The Background Field

The weekly CS2 ice thickness composite possesses large gaps resulting from the limited orbital coverage (Figure 2
:
1a). But20

for the OI approach, an Arctic-wide coverage is required for the background field. Therefore, we use a composite of retrievals

from adjacent weeks, to create a background field with nearly complete coverage for the Central Arctic at a certain target

week (Figure 6a). Here we combine data from the two weeks before and after the target week. Therefore, in contrast to CS2

near real-time sea-ice thickness retrievals (Tilling et al., 2016), products can only be released 2 weeks after data acquisition.

In order to ensure independence between observations and background field, CS2 data from the target week are not included25

in the background field. For the same reason, we use a SMOS weekly mean from the previous
:::
one

::::
week

::::::
before

:::
and

:::::
after

:::
the

:::::
target week. The initial background field is computed by a weighted mean using Eq. (4). Gaps in the weighted average are

interpolated by using a nearest neighbor scheme. In order to reduce noise, the background field is low-pass filtered with a

smoothing radius of 25 km, before it is applied in the OI algorithm (Figure 6b).

Since we use CS2 and SMOS retrievals for the background field beyond the target week and because the SMOS composite30

contains artifacts in coastal regions, we additionally use a weekly mean of the daily OSI SAF ice concentration product to

determine the ice coverage during the target week. Here, we apply a threshold of 15 % and only grid cells that exceed this

12



Figure 7. Scheme for the estimation of the correlation length scale ⇠ for a single grid cell for the target week 3-9 November 2014. a)

Background field with indicated area of interest (white box). b) Adjacent ice thickness grid cells within a radius of 375 km are binned into

annuli of distance and 4 quadrants. (c) Binned thickness estimates are used to calculate the structure function of each quadrant. ⇠ is estimated

by fitting an exponential function. d) Contour map of estimated correlation length scales for the considered area.

value will be considered as ice covered, which corresponds to the ice extent products provided by OSI SAF and the National

Snow and Ice Data Center (NSIDC).

2.3.2 Correlation Length Scale Estimation

The correlation length scale ⇠ controls the impact of a data point on the analysis grid point depending on their distance.

Considering the grid resolution of 25 km, correlation length here is used in the sense of large-scale thickness gradients. For5

example, the correlation length scale estimate is large in the center of a certain ice type regime with similar ice thickness (i.e.

level FYI). On the other hand, we expect a low ⇠ value at locations with strong thickness gradients, where distant observations

are not representative for local conditions. Figure 7 illustrates the estimation of ⇠ for a certain grid cell Z0 in the Lincoln Sea

during a week in November. In order to estimate ⇠, we consider the unfiltered background field Z
b

(Figure 7a) and define a

structure function ✏2. The structure function can be used to assess the change of ice thickness with distance and is related to10
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the normalized auto correlation function R(d,Q) as follows (Böhme and Send, 2005):

✏2(d,Q) = (Z 0
0 �Z 0

Q,d

)

2
= 2�2

Z

0 � 2�2
Z

0R(d,Q),

R(d,Q) = 1� ✏2(d,Q)

2�2
Z

0

. (6)

Quadrants Q are defined to accommodate the anisotropy of the spatial ice thickness distribution (Figure 7b). ✏2(d,Q) represents

the square differences between ice thickness of the grid cell and the ice thickness of the grid cells of binned 25 km distances5

d in a quadrant Q. Z 0
Q,d

is the background thickness, binned according to d and Q. Figure 7b reveals
::::::::
illustrates the annuli of

distance and the 4 Quadrants. �2
Z

0 are the corresponding mean variances of a certain quadrant. With Eq. (6) we then obtain the

auto correlation function R(d,Q), which is computed up to radius of 750 km (30 bins). In the next step, we fit a function of the

form:

C(d,⇠) =

✓
1+

d

⇠

◆
exp

✓
�d

⇠

◆
(7)10

to R(d,Q), using a least squares scheme, and obtain an estimate for ⇠. Figure 7c shows the calculated auto correlation function

R(d,Q) and the functional fit (Eq. (7)). A stronger decay of R(d,Q) occurs with rising deviation between Z0 and the thickness

at a certain distance in a certain quadrant. R(d,Q) can also become negative if ✏2(d,Q)/2 �2
Z

0 becomes >1. In order to improve

the fitting performance, we set R(d,Q) = 0 if R(d,Q) becomes < 0. Furthermore, ⇠ is rejected if the computation fails. Finally,

we average the ⇠ values from the 4 quadrants, as we do not use anisotropic weighting in the OI. In order to remove outliers15

and noise, the derived ⇠ grid is low-pass filtered with a smoothing radius of 25 km. Grid cells with failed computation are

interpolated by a nearest neighbor scheme afterwards. Figure 7d shows the spatial correlation length scales ⇠ for 3-9 November

2014. It highlights the sensitivity to changing thickness gradients as ⇠ decreases towards the coast of the Canadian Archipelago,

where higher sea-ice thickness gradients likely occur due to increased deformation.
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Figure 8. Example for CS2 and SMOS sea-ice thickness observations and their weighting to compose the CS2SMOS thickness estimate

based on optimal interpolation at a grid cell in the Central Arctic first-year ice in November 2016. The x-axis represents the distance of

observations from the analysis grid cell. Normalized K weights are represented by the area of the circles.

Figure 9. Optimal interpolation output grids for weeks in November 2015 and March 2016: The innovation field (left column) shows the

difference between background field and the CS2SMOS ice thickness (center column). The right column shows the relative uncertainty

associated with the optimal interpolation.
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2.3.3 Retrieving the Analysis Grid

The weight matrix K, which is needed for the computation of Z
a

, is retrieved by
::
In

:::::
order

::
to

::::::::
minimize

:::
the

::::
error

:::::::::::
covariances,

the background error covariance matrix B in the observation space , multiplied by
:
is

:::::::::
multiplied

::::
with

:
the inverted total error

covariance matrix
:
,
::::::
leading

::
to

:::
the

:::::::
optimal

::::::
weight

:::::
matrix

:::
K

::::::::::::::::::::::::::::::::::
(McIntosh, 1990; Böhme and Send, 2005):

K=BHT

(R+HBHT

)

�1, (8)5

where R is the error covariance matrix of the observations. In order to reduce computation expense we assume the following:

1. We neglect correlations of observation errors which means that R is a matrix with non-zero elements only on the

diagonal. These variances are represented by the respective SMOS and CS2 product uncertainties.

2. We assume that the influence of observations that are located far away from the analysis grid point can be neglected.

Therefore, instead of computing the entire covariance matrix, we only consider observations within a radius of influence.10

This radius is set to 250 km to gather just enough observations in regions with large gaps, for example over MYI between

two CS2 orbits where valid SMOS observations are not available.

3. To further reduce computation expense we limit the number of matched observations to 120, meaning that in the case of

more matches, only the 120 closest observations are considered.

4. We generally assume that all observations are unbiased.15

BHT and HBHT
:::
For

:::::::
practical

:::::::
reasons,

:::
we

:::::
apply

::
an

:::::::
iterative

::::::::::
computation

::::::
instead

::
of

::::::::
applying

:::
the

::::::
general

::::::
matrix

:::::::::
formulation

::
in

:::
Eq.

:
(5)

::
and

::::
Eq. (8).

::::
We

::::::::
iteratively

::::::::
calculate

::::
each

:::::::
element

:::::
z
am,n:::

of
:::
the

:::::::
analysis

:::::
field.

:::::
Vector

::::::::
elements

::::::
(bhT

)

i::::
and

::::::
matrix

:::::::
elements

::::::::
(hbhT

)

i,j:
are estimated using the correlation function in Eq. (7):

BHT
(bhT

)

i

:::::
=

0

@
1+

d(x
oi ,xai)

⇠

d(x
oi ,xam,n)

⇠
m,n

:::::::::::

1

A
exp

0

@�d(x
oi ,xai)

⇠

�d(x
oi ,xam,n)

⇠
m,n

::::::::::::

1

A ,

HBHT
(hbhT

)

i,j

:::::::
=

0

@
1+

d(x
oi ,xoj )

⇠

d(x
oi ,xoj )

⇠
m,n

:::::::::

1

A
exp

0

@�d(x
oi ,xoj )

⇠

�d(x
oi ,xoj )

⇠
m,n

::::::::::

1

A , (9)20

with the Euclidian distance function:

d(x,y) = kx� yk (10)

Here, x
oi and x

ai :::
x
oj represent the locations of the observations and the analysis grid points

::::::
matched

:::::::::::
observations

::::::
within

:::
the

:::::
radius

::
of

::::::::
influence.

::::::
x
am,n :::::

refers
::
to

::
the

:::::::
location

::
of
:::
the

:::::::
analysis

::::
grid

:::
cell. As a consequence of Eq. (9), the impact of a data point

decreases with increasing distance.25

Computing BHT and HBHT
:::::
BHT

::::
and

:::::::
HBHT allows the computation of the K weights .

:
K
:::::::
weights

::::
that

::::::::
minimize

:::
the

::::
error

::::::::::
covariances.

:::::
When

:::
the

:::::::
analysis

::::
field

::
is

::::::::
calculated

:::::::::
iteratively,

:::
K

:::
will

:::
be

:
a
::::::
vector,

:::::::::
containing

::
the

::::::::::::
corresponding

:::::::
weights

:::
for
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::
the

::::::::
matched

::::::::::
observations

::::::
within

:::
the

:::::
radius

:::
of

::::::::
influence,

:::::
while

::
in

:::
the

::::::
general

:::
OI

::::::::::
formulation,

:::
K

::
is

:
a
::::::
matrix.

:
Thus, we retrieve

the second part of Eq. (5), which is called innovation, the difference between the observation field and the background field.

This iterative procedure is accomplished for each analysis grid cell , leading to the complete analysis
::::::::
iteratively

:::
for

::::
each

:
grid

Z
a :::

cell
::
of

:::
the

:::::::
analysis

::::
field. The corresponding analysis error covariances are derived by:

�2
Za

= (I�KH)B, (11)5

where I is the identity matrix. Since we consider variances exclusively, we only calculate the diagonal elements of �2
Za

. Figure

8 illustrates how the analysis thickness is derived at a certain analysis grid point, considering distant grid cells with ice thickness

estimates of CS2 and SMOS. The K weights decrease with increasing distance to the analysis grid point as a consequence of

Eq. (9). In addition, the individual uncertainties affect the weighting according to Eq. (8). The considered grid cell is located at

the boundary between the CS2 and SMOS domain. In the following, we use domain as the regions where CS2 or SMOS data10

predominate. SMOS ice thicknesses of about 1 m reveal higher uncertainties than corresponding CS2 estimates (Figure 1
:
2)

and hence the K weights of CS2 estimates exceed the SMOS weights for higher ice thicknesses. Figure 9 shows the innovation

field, the merged CS2SMOS product and the analysis error field, which is the square root of the error variance (Eq. (11)), for

weeks in November 2015 and March 2016. The analysis error is a relative quantity with values between 0 and 1. It increases

where the weekly CS2 retrieval leaves gaps and where valid SMOS observations are not available, for example at the North15

Pole or over MYI. In this case the analysis depends on the accuracy of the background field, leading to increased uncertainties.

3 Evaluation of the Optimal Interpolation

In this section, we aim to evaluate the CS2SMOS product derived from the OI scheme by a comparison with the individual

satellite products. In addition, we carry out a cross validation experiment by omission of random data to test the OI method.

3.1 Comparison with Input Products20

Figure 10 illustrates the differences between CS2SMOS and the CS2 and SMOS retrievals from November 2015 to April

2016. The difference between CS2SMOS and SMOS weekly grids is shown in Figure 10a, limited to grid cells with SMOS

observations in the target week. Positive anomalies of up to 1 m occur mostly in the transition zone between the SMOS and the

CS2 domain where the thick ice in the CS2 retrieval leads to an increase of ice thickness in these grid cells with respect to the

SMOS data (Figure 10a). However, the general pattern remains the same during the season. Subtracting the CS2 monthly mean25

sea-ice thickness from the CS2SMOS product, represented by one week within each month, reveals substantial scattering

between -1 m and 1 m within the CS2 domain (Figure 10b). This is mainly caused by the fact that the monthly retrieval is

compared with the weekly product. During the different time spans, the regional sea-ice thickness distribution is subject to

ice drift, convergence and divergence, as well as thermodynamic ice growth. In addition, the OI algorithm evokes a low pass

filtering of the spatial thickness distribution due to the impact of distant grid cells, reducing the noise compared to the original30
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Figure 10. a) Difference between CS2SMOS and weekly SMOS retrieval for weeks in November 2015 and March 2016. b) Difference

between CS2SMOS thickness for weeks in November 2015 and March 2016, and the corresponding monthly CryoSat-2 thickness retrieval

CS2 product. Within the SMOS domain we find consistently negative anomalies, indicating a reduction of the CS2 ice thickness

representation due to the impact of the coincident SMOS retrieval.

Figure 11a shows ice thickness distributions of monthly means of CS2 and weekly SMOS and CS2SMOS ice thickness

retrievals for November 2015 and March 2016, illustrating the different thickness ranges of CS2 and SMOS retrievals. Table

2 presents the corresponding statistics for the entire winter season including the mean and the standard deviation of each5

month or week respectively. The CS2 retrieval lacks sensitivity for thin ice (< 0.5 m) over the entire season. The gap in this

thickness range can be closed by the SMOS retrieval. While the mean thickness of the CS2 retrieval consistently grows from

1.46 m in November to 1.90 m in April, the SMOS thickness mean remains at about 0.5 m after an increase from November

to December. Due to the increasing uncertainties of the SMOS product towards thick ice, the
:::::::::
distribution frequency steeply

drops at about 1 m for each month. Therefore, the SMOS mean thickness is mostly affected by the boundary condition at about10

1 m in conjunction with thermodynamic ice growth and the newly formed ice (< 0.1 m). The thickness distributions show

the capability of the CS2SMOS product to combine the complementary ice thickness ranges. As a consequence, the standard

deviation of the merged product ranges between 0.8 m (December) and 0.99 m (April), and therefore exceed
:::::::
exceeds the

standard deviations of the individual products that reach maximum values of 0.78 (CS2) and 0.38 (SMOS) in April. The scatter

diagrams in Figure 11b illustrate the thickness differences between CS2SMOS and the two individual products, with respect to15

the maps shown in Figure 10. Using the SMOS data reduces the thickness in the CS2SMOS product below 1m compared to the
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Figure 11. a) Sea-ice thickness distributions of CryoSat-2, SMOS, and CS2SMOS retrievals for November 2015 and March 2016. CS2SMOS

is represented by one week in the middle of a month, while the CryoSat-2 and SMOS retrievals are monthly means. b) Scatter diagrams

illustrating the ice thickness differences between CS2SMOS and the individual satellite retrievals of CS2 and SMOS, for November 2015

and March 2016.

CS2 retrieval. The comparison between CS2SMOS and SMOS shows increasing scattering with rising thickness. As shown in

Figure 10, this originates from the transition zone between the CS2 and SMOS domain.

3.2 Cross Validation Experiment

In order to test the robustness of the OI algorithm, we carry out a cross validation. We randomly remove grid cells of obser-

vations from the target week (see Figure 5 and 6), with experiments for exclusion of 10% (Figure 12a), 25% (Figure 12b) and5

50% (Figure 12c) of both CS2 and SMOS input grid cells. In the fourth case, all data contained in a box in the Western Arctic

are withdrawn (Figure 12d). The box intentionally covers both the SMOS and the CS2 domain. After the data omission, the OI

algorithm is applied using the reduced target week data set. The maps show the difference between the retrieved CS2SMOS
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Figure 12. Cross-validation experiment
:::
for

::::::::
November

::::
2015, showing the difference between CS2SMOS ice thickness, gridded CryoSat-2

and SMOS observations (OBS) that have been separated in advance as different fractions/areas of withdrawn data: a) 10%, b) 25%, c) 50%,

and d) Box. The maps show the withdrawn data subtracted from the CS2SMOS product. The histograms show the differences according

to the maps, indicating mean and standard deviation (Sdev) of the differences. Scatter diagrams indicate the root mean square deviation

(RMSD).

sea-ice thickness and the withdrawn thickness data for each case. Compared to the SMOS domain, the ice thickness in the

CS2 domain in the Central Arctic (Figure 2
:
1) reveals a higher level of noise with deviations of up to 1 m. On the other hand,

the SMOS domain shows a slightly negative shift of up to 10 cm in some areas.
:::
This

::::
can

::
be

:::::::::
explained

::
by

:::
the

::::::::
different

::::
data

::::::::
coverages.

::::
We

::::::
truncate

:::
the

::::::
SMOS

:::::::
retrieval

::::
over

:::::
thick

:::
ice,

:::::
since

::
the

:::::::
method

::::
does

:::
not

:::::
apply

:::
for

::::
thick

::::
ice.

::
On

:::
the

:::::
other

:::::
hand,

:::
the

:::
CS2

:::::::
retrieval

::
is
::::
used

::::
over

:::
the

:::::
entire

::::::::
thickness

::::::
range,

:::
but

::::
with

:::::
higher

:::::::::::
uncertainties

::::
over

::::
thin

:::
ice.

:::::::::
Therefore,

::::
CS2

::::::::
thickness

::::
over5

:::
thin

:::
ice

::
is

::::::
mostly

:::::::
reduced

::
by

:::
the

::::::
SMOS

::::::::
retrieval,

:::::
while

::
in

:::::::
contrast,

:::
this

::
is
::::::
barely

:::
the

::::
case

::
for

::::::
SMOS

::::
data

::::
over

:::::
thick

:::
ice,

:::::
since

:
it
::
is

:::::::
cropped

:::::
there.

::::::
Hence,

::::
due

::
to

:::
the

:::::::
optimal

:::::::::::
interpolation,

:::::
there

::::
will

::
be

::::::
always

::
a
:::::::
negative

::::
bias

::
in

:::
the

::::::
SMOS

:::::::
domain

:::::
when

:::::
doing

:::
the

:::::
cross

:::::::::
validation

:::::::::
experiment

::::
with

:::
the

:::::::
original

::::
input

::::
data

:::::
from

::::
CS2

:::
and

::::::
SMOS.

:

The general pattern remains the same in all cases, independent of the fraction of data that are withdrawn in advance. The

shape of the histograms of the differences indicates a normal distribution with similar standard deviations between 14 and 1710
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Table 2. Arctic-wide mean and standard deviation (sdev) of the merged product (CS2SMOS), the individual CryoSat-2 (CS2) and Soil

Moisture and Ocean Salinity (SMOS) retrievals for the winter season 2015/16.

Mean (m) Nov Dec Jan Feb Mar Apr

CS2SMOS 1.16 1.19 1.22
:::
1.23 1.29 1.36 1.34

:::
1.35

:

CS2 1.46 1.53 1.65 1.66 1.83 1.90

SMOS 0.45 0.58 0.51 0.49 0.48 0.47

Sdev (m)

CS2SMOS 0.88 0.8
:::
0.81

:
0.81 0.92 0.96

:::
0.97 0.99

CS2 0.76 0.76 0.72 0.73 0.75 0.78

SMOS 0.33 0.36 0.38 0.37 0.36 0.38

::
18

:
cm. The mean differences are between -2 and -3 cm , which can mostly be attributed to the SMOS domain indicated by

the difference maps. The reason is likely the fact that the SMOS background is one week out of phase with the observations

(Figure 6), which could cause a small negative bias due to the advancing ice growth. However, in contrast to CS2, the weekly

SMOS data coverage during the target week is complete and therefore, this negative bias should not affect the CS2SMOS

sea-ice thickness retrieval.
::
for

:::
the

::::
first

:::::
three

::::
cases

::::::
where

::::
data

:::::
points

:::::
have

::::
been

:::::::::
withdrawn

:::::::::
randomly,

:::
and

::
1
:::
cm

::::::
where

:
a
::::
box5

:::
has

::::
been

:::::::::
separated.

:
The root mean square deviation (rmsd) is 22-24

::::
23-25

:
cm for the first 3 cases and 14

::::
three

:::::
cases

::::
and

::
17

:
cm for the last casewhere we separated a box. The .

:::::
Here,

:::
the

:
smaller rmsd is likely caused by the lack of thicker ice in

the chosen box, which does not contain sea ice thicker than about 2 m. This experiment demonstrates the performance of the

applied algorithm. In particular, it shows that the background field mostly conserves the mean values even when co-located

observations are missing.10

4 Validation of the merged products with Airborne EM

For validation of WM and CS2SMOS, we use sea-ice thickness measurements obtained during the SMOS-ice 2014 campaign

east of the Spitsbergen Archipelago and during the Canadian Arctic Sea Ice Mass Balance Observatory campaign in the

Beaufort Sea in April 2016. Surveys have been carried out with an airborne electromagnetic induction thickness sounding

device (EM-Bird) (Pfaffling et al., 2007; Haas et al., 2009; Hendricks, 2009) and are projected and averaged on a 25 km15

EASE2 grid as given by the satellite products. In addition to the mean AEM thickness in each grid cell, we also calculated

the modal AEM thickness. The AEM data set represents total thickness, comprising snow + sea-ice thickness. Therefore, we

add the climatological snow depth (
:::::::
modified

:
W99) to the satellite products. Figure 13 shows the comparison between AEM

ice thickness measurements and 4 satellite products at the two validation sites, Beaufort Sea (Figure 13a) and Barents Sea

(Figure 13b). The 4 satellite products are represented by CS2SMOS, WM, SMOS, and CS2. The scatter diagrams illustrate20
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Figure 13. Comparison of satellite retrievals with airborne EM thickness measurements (AEM) over a mixed first-year/multiyear ice regime

in the Beaufort Sea in April 2016 (a) and over thin ice in the Barents Sea east of Spitsbergen in March 2014 (b). AEM data are compared with

optimal interpolation product (CS2SMOS), the weighted mean (WM), the SMOS retrieval, and the monthly CryoSat-2 thickness retrieval

(CS2). AEM measurements are averaged on the 25 km EASE2 grid, providing mean and modal total thickness within a grid cell.
::::
AEM

::::::::::
measurements

::
in

:::
the

:::::
scatter

::::
plots

:::
are

:::::
capped

::
at

:
5
::
m,

:::::
while

::
in

:::
(a),

:::
one

::::
mean

:::::
AEM

:::
grid

::::
value

::::::
exceeds

:::
the

::::
limit.

the difference between the satellite products and the corresponding mean and modal AEM thickness. Statistics resulting from

Figure 13 are given in Table 3.
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Table 3. Statistics of the comparison of satellite retrievals with airborne EM thickness measurements (AEM), corresponding to Figure 13.

For each case we consider both the AEM modal thickness (AEM mode) and the AEM mean thickness (AEM mean). For the mean bias,

AEM measurements are subtracted from the satellite retrievals. rmsd represents the root mean square deviation and r the Pearson correlation

coefficient.

Beaufort Sea rmsd mean bias r

(m) (m)

CS2SMOS AEM mean 1.56
:::
1.57 -0.86 0.48

AEM mode 1.03 0.11 0.36

WM AEM mean 1.49 -0.57 0.35

AEM mode 1.13 0.30 0.26

SMOS AEM mean 1.16 -0.38 0.37

AEM mode 0.75 0.19 0.46

CS2 AEM mean 1.27 -0.17 0.52

AEM mode 1.33 0.80 0.39

Barents Sea rmsd mean bias r

CS2SMOS AEM mean 0.30
:::
0.31 -0.25 0.65

:::
0.61

AEM mode 0.26
:::
0.27 -0.11 0.60

:::
0.56

WM AEM mean 0.27 -0.17 0.73

AEM mode 0.27 -0.05 0.63

SMOS AEM mean 0.30 -0.24 0.7

AEM mode 0.27 -0.11 0.67

CS2 AEM mean 0.97 0.82 -0.35

AEM mode 1.11 0.95 -0.35

4.1 Beaufort Sea, April 2016

On April 9 and 10, 2 AEM flights were carried out with a fixed wing DC3-T aircraft (Figure 13a). The AEM measurements

indicate high mean ice thickness variability ranging between 0.2 m and more than 5 m. Comparing the mean (2.2 m) and modal

thickness (1.2 m) of the entire data set indicates substantial deformation. Thickness distribution and OSI SAF ice type data

suggest two ice types. First-year ice, reaching a modal thickness of up to 1 m, and multiyear ice with a modal thickness ranging5

between 2 m and 4 m. The presence of two ice types and the drift along the Beaufort Gyre (Petty et al., 2016) make this region

challenging for satellite observations, which are limited in spatial and temporal resolution. Especially scattered thick multiyear

ice floes that drift along the Gyre might not be captured by the OSI SAF ice type product, allowing for SMOS thickness

estimates in MYI. Therefore, CS2SMOS, WM and SMOS underestimate the mean ice thickness by up to 0.86 m (CS2SMOS).

On the other hand, the modal ice thickness is slightly overestimated by up to 0.3 m (WM). It is important to note that WM10
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and SMOS do not provide a full data coverage. The SMOS data, for example, usually only cover first-year ice. This is also the

reason why SMOS exhibits the smallest rmsd for mean and modal thickness (1.16 m and 0.75 m). However, scatter diagrams

show good agreement of AEM data and CS2SMOS, WM and SMOS retrievals within the first-year ice, up to about 1.2 m thick

ice (Figure 13). CS2 shows the lowest bias (-0.17 m) for the mean ice thickness, but the highest for the modal thickness. The

scatter diagrams also indicate that CS2 is not able to capture high thickness gradients due to the presence of scattered heavily5

deformed multiyear ice, which is transported along with the Beaufort Gyre. As discussed above, the usage of SMOS data in

CS2SMOS and WM leads to a stronger underestimation of mean ice thickness of deformed multiyear sea ice, compared to

CS2. But it substantially improves the representation of first-year ice thickness. The comparison between WM and CS2SMOS

shows that in areas where weekly observations are available, both retrievals show similar agreement with AEM measurements.

4.2 Barents Sea, March 201410

Between March 19-26, 8 AEM flights were carried out by a helicopter based on the Norwegian research vessel Lance

(King et al., 2016)
:::::::::::::::
(King et al., 2017) (Figure 13b). In contrast to the Beaufort Sea data, these data contain first-year ice only.

Moreover, the degree of deformation is lower, indicated by only 0.1 m difference between mean and modal thickness of the

entire data set. For CS2, the rmsd is 0.97 m for the AEM mean thickness and 1.11 m for the AEM modal thickness, indicating

a slightly better representation of the mean thickness in the CS2 product. However, scattering is high and the mean bias of15

0.82 m with respect to the mean AEM thickness suggests a strong bias towards thicker ice. Such errors might originate from

erroneous sea-surface height interpolation along the CS2 orbits
:
as

::::
well

::
as
:::::
from

:::::::
off-nadir

::::
lead

:::::::
ranging

:::
and

::::::::
retracker

:::::::::
limitations

::::::::::::::::
(Ricker et al., 2014). The SMOS and CS2SMOS retrievals are almost identical for that region, which is caused in part by the

better coverage of the SMOS retrieval in that region. In addition, this area is dominated by thin ice, leading to a higher weighting

of the SMOS retrieval due to the lower uncertainties (Figure 1
:
2). The scatter diagrams reveal a significantly better agreement20

of the AEM mean thickness measurements with the CS2SMOS, WM and SMOS retrievals (rmsd = 0.27-0.30
::::
-0.31

:
m, r =

0.65
:::
0.61-0.73) than with the CS2 retrieval (rmsd = 0.97, r = -0.35).

::::::
Hence,

:::
the

::::::::
reduction

::
in
:::::

rmsd
::::::::::
considering

:::::::::
CS2SMOS

:::
or

::::
WM

::::::::
compared

::
to

::::
CS2

::
is

::::::
roughly

:::
0.7

:::
m. The observed bias with respect to the mean AEM thickness is -0.25 m for CS2SMOS,

-0.17 for WM, and -0.24 m for SMOS, suggesting a bias towards thinner ice. The maps and scatter diagrams indicate that the

CS2SMOS, WM and SMOS retrievals capture small thickness gradients visible in the AEM thickness data. This comparison25

provides evidence that using SMOS data in areas with a thin ice regime will reduce the rmsd and the mean bias when compared

to the CS2 product.

5 Conclusions

We presented methods to carry out the first joint data merging of CryoSat-2 (CS2) sea-ice thickness fields and thin ice thickness

estimates obtained from the L-Band radiometer onboard the Soil Moisture and Ocean Salinity (SMOS) satellite. While CS230

lacks the capability to observe thin ice, SMOS is restricted to ice regimes thinner than about 1 m. We used two approaches for

merging CS2 and SMOS ice thickness data: a weighted mean and an optimal interpolation scheme (OI) based on weekly CS2
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and SMOS ice thickness grids. While the weighted mean product (WM) only provides estimates at grid cells where observa-

tions are available, the OI product (CS2SMOS) provides weekly Arctic-wide sea-ice thickness estimates with corresponding

uncertainty estimates. We have shown that the merged products have the capability to allow for weekly thickness estimates that

are sensitive to the entire thickness range, using the complementary sensitivity of the individual products to different thickness

regimes. Moreover, the weekly merged products benefit from increased coverage at lower latitudes in conjunction with higher5

temporal resolution compared to the CS2 retrieval, which is important for observing ice growth during the freeze-up. In partic-

ular, the usage of the combined product will improve thickness retrievals in all areas with thin ice, which we have demonstrated

using case studies from the Barents Sea during spring 2014 and Beaufort Sea during spring 2016. Comparisons with airborne

electromagnetic thickness measurements (AEM) reveal a reduced
::::::::
reduction

::
in

:
root mean square deviation of about 0.7 m for

CS2SMOS and WM, compared to the CS2 thickness retrieval in the Barents Sea. Moreover, the comparison shows that re-10

trievals that use SMOS data seem to capture small thickness gradients in thin ice regimes, whereas the CS2 retrieval is very

noisy. In the Barents Sea, the CS2 retrieval overestimates mean thin ice thickness by 0.8 m, while CS2SMOS, WM and SMOS

underestimate by about 0.2 m. The comparison with the AEM data has also revealed that WM represents a good estimate in

regions where weekly data of SMOS and CS2 are available. For the observation of thicker multiyear ice (> 1 m) ,
:::
and

::::::
mixed

::
ice

:::::::
regimes

:
as in the Beaufort Sea 2016,

:::
the CS2 provides the best estimates

::::::
product

:::
has

:::
the

::::::
lowest

::::
bias, although limitations15

in capturing high thickness gradients due to heavily deformed ice exist. CS2SMOS, however, exclusively provides weekly ice

thickness estimates covering the entire Arctic and combining CS2 and SMOS data. The OI approach used in this study can be

adopted to merge sea-ice thickness or freeboard data sets derived from other satellite missions, such as the recently launched

European Space Agency mission Sentinel-3, which carries a Ku-band radar altimeter similar to SIRAL onboard CS2.

6 Data availability20

The weekly updated CS2SMOS product, including the weighted means (WM), and the monthly updated CryoSat-2 product

are provided at http://www.meereisportal.de. The SMOS ice thickness data are provided at http://icdc.cen.uni-hamburg.de.

Sea-ice concentration and Sea-ice type data are provided by OSISAF via http://osisaf.met.no/p/ice/. Barents Sea AEM data are

available via doi.org/10.21334/npolar.2016.ee8f4f8d.
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