Response to Interactive comment on “A Weekly Arctic Sea-Ice Thickness Data Record
from merged CryoSat-2 and SMOS Satellite Data” by Robert Ricker et al.

Anonymous Referee #2

This is an interesting study which merges two sea ice thickness data sets from CryoSat- 2
and SMOS since both provide distinct information on sea ice of different thickness ranges.
The study is well organized and described. Some of the main points | suggest to address
are listed below.

- A detailed description of uncertainties needs to be included since it is a key component to
the weighting of the different data sets. In particular the CryoSat-2 uncertainty is not dis-
cussed in the manuscript but should be.

We thank the reviewer for the thoughtful comments, which significantly helped to improve
the manuscript. We agree that the information about the CryoSat-2 uncertainties are spar-
se and since they are crucial for the methodical approach, we added more information in
section 2.

In the following we briefly list major changes in the document:

- We shifted the discussion about the complementarity of both thickness products from
the Introduction to Data and Methods and inserted a new subsection there: 2.1.3 Com-
plementarity of CryoSat-2 and SMOS Sea-Ice Thickness Products. Therefore, also
the order of Figure 1 and Figure 2 has switched.

- Figure 1 has been updated, we accidentally plotted the SMOS relative uncertainty of
March also for November. This has been fixed.

- For the background field, we now also included SMOS retrievals from the week after the
target week in order to avoid a potential bias. As a consequence, also Figures 5 and 6
have been updated. However, the effect is minimal as shown by the changes of statis-
tics in Tables 2 and 3.

- Figure 12 has been updated, since we found a bug in the plotting routine. Therefore, va-
lues have slightly changed.

NOTE: All tracked changes in the manuscript are attached to this response letter.

- The abstract and conclusion both state that a 0.7 m reduction in RMS deviation in the
Barents Sea was observed though it is unclear where this number came from. The data
from the Beaufort Sea should be mentioned as well in the abstract if that from the Barents
Sea is provided.

This number refers to Table 3, where the difference between rmsd (AEM-CS2SMOS) and
rmsd (AEM-CS2) is about 0.7 m for the mean ice thickness in the Barents Sea. It is true
that the 0.7 m reduction in rmsd ist not stated explicitly in the test and therefore we added
a sentence. Moreover, we now also refer to the results in the Beaufort Sea in the conclusi-
on and the abstract.

- I'm not sure if data exists, but a comparison between the CS2SMOS data and the AEM
data would be interesting towards the outer edge of the ice pack where one might expect a



different weighting between CS2 and SMOS than in the comparisons done in the central
Arctic.

Unfortunately, AEM measurements mainly exist for the central Arctic. However, for this re-
ason we have chosen Barents Sea and Beaufort Sea as validation sites. The Barents Sea
is dominated by the SMOS ice thickness product, while in the Beaufort Sea, we find scat-
tered multiyear ice floes (up to 5 m thickness) within an area of about 1 m thick first-year
ice. Such an area with mixed ice types and high drift rates is very challenging but a perfect
test case for the data merging, since both data products contribute significantly.

- Some minor grammar mistakes need to be fixed throughout the text.

Thank you for pointing on this. We tried to improve the grammar throughout the manu-
script.

P2L3-4: CS-2 has been used to retrieve thickness over first year ice as well, the Wing-
ham reference doesn’t necessarily support the exclusion of this as well.

We added a sentence here and now also state that CS2 can be used for retrieving first-
year ice thickness, though the uncertainties over thin ice regimes and in the marginal ice
zones are considerably high.

Figure 1: How are the uncertainties derived? This needs to be explained in the text.

We added further explanation in section 2. Moreover, we followed the suggestions of re-
viewer #1 and moved the discussion about uncertainties and product complementarity to
section 2.

P6 egn 3: Is a freeboard correction due to the lower speed of light in snow applied?
Yes, such a correction is applied. We added a short note in the text.

P8L2-3: Given the need for cold temperatures, was a mask applied for this or were certain
time periods with the data excluded? P10L15: It is stated that the CS-2 data are used from
October/November, but what is the starting date used or does it vary? It is not clear in the
text.

The SMOS data product is available from mid October on (October 15). CS-2 data are
processed from October on as well. Since we use calendar weeks, the starting date of the
merged product will vary but corresponds with the second week of SMOS thickness retrie-
vals (second half of October), since the first week of SMOS thickness retrievals is used for
the background field. We corrected the text and now state that the starting date is end of
October.

Eqn. 5: If your observation, analysis, and background fields are all ice thickness you
shouldn’t need the H operator.

The H Operator here only projects (interpolates) the grid cells of the background field
thickness onto the locations of the observations, which can be different. For example, the
SMOS (observations) are provided on a 12.5 km polarstereographic grid. Finally, H formal-
ly just ensures that for each point of the observational vector, we have exactly one (inter-
polated) point from the background field.



Section 2.3.1: It’s not clear to me why you need to construct a spatially continuous back-
ground field. If your uncertainties are dependent on distance then you can produce an
analysis from the CS-2 and SMOS data at any given point considering the distance bet-
ween the observations. Presumably this must have been done to fill in the pole hole.

The background field is needed as a “first guess” (see equation 5). For each observational
data point, a background value is needed. the pole hole of the background field is filled by
an inverse-distance interpolation. In other words, the observations of the target week are
used to “update” the background field. The background field is also important for the gaps
between orbits in the weekly CS-2 product. Without the background field, they would be
just filled by linear interpolation, causing significant biases.

P11L8: It was stated previously that the SMOS algorithm assumes a 100% ice con- centra-
tion otherwise the measurements are expected to be biased, yet you are using a 15% ice
mask in your data. What is the uncertainty introduced by this assumption and how does it
impact your retrieval?

This assumption leads to a underestimation of ice thickness in the merged product when
ice concentration is low. It is our goal to correct this effect in a future revision of the pro-
duct, but before, the relationship between low ice concentration and underestimation of
SMOS ice thickness needs to be investigated in more detail. Roughly, assuming 10 cm
SMOS ice thickness when ice concentration is about 70 %, the true ice thickness is rather
14 cm. However, the uncertainties in the ice concentration products make it difficult to cor-
rect for this accordingly.

Eqgns 8-9: | don’t understand these equations. What is H in this equation? Equation 9 is
defined using matrices on the left-hand side but as a single number on the right hand side,
it should be re-written to be mathematically correct.

Thank you for pointing on this. Indeed, on the right-hand side we refer to the elements of
the matrices on the left-hand side. We corrected this.

P14L18: What is the iterative procedure? Optimal interpolation shouldn’t involve an iterati-
ve method since the solutions are defined equations.

Thank you for reviewing the equations. Basically, the Ol can be accomplished just using
matrices but the they would become too large, which would prevent or significantly slowing
down computation on a common machine. However, the formal notation here is wrong and
we corrected this. The iterative procedure involves the iterative calculation of each analy-
sis grid point, instead of computing it in one step.

P15L31-32: How is the background field constructed over the pole hole since no data is
present there?

Here we use an inverse distance interpolation with a weighting power of the distance of 3.

Section 3.1: The mean ice thickness values presented, particularly those in Table 2, are for
the entire Arctic domain? It would be interesting to see the numbers presented for just the
central Arctic Ocean as well since this would give a basis of comparison for other ice
thickness data which are typically done for that region.

Yes, these values are for the entire Arctic domain. We agree that investigating the thick-
ness distributions of different regions would be interesting. This could be done in follow-on



studies. In this study, we want to focus on methodical approach. Moreover, we provide
these data on a public server, mean values for the central Arctic or any other regions can
be calculated by the user.
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Abstract. Sea-ice thickness on a global scale is derived from different satellite sensors using independent retrieval methods.
Due to the sensor and orbit characteristics, such satellite retrievals differ in spatial and temporal resolution as well as in the
sensitivity to certain sea-ice types and thickness ranges. Satellite altimeters, such as CryoSat-2 (CS2), sense the height of the ice
surface above the sea level, which can be converted into sea-ice thickness. Heweverrelative-Relative uncertainties associated
with this method are large over thin ice regimes. Another retrieval strategy-is-realized-by-method is based on the evaluation
of surface brightness temperature in L-Band microwave frequencies (1.4 GHz) with a thickness-dependent emission model,
as measured by the Soil Moisture and Ocean Salinity (SMOS) satellite. While the radiometer based method looses sensitivity
for thick sea ice (> 1m), relative uncertainties over thin ice are significantly smaller than for the altimetry-based retrievals. In
addition, the SMOS product provides global sea-ice coverage on a daily basis unlike the narrew-swath-altimeter data. This
study presents the first merged product of complementary weekly Arctic sea-ice thickness data records from the CS2 altimeter
and SMOS radiometer. We use two merging approaches: a weighted mean and an optimal interpolation scheme (OI). While
the weighted mean leaves gaps between CS2 orbits, OI is used to produce weekly Arctic-wide sea-ice thickness fields. The
benefit of the data merging is shown by a comparison with airborne electromagnetic induction sounding measurements. When
compared to airborne thickness data in the Barents Sea, the merged productsreveal-aredueed-product has a root mean square
deviation (rmsd) of about 0.7 m eompared-to-less than the CS2 retrieval-product and therefore demonstrate the capability to

enhance the CS2 retrieval-product in thin ice regimes. However, in mixed first-year/multiyear ice regimes as in the Beaufort
Sea, the CS2 retrieval shows the lowest bias.

1 Introduction

Sea ice is-an-essential-climate-variable-and-affects many climate related processes, such as heat transfer between ocean and
atmosphere or ocean circulation, but also marine operations (Meier et al., 2014). For decades, the variability and changes of the

ice covered region have been routinely observed by satellite remote sensing of sea-ice extent and area. However, the thickness
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of sea ice is a crucial parameter for the ice mass balance and is more difficult to observe. Recent satellite altimeter missions
such as ICESat or CryoSat-2 (CS2) demonstrated the capability to provide Arctic sea-ice thickness and volume estimates
(Kwok et al., 2009; Laxon et al., 2013). They are used to measure freeboard, the height of the ice or snow surface above
the water level, which can be converted into sea-ice thickness assuming hydrostatic equilibrium. CS2 was launched in 2010

and was primarily designed to measure the thickness of thick, perennial ice, sinee-but can also be used to retrieve first-year

ice thickness (Laxon et al., 2013). Nonetheless, the retrieval method has-targe-shows considerable uncertainties over thin ice
regimes {Wingham-et-al;-2006)and certainly in the marginal ice zones (Wingham et al., 2006; Ricker et al., 2014). On the other

hand, the Soil Moisture and Ocean Salinity (SMOS) mission, launched in 2009, provides brightness temperature observations

at microwave frequencies (L-band), which can be exploited for thin ice thickness retrieval (Kaleschke et al., 2012).
Kaleschke et al. (2010) and Kaleschke et al. (2015) drew-attention-to-demonstrated the complementary nature of the relative

uncertainties of CS2 and SMOS ice thickness retrieval methods. Ptgufe—l—shGW%fypiea%ﬂﬂeeftamﬁFmap%—mé«fhefe}aﬁve

The CryoSat-2 thickness sea-ice thickness product relies on accurate measurements of the height of the sea ice surface above the
water level and therefore, relative uncertainties are lowest-for-larger over thin ice (< 1 m);-ES2-relative-thickness-uneertainties

AN AANINAIAANAAAAANAR AN

are-smaleroverthickice andrise-asymptoticalty towards-thinnertee fess-than-. In contrast, the SMOS sea-ice thickness retrieval
relies on the sensitivity of the brightness temperature to sea-ice thickness. While accuracy is high over thin ice, sensitivit
ets lost over thick ice (> 1 MMWMMM%MWW%M

sm). Moreover, both sensor concepts have significantly different

swath widths and revisit times, and therefore provide different update rates of sea-ice thickness observations. While- €S2

are-found-mostly-in-the-marginaliee-zones; Kaleschke et al. (2015) suggest that due to their different spatiotemporal samplin,
and resolution, and because of the complementary uncertainty due to the GS%ieeLﬂﬁnelmeSHetﬂeva%eevefhﬁajeﬁpaﬁ&ef

measurement principle, a combination of both products has the capability to reduce uncertainties in relation to the individual
products.
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The spatial and interannual variability of sea-ice thickness is driven by dynamics and thermodynamics (Zhang et al., 2000;
Kwok and Cunningham, 2016). For an accurate description of the Arctic sea-ice thickness distribution, it is necessary that
thick and deformed ice as well as thin ice regimes are represented adequately. Moreover, particularly the formation of new
thin ice during the freeze-up characterizes a large area of the ice cover in autumn. In order to detect changes and interannual
variabilities in such areas, accurate thin ice thickness estimates with high temporal and spatial resolution are required.

Wang et al. (2016) evaluate six different sea-ice thickness products, including SMOS and CS2, and find that all satellite
products as well as the Pan-Arctic Ice-Ocean Modeling and Assimilation System (PIOMAS) overestimate the thickness of thin
ice compared to airborne laser altimetry retrievals of NASA’s Operation IceBridge. The smallest bias of 0.26 m over thin ice
has been found when using the SMOS product.

Considering the depieted-complementarity of CS2 and SMOS retrievals and the need for a better representation of thin ice
regimes in global-scale sea-ice thickness data products, the goal of this study is to provide a merged product of CS2 and SMOS
sea-ice thickness retrievals, which has the capability to eomplete-provide Arctic sea-ice thickness distributions over the entire
thickness range with reduced uncertainties. We also aim for a weekly update rate of the merged product. This ensures that we
obtain a sufficient coverage of CS2 observations over perennial sea ice, while at the same time, we benefit from the daily update
rates of SMOS observations in order to capture ice growth rates in thin ice regions during the freeze-up. We apply two different
merging schemes. The first is represented by a weighted mean, based on the individual uncertainties, which only provides
estimates at grid cells where weekly observations are available. The second approach uses an optimal interpolation scheme
(OD) for Arctic-wide estimates. Table 1 summarizes the input thickness products and the merged products, their temporal and

spatial resolution, as well as coverage and applicability depending on study purposes. In order to assess the improvement of

the merged products, we use airborne sea-ice thickness data te-and compare them with co-located data of the merged products.

This paper is outlined as follows: in section 2, we first present the individual sea-ice thickness products derived from CS2
and SMOS measurements, including detailed description of input data and highlighting the complementarity of both thickness
products. Then, we present methods to merge both sea-ice thickness data sets, based on a weighted mean and an optimal
interpolation approach. In section 3, the merged products are evaluated by a comparison with input products and by a cross
validation experiment, In section 4, the merged products are evaluated using airborne electromagnetic thickness sounding
measurements. Finally, conclusions are drawn in section 5.




Table 1. Summary of properties of input and output sea-ice thickness products in this study, including CryoSat-2 (CS2), SMOS, the weighted
mean (WM) and the OI product (CS2SMOS).

Product Temporal res.  Spatial res.  Coverage Notes and applicability

CS2 (monthly) 1 month 25 km Arctic wide For studies of multiyear ice and thick
first-year ice (> 1 m), high uncertain-

ties for thin ice and in the marginal-iee
regions where a snow climatology is
inadequate

CS2 (weekly) 1 week 25 km Gaps between For studies of multiyear ice and thick
orbits, sparse at  first-year ice (> 1 m) where measure-
lower latitudes ments are available, high uncertainties

for thin ice (< 1 m) and in the marginal

SMOS 1 day 12.5 km Arctic wide For studies of thin ice (< 1 m)

WM 1 week 25 km Gaps between For studies of multiyear ice and of thin
CS2 orbits ice, where measurements are available

CS2SMOS 1 week 25 km Arctic wide For Arctic-wide studies on the entire

thickness range, uses optimal interpola-

tion

2 Data and Methods

This section is structured as follows: first, a-deseription-of-the input data (Seetien2-H)~then-mergingsection 2.1) are presented
then the merging of weekly CS2 and SMOS data by applying a weighted mean based on the individual uncertainties with the

product referred to as WM (Seetion2:2);foHowed-by-merging-is described (section 2.2). Finally, the merging of weekly CS2
and SMOS data by applying an OI scheme with the product referred to as CS2SMOS is explained (section 2.3).

2.1 Input Data

We use the AWI CS2 product (processor version 1.2) (Ricker et al., 2014; Hendricks et al., 2016) and the SMOS sea-ice

thickness retrieval from the University of Hamburg (processor version 3.1) (Tian-Kunze et al., 2014; Kaleschke et al., 2016) as
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Figure 1. Example of weekly input data grids for November 2015 and March 2016. a) Gridded weekly CryoSat-2 retrievals. b) Gridded

weekly mean SMOS retrievals derived from daily data. SMOS data are rejected over multiyear ice and when uncertainties are more than 1

m. The background fields indicate first-year and multiyear ice coverage.

input ice thickness data. Auxiliary data of ice concentration and ice type were obtained from the Ocean and Sea Ice Satellite

Application Facility (OSI SAF).
2.1.1 CryoSat-2 Weekly Sea-Ice Thickness Retrieval

In the first step we use CS2 SIRAL Level-1b orbit data files that are provided by ESA. They contain geolocation information
and time of the Doppler beam formed radar echoes. SIRAL is operated in two different modes over sea ice. The Synthetic
Aperture Radar (SAR) mode covers major parts of the ice covered area, while the Interferometric Mode (SIN) is applied
mostly in coastal areas. Both modes serve for retrieving ice thickness, but must be processed separately, as we discard the
phase information of SIN waveforms (Kurtz et al., 2014).

The radar echoes (waveforms) are processed for each CS2 orbit according to Hendricks et al. (2016) and Ricker et al.
(2014). A 50% threshold-first-maximum retracker (Ricker et al., 2014; Helm et al., 2014) is used to obtain ellipsoidal surface
elevations (L), which are corrected for geophysical perturbations like tides and atmospheric effects (Ricker et al., 2016). Geoid

undulations and the mean sea-surface height (1/5'S) are removed by subtracting the Danish Technical University version 2015
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Figure 2. a) Typical monthly sea-ice thickness uncertainty maps of the CryoSat-2 and SMOS retrievals from November 2015 and March

2016. The SMOS thickness uncertainty is masked where uncertainty is > 1 m. b) Relative uncertainties from November 2015 and March
2016.

(DTUI1S) M S'S height:
Lyss=L—MSS. (1

Ice and water are spatially separated by the pulse peakiness of the CryoSat waveforms. This is based on the fact that radar
returns from surfaces that contain open water leads, i.e. openings in the ice pack, appear as specular echoes and can be
separated from diffuse echoes that contain reflections from sea ice only (Laxon et al., 2003). The lead elevations are used
to derive the instantaneous sea-surface height anomaly (S.S H A) by interpolation. Finally, the SSHA is subtracted from the ice
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surface elevations to retrieve the freeboard (F'b):

Fb=Lygs —SSHA. (2)

F'b is corrected for a lower wave propagation speed inside the snow layer and can be converted into sea-ice thickness (Z) by
assuming hydrostatic equilibrium (Laxon et al., 2003):

PW 4+ S Ps 3)

ZCSQZFb' : )
PW — P1 PW — P1

where S is the snow depth and pg, p1, and pw are the densities of snow, sea ice and sea water. S-S and ps are represented by the
modified Warren snow climatology (W99) (Warren et al., 1999)-S-, meaning that .S is reduced by 50 % over F¥Hfirst-year ice
(FYI) to accommodate the recent change towards a seasonal Arctic ice cover (Kurtz and Farrell, 2011). FYI and M¥+tmultiyear
ice (MYI) are separated by adopting the daily OSI SAF ice type product (Eastwood, 2012). We exclude CS2 measurements
over Hudson Bay and Baffin Bay as they are not located within the domain of the W99 climatology, refered to the area, which is

constrained by in-situ measurements from Soviet drifting stations and airborne landings from the 1950’s to 1990 (Warren et al.,
1999). In areas where no observations are available, the W99 polynomial fit is not reliable, being based only on extrapolation.
We use ice densities of 916.7 kg/m3 and 882.0 kg/m3 for FYI and MYI (Alexandrov et al., 2010), and 1024 kg/rn3 for the sea
water density. Z is calculated for each individual CS2 measurement along each orbit. All these retrievals are averaged on a 25
km EASE?2 grid (Brodzik et al., 2012) within one calendar week (Figure 21a).

CS2 sea-ice thickness uncertainties can be separated into observational uncertainties and systematic or bias uncertainties

Ricker et al., 2014). While observational uncertainties of individual measurements can be reduced due to spatial averagin

biases remain. The observational uncertainties of ice thickness retrievals from individual measurements contain uncertainties

caused by speckle noise, sea-surface height estimation and densities of ice and snow (Ricker et al., 2014). They can easily reach

values of > | m. but will be reduced to the range of centimeters by spatial averaging. Figure 2a shows typical CS2 observational
uncertainty maps for autumn and spring, mainly ranging between 0.1 m and | m. Here, data points are averaged on a 25 km
grid. The latitudinal dependency results from the denser orbit coverage towards the pole. In the marginal ice zones, when ice
concentration decreases, many openings in the sea ice cover can lead to an underrepresentation of sea ice. Moreover, when the
sea ice cover is characterized by many openings, so called snagging leads to increased uncertainties in the range measurements
(Armitage and Davidson, 2014). Biases mainly occur due to waveform processing, and the lack of representation of interannual
variability in the W99 snow climatology (Ricker et al., 2014).

2.1.2 SMOS Weekly Sea-Ice Thickness Retrieval

Thin sea-ice thickness has been retrieved from the 1.4 GHz (L-band) brightness temperatures measured by SMOS for the winter
seasons (15 Oct -15 Apr) from 2010 to present (Mecklenburg et al., 2016). The retrieval method consists of a thermodynamic
sea-ice model and a one-ice-layer radiative transfer model (Tian-Kunze et al., 2014). The resulting plane layer thickness is
multiplied by a correction factor assuming a log-normal thickness distribution. The algorithm has been used for the operational

production of a SMOS-based sea-ice thickness data set from 2010 on (Tian-Kunze et al., 2014). In this study we use the most
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Figure 3. a) Numbers of valid 25 km grid cells each month from November 2015 to April 2016. Here, ’valid’ grid cells are grid cells that

contain a valid thickness estimate. b) Spatial distribution of valid weekly thickness retrievals by CryoSat-2 and SMOS.

up-to-date version (v3.1) of ice thickness data set, which has been produced operationally since October 2016. The v3.1 data
for the previous winter seasons had been reprocessed using the same algorithm.

The v3.1 SMOS ice thickness data are based on v620 L1C brightness temperature data. Brightness temperatures (1'B) used
in the algorithm are the daily mean intensities averaged over incidence angles from 0° to 40°. The intensity is the average of
horizontally and vertically polarized brightness temperatures, equal to 0.5 (T'B,+1'B,). Over sea ice, the intensity is almost
independent of incidence angle. By using the whole incidence angle range of 0-40°, we can reduce the brightness temperature
uncertainty to about 0.5 K.

SMOS measurements are strongly influenced by Radio Frequency Interference (RFI), especially in the first two years after
its launch. In the previous processor RFI contaminated snapshots have been discarded using a threshold value of 300 K, ap-
plied either to T'Bj, or T'B,,. The new quality flags given in the v620 L1C data have been implemented to identify the data
contaminated by RFI, by sun, or by geometric effects to improve the quality of the radiometric data used for the version 3.1.

To estimate the bulk ice temperature (Ti..) and bulk ice salinity (Si.), which are the important input parameters in the
radiation model, we need surface air temperature and sea surface salinity (SSS) data as a boundary condition. 2m surface air
temperature is extracted from JRA-25 atmospheric reanalysis (Onogi et al., 2007). SSS data used in the retrieval results from an
integration of the MIT General Circulation Model (MITgcm) (Marshall et al., 1997), including interannually varying surface
forcing. From the daily surface salinity outputs from the model for the years 2002-2009, a weekly climatology was produced
(Tian-Kunze et al., 2014).

Brightness temperatures over sea ice are simulated with the sea-ice radiation model adapted from (Menashi et al., 1993;
Kaleschke et al., 2010, 2012). The T'B depends on the dielectric properties of the ice layer, which are a function of brine
volume (Vant et al., 1978). The brine volume is a function of S;. and Ti.. (Cox and Weeks, 1983). For a thin ice layer, the ice
temperature gradient within the ice can be assumed to be linear. The penetration depth of L-band in the sea ice depends on the
ice temperature and ice salinity. The retrieval algorithm works only under cold conditions. For the cold and less saline ice, the

maximum retrievable ice thickness from SMOS can be up to 1.5 m.
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Figure 4. Weighted means of CryoSat-2 and SMOS weekly means during the target week, produced from fields shown in Figure 21.

> it The SMOS uncertainty given in the

v3.1 product is estimated based on the uncertainty in the input parameters in the thermodynamic and radiation model as well as

in the thickness distribution function (Tian-Kunze et al., 2014). At present, the estimation was carried out for each parameter

- brightness temperature, ice temperature and ice salinity ;
modets(TFian-Kunze etals20+4)respectively, by keeping the other parameters constant. The uncertainty given in the product
is then the sum of uncertainties caused by each parameter. In v3.1, we also eonsider the-uncertainty caused-by-the-varied the
sigma in the lognormal ice thickness distribution function, which is used to convert plane layer ice thickness into heterogenous
layer mean ice thickness in the retrieval. The average ice thickness uncertainty caused by the distribution function is less than
10cm. A-This uncertainty is then added to the overall uncertainties caused by the brightness temperature, ice temperature
and ice salinity. Errors caused by the assumptions about fluxes and snow thickness have not yet been included. The 100% ice

coverage assumption made in the retrieval can cause underestimation of ice thickness if the condition is not met.

For the merging, daily SMOS retrievals are averaged weekly and are projected on an EASE2 25 km grid to be co-located
with the CS2 retrievals. Here, we only allow SMOS thickness values with a corresponding uncertainty < 1m which corresponds
to a maximum theoretical thickness of about 1.1 m. Furthermore we expect strong biases for the SMOS ice thickness in thicker
MYTI regimes. Therefore we use the OSI SAF ice type product (Eastwood, 2012) to discard any SMOS grid cells that are

indicated as MYI. The weekly composites are shown in Figure 21b.

2.1.3 Complementarity of CryoSat-2 and SMOS Sea-Ice Thickness Products

The two main factors that drive the complementarity between the CryoSat-2 and SMOS sea-ice thickness products are the data
coverage on the one hand, and the sea-ice thickness uncertainties on the other hand.

Figure 2 shows typical uncertainty maps and the relative uncertainties of CS2 and SMOS monthly mean thickness retrievals
from November 2015 and March 2016, While with SMOS relative uncertainties are lowest for thin ice (< 1 m), CS2 relative
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thickness uncertainties are smaller over thick ice and rise asymptotically towards thinner ice less than 1 m thick. This is due to
while freeboard of thicker ice is much larger (Ricker et al., 2014). As a consequence, the relative uncertainty increases over
thin ice, as measurement uncertainties do not decrease over thinner ice. Note that the CS2 uncertainties shown here represent
observational uncertainties only. Systematic errors as associated with the usage of a snow climatology or due to variable snow.

enetration will increase the uncertainty of altimetry based thicknesses (Ricker et al., 2014; Kwok, 2014; Ricker et al., 2015; Armitage and

Due to the different update rates of sea-ice thickness observations, CS2 grids are usually based on data composites from one
month, while SMOS based retrievals provide daily complete coverage of the ice-covered ocean up to about 85°N. Figure 1
compares weekly means of CS2 and SMOS for November 2015 and March 2016. While valid SMOS ice thickness estimates
are found mostly in the marginal ice zones, the CS2 ice thickness retrieval covers major parts of the Arctic MYT. In November,
during the freeze-up, SMOS retrievals cover major patts of the Beaufort Sea, Chuckehi Sea, and East Siberian Sea. Towards
spring, due to continued ice growth in these regions, the regions with SMOS retrievals retreat southwards, covering major parts
of the Bering Sea and the Sea of Okhotsk (Figure 1b).

Figure 3 illustrates the number of valid grid cells of the weekly means as shown in Figure 1. The number of grid cells with
co-located SMOS and CS2 estimates is less than 2000, while the number of grid cells that contain thickness estimates from
€S2 or SMOS only is about 5000, highlighting the complementary data coverage of both sensors.

2.1.4 OSI SAF Ice Concentration and Type

We use the OSI SAF sea-ice concentration (OSI-401-b) and type (OSI-403-b) products (Eastwood, 2012) in order to identify
grid cells that contain > 15 % sea ice and to classify them as first-year-(F¥l)-or-multiyear-(MYhH-seaieelF Y] or MYI. The
products are delivered daily, projected on a 10 km polar stereographic grid. To combine these data with the CS2 and SMOS
thickness grids, we calculate weekly means that are projected on the EASE2 25 km grid (Brodzik et al., 2012) to be co-located
with the thickness retrievals. The original ice type product contains grid cells that are flagged as ambiguous. We apply an
inverse-distance interpolation to those grid cells to obtain FYI or M YT flags for all ice-covered grid cells, because it is needed

for further processing steps.
2.2 Weighted Mean

We compute the weighted mean sea-ice thickness Z using weekly CS2 and SMOS ice thickness grids during the target week:

Zes2 /0352 + ZSWOS/Ugmos
1/0332 + 1/U§mos

Z= , @

where o represents the statistical-observational uncertainty of the individual products. Figure 4 shows the weighted means
for weeks in November 2015 and March 2016. In contrast to the OI approach, presented in the next section, the weighted
mean only provides thickness estimates where observations are available during the target week, leaving data gaps in the CS2

domain. In the following we refer to the weekly weighted mean product as WM.
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Figure 6. a) The scheme illustrates how the background field and the observation field are generated from weekly input grids. Week [i] rep-

resents the target week. b) Interpelated-Typical interpolated and low-pass filtered background field as it is used for the optimal interpolation.

2.3 Optimal Interpolation

To achieve complete spatial coverage, we use an OI scheme similar to Bohme and Send (2005) and McIntosh (1990) that

enables the merging of datasets from diverse sources on a predefined, so-called analysis grid. The input data are weighted
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based on their individual uncertainties and the modeled spatial covariances. OI minimizes the total error of observations and
provides ideal weighting for the observations at each grid cell in the least square sense. In this section we present the processing
methods, on which our OI approach is based. Figure 5 shows the processing scheme, which will be described in more detail in
the following.

The OI scheme is used to get an objective estimate of values at observed or unobserved locations. The basic equation is:
Za:Zb‘FK[Zo*H(Zb)]a (5)

where the vector Z,, is the analysis field, i.e. each element represents a grid cell of the merged CS2SMOS ice thickness retrieval
to be produced. Zj, is a background field vector and Z,, the vector that contains all SMOS and CS2 observations. Here we use
already gridded, weekly mean CS2 and SMOS thickness estimates as observations, as shown in Figure 2-1 and as described
above. Using gridded data as observations reduces their statistical-observational uncertainties and provides equally distributed
observations, which improves the performance of the OI. In addition, gridding of raw data reduces the number of available
observations used for the O, increasing the efficiency of the OI routine. We assume that the observations are static, i.e. remain
temporally coherent within a week and do not change due to ice deformation and motion. Therefore, we neglect any temporal
correlations. [ is an operator that transforms the background field into the observation space. To be more specific, this is
realized by an inverse distance interpolation method. K represents a weight matrix and is derived from error covariances. We
aim to retrieve weekly analysis fields, based on calendar weeks from Monday to Sunday. Wet and warm snow or ice prevent
the retrieval of summer sea-ice thickness estimates from CS2 or SMOS. Hence, the CS2SMOS product is limited to the period
from Oectober/Novemberend-of-October to April.

2.3.1 The Background Field

The weekly CS2 ice thickness composite possesses large gaps resulting from the limited orbital coverage (Figure 21a). But
for the OI approach, an Arctic-wide coverage is required for the background field. Therefore, we use a composite of retrievals
from adjacent weeks, to create a background field with nearly complete coverage for the Central Arctic at a certain target
week (Figure 6a). Here we combine data from the two weeks before and after the target week. Therefore, in contrast to CS2
near real-time sea-ice thickness retrievals (Tilling et al., 2016), products can only be released 2 weeks after data acquisition.
In order to ensure independence between observations and background field, CS2 data from the target week are not included
in the background field. For the same reason, we use a SMOS weekly mean from the-previous-one week before and after the
target week. The initial background field is computed by a weighted mean using Eq. (4). Gaps in the weighted average are
interpolated by using a nearest neighbor scheme. In order to reduce noise, the background field is low-pass filtered with a
smoothing radius of 25 km, before it is applied in the OI algorithm (Figure 6b).

Since we use CS2 and SMOS retrievals for the background field beyond the target week and because the SMOS composite
contains artifacts in coastal regions, we additionally use a weekly mean of the daily OSI SAF ice concentration product to

determine the ice coverage during the target week. Here, we apply a threshold of 15 % and only grid cells that exceed this
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Figure 7. Scheme for the estimation of the correlation length scale £ for a single grid cell for the target week 3-9 November 2014. a)
Background field with indicated area of interest (white box). b) Adjacent ice thickness grid cells within a radius of 375 km are binned into
annuli of distance and 4 quadrants. (c) Binned thickness estimates are used to calculate the structure function of each quadrant. £ is estimated

by fitting an exponential function. d) Contour map of estimated correlation length scales for the considered area.

value will be considered as ice covered, which corresponds to the ice extent products provided by OSI SAF and the National
Snow and Ice Data Center (NSIDC).

2.3.2 Correlation Length Scale Estimation

The correlation length scale £ controls the impact of a data point on the analysis grid point depending on their distance.
Considering the grid resolution of 25 km, correlation length here is used in the sense of large-scale thickness gradients. For
example, the correlation length scale estimate is large in the center of a certain ice type regime with similar ice thickness (i.e.
level FYT). On the other hand, we expect a low £ value at locations with strong thickness gradients, where distant observations
are not representative for local conditions. Figure 7 illustrates the estimation of £ for a certain grid cell Zy in the Lincoln Sea
during a week in November. In order to estimate £, we consider the unfiltered background field Z; (Figure 7a) and define a

structure function 2. The structure function can be used to assess the change of ice thickness with distance and is related to
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the normalized auto correlation function R(d, Q) as follows (Bohme and Send, 2005):

€(d,Q) = (25— 24, 4)* = 20%, — 203, R(d,Q),
(d, Q)

20’%/

R(d,Q)=1-

: (6)

Quadrants Q are defined to accommodate the anisotropy of the spatial ice thickness distribution (Figure 7b). €2(d, Q) represents
the square differences between ice thickness of the grid cell and the ice thickness of the grid cells of binned 25 km distances
d in a quadrant Q. Z’Q, 4 1s the background thickness, binned according to d and Q. Figure 7b reveals-illustrates the annuli of
distance and the 4 Quadrants. 02, are the corresponding mean variances of a certain quadrant. With Eq. (6) we then obtain the
auto correlation function R(d,Q), which is computed up to radius of 750 km (30 bins). In the next step, we fit a function of the

form:

C(d€) = (1 + Z) exp (j) )

to R(d,Q), using a least squares scheme, and obtain an estimate for £. Figure 7c shows the calculated auto correlation function
R(d,Q) and the functional fit (Eq. (7)). A stronger decay of R(d, Q) occurs with rising deviation between Z, and the thickness
at a certain distance in a certain quadrant. R(d, Q) can also become negative if €2(d, Q)/2 07%, becomes > 1. In order to improve
the fitting performance, we set R(d, Q) = 0if R(d, Q) becomes < 0. Furthermore, ¢ is rejected if the computation fails. Finally,
we average the ¢ values from the 4 quadrants, as we do not use anisotropic weighting in the OI. In order to remove outliers
and noise, the derived & grid is low-pass filtered with a smoothing radius of 25 km. Grid cells with failed computation are
interpolated by a nearest neighbor scheme afterwards. Figure 7d shows the spatial correlation length scales & for 3-9 November
2014. It highlights the sensitivity to changing thickness gradients as £ decreases towards the coast of the Canadian Archipelago,

where higher sea-ice thickness gradients likely occur due to increased deformation.
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Figure 9. Optimal interpolation output grids for weeks in November 2015 and March 2016: The innovation field (left column) shows the
difference between background field and the CS2SMOS ice thickness (center column). The right column shows the relative uncertainty

associated with the optimal interpolation.
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2.3.3 Retrieving the Analysis Grid

""" mputation is-retrieved by In order to minimize the error covariances,

the background error covariance matrix B in the observation space -multiplied-by-is multiplied with the inverted total error
covariance matrix, leading to the optimal weight matrix K (McIntosh, 1990; Bohme and Send, 2005):

K=BH"(R+HBH”) !, ®)
where R is the error covariance matrix of the observations. In order to reduce computation expense we assume the following:

1. We neglect correlations of observation errors which means that R is a matrix with non-zero elements only on the

diagonal. These variances are represented by the respective SMOS and CS2 product uncertainties.

2. We assume that the influence of observations that are located far away from the analysis grid point can be neglected.
Therefore, instead of computing the entire covariance matrix, we only consider observations within a radius of influence.
This radius is set to 250 km to gather just enough observations in regions with large gaps, for example over MYI between

two CS2 orbits where valid SMOS observations are not available.

3. To further reduce computation expense we limit the number of matched observations to 120, meaning that in the case of

more matches, only the 120 closest observations are considered.

4. We generally assume that all observations are unbiased.

BHT and HBHT For practical reasons, we apply an iterative computation instead of applying the general matrix formulation
in Eq. (5) and Eg. (8). We iteratively calculate each element 2, . of the analysis field. Vector elements bhT); and matrix

elements (hbh™), ; are estimated using the correlation function in Eq. (7):

BHT(th)Z _ 1 + d(womwaz) d(zoi’xam,,n) exp —d(i[?ol,lljai) _d(xomxam,n) ’
d(xy, 10, ) d(x0o,, X0, —d(z,, ,x,.) —d(x0,, T,
HBHT (707 = | 14 Woo) HToito)) ) o =0 20)) Zd(@o, o)) ) ©)
RN & ma S S S5
with the Euclidian distance function:
d(z,y) = |lz —yll (10)

Here, z,, and #5-1,, represent the locations of the smatched observations within the

radius of influence. z,, . refers to the location of the analysis grid cell. As a consequence of Eq. (9), the impact of a data point

decreases with increasing distance.

Computing BHTand HBHT-BH” and HBH” allows the computation of the K-weights—K weights that minimize the
error covariances. When the analysis field is calculated iteratively, K will be a vector, containing the corresponding weights for
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the matched observations within the radius of influence, while in the general OI formulation, K is a matrix. Thus, we retrieve
the second part of Eq. (5), which is called innovation, the difference between the observation field and the background field.

This iterative-procedure is accomplished for-each-anatysis-grid-eelleadingto-the-complete-anatysis-iteratively for each grid
“Zgcell of the analysis field. The corresponding analysis error covariances are derived by:

0% =(I-KH)B, (1)

a

where I is the identity matrix. Since we consider variances exclusively, we only calculate the diagonal elements of o-%a. Figure
8 illustrates how the analysis thickness is derived at a certain analysis grid point, considering distant grid cells with ice thickness
estimates of CS2 and SMOS. The K weights decrease with increasing distance to the analysis grid point as a consequence of
Eq. (9). In addition, the individual uncertainties affect the weighting according to Eq. (8). The considered grid cell is located at
the boundary between the CS2 and SMOS domain. In the following, we use domain as the regions where CS2 or SMOS data
predominate. SMOS ice thicknesses of about 1 m reveal higher uncertainties than corresponding CS2 estimates (Figure +2)
and hence the K weights of CS2 estimates exceed the SMOS weights for higher ice thicknesses. Figure 9 shows the innovation
field, the merged CS2SMOS product and the analysis error field, which is the square root of the error variance (Eq. (11)), for
weeks in November 2015 and March 2016. The analysis error is a relative quantity with values between 0 and 1. It increases
where the weekly CS2 retrieval leaves gaps and where valid SMOS observations are not available, for example at the North

Pole or over MYT1. In this case the analysis depends on the accuracy of the background field, leading to increased uncertainties.

3 Evaluation of the Optimal Interpolation

In this section, we aim to evaluate the CS2SMOS product derived from the OI scheme by a comparison with the individual

satellite products. In addition, we carry out a cross validation experiment by omission of random data to test the OI method.
3.1 Comparison with Input Products

Figure 10 illustrates the differences between CS2SMOS and the CS2 and SMOS retrievals from November 2015 to April
2016. The difference between CS2SMOS and SMOS weekly grids is shown in Figure 10a, limited to grid cells with SMOS
observations in the target week. Positive anomalies of up to 1 m occur mostly in the transition zone between the SMOS and the
CS2 domain where the thick ice in the CS2 retrieval leads to an increase of ice thickness in these grid cells with respect to the
SMOS data (Figure 10a). However, the general pattern remains the same during the season. Subtracting the CS2 monthly mean
sea-ice thickness from the CS2SMOS product, represented by one week within each month, reveals substantial scattering
between -1 m and 1 m within the CS2 domain (Figure 10b). This is mainly caused by the fact that the monthly retrieval is
compared with the weekly product. During the different time spans, the regional sea-ice thickness distribution is subject to
ice drift, convergence and divergence, as well as thermodynamic ice growth. In addition, the OI algorithm evokes a low pass

filtering of the spatial thickness distribution due to the impact of distant grid cells, reducing the noise compared to the original
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Figure 10. a) Difference between CS2SMOS and weekly SMOS retrieval for weeks in November 2015 and March 2016. b) Difference
between CS2SMOS thickness for weeks in November 2015 and March 2016, and the corresponding monthly CryoSat-2 thickness retrieval

CS2 product. Within the SMOS domain we find consistently negative anomalies, indicating a reduction of the CS2 ice thickness
representation due to the impact of the coincident SMOS retrieval.

Figure 11a shows ice thickness distributions of monthly means of CS2 and weekly SMOS and CS2SMOS ice thickness
retrievals for November 2015 and March 2016, illustrating the different thickness ranges of CS2 and SMOS retrievals. Table
2 presents the corresponding statistics for the entire winter season including the mean and the standard deviation of each
month or week respectively. The CS2 retrieval lacks sensitivity for thin ice (< 0.5 m) over the entire season. The gap in this
thickness range can be closed by the SMOS retrieval. While the mean thickness of the CS2 retrieval consistently grows from
1.46 m in November to 1.90 m in April, the SMOS thickness mean remains at about 0.5 m after an increase from November
to December. Due to the increasing uncertainties of the SMOS product towards thick ice, the distribution frequency steeply
drops at about 1 m for each month. Therefore, the SMOS mean thickness is mostly affected by the boundary condition at about
1 m in conjunction with thermodynamic ice growth and the newly formed ice (< 0.1 m). The thickness distributions show
the capability of the CS2SMOS product to combine the complementary ice thickness ranges. As a consequence, the standard
deviation of the merged product ranges between 0.8 m (December) and 0.99 m (April), and therefore exeeed-exceeds the
standard deviations of the individual products that reach maximum values of 0.78 (CS2) and 0.38 (SMOS) in April. The scatter
diagrams in Figure 11b illustrate the thickness differences between CS2SMOS and the two individual products, with respect to

the maps shown in Figure 10. Using the SMOS data reduces the thickness in the CS2SMOS product below 1m compared to the
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Figure 11. a) Sea-ice thickness distributions of CryoSat-2, SMOS, and CS2SMOS retrievals for November 2015 and March 2016. CS2SMOS
is represented by one week in the middle of a month, while the CryoSat-2 and SMOS retrievals are monthly means. b) Scatter diagrams
illustrating the ice thickness differences between CS2SMOS and the individual satellite retrievals of CS2 and SMOS, for November 2015
and March 2016.

CS2 retrieval. The comparison between CS2SMOS and SMOS shows increasing scattering with rising thickness. As shown in

Figure 10, this originates from the transition zone between the CS2 and SMOS domain.
3.2 Cross Validation Experiment

In order to test the robustness of the OI algorithm, we carry out a cross validation. We randomly remove grid cells of obser-
vations from the target week (see Figure 5 and 6), with experiments for exclusion of 10% (Figure 12a), 25% (Figure 12b) and
50% (Figure 12c) of both CS2 and SMOS input grid cells. In the fourth case, all data contained in a box in the Western Arctic
are withdrawn (Figure 12d). The box intentionally covers both the SMOS and the CS2 domain. After the data omission, the OI
algorithm is applied using the reduced target week data set. The maps show the difference between the retrieved CS2SMOS
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Figure 12. Cross-validation experiment for November 2015, showing the difference between CS2SMOS ice thickness, gridded CryoSat-2
and SMOS observations (OBS) that have been separated in advance as different fractions/areas of withdrawn data: a) 10%, b) 25%, c) 50%,
and d) Box. The maps show the withdrawn data subtracted from the CS2SMOS product. The histograms show the differences according
to the maps, indicating mean and standard deviation (Sdev) of the differences. Scatter diagrams indicate the root mean square deviation

(RMSD).

sea-ice thickness and the withdrawn thickness data for each case. Compared to the SMOS domain, the ice thickness in the
CS2 domain in the Central Arctic (Figure 21) reveals a higher level of noise with deviations of up to 1 m. On the other hand,

the SMOS domain shows a slightly negative shift of up to 10 cm in some areas. This can be explained by the different data

coverages. We truncate the SMOS retrieval over thick ice, since the method does not apply for thick ice. On the other hand, the
C82 retrieval is used over the entire thickness range, but with higher uncertainties over thin ice. Therefore, CS2 thickness over
thin ice is mostly reduced by the SMOS retrieval, while in contrast, this is barely the case for SMOS data over thick ice, since
itis cropped there. Hence, due to the optimal interpolation, there will be always a negative bias in the SMOS domain when
doing the cross validation experiment with the original input data from CS2 and SMOS.

The general pattern remains the same in all cases, independent of the fraction of data that are withdrawn in advance. The

shape of the histograms of the differences indicates a normal distribution with similar standard deviations between 14 and 17
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Table 2. Arctic-wide mean and standard deviation (sdev) of the merged product (CS2SMOS), the individual CryoSat-2 (CS2) and Soil
Moisture and Ocean Salinity (SMOS) retrievals for the winter season 2015/16.

Mean (m) Nov  Dec Jan Feb  Mar Apr
CS2SMOS  1.16 1.19 +22-1.23 129 136134 135
CS2 146 1.53 1.65 1.66 1.83 1.90
SMOS 045 0.58 0.51 049 048 0.47
Sdev (m)

CS2SMOS  0.88  6:80.81  0.81 0.92 696097 0.99
CS2 0.76  0.76 0.72 0.73 0.75 0.78
SMOS 0.33 0.36 0.38 0.37 0.36 0.38

18 cm. The mean differences are between—2-and—3 cm

sea-tee-thicknessretrieval—for the first three cases where data points have been withdrawn randomly, and 1 cm where a box
has been separated. The root mean square deviation (rmsd) is 22-24-23-25 cm for the first 3-eases-and—t4-three cases and

17 cm for the last casewhere-we-separated-a-box—The-. Here, the smaller rmsd is likely caused by the lack of thicker ice in
the chosen box, which does not contain sea ice thicker than about 2 m. This experiment demonstrates the performance of the
applied algorithm. In particular, it shows that the background field mostly conserves the mean values even when co-located

observations are missing.
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