
Dear Chris Stokes (editor),

we have now revised our manuscript based on the comments from the reviewers
and the editor. The response to the reviewers is detailed below. Regarding
the phrasing ”gigantic” in section 5.2, we have made a calculation based on the
mass flux formula Eq. (22) – as described in a new footnote – and re-phrased
”gigantic” to ”very large”, which is more appropriate. We have checked for the
usage of commas versus full-stops when referring to dates, and made changes.
We have also corrected a few additional typos and added a few new references
when addressing the reviewers’ comments.

Best regards,
Johan Nilsson

Response to reviewer 1

We appreciate the positive and constructive review comments provided by Dr.
Thomas Cronin. The significance of extensive Arctic Ocean ice shelves for the
translations of oceanic oxygen isotopic records into glacial–interglacial sea-level
changes is a relevant and interesting point. We deem that it is beyond the scope
of the present paper to give a detailed account on existing estimates of the sea
level during the LGM and the MIS 6. As the reviewer suggests, however, it
is relevant to mention the role of Arctic Ocean ice shelves in connection with
glacial sea levels. For this purpose, we will in the revision add the following
paragraph at the end of section 5.3:

”A significant difference in volume of the Arctic ice shelves during the LGM
and the MIS 6 has implications when inferring glacial sea levels from ocean oxy-
gen isotope records. Broecker (1975) emphasised that floating ice shelves have
essentially no impact on the sea level, but that the isotopically-light oxygen con-
tained in ice shelves increases the mean oceanic �18O value. Thus, temperature-
corrected �18O data from the deep ocean as well as from the Red Sea will
overestimate glacial sea-level decreases if large ice shelves were present. The
fully-developed MIS 6 Arctic Ocean ice shelf should have increased the mean
oceanic �18O value by roughly 0.15 permil, equivalent to the increase caused
by a sea-level decrease of around 15 meters due to continental ice accumula-
tion (Mix and Ruddiman, 1984; Jakobsson et al., 2016). It can be noted that
the deep ocean �18O values were similar during MIS 6 and LGM (Lisiecki and
Raymo, 2005). By accounting for the difference in ice-shelf volume, the deep
ocean �18O record indicates that the sea level should have been some 5 to 10
meters lower during LGM compared to MIS 6. However, it may be challenging
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to infer volumes of glacial Arctic ice shelves from comparisons of sea level esti-
mates based on landforms and oxygen isotopes. The reason is that the oceanic
�18O signature of Arctic ice shelves is comparable to uncertainties related to
various steps in deriving �18O values and assumptions involved in converting
them to sea level (Siddall et al., 2004). Still, it may be worthwhile to revisit the
question of the relative sea levels during MIS 6 and LGM in light of the new
data-based support of an extensive MIS 6 ice shelf in the Arctic Ocean.”

We have also address the minor issues related to spelling and typos in the
revision.

Response to reviewer 2

We have corrected the typos pointed out by the reviewer.
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Abstract. Recent geological and geophysical data suggest that a one-kilometre

:::
one

:::::::::
kilometre thick ice shelf extended over the

glacial Arctic Ocean during Marine Isotope Stage 6, about 140 000 years ago. Here, we theoretically analyse the development

and equilibrium features of such an ice shelf, using scaling analyses and a one-dimensional ice-sheet–ice-shelf model. We

find that the dynamically most consistent scenario is an ice shelf with a nearly uniform thickness that covers the entire Arctic

Ocean. Further, the ice shelf have

:::
has two regions with distinctly different dynamics: a vast interior region covering the central5

Arctic Ocean and an exit region towards the Fram Strait. In the interior region, which is effectively dammed by the Fram

Strait constriction, there are strong back stresses and the mean ice-shelf thickness is controlled primarily by the horizontally-

integrated mass balance. A narrow transitions

:::::::
transition

:
zone is found near the continental grounding line, in which the ice-

shelf thickness decreases offshore and approaches the mean basin thickness. If the surface accumulation and mass flow from

the continental ice masses are sufficiently large, the ice-shelf thickness grows to the point where the ice shelf grounds on10

the Lomonosov Ridge. As this occurs, the back stress increases in the Amerasian Basin and the ice-shelf thickness becomes

larger there than in the Eurasian Basin towards the Fram Strait. Using a one-dimensional ice-dynamic model, the stability

of equilibrium ice-shelf configurations without and with grounding on the Lomonosov Ridge are examined. We find that the

grounded ice-shelf configuration should be stable if the two Lomonosov Ridge grounding lines are located on the opposites

sides of the ridge crest, implying that the downstream grounding line is located on a downward sloping bed. This result shares15

similarities with the classical result on marine ice-sheet stability of Weertman, but due to interactions between the Amerasian

and Eurasian ice-shelf segments the mass flux at the downstream grounding line decreases rather than increases with ice

thickness.
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1 Introduction

Based on analogies with conditions in present-day West Antartica, Mercer (1970) proposed that the Arctic Ocean during

full glacial conditions should have been covered by kilometre thick ice shelves. Building on this notion and ice dynamical

considerations, Hughes et al. (1977) postulated that an Arctic ice-sheet–ice-shelf complex formed during the Last Glacial

Maximum (LGM) between about 19 ,000 and 26 ,500 years ago (19 to 26,5

::::
26.5 ka). A key motivation for their hypothesis was5

that the glacial marine ice sheets around the Arctic Ocean must have been stabilised by buttressing from a thick basin-covering

ice shelf (Weertman, 1974). Over the years, the hypothesis of a basin-covering glacial Arctic Ocean ice shelf has been refined

and expanded in various aspects (Lindstrom and MacAyeal, 1986; Hughes, 1987; Grosswald and Hughes, 1999), but it has

remained controversial. In fact, many subsequent studies that have mapped ice erosion on ridges and bathymetric highs in the

central Arctic Ocean have attributed these traces to grounding of ice shelves that extended from the continental margins of10

northern Greenland, North America, and the Chukchi Borderland, but did not cover the entire the Arctic Basin (Jakobsson,

1999; Polyak et al., 2001; Jakobsson et al., 2010; Dowdeswell et al., 2010; Niessen et al., 2013; Jakobsson et al., 2014).

New data obtained during the icebreaker expedition with Oden in 2014 motivated Jakobsson et al. (2016) to revise the extent

of glacial Arctic Ocean ice shelves: Previously unmapped ridges and bathymetric highs in the deep Arctic Ocean proved to

be marked by scouring ice shelves and remapping of areas where ice erosion had been identified revealed flow directions that,15

when brought together with other existing data, pointed to a coherent basin-scale ice shelf. At the absolute minimum, the ice

shelf must have covered all of the Amerasian Basin and have been grounded on the Lomonosov Ridge. However, ice erosion

documented north of the Fram Strait led Jakobsson et al. (2016) to propose that the ice shelf covered the entire Arctic Ocean

(Fig. 1).

The purpose of this work is to reconsider the earlier Arctic Ocean ice-shelf scenarios (Mercer, 1970; Hughes et al., 1977;20

Grosswald and Hughes, 1999) in light of new data (Jakobsson et al., 2016) and new insights in ice-sheet–ice-shelf dynamics

(Schoof and Hewitt, 2013). We will here use a one-dimensional ice-sheet–ice-shelf model and scaling analyses to examine

some key dynamical questions from a theoretical perspective. To begin with, there is an inception problem: how could shelf-ice

expand laterally over the entire Arctic Basin? A next logical question concerns the evolution of ice-shelf thickness, controlled

by net accumulation and dynamical thinning due to ice flow. Furthermore, a fully-developed kilometre thick ice shelf will25

ground on the Lomonosov Ridge, which yields an ice-shelf complex with three grounding lines: Transitions between grounded

and floating ice are encountered at the upstream continental margin and on each side of the Lomonosov Ridge (see Figs.

1 and 5). This configuration introduces some novel dynamics related to interactions between floating and grounded ice: A

fundamental question is whether such an ice-shelf–ice-sheet system is stable (Weertman, 1974; Schoof, 2012).

In addition, the data poses an intriguing puzzle in a broader glacial context: Several of the ice-grounding events in the deep30

Arctic Ocean have been dated based on the stratigraphic units resting directly above the ice-eroded surfaces, which indicate

that the oldest undisturbed sediments were deposited during the Marine Isotope Stage 5 between 130 to 80 ka (Jakobsson et al.,

2010, 2016). Theses

:::::
These analyses place the traces of a kilometre thick Arctic shelf ice to the penultimate glaciation during

the Marine Isotope Stage 6 (MIS 6) some 140 ka, rather than to the LGM. Remarkably, this suggests that the shelf ice formed
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Figure 1. Outline of the glacial Arctic Ocean ice shelf adopted from Jakobsson et al. (2016). Panel a

:
A) shows present-day land distribution

and water depth (blue colours) and observationally-inferred ice-shelf flow directions (arrows, see the text for details). The black line shows

1000 m isobath. The Lomonosov Ridge (along the dotted line) separates the Amerasian Basin from the Eurasian Basin, located towards the

Fram Strait between Greenland and Svalbard. Panel b

::
B) depicts qualitatively the ice-shelf extent and flow based on ice-erosion data from

the Chukchi Border Land (CB), the Arlis Plateau (AP), the Lomonosov Ridge (LR), the Morris-Jessup Rise (MR), and the Yermak Plateau.

Question marks indicate possible East Siberian ice sheets (Niessen et al., 2013; Jakobsson et al., 2014). Panel c

:
C) shows a section along the

Lomonosov Ridge, illustrating how the shelf grounds on ridge and the sub-ice channels that allow water circulation into the Amerasian ice

cavity.

in the Arctic Ocean during the LGM never grew thick enough to

::::::
ground

::
on

::::
and

:
erode the bathymetric highs in the central

basin.

Studies of the large Antarctic Filchner-Ronne and Ross ice shelves provide important information on the dynamics of glacial

Arctic Ocean ice shelves, and relevant results will be reviewed here. However, the glacial Arctic problem has intriguing features

that sets it apart. At its full extent, the Arctic Ocean ice-shelf area was nearly an order of magnitude larger than that of the Ross5

Ice Shelf. Further, an Arctic ice shelf extending over the entire central basin will not have a wide open margin as it would meet

the relatively narrow Fram Strait, which constricts ice export from the Arctic Ocean. This geometrical setting provides a strong

damming effect on the ice shelf. Some recent studies have examined dynamical aspects of glacial ice shelves in the Arctic

Ocean (Jakobsson et al., 2005; Colleoni et al., 2010; Kirchner et al., 2013; Colleoni et al., 2016a). In particular, Colleoni et al.

(2016a) used a numerical ice-sheet–ice-shelf model to examine possible configurations of glacial East Siberian ice shelves.10

Notably, in a few of their simulations, which were run for 30 000 years, nearly 2 km thick shelf ice eventually extended over

the entire Arctic Ocean. However, Colleoni et al. (2016a) focused on the local ice-shelf features off East Siberia and did not

specifically analyse the simulations that yielded basin-covering Arctic Ocean ice shelves.
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In the present study, we will theoretically analyse the dynamics of a basin-covering Arctic Ocean ice shelf. Our aim is to

identify leading-order dynamical balances, which provide general quantitative insights of how a horizontally extensive and

strongly embayed ice shelf operates and interacts with contiguous ice sheets. We will in particular examine

1. how the interplay between net accumulation, dynamical thinning, and buttressing affects the evolution and equilibrium

thickness of an Arctic Ocean ice shelf;5

2. how grounding on the Lomonosov Ridge affects the structure and stability of the ice-sheet–ice-shelf complex.

Below, we introduce the geographical setting of the glacial Arctic Ocean ice shelf and discuss qualitatively ice-shelf inception

scenarios. Thereafter, we proceed with the theoretical analyses (sections 3 and 4) and conclude by discussing analogies with

Antarctic ice shelves and to consider some glacial implications (section 5).

2 Background10

2.1 Geographical setting of an Arctic Ocean ice shelf under fully-glaciated conditions

Figure 1 summarises the geographical setting and outlines the Arctic Ocean ice-shelf distribution at fully-glaciated MIS 6

conditions synthesised by Jakobsson et al. (2016). Flow directions inferred from mapped sea-floor ice erosion across the deep

Arctic Ocean point to a coherent ice-shelf flow directed towards the Fram Strait, located between Greenland and Svalbard

(Fig. 1a,b). On the Lomonosov Ridge, which divides the Amerasian and Eurasian sub-basins, traces left by moving ice are15

found as deep as 1280 m below the present sea level (Fig. 1c). Accounting for a lower glacial sea level of 120 m, Archimedes’

principle gives an ice-shelf thickness of nearly 1300 m at this grounding point. Ice groundings reaching more that

:::
than

:
1000

m below the present-day sea level are also found on the Arlis Plateau off the eastern Siberian Continental Shelf (Niessen

et al., 2013; Jakobsson et al., 2016). Along the East Siberian continental margin, there are

:
a

:
few locations where the inferred

ice-flow directions vary with water depth and between neighbouring sites. This erosion pattern may indicate ice

:::::::
ice-shelf flow20

associated with an East Siberian ice-sheet (Niessen et al., 2013)

:::::::::::::::::::::::::::::::::::
(Niessen et al., 2013; O’Regan et al., 2017), which extent can

have varied during the MIS 6 (Svendsen et al., 2004; Colleoni et al., 2016b). During some stage of the MIS 6, a large and active

East Siberian ice sheet may have fluxed grounded ice towards the central Arctic Basin (white arrows in Fig. 1a)

1

; whereas

the ice-sheet configuration during other stages have yielded an ice flow preferentially directed towards the Fram Strait (yellow

arrows in Fig. 1a). However, despite that the ice flow from the continental margins presumably evolved over time, the Arctic25

Ocean ice-shelf flow depicted in Fig. 1b should be representative of the fully-glaciated MIS 6 conditions.

Dynamical arguments, to be further presented in section 3, and numerical ice-shelf modelling (Lindstrom and MacAyeal,

1986; Colleoni et al., 2016a), suggest that the Arctic Ocean ice shelf should have two regions characterised by different features

(Fig. 2): An inner strongly embayed central Arctic region with fairly uniform ice-shelf thickness and an exit region located

towards the Fram Strait, which terminates at a calving front in the Nordic Seas. When the ice shelf grounded on the Lomonosov30

1

See also Fig. 7 in Jakobsson et al. (2014), which synthesises observations from the East Siberian continental margin prior to the Oden 2014 expedition
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Figure 2. Outline of the two dynamical zones in the Arctic Ocean ice shelf, divided by the dashed line. The interior ”dammed” ice-shelf

region, where the ice thickness is nearly uniform and controlled by the horizontally-integrated mass balance [Eqs. (19,21)], comprises the

bulk of the ice-shelf area and is subjected to pronounced back stress from the Fram Strait constriction. The exit region in the Fram Strait

area, which terminates at a calving front, has dynamical similarities with moderately embayed large Antarctic ice shelves. The black arrows

indicate ice flow and the two double-headed arrows are along the x–z transect shown in Fig. 3. In most of the exit region, there is an

approximate balance between lateral shear stress and hydrostatic pressure gradient [Eq. (23)], but the leading order ice-shelf momentum

balance changes closer to the calving front (Hindmarsh, 2012).

Ridge, the ice thickness should have become greater in the Amerasian Basin than in the Eurasian Basin. The ice cavity that

formed beneath the Arctic Ocean ice shelf was vast and extensive, with a mean water depth exceeding 2 km even during fully

glaciated conditions. The water exchange between the Eurasian and Amerasian parts of the ice cavity was then restricted to a

few deep channels crossing the Lomonosov Ridge (Fig. 1c).

As a reference for the theoretical analyses of ice-shelf flow developed in section 3, it is instructive to here supply a few5

numbers characterising the Arctic Ocean ice shelf at full glacial conditions. Notably, the interior ice-shelf area is about 5 · 106

km

2
, corresponding to that of the deep Central Arctic Ocean beyond the shelf breaks (Jakobsson, 2002). This is nearly one order

of magnitude larger than the area of the present-day Ross Ice Shelf. Climate-model simulations have provided some constraints

on ice mass balances in the glacial Arctic: the combined surface snow accumulation on the Arctic shelf and influx of continental

ice to the Arctic Basin have been simulated to lay

::
lie

:
in the range 1000–3000 km

3
yr

�1
in liquid water equivalents (Bigg and10

Wadley, 2001; Colleoni et al., 2010, 2016a). This amounts to a positive mass-balance contribution of 0.2–0.6 m yr

�1
per unit

shelf area. The basal oceanic melting is less constrained by modelling studies, but could be about 0.2 m yr

�1
(MacAyeal, 1984;

Jakobsson et al., 2016). For comparison, basal melt rates of the Filchner and East Ross ice shelves are estimated to be about 0.4

m yr

�1
(Rignot et al., 2013). Taking 1000 km

3
yr

�1
as a representative value for the net ice-shelf accumulation, one can infer

the velocity in a 1000 m thick ice shelf: over the nearly 2000 km wide Lomonosov Ridge, ice velocities are expected to be a15

few hundred meters per year. In the narrower Fram Strait, which deep part is about 200 km wide, ice velocities are expected to

reach a few kilometres per year.
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2.2 Ice-shelf inception scenarios

Transitions from interglacial to glacial climates occur when the Earth’s orbital variations cause anomalously low summer

insolation in the Northern Hemisphere (e.g. Pierrehumbert, 2012). This reduces summer ablation and promotes accumulation

of snow and formation of glaciers and ice sheets in the high northern latitudes. Growing circumpolar continental ice sheets

will partly flow polewards, discharging ice into floating ice-shelf complexes that extend into the Arctic Ocean. However, there5

are several physical constraint that impede the formation of a thick basin-covering Arctic Ocean ice shelf. To begin with, an

ice shelf floating freely into the ocean accelerates and thins rapidly with increasing distance from the grounding line. As the

ice shelf thins it becomes susceptible to calving and tends to break up (Benn et al., 2007)

2

. Based on contemporary Antarctic

analogies

:::::::
analogies

::::
with

::::::::::::
contemporary

::::::::
Antarctic

:::
ice

::::::
shelves

:::
that

::::::::
terminate

:::
in

:::
the

::::
open

:::::
ocean, glacial Arctic Ocean ice shelves

are expected to have moderate extents and not reach across the entire basin (Kirchner et al., 2013). Further, for freely expanding10

ice shelves, the ice-mass flux across the grounding line increases rapidly with the grounding line depth (Schoof, 2007a). As

a result, steady-state conditions require that the ice thickness at the grounding line is small compared to that of the inland ice

sheet; otherwise the grounding line rapidly retreats shoreward to a shallower depth where the mass flux at the grounding line

matches the mass flux from the grounded ice sheet. Evidently, the observations of quasi-equilibrium glacial grounding-line

depths of 1000 m in the Arctic Ocean (Jakobsson et al., 2010, 2016) are incompatible with the notion of a freely expanding ice15

shelf, as this would imply the existence of unrealistically large continental ice sheets.

However, if an ice shelf is embayed or partly grounded on bathymetric highs, back stresses develop that reduce longitudinal

stresses at the grounding line and thereby buttress the grounded marine ice (Thomas, 1973; Goldberg et al., 2009). Back stresses

also counteract the downstream acceleration in the ice shelf, which supports formation of thicker shelf ice. In the Arctic Ocean,

embayment towards the Fram Strait is likely to provide the critical back stress that supports the growth of a basin-covering ice20

shelf (Grosswald and Hughes, 1999). Grounding on the Lomonosov Ridge, which is the main bathymetric high in the Central

Arctic Ocean, cannot provide back stresses during the initial ice shelf growth: The Lomonosov Ridge is at its shallowest located

at around 600 m below present sea level and will therefore not cause a thinner ice shelf to ground. A fully-developed kilometre

thick ice shelf, however, will ground on the Lomonosov Ridge, thereby changing dynamically in response to the developing

stresses.25

Several investigators have pointed out that an ice shelf can develop from the Arctic Ocean sea-ice cover (e.g. Broecker, 1975; Hughes, 1987)

::::::::::::::::::::::::::
(Broecker, 1975; Hughes, 1987).

A promoting factor is that Arctic Ocean wind-driven sea-ice export becomes negligible when sea-ice cover becomes sufficiently

thick and heavy (Hibler et al., 2006). During glacial conditions, grounded ice sheets will eventually develop over the Barents

Sea, which further hider

:::::
hinder

:
sea-ice export (Broecker, 1975). Accordingly, once the glacial sea ice reaches a critical thick-

ness where the ice export becomes negligible, the sea-ice thickness will continue to grow due to surface snow accumulation30

and basal freezing. In addition, influx of rafted ice bergs from the continental ice sheets promotes ice growth and the emerging

ice mélange increases the resistive stresses in the floating ice (Amundson et al., 2010). This processes gradually transform the

2

Numerical experiments due to Colleoni et al. (2016a) suggest that ice shelves growing from the continents can eventually cover the entire Arctic Ocean if

calving is suppressed.
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sea ice to shelf ice. The ice shelves north of Ellesmere Island today constitute Holocene examples of how such processes have

created ice shelves from what most likely first was land fast ice (Antoniades et al., 2011).

Another potential obstacle to build a thick Arctic Ocean ice shelf is the potential inflow of relatively warm water of Atlantic

origin, which today occupies the basin in the depth range from about 300 to 700 m (Rudels, 2012). Studies of Antarctic

ice shelves show that basal melting increases with ocean temperature and can exceed tens of meters per year (Jacobs et al.,5

2011; Rignot et al., 2013). Generally, oceanic basal melting is a leading order component of the mass balance for Antarctic

ice shelves (Alley et al., 2005; Pollard and DeConto, 2009), which can limit the extent or even suppress the formation of ice

shelves. Further studies are needed to decide whether a thick Arctic Ocean ice shelf can be formed without radically altering

the present-day features of the Arctic Atlantic Water (Lindstrom and MacAyeal, 1986).

3 Analyses of ice-sheet–ice shelf dynamics based on a one-dimensional model10

We will here use a one-dimensional ice dynamical model to theoretically examine the ice flow in a basin-covering Arctic

Ocean ice shelf. In particular, we will consider the dynamics controlling the ice-thickness distribution and how it is affected

by embayment towards the Fram Strait and by grounding on the Lomonosov Ridge. In the model, the grounded ice is assumed

to be in a regime of rapid sliding in which the vertical velocity shear is small and neglected. Figure 3 illustrates the model

geometry: The x-coordinate is aligned in the flow direction and the ice thickness along the flow is denoted h(x,t).15

Our analyses will show that the Arctic Ocean ice shelf has two dynamically distinct regions: one interior region, representing

the main part of the Arctic Basin, and one exit region extending from the northern boarder of the Fram Strait towards a calving

front in the Nordic Seas (Fig. 2). The focus of our analysis is on the interior region, where lateral stresses are assumed to be

small and the ice thickness fairly uniform. The dynamics of the exit region will be represented as boundary condition for the

interior region. The strongly embayed interior region is in a dynamical sense simpler, but rather different from most Antarctic20

ice shelves. The exit region that terminates at a broad calving front, on the other hand, share dynamical characteristics with the

large Antarctic ice shelves.

3.1 Governing equations

To set the stage for the forthcoming analysis, the governing equations describing ice-sheet–ice-shelf dynamics are summarised

here. They have been derived and discussed in detail in the literature (Muszynski and Birchfield, 1987; Schoof and Hewitt,25

2013), but it is worth to emphasise a few aspects of particular importance for the case considered here. To begin with, because

the ice-shelf complex is taken to be one-dimensional in the along-flow direction and lateral stresses are ignored, the momentum

balance for the floating part can be integrated horizontally. The resulting integration in combination with an upstream boundary

condition, specify a relation between local ice-shelf thickness and ice-velocity divergence [Eq. (8)]. The integral constraint,

set by the upstream boundary condition, depends on whether the ice shelf expands freely into the ocean or if it is embayed or30

re-grounds, in which case back stresses develop in the ice shelf.
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Lomonosov Ridge

b(x) h(x)

xg xf

Figure 3. The geometry of the one-dimensional Arctic ice-sheet–ice-shelf model, illustrated in a case without grounding on the Lomonosov

Ridge. Here, h(x,t) denotes the ice thickness and b(x) the bed elevation, counted positive below the sea level. The ice shelf has it continental

grounding line at xg and is dammed towards the Fram Strait entrance, located at xf , which divides the interior and exit regions of the ice

shelf. The x-z transect shown here corresponds to central x transect indicated in Fig. 2. In the interior ice-shelf region h is essentially

constant. Near the continental grounding line (xg), however, there is a narrow transition zone where the ice thickness increases away from

the grounding line; see Eq. (13) and Fig. 4. In the

Let us now proceed to present the equations. The continuity equation of the ice-sheet–ice-shelf complex is given by

@h

@t

+
@(uh)

@x

= a, (1)

where u, taken to be positive, is the ice velocity, h the ice thickness, and a(x,t) the net accumulation rate including basal freeze

or melt. The grounded ice sheet obeys the vertically-integrated momentum balance
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Here g is the acceleration of gravity, ⇢

i

the density of ice, A a vertically averaged coefficient in Glen’s flow law and n⇡ 3

an associated exponent (Schoof and Hewitt, 2013). Further, C and m are positive constants used to model the basal frictional

stress Cu

m

.

The ice begins to float at the continental grounding line (x= x

g

), where the flotation criteria requires that

h(x
g

, t) = b(x
g

)⇢0/⇢i, (3)10

where ⇢0 is the density of sea water. Two additional grounding lines may exist on the Lomonosov Ridge, as will be described

below. There is no basal stress acting on the ice shelf, which implies that the counterpart of the momentum balance Eq. (2) for

the floating ice shelf becomes
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where �⇢⌘ ⇢0�⇢

i

is the density difference between sea water and ice. Equation (4) can be integrated in x: We integrate from

an upstream location (x= x

u

) and obtain
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Here, we have introduced the integration constant
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and a parameter that depends on material properties

µ⌘ g⇢

i

(1� ⇢

i

/⇢0)A
1/n

/4. (7)

Equation (5) describes the vertically-integrated balance between the longitudinal deviatoric stress (the left-hand side) and the

hydrostatic pressure modified by the upstream boundary condition related to h

2
b

(the right-hand side). The ice-shelf dynamics

can be described succinctly by re-arranging Eqs. (5,6) to yield a relation between ice-velocity divergence and ice thickness:10
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. (8)

This formula can be viewed as a one-dimensional limit of a more general strain-rate relation for two-dimensional ice-shelf flow

derived by Thomas (1973). By drawing on this analogy, the integration constant h

b

, which has the dimension of length, can be

connected to the ice-shelf back stress �

b

(Thomas, 1973) as

�

b

= g⇢

i

�⇢

2⇢0

h

2
b

h

. (9)15

Ice-shelf back stress (or back pressure) arises if an ice shelf runs aground on bathymetric pinning points or experiences stresses

from embaying side boundaries (Thomas, 1973; Thomas and MacAyeal, 1982; Goldberg et al., 2009; Borstad et al., 2013).

We emphasise that in the one-dimensional case, the back stress depends only on the local ice-shelf thickness and the global

parameter h

b

, which is set by upstream conditions [Eq. (6)]. For two-dimensional ice-shelf flows, on the other hand, the back

stress depends on local ice thickness as well as on lateral and shear strain rates (Thomas, 1973; Borstad et al., 2013). This20

implies that the back stress defined by Eq. (9), although analogous to the back stress in two-dimensional flows (Thomas, 1973),

has some unusual features that will be discussed below.

Back stress has important consequences for the dynamics of the grounded ice as well as the floating ice. Importantly, the

back stress reduces the longitudinal stress at the grounding line; an effect referred to as ice-shelf buttressing. Borstad et al.

(2013) introduced a non-dimensional measure of buttressing that accounts for spatial variations in an ice shelf25

f2(x,y, t)⌘ �

b

(x,y, t)


g⇢

i

�⇢

2⇢0
h(x,y, t)

��1

. (10)

By using Eq. (9), we can define an analogous one-dimensional buttressing parameter:

f(x,t)⌘

h

b

(t)

h(x,t)

�2
. (11)
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Figure 4. Steady state ice-shelf profiles in the limit of zero net ablation, given by Eq. (13). The depth is normalised with the grounding-line

depth hg and the non-dimensional distance is defined as x(µ3
h

3
g/ug). The solid, dashed, and the dashed-dotted lines represent hb/hg = 0.8,

hb/hg = 0.4, and hb/hg = 0.0, respectively. At large distances, the ice-shelf thickness approaches the back-pressure thickness hb, implying

that without back pressure (hb = 0) the ice-shelf thickness shrinks to zero far away from the grounding line.

Evaluated at the grounding line, i.e. f(x
g

, t), this parameter becomes similar to the buttressing parameter introduced by Dupont

and Alley (2005). For a freely floating ice shelf, the back stress is identical to zero, i.e h

b

= 0 and f = 0. This yields minimal

buttressing of the grounded ice. The limit where the grounding-line ice thickness equals the back-stress thickness h

b

, implying

that f(x
g

, t) = 1, can be viewed as a fully-buttressed case, where the longitudinal grounding-line stress vanishes.

In summary, the dynamics of the floating ice can be described by the continuity equation (1), the floatation criteria (3), and5

strain relation (8). In addition, one needs to determine the global back-stress thickness h

b

(6) and to specify the ice mass flux

at the grounding line and the upstream integration point x

u

. Below, we will show that

:::
how

:
the global back-stress thickness h

b

can be determined

::
in the interior ice-shelf region.

3.2 Qualitative analysis of ice-shelf dynamics

The governing equations are now analysed with focus on the dynamics of the ice shelf inside of the Fram Strait. First, we derive10

analytical steady-state ice-shelf profiles in the limit of vanishing accumulation, which approximately describe the transition

zone between the grounding line and the central ice shelf. We then go on to consider time-evolving dynamics. This scenario

is examined using a scaling analysis, in which the equations are put on non-dimensional form and small non-dimensional

parameters are identified: the resulting equations describe the interior ice shelf to the lowest order (Fig. 2).

As the ice becomes afloat at the grounding line, the ice velocity accelerates and the ice thickness decreases. Here, the rates of15

ice divergence are typically large compared to the net accumulation a. As a results, the ice thickness approximately decreases

offshore initially as if the ice mass flux would be constant. To examine the dynamics in this limit, we assume steady-state

10



conditions and neglect accumulation, i.e. a= 0 implying that q = uh, where q is a constant ice mass flux. If n= 3 as usually

chosen in Glen’s flow law, a simple analytical solution can be obtained. By using the fact that u= q/h, Eqs. (1,8) can be

combined and after straightforward calculations be rewritten as

@h

2

@x

=�2µ3

q

�
h

2 �h

2
b

�3
. (12)

This equation can be integrated in terms of h

2
and after a few manipulations one obtains5

h(x) = h

g

h
�+

�
(1� �)�2 +4x(µ3

h

4
g

/q)
��1/2

i1/2
, (13)

where h

g

is the grounding line depth and we have defined

� ⌘ (h
b

/h

g

)2. (14)

Here, we require that h

g

> h

b

and note that the limit h

g

= h

b

corresponds to a fully-buttressed case. If there is no back

pressure, i.e. h

b

= 0, the free-spreading shelf profile results (Oerlemans and van der Veen, 1984). In this case, the longitudinal10

deviatoric stress exactly balances the hydrostatic pressure [see Eq. (5)], and the ice-shelf thickness shrinks towards zero at

large distances. Figure 4 shows that with back pressure, the ice-shelf thickness instead asymptotically approaches h

b

far away

from the grounding line. As a consequence, the longitudinal stress decreases towards zero with increasing distance from

the grounding line. The natural length scale of the problem is u

g

/(µh
g

)n. Using the values n= 3, A= 1 · 10�25
Pa

�3
s

�1
,

h

g

= 1000 m, and u

g

= 0.1 km year

�1
, we find that u

g

/(µ3
h

3
g

)⇠ 3 km. Figure 4 shows that with back pressure, h⇡ h

b

at15

non-dimensional distances x(µ3
h

3
g

/u

g

) on the order of 30 or larger. For the present parameters, one finds that an ice shelf with

back pressure has essentially a uniform thickness h

b

a few 100 kilometres away from the grounding line. By examining the

non-dimensional equations presented below, it can be shown that Eq. (13) approximately describes the ice-shelf thickness in

a transition zone with a width on the order of u

g

/(µh
g

)n also when the accumulation is non zero and the grounding line and

central basin ice thicknesses evolve slowly.20

The length scale of a glacial Arctic Ocean ice shelf (say L) is typically much larger than the intrinsic ice-shelf length scale

u

g

/(µh
g

)n, and their ratio defines a small non-dimensional parameter

✏⌘ u

g

(µh
g

)nL
. (15)

The scaling analysis of Schoof (2007b) shows that ✏

1/n
, based on ice sheet characteristics, measures the ratio between the

longitudinal stress and the hydrostatic pressure in the grounded ice. By taking L⇠ 1000 km, we find that ✏⇠ 10�2
or smaller25

for a kilometre thick Arctic Ocean ice shelf. To exploit the fact that ✏ is small, we put the equation on non-dimensional form.

We denote the non-dimensional variables with an asterisk and introduce the following scales

u⇤ = u/u

g

, h⇤ = h/h

g

, t⇤ = t(u
g

/L), x⇤ = x/L, a⇤ = aL/(u
g

h

g

). (16)

Using these scales in Eqs. (1,8) yield the following non-dimensional equations

@h⇤
@t⇤

+u⇤
@h⇤
@x⇤

+h⇤
@u⇤
@x⇤

= a⇤, (17)30
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✏

@u⇤
@x⇤

= (h⇤ � �/h⇤) |h⇤ � �/h⇤|(n�1)
. (18)

To the lowest order in ✏, Eq. (18), yields h⇤ ⇡
p
�; or on dimensional form

h(x,t) = h

b

(t). (19)

Notably, the interior ice-shelf thickness is approximately constant and equal to the back-pressure thickness h

b

. The approximate5

uniformity of the ice thickness follows also from the non-dimensional ice-shelf momentum balance [Eq. (4)]

✏

1/n

2

@

@x⇤

 
h⇤

����
@u⇤
@x⇤

����
1/n�1

@u⇤
@x⇤

!
�h⇤

@h⇤
@x⇤

= 0, (20)

which to the lowest order in ✏ predicts a constant ice-shelf thickness. Since the ice-shelf thickness is approximately equal to

h

b

, the buttressing parameter f(x,t) approaches unity in the bulk of the ice shelf. This can be contrasted with the behaviour in

most Antarctic ice shelves, where the buttressing and back stress generally decrease seaward towards calving fronts (Thomas10

and MacAyeal, 1982; Borstad et al., 2013). The difference arises because we are here considering a strongly confined segment

of the interior Arctic Ocean ice shelf, which terminate dynamically north of the Fram Strait and/or at span-wise extensive

grounding line on the Lomonosov Ridge. In the exit region near the Fram Strait, the patterns of back stress and buttressing

should resemble those observed in less strongly embayed Antarctic ice shelves such as the Ross and Larsen C (Thomas and

MacAyeal, 1982; Borstad et al., 2013).15

The leading-order physics governing the interior ice-shelf segment can be summarised as follows:

1. The dominance of the hydrostatic pressure gradient in the momentum balance forces the ice-thickness to be nearly uni-

form. As a result, local variations in net accumulation are forced to be balanced by variations in ice velocity divergence,

which have a negligible expression in ice thickness.

2. Since the ice-shelf thickness is constant, we can integrate the mass-balance equation (1) from the grounding line to an20

upstream point x

u

to obtain

(x
u

�x

g

)
@h

S

@t

=

xuZ

xg

a(x,t)dx+ q(x
g

, t)� q(x
u

, t), (21)

where h

S

⇡ h

b

is the mean Arctic Ocean ice-shelf thickness

3

, q(x
g

, t) and q(x
u

, t) the ice mass fluxes at the continental

grounding line and the upstream point x

u

, respectively. Accordingly, the interior ice-shelf thickness is to the lowest

controlled by the horizontally-integrated net accumulation and is hence fairly insensitive to the spatial distribution of the25

accumulation.

3

For notational clarity we use a basin-mean ice thickness hS , rather than hb, in the mass balance: when the shelf grounds on the Lomonosov Ridge there

will be different back pressures in the Amerasian and Eurasian parts of the shelf; see below.
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In section 4, we will consider how suitable upstream integration points are selected depending on ice-shelf geometry. How-

ever, it is worth to note

:::::
noting

:
a principle difference between the cases where the ice shelf grounds on the Lomonosov Ridge

and where back stresses arise from embayment towards the Fram Strait. In the former case, the integration point is well defined

by the grounding line position on the ridge. In the latter case, there is no well defined upstream integration point, but rather

a transition zone near the Fram Strait where ice-shelf flow shifts between two dynamical regimes (Fig. 2). We will take a5

pragmatic view and assume that an upstream integration point can be selected slightly upstream of the transition zone, where

the viscous stresses are negligible to the lowest order. Here, the ice-thickness gradients are small implying that the resulting

value of the back-stress thickness h

b

is insensitive to the exact location of the integration point.

We note that also for two-dimensional ice-shelf flows, an analogous scaling analysis indicates that the ice-shelf thickness

should be approximately uniform when the parameter ✏ is small (Goldberg et al., 2009). Thus, provided that the geometry10

supports strong embayment, we anticipate that the present one-dimensional scaling results hold qualitatively for more realistic

ice-shelf configurations. Indeed, two-dimensional numerical simulations of strongly embayed, thick ice shelves with large

horizontal extents (Lindstrom and MacAyeal, 1986; Colleoni et al., 2016a) support the notion that the thickness of an Arctic

Ocean ice shelf should, to the lowest order, be horizontally uniform in the central basin.

3.3 The grounding line and Fram Strait mass fluxes15

Next, we turn to two key ice mass fluxes that control the mass balance of the interior Arctic Ocean ice sheet-shelf complex: the

mass flux at the continental grounding line and the mass flux through the Fram Strait. The grounding-line mass flux presented

here can be derived using a boundary layer approach (Schoof, 2007b). In contrast, the ice mass flux through the Fram Strait

has a more complex dependence on local bathymetry and is less amendable

:::::::
amenable

:
to theoretical analyses. We will use an

analytic model developed by Hindmarsh (2012) to discuss the Fram Strait dynamics in qualitative terms.20

Schoof (2007b) derived a formula for the grounding-line mass flux in the limit where the longitudinal stress is small com-

pared to the hydrostatic pressure in the ice sheet, i.e. the parameter ✏ [Eq. (15)] based on the ice-sheet characteristics is taken to

be small. As shown by Schoof (2007a), the mass-flux formula can be modified to account for a reduction in the grounding-line

stress due to back pressure

4

:

q

g

(h
g

,h

b

) =
h
(⇢

i

gµ

n

/C)
1

m+1
h

(m+n+3)/(m+1)
g

i✓
1� h

2
b

h

2
g

◆ n
m+1

, (22)25

where h

g

is the local grounding-line ice thickness and h

b

the back pressure thickness. The terms within the square brackets

are the asymptotic mass-flux formula derived by Schoof (2007b) for a freely spreading ice shelf. The last factor accounts for

the grounding-line stress reduction due the back stress. This term is a function of 1� f(x
g

, t) and hence reflects buttressing;

see Eq. (11). Further, a positive ice flux requires that h

g

> h

b

. The key qualitative feature of Eq. (22) is that the mass flux at

the grounding line, to the lowest order, depends only on the local ice thickness h

g

and the back pressure thickness h

b

. Without30

back pressure, the mass flux increases rapidly with the grounding line depth; for the standard values n= 3 and m= 1/3 on

4

This corresponds to Eq. (29) in Schoof (2007a), and results if our expression for @u/@x [Eq. (8)] is used in the derivation given in section 3.1 of that

paper.
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finds that q

g

⇠ h

5
g

. This forces the grounding-line thickness of a freely spreading shelf to be small compared to the thickness

of the inland ice sheet (Schoof, 2007b).

In the ice-shelf exit regions towards and in the narrow Fram Strait, mass conservation requires increasing ice velocities

and there will also be stronger lateral stresses from grounded ice along the strait margins (Goldberg et al., 2009; Hindmarsh,

2012). Stress divergence in the strait is balanced by a hydrostatic pressure gradient associated with a downstream thinning5

of the ice shelf towards the calving front. The ice-shelf flow will be two-dimensional and interact with the rather complex

bathymetry in the Fram Strait area (Fig. 1a). However, it is conceivable that there exists an approximate Fram Strait ice-volume

export relation, which depends mainly on the strait geometry and the mean ice-shelf thickness in Arctic Ocean. To examine an

idealised flow regime, we follow ideas presented by Hindmarsh (2012) and view the Fram Strait as a straight channel with a

constant width L

y

. Sufficiently far away from the calving front, a Poiseuille-like ice flow assumed, for which there is a balance10

between the lateral stress divergence and the hydrostatic pressure gradient

2
@

@y

 
h(2A)�1/n

����
@u

@y

����
1/n�1

@u

@y

!
� g⇢

i

(1� ⇢

i

/⇢0)h
@h

@x

= 0, (23)

where y is the cross-channel coordinate. If the ice shelf thickness is constant in the cross-channel direction and the ice velocity

is zero at the channel boundaries, integration of Eq. (23) yields the following along-stream velocity

u(x,y, t) = L

y

✓
�2L

y

µ

@h

@x

◆
n

⇣
1� |y/L

y

|n+1
⌘

(n+1)
, (24)15

where µ is defined in Eq. (7). By assuming that uh is constant along the stream lines in the strait and that @h/@x⇠ h

S

/L

x

,

where h

S

is the ice thickness upstream in the Arctic Ocean and L

x

is the along-stream strait extent, the ice volume flux Q

f

scales as

Q

f

(h
S

) =

LZ

�L

uhdy / L

2
y

✓
L

y

µ

L

x

◆
n

h

n+1
S

. (25)

In the one dimensional frame work, one uses q

f

(h) =Q

f

(h)/L
up

, where L

up

is the width of the upstream Arctic Basin. The20

qualitative mass-flux relation given in Eq. (25) has the same dependence on the ice thickness as the mass flux in the analytical

model of Hindmarsh (2012); see section 5.3 in his paper. For n= 3, one finds that q

f

(h
S

)/ h

4
S

. This suggests that the Fram

Strait ice export increases with upstream ice thickness at a rate that is faster than linear. However, interactions between the

ice shelf and rather the complex strait bathymetry may yield an ice export relation that differs qualitatively from Eq. (25). For

instance, when the ice shelf becomes thick enough to ground on the broad Yermak Plateau just north of the Fram Strait (Fig.25

1a), basal stresses will increase abruptly. To incorporate such effects into Eq. (25) would require that the effective Fram Strait

width L

y

and length L

x

become functions of the ice-shelf thickness. We do not consider this problem here, but emphasise the

uncertainties associated with Eq. (25).
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Figure 5. The Arctic Ocean ice-shelf geometry with grounding on the Lomonosov Ridge. The mean ice thicknesses in the Amerasian Basin

(to the left of the Ridge) and the Eurasian Basin (to the right of the Ridge) are denoted hA and hE , respectively. The grounded-ice extent on

the ridge is assumed to be long enough for an ice-sheet like flow to develop. The upstream and downstream grounding-line positions on the

Ridge are denoted x1 and x2, respectively. At x1, the ice-shelf thickness is hA and for notational convenience we introduce h2 ⌘ h(x2, t).

3.4 The ice mass flux over the Lomonosov Ridge

Consider next what happens when the ice shelf re-grounds and un-grounds over the Lomonosov Ridge, as outlined in Fig. 5.

The multi-beam data reported by Jakobsson et al. (2016) reveals ice-erosion patterns on the higher parts of the Lomonosov

Ridge created by a coherent flow of grounded ice from the Amerasian to the Eurasian Basin. The stresses from the grounding

on the Ridge would have increased gradually from the point when the ice shelf initially intercepted the highest part of the Ridge5

to the latter stages when the geophysical data suggests that the ice shelf on the upstream side was grounded more than 1200 m

below the present day sea level. We will here analyse a one-dimensional scenario in which the Lomonosov Ridge is viewed as

bathymetric pinning point that extends over the entire ice-shelf width. The dynamics in this idealised scenario is different from

the case where local pinning point intercept only a fraction of the lateral ice-shelf extent: Ice tends to flow around rather than

over local pinning points, which yield two-dimensional ice flows associated with significant lateral stresses (Goldberg et al.,10

2009; Favier et al., 2012; Borstad et al., 2013). We underline that the Lomonosov Ridge blocked most but not all of the ice-shelf

stream (Fig. 1), implying a partly two-dimensional flow with some of the cross-ridge ice flux occurring over deeper channels

with ungrounded ice. Thus, the following one-dimensional analysis provides only a qualitative description of the interactions

between the ice shelf and the Lomonosov Ridge.

Our goal here is to obtain a relation between the ice mass flux over the Lomonosov Ridge and the ice thicknesses at the15

upstream and downstream grounding lines (Fig. 5). We anticipate that the basal stress in the grounded ice is primarily balanced

by a hydrostatic pressure gradient associated with a downstream slope of the ice surface. In transition zones near the two

grounding lines, however, the longitudinal deviatoric stress is generally important in the momentum balance and local ice rum-

ples may form (Schoof, 2007b, 2011; Goldberg et al., 2009; Favier et al., 2012). The non-dimensional width of these boundary

layers are controlled by the parameter ✏ based on the ridge-flow characteristics (Schoof, 2007b): when this parameter is small20

15



the horizontal extent of the boundary layers are small compared to that of the grounded-ice segment on the Lomonosov Ridge.

The multi-beam data shows stream-wise grounding distances on the order of 20–40 km (Jakobsson et al., 2016), indicating that

✏⇠ 0.1; see section 3.2. Although the value of ✏ is only moderately small, we will here neglect the dynamics in the transitional

boundary layers and assume that the leading-order momentum balance on the Lomonosov Ridge is given by

�Cu

m � ⇢

i

gh

@s

@x

= 0, s⌘ h� b. (26)5

where s is the ice surface s. As illustrated in Fig. 6, the down-stream decrease in s required to balance the basal stress causes

the upstream grounding line on the Ridge to lay deeper that the downstream one.

To obtain a rough estimate on the difference in grounding-line depths across the ridge, we re-write Equation (26) as

@s

@x

=� Cq

m

⇢

i

gh

m+1
, (27)

where q = uh. The flotation criteria implies that10

s(x1, t)� s(x2, t) = (h1 �h2)�⇢/⇢0, h1/2 ⌘ h(x1/2, t) (28)

where h1 and h2 denote the grounding-line ice thicknesses and �⇢⌘ ⇢0 � ⇢

i

. Treating h as a constant in Eq. (26), we obtain

the following estimate

h1 �h2

h

r

⇠ �, �⌘ ⇢0CL

r

q

m

g�⇢⇢

i

h

m+2
r

, (29)

where h

r

is the ice thickness at the ridge crest and L

r

the length of grounded ice on the ridge. The non-dimensional parameter15

� can be viewed as a measure of the flow resistance of the ridge: taking h

r

= 1 km, L

r

= 20 km, u= 0.1 km year

�1
, m= 1/3,

and C = 7.6 · 106 Pa m

�1/3
s

1/3
, one obtains �⇠ 1. The multi-beam estimated difference in grounding-line depths across the

Ridge, which is a few hundreds of meters, suggests that (h1�h2)/hr

⇠ 0.3. Given the approximate nature of the scaling, these

two estimates should be viewed as similar and thus mutually compatible.

At the upstream grounding line in the Amerasian Basin, there is no transition layer in the ice shelf as such a layer only20

develops downstream of a grounding line; see section 3.2. Accordingly, the ice thickness there essentially equals the mean

ice-shelf thickness in the Amerasian Basin h

A

. The flotation criteria Eq. (3) specifies the upstream grounding-line position x1,

yielding a relation of the form

x1 = x1(hA

, b(x)). (30)

Near this grounding line, there will be a boundary layer in the grounded ice that matches smaller values of @u/@x in the25

floating ice with higher ones closer to the ridge crest, where the ice thins and the velocity increases.

A simplified description of the ice thickness over the Lomonosov Ridge is obtained by assuming that the variations in h are

dominated by the variations of the sea bed b(x) and that q is constant. Using this and integrating Eq. (27) from x= x1, one

obtains

h(x,t) = h

A

�⇢/⇢

i

+ b(x)� Cq

m

⇢

i

g

xZ

x1

dx

0

b(x0)m+1
(31)30
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Figure 6. A sketch of the ice-thickness distribution near the Lomonosov Ridge, where the ice flows from the left (Amerasian side) to the right

(Eurasian side). A parabolic ridge shape is used [Eq. (33)] and the ice thickness is given by Eq. (31), which assumes that the longitudinal

deviatoric stress is negligible in the grounded ice. The vertical coordinate is normalised with br the ridge-crest depth. The white dashed line

indicates the base of floating ice, which mirrors the ice-surface elevation. Near the two grounding lines, there will be narrow transitions zones

where the longitudinal deviatoric stress is not negligible and local ice rumples can form (Schoof, 2007b; Goldberg et al., 2009; Favier et al.,

2012). However, the depicted simple solution should give the approximate difference in grounding-line depths across the ridge. Note that a

transition layer downstream of the the ridge where the ice shelf thins is not shown here; see Fig. 4.

where we have used the flotation criteria h

A

(t)� b(x1) = h

A

(t)�⇢/⇢

i

. From Eq. (31), the flotation criteria specifies the

downstream grounding line depth and position

h(x2, t) = ⇢0/⇢0b(x2), x2 = x2(hA

, q,b(x)). (32)

Figure 6 illustrates the ice thickness over the Ridge obtained from Eq. (31) for a parabolic ridge:

b(x) = b

r

(1+ (x/L
r

)2), (33)5

where b

r

is the ridge-crest depth and L

r

a horizontal length scale.

The relations (31) and (32) can be used to calculate a Ridge mass-flux relation on the form

q

r

= q

r

(h
A

,h2), (34)

which implicitly depends on bed shape b(x). For a parabolic ridge [Eq. (33)], an approximation of q

r

is obtained by taking

b(x)⇡ b

r

in the integral in Eq. (31) and then using Eq. (32). After some algebra, one obtains the downstream x2 grounding-line10

thickness

h2(hA

, q) = h

A

+h

r

[�2 � 2�(h
A

/h

r

� 1)1/2], h
r

⌘ b

r

⇢0/⇢i, (35)
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where �⇠ q

m

is defined in Eq. (29). The upstream x1 grounding-line thickness is given by

h

A

(h2, q) = h2 +h

r

[±2�(h2/hr

� 1)1/2 +�

2], (36)

where the plus/minus sign specifies the solution with the x2 grounding line downstream/upstream of the ridge crest. Solving

for �, we obtain

�(h
A

,h2) = (h
A

/h

r

� 1)1/2 ± (h2/hr

� 1)1/2, (37)5

where the plus/minus sign now specifies the solution with the x2 grounding line upstream/downstream of the ridge crest. This

relation and Eq. (29) specifies the ridge mass flux: q

r

⇠ �

1/m
.

In the example above, the grounded-ice extent and hence the effective basal stress vary with the strength of the mass flux.

This makes the relation between mass flux and grounding-line thicknesses more complicated than in the simple scaling given

in Eq. (29) where the the grounded-ice extent is taken to be fixed; in this case one obtains q

r

⇠ (h
A

�h2)1/m. For a simple10

symmetric ridge geometry, however, the qualitative features of the mass-flux relation Eq. (34) are straightforward to describe;

see Fig. (7). In the limit where the mass flux q is vanishingly small, the ice is symmetric with respect to the ridge crest and

h2 = h

A

. As q increases, the drop in surface ice elevation over the Ridge increases; see Eq. (27). If the upstream grounding-line

thickness h

A

is fixed, then the downstream grounding-line thickness will decrease with increasing q, which implies that this

grounding line will shift towards the ridge crest. Accordingly, for a given upstream ice thickness, there is a threshold value of q15

that places the downstream grounding line on the ridge crest. For higher values of q, both grounding lines are located upstream

of the ridge crest. In this regime, the upstream grounding-line thickness increases with increasing q, until the two grounding

lines meet

5

. Furthermore, the sea bed at the x2 grounding line now shoals in the ice-flow direction, which based on the classical

analysis of marine ice sheet stability (e.g. Weertman, 1974; Schoof, 2012) indicates that this configuration may represent an

unstable steady state. We will analyse this matter further in section 4.20

We emphasise that the grounded ice on the Lomonosov Ridge is assumed to

::
be in a regime of rapid sliding and governed by

the momentum-balance relation Eq. (2). Accordingly, the formula of Schoof (2007a) provides the mass flux on the downstream

side of the Lomonosov Ridge, where the ice becomes afloat in the Eurasian Basin. Using Eq. (22), one obtains q

g

(x2) =

q

g

(h2,hE

), where the back pressure h

b

is now set by the Eurasian Basin ice-shelf thickness h

E

. Further, as we here are

considering a quasi-equilibrium flow associated with a spatially constant mass flux over the the ridge, we require the mass flux25

relations (22) and (34) to match

q

r

(h
A

,h2) = q

g

(h2,hE

). (38)

This yields a functional relation of the form h2 = h2(hA

,h

E

), relating the downstream grounding-line ice thickness h2(x2, t)

to the mean ice thicknesses in the Amerasian and Eurasian Basins. Accordingly, we can write the ridge mass flux on the from

q

r

= q

r

(h
A

,h

E

), (39)30

5

Note that when grounded-ice extent becomes smaller, the importance of the longitudinal viscous stress grows. Hence, the approximate balance (26) breaks

down before the grounding lines meet, which will modify the mass-flux features in this limit.
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Figure 7. The mass-flux relation over the Lomonosov Ridge qr [Eq. (37)] as a function of the grounding-line thicknesses (upstream hA and

downstream h2). The mass flux, which is normalised to be unity at its maximum, is shown in terms of �; see Eq. (29). No steady states

exits when h2 > hA. Panel a) shows ice-shelf configurations where both grounding lines are located on the upstream Amerasian side of the

ridge crest (at xr , see the sketch at bottom), where the sea bed slopes upward in the ice-flow direction. These configurations may be unstable

and/or attainable in a steady state (see the text for details). Panel b) shows the configurations with grounding lines on each sides of the crest,

which represent stable steady states. Note that x-axis in panel a) is reversed: moving along the arrow at a fixed hA one sees how the mass

flux increases as the upstream h2 grounding line shifts upward to the ridge crest and then downwards on the Amerasian side.

which depends implicitly on the functional relation h2 = h2(hA

,h

E

). A scaling analysis of Eq. (38), however, indicates that

to the lowest order of approximation h2 ⇡ h

E

, which results from the high sensitivity of q

g

(h2,hE

) on h2. Accordingly, the

quasi-equilibrium mass flux over the Lomonosov Ridge can be approximated by taking h2 = h

E

in Eq. (37), which provides

the mass flux relation q

r

= q

r

(h
A

,h

E

). This simplification will be used in the analyses below.

4 Dynamical stages of ice-shelf evolution5

Based on the results of section 3, we now go on to qualitatively describe important stages in the ice-shelf evolution and

considering their stability. In section 4.1, we consider a thinner ice shelf, which does not ground on the Lomonosov Ridge, and

analyse its stability and coupling to surrounding ice sheets. Section 4.2 deals with the dynamics related to ice-shelf grounding

on the Lomonosov Ridge and analyses the stability of equilibrium states of the Arctic Ocean ice shelf complex. Here, we

find that the ice sheet-shelf complex should be stable if the downstream grounding line on the Lomonosov Ridge is located10

on a downward sloping bed. While this is reminiscent of classical results on marine ice sheet stability (Weertman, 1974), we
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emphasise that the present result is derived under different conditions: in the presence of two grounding lines, of which the

downstream one features a mass flux that decreases with local ice thickness; rather than increases as in the classical case.

4.1 The ungrounded shelf regime

A thinner Arctic Ocean ice shelf, which does not ground on the Lomonosov Ridge, will essentially behave as single dynamical

entity characterised by a nearly uniform thickness inside of the Fram Strait. In this regime, the integrated ice-shelf mass balance5

[see Eq. (21)] is given by

(x
f

�x

g

)
@h

S

@t

=

xfZ

xg

a(x,t)dx+ q

g

(h
g

,h

S

)� q

f

(h
S

), (40)

where h

S

(t) is the basin-mean ice-shelf thickness, (x
f

�x

g

) the length of the shelf, q

g

and q

f

the mass fluxes at the grounding

line and the Fram Strait entrance, respectively. The mass balance of the continental ice sheet is

xgZ

x0

@h(x,t)

@t

dx=

xgZ

x0

a(x,t)dx� q

g

(h
g

,h

S

), (41)10

where x0 is the position of the continental ice divide where u= 0. The mass balance equations describe a marine ice sheet

with a moving grounding line (Schoof, 2007a), which via the grounding-line mass flux q

g

(h
g

,h

S

) is coupled to an embayed

ice shelf. By assuming a steady state and adding the two mass-balance relations, we obtain

q

f

(h
S

) =

xfZ

x0

a(x)dx. (42)

This shows that in a steady state, the ice-shelf thickness is controlled by the Fram Strait ice export q

f

(h
S

) and the net accumu-15

lation over the ice-sheet–shelf complex.

To consider some qualitative stability aspects of the ice-sheet–ice-shelf complex, we consider the two limiting cases of a

large ice sheet and a large ice shelf, respectively. To begin with, assume that the ice sheet is dynamically stable and that its

volume is much smaller than that of the ice shelf. In this case, the time scale of the ice shelf is much longer than that of the ice

sheet and the time tendency can be ignored in Eq. (41); implying that the net accumulation over the ice sheet approximately20

balances the grounding-line mass flux. Adding the mass balance equations in this limit gives

(x
f

�x

g

)
@h

S

@t

=

xfZ

x0

a(x)dx� q

f

(h
S

). (43)

In this limit, steady states of the ice complex are stable if @q

f

/@h

S

> 0, which ensures that perturbations in ice-shelf thickness

are associated with countering anomalies in the Fram Strait ice export.

The opposite limit, where time scale of the ice shelf is much shorter than that of the ice sheet, the time tendency can be25

ignored in the ice-shelf mass balance Eq. (40); implying an approximate balance between the net accumulation over the ice

20



shelf, including the grounding-line mass flux and the Fram Strait ice export. The stability of steady-state solutions can be

analysed using a linear stability analysis (Schoof, 2012): We consider small perturbations of the grounding-line position and

the ice thicknesses from an equilibrium state:

x

g

(t) = x

g

+x

0
g

(t), h
g

(t) = h

g

+h

0
g

(t), h
S

(t) = h

S

+h

0
S

(t), (44)

where the overbar and the prime denote steady states and perturbations, respectively. Using this ansatz in Eqs. (40,41) and5

retaining only the terms that are linear in the perturbation variables, we obtain for the ice shelf

0 =�x

0
g

a(x
g

)+h

0
g

✓
@q

g

@h

g

◆
+h

0
S

✓
@q

g

@h

S

� @q

f

@h

S

◆
, (45)

and for the ice sheet

xgZ

x0

@h

0(x,t)

@t

dx= x

0
g

a(x
g

)�h

0
g

✓
@q

g

@h

g

◆
�h

0
S

✓
@q

g

@h

S

◆
. (46)

Here, the partial derivates of the mass fluxes are evaluated for the steady-state conditions and for simplicity the net accumulation10

is assumed to be continuous across the grounding line: a(x
g

) is taken to be the same in the two equations above; an assumption

which is easy to relax. Equation (45) describes a quasi-equilibrium evolution of the ice shelf, in which its thickness adjust

instantaneously to changes in the grounding-line position and thickness. This relates h

0
S

to h

0
g

and x

0
g

, allowing Eq. (46) to be

re-formulated as

xgZ

x0

@h

0(x,t)

@t

dx= x

0
g

(1��)a(x
g

)�h

0
g

(1��)

✓
@q

g

@h

g

◆
, (47)15

where we have introduced

�⌘� @q

g

@h

S

✓
@q

f

@h

S

� @q

g

@h

S

◆�1

. (48)

An inspection of the Eqs. (22,25) shows that @q

g

/@h

S

< 0 and @q

f

/@h

S

> 0, which implies that 0< �< 1. In analogy with

the buttressing parameter f [Eq. (11)], � can be viewed to measure the buttressing associated with time-evolving perturbations:

�= 0 corresponds to minimal buttressing. This limit occurs if the Fram Strait mass flux is highly sensitive to ice-thickness20

variations (i.e. @q

f

/@h

S

��@q

g

/@h

S

). In this limit, the Fram Strait constriction provides no resistance for the ice flow and

hence no buttressing of the ice sheet.

If the sea bed has a nonzero slope near the grounding line, the flotation criteria Eq. (3) specifies a unique relation between

the grounding-line position and ice thickness, which yields the following linearised relations

h

0
g

✓
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g

@h

g

◆
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= x

0
g

⇢0

⇢

i
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@h

g

◆
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= x
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✓
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g

@x

g

◆

xg

. (49)25

By using this to rewrite the last term on the right-hand side of Eq. (47), we obtain

xgZ

x0

@h

0(x,t)

@t

dx= x

0
g

(1��)


a(x

g

)�
✓
@q

g

@x
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◆�
. (50)
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It is the sign of the term within the square brackets that decides whether the ice sheet gains or loses mass if the grounding line

advances: The analysis of Weertman (1974) suggests that the ice sheet is stable if

a(x
g

)�
✓
@q

g

@x

◆

xg

< 0, (51)

which implies that advances/retreats of the grounding lines cause the ice sheet to lose/gain mass. Schoof (2012) showed that

this linear stability criteria can be derived strictly in a more complete model, which considers the dynamics of perturbations in5

thickness and flow in the grounded ice sheet and how they interact with shifts of the grounding-line position. In the absence

of net accumulation or ablation [i.e. a(x
g

) = 0], it follows directly from the Eqs. (49,51) that if the grounding-line mass flux

increases with ice thickness (i.e. @q

g

/@h

g

> 0), then the ice-sheet–ice-shelf complex is stable provided that the grounding line

is on a downward sloping bed (i.e. @b/@x > 0).

We note that since the factor 1�� in Eq. (50) is always greater than zero, the present analysis seems to suggest that ice-shelf10

buttressing cannot remove the instability of a marine ice sheet on an upward sloping sea bed, but only reduce the degree of

instability. This somewhat counterintuitive result stems from the fact we are considering an extensive and effectively dammed

ice-shelf segment, for which influences of lateral stresses bed

:::
bed

::::::
stresses

:
are ignored. In this limiting case, the back stress is

set by the mean ice shelf thickness and is hence taken to be independent of distance from the continental grounding line to

Fram Strait exit region. However, back stresses generally increase when the grounding line retreats and the embayed ice shelf15

experiences lateral stresses over an extending distance. This buttressing effect, which tends to decrease the mass flux at the

grounding-line when it retreats, can potentially stabilise a marine ice sheet with a grounding line on an upward sloping bed.

Numerical simulations due to Goldberg et al. (2009), however, suggest that this mechanism only can stabilise a marine ice

sheet on un

:
an

:
upward sloping bed if the ice-shelf is laterally confined in a rather narrow embayment. Thus, we anticipate that

the stability criteria due to Weertman (1974) [Eq. (51)] applies qualitatively for Arctic marine ice sheets that connect with a20

wide basin-covering ice shelf.

4.2 Effects of Lomonosov Ridge grounding

The geological data suggests that at least during the MIS 6, the ice shelf grounded on the Lomonosov Ridge (Jakobsson

et al., 2016). The transient evolution is dynamically complex when ice shelf begins to ground on the Lomonosov Ridge: There

are now two new moving grounding lines. We do not try to describe the transient dynamics following the grounding event.25

However, the ice-shelf complex will adjust to a new quasi equilibrium with an ice-surface gradient over the Ridge, which

balances the basal drag and drives a mass flux that matches those in the floating ice on either side of the Ridge. After this

adjustment, we expect that the ice-shelf thickness on the upstream side in the Amerasian Basin has increased notably, whereas

the downstream ice-shelf thickness in the Eurasian Basin has changed only modestly.

In the Eurasian Basin, the ice-shelf mass balance is now given by30
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); (52)

22



and in the Amerasian Basin by
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g
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g
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), (53)

where x

r

is the position of the Lomonosov Ridge.

In a steady state, the ice-shelf thickness can be determined by working upstream from the Fram Strait as follows. By adding

the steady-state versions of Eqs. (41,52,53), one finds that the ice-shelf thickness in the Eurasian Basin h

E

is determined by5

q

f

(h
E

) =

xfZ

x0

a(x)dx, (54)

which essentially identical to Eq. (42) describing the ungrounded case. The ice thickness in the Amerasian Basin is determined

by the accumulation upstream of the Ridge from the relation

q

r

(h
A

,h

E

) =

xrZ

x0

a(x,t)dx, (55)

which is obtained adding the steady-state versions of Eqs. (41,53). The downstream grounding-line thickness h2 on the10

Lomonosov Ridge can now be calculated from the mass-flux condition given by Eq. (38). Lastly, the continental grounding-line

thickness is found by equating the local ice flux there with q

g

(h
g

,h

A

); see Eqs. (22,41). One noteworthy aspect of the equilib-

rium dynamics is that the ice thickness in the Eurasian Basin h

E

is independent of how surface accumulation and continental

ice fluxes to the shelf are distributed. The ice thickness in the Amerasian Basin, on the other hand, depends on how the net

accumulation is distributed between the Basins: The ice-shelf thickness in the Amerasian Basin increases with the proportion15

of the total accumulation supplied to this region if q

r

increases with h

A

.

Figure 8 illustrates qualitatively how the equilibrium ice-shelf thickness changes with the net integrated accumulation, which

equals the mass flux. In this illustration, the Fram Strait mass flux is somewhat arbitrarily represented as q

f

(h)⇠ h

2
and it is

assumed that the net accumulation is equally divided between the Amerasian and Eurasian parts of the ice shelf, implying that

q

r

= q

f

/2. Further, we assume that h2 ⇡ h

E

and use Eq. (36) to calculate h

A

. For small values of accumulation/mass-flux, the20

ice shelf is thin and does not ground on the Lomonosov Ridge. In this regime, there is a single ice-shelf thickness in the Arctic

Ocean. By increasing the accumulation the ice-shelf thickness grows and eventually grounds on the Lomonosov Ridge. When

this occurs, a new equilibrium state develops that is associated with an ice-thickness difference over the Lomonosov Ridge. As

the mass flux is increased further, the ice thickness increases faster in the Amerasian Basin than in the Eurasian one, yielding an

increasing hydrostatic pressure gradient in the grounded ice on the Lomonosov Ridge. Note that at the instance of grounding,25

there are in principle two different ice flow configurations over the Lomonosov Ridge: one where the upstream grounding line

advances forward when the mass flux increases and one where it retreats backward to the Amerasian side of the ridge; see Fig.

7. As will be discussed below, the latter solution is presumably unstable.

A fundamental question is whether equilibrium ice-shelf–ice-shelf configuration with partial grounding on the Lomonosov

Ridge are stable. To isolate and illuminate the dynamics associated with the ice flux across the Ridge, we consider an idealised30
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Figure 8. A conceptual illustration of how the steady-state ice-shelf thickness varies with the Fram Strait ice export, which equals the

net accumulation over the ice shelf. The Amerasian Basin ice-shelf thickness hA is obtained from Eq. (36). The ice thicknesses are non-

dimensionalised with the Lomonosov Ridge crest flotation thickness hr and the ice export is normalised to be unity when the shelf grounds

on the ridge. When q < 1, the ice shelf is ungrounded and it has a single thickness over the Arctic Ocean. When the ice shelf grounds on the

Ridge, an ice-shelf thickness difference develops between the Amerasian and Eurasian basins. The dotted line depicts a hypothetical solution

with both grounding lines on the upstream side of the ridge, which presumably is unstable.

case in which the continental ground-line mass flux is taken to be fixed and we ignore possible changes in accumulation

rates associated with shifts of grounding-line positions. Moreover, we assume that at time scales over which the ice volumes

change in the Amerasian and Eurasian Basins, the rate of change of the grounded ice-volume on the Lomonosov Ridge can

be neglected. In this limit, the mass fluxes across the two grounding lines on the ridge are equal and the ridge mass flux takes

the form given in Eq. (39). Using these assumptions, we follow similar procedures as in section 4.1 and make a linear stability5

analysis, where the ice thicknesses in the Amerasian and Eurasian Basins are perturbed slightly from their equilibrium values:

The linearised version of the mass balance relations (52,53) then become
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where h

0
E

and h

0
A

are perturbation from an equilibrium state and the partial derivates of the ice mass fluxes are evaluated at the

equilibrium state. By making a standard stability analysis of Eqs. (56,57) (Bender and Orzag, 1987), one finds that equilibrium

solutions are stable if

@q

r

@h

A

> 0,
@q

r

@h

E

< 0,
@q

f

@h

E

> 0; (58)
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This stability criteria is straightforward to interpret physically in the limiting case where the Eurasian ice-shelf segment is

small and responds much faster than the Amerasian one: Suppose that the Amerasian ice-shelf thickness has been increased

slightly (i.e. h

0
A

> 0) and remains nearly constant as h

0
E

adjusts. From Eq. (56), we see that a positive h

0
A

serves to increase

the mass flux over the Ridge into the Eurasian Basin, where the ice thickness begins to grow. If @q

r

/@h

E

< 0, then the mass

flux over the Ridge will decrease with increasing h

0
E

, which represents a stabilising negative feedback. According to the ridge5

mass-flux relation Eq. (37), this should apply if the downstream grounding line is on the Eurasian side where the bed slopes

downward. An additional stabilising feedback comes from the Fram Strait ice export, which increases with the ice thickness in

the Eurasian Basin.

If the downstream grounding-line thickness on the Ridge h2 is assumed to be proportional to h

E

, it follows from Eq. (37)

that the equilibrium is stable if the downstream grounding line is on the Eurasian side where the bed slopes downward: Here10

@q

r

/@h

A

> 0 and @q

r

/@h

E

< 0 implying stable equilibrium states. This can be inferred directly from an inspection of Fig.

7b. For the other equilibrium configuration, where the downstream grounding line is on the Amerasian side of the Ridge on

an upward-sloping bed, the equilibrium is potentially unstable as @q

r

/@h

E

> 0: The mass flux over the Ridge increases with

increasing Eurasian ice shelf-thickness; see Eq. (37) and Fig. 7a. This represents a positive destabilising feedback. The stability

features in this case will be decided of the relative strengths of the positive and the negative feedbacks involved, which depend15

on the details of q

r

and q

f

as well as the relative ice-shelf extents x

r

�x

g

and x

f

�x

r

. However, our analyses of the ice flow

over the Lomonosov Ridge and in the Fram Strait are to crude to assess stability features in this case.

In summary, the simple ridge mass-flux formula Eq. (37) combined with a linear stability analysis suggest that the ice-shelf

complex should be stable if the downstream grounding line on the Lomonosov Ridge is located on a downward-sloping bed. It is

relevant to note that the situation here is different from the classic marine ice sheet stability problem (Weertman, 1974; Schoof,20

2007a, 2012): there are two grounding lines and the mass flux at the downstream one decreases rather than increases with

local ice thickness. The different relation between grounding-line thickness and mass flux arises because we are considering a

non-divergent quasi-equilibrium ice mass flow over the ridge. Thus, the ice flow could be unstable to perturbations of shorter

time-scales that are associated with spatial variations in the mass flux over the ridge. However, if the grounded-ice segment

on the ridge would become very extensive, we anticipate that the ice dynamics near the downstream grounding line would25

be no different from that of an ordinary marine ice sheet. In this limit, the criteria of Weertman (1974) will govern the local

stability of the downstream grounding line. If the grounded-ice segment short, on the other hand, the presence of an upstream

grounding line can potentially affect stability of the ice-sheet–ice shelf complex. It is beyond the scope to further analyse this

challenging problem, but we note that the general approach outlined by Schoof (2012) may be used to examine the stability of

ice configurations with multiple grounding lines.30
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5 Discussion

5.1 Dynamical analogues and differences with the large Antarctic ice shelves

Our theoretical analyses show that a basin-covering Arctic Ocean ice shelf have

::
has

:
two regions with distinctly different

dynamics: a vast interior region covering the central Arctic Ocean basin and an exit region towards the Fram Strait (Fig. 2).

The exit region, which terminates at a calving front towards the Norwegian–Greenland Seas, should have characteristics in5

terms of extent and dynamics resembling those of present-day large ice shelves around Antarctica. The interior region, which

can be viewed as dammed rather than embayed, should feature a different dynamics in which pronounced back stress supports

kilometre thick shelf ice with negligible horizontal thickness variations. The back stress is proportional to mean ice thickness

in the interior region and hence increases with increasing ice flow resistance in the exit region.

This conceptual two-regime division of the Arctic Ocean ice shelf is partly motivated by the smallness of the non-dimensional10

parameter ✏ [Eq. (15))], which measures the ratio between viscous stresses and the hydrostatic pressure gradient (Schoof,

2007b; Goldberg et al., 2009): When ✏ is small, the variations in ice-shelf thickness should be small compared with the mean

ice thickness. For the large Antarctic ice shelves corresponding values of ✏ are in fact very small (Goldberg et al., 2009) and

qualitative comparable to that characterising the Arctic Ocean ice shelf. Notably, the Ross Ice Shelf has an outer segment

extending over 500 km in the stream-wise direction, where the ice-shelf thickness is fairly uniform up to the calving front15

(MacAyeal and Thomas, 1986). Because the ice shelf terminates at a broad open-ocean calving front, however, buttressing and

back stresses are negligible in this outer segment of the Ross Ice Shelf (Thomas and MacAyeal, 1982). In contrast, the interior

Arctic Ocean ice shelf meets the Fram Strait constriction, where local boundary stresses create an effective back stress in the

upstream ice shelf. The constricted Ross Ice Shelf segment inside Roosevelt Island should have some dynamical similarities

with an Arctic Ocean ice shelf. Although this part of the Ross Ice Shelf extends only some 300 km, it features modest ice-20

thickness variations and significant back stresses (MacAyeal and Thomas, 1986; Thomas and MacAyeal, 1982). Accordingly,

it is the specific embaying geometry rather than the size that gives the interior Arctic Ocean ice shelf its distinctive dynam-

ics. In fact, the interior Arctic Ocean ice shelf should have dynamical similarities with globally ocean-covering ice shelves

that may have formed during Snow Ball Earth events (Li and Pierrehumbert, 2011): such ice shelves are completely confined

horizontally.25

5.2 Spatial distribution of the glacial ice shelf

The present theoretical considerations and review of recent ice-dynamical studies suggest that the dynamically most consistent

scenario is a fully-developed glacial Arctic Ocean ice shelf of approximately uniform thickness that cover the entire basin. This

is in line with numerical-modelling results of Colleoni et al. (2016a) and the reconstruction based on mapped ice grounding

on submarine ridges and bathymetric highs of Jakobsson et al. (2016) shown in Fig. 1, which in turn is similar to the earlier30

ice-shelf scenario proposed by Mercer (1970), Hughes et al. (1977) and Grosswald and Hughes (1999). The mapped mega-

scale lineation features on the Arlis Plateau and southern Lomonosov Ridge off the New Siberian Islands point to an ice shelf

drafting deeper than 1000 m below present sea level, which is incompatible with the notion of a freely spreading ice shelf
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that only covers fractions of the Arctic Ocean: Without back stresses from ice-shelf embayment towards the Fram Strait, the

ice mass flux from the continental ice sheets would have been unreasonably large (Schoof, 2007b). It is important to note

that for the same physical reason, a kilometre thick Amerasian Basin ice shelf, which grounds on the Lomonosov Ridge and

thereafter spreads freely in the Eurasian Basin is dynamically unfeasible: the mass flux from the downstream grounding line

on the Lomonosov Ridge would be gigantic

::::
very

::::
large

6

, causing rapid thinning and un-grounding of the ice shelf. Further, our5

discussions have concerned an ice shelf that terminates near the Fram Strait. It is open question whether glacial Arctic Ocean

ice shelves have continued southward to the North Atlantic covering also the Nordic Seas as proposed for instance by Hughes

et al. (1977) and Lindstrom and MacAyeal (1986). Mapped evidence of ice grounding on the Hovgaard Ridge south of the

Fram Strait (Arndt et al., 2014) indicate that ice shelves extending into the Norwegian–Greenland Seas cannot not be firmly

dismissed at this stage.10

5.3 The puzzling absence of LGM ice-shelf traces

A noteworthy result of our theoretical analyses is that the equilibrium thickness of an Arctic Ocean ice shelf should be fairly

insensitive to the spatial distributions of surface accumulation, basal oceanic melt, and influx of continental ice. Further, if

there exists a Fram Strait ice-export relation that depends mainly on the mean Arctic ice-shelf thickness, then the ice-export

dynamics should have been similar during the Marine Isotope Stage 6 and the Last Glacial Maximum. If these assumptions15

hold, the equilibrium ice-shelf thicknesses at these two glacial stages should depend primarily on the total mass supply to the

ice shelf.

In the Arctic Ocean, essentially no documented ice-erosion traces below depths of around 600 m have been dated to the

LGM (Jakobsson et al., 2014). Taken at face value, this implies that if an Arctic Ocean ice shelf was formed during the LGM

its thickness was less than about 500 m, which is roughly half of the inferred MIS 6 thickness. By assuming equilibrium ice-20

shelf conditions and a knowledge of the Fram Strait ice-export relation, one could estimate the difference in net accumulation

between these two glacial stages. If the ice export is proportional to the ice-shelf thickness, the net accumulation should

have been about twice as large during the MIS 6 than during the LGM. On the other hand, if the ice export increases faster

than linearly with the ice-shelf thickness, then a larger net accumulation difference is needed to yield a factor of two in ice-

shelf thickness difference. The hypothetical ice-export relation given by Eq. (25), which depends on the fourth power of the25

thickness, requires a 16 fold increase in accumulation to give a doubled equilibrium ice-shelf thickness. Thus, the sensitivity of

the Fram Strait ice export may determine if a difference in net accumulation can be a plausible explanation for a significantly

thinner ice shelf during the LGM.

Climate-modelling studies give some support to the notion that the mass supply to an Arctic Ocean ice shelf could have been

higher during the glacial conditions of MIS 6. A main factor is that the Laurentide Ice Sheet presumably was lower and smaller30

than during the LGM (Colleoni et al., 2016b). Studies with atmospheric-circulation models show that a high Laurentide Ice

Sheet tend to make the Atlantic jet stream more zonal, which shifts the cyclone paths southward over Europe; whereas a low

6

::
For

::
the

::::::
material

::::::::
parameters

:::
used

:::
here

:::
and

:::
with

::::::::
hg = 1000

::
m

:::
and

:::::
hb = 0,

:::
Eq.

:::
(22)

:::::
predicts

:
a

::::
mass

:::
flux

::::
across

:::
the

::::
2000

::
km

::::
wide

::::::::
Lomonosov

::::
Ridge

::
of

::::
about

::
10

::
000

::::
km

3
:::::
year

�1
,

::::
which

::
is

:::::
roughly

:
a

:::::
factor

:
of

:
5

::::
lager

:::
than

:::
the

::::::
estimated

::::
mass

::::
supply

::
to

::
the

::::
entire

:::::
Arctic

::::
Ocean

:::
ice

::::
shelf;

::
see

:::::
section

:::
2.1.
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Laurentide Ice Sheet yields a more modern-day North Atlantic atmospheric circulation with cyclone paths reaching northwest-

ern Europe and the Arctic (Löfverström et al., 2014; Colleoni et al., 2016b)

::::::::::::::::::::::::::::::::::::::::::::
(Löfverström et al., 2014, 2016; Colleoni et al., 2016b).

Thus, a smaller MIS 6 Laurentide Ice Sheet may have resulted in an atmospheric-circulation regime that was more conducive

for building a massive Artic Ocean ice shelf. Modelling experiments of Colleoni et al. (2016a) suggest that compared to the

LGM, surface accumulation rates over the Arctic Ocean may have been some 50% higher during the MIS 6.5

Oceanic basal melting is a leading-order component in the mass balance of present-day Antarctic ice shelves (Jacobs et al.,

2011; Rignot et al., 2013). Moreover, numerical ice-shelf–ice-sheet modelling suggests that variations oceanic basal melting

have played a crucial role for collapses and advances of the West Antarctic ice sheet during the past 5 million years (Pollard

and DeConto, 2009). Basal melting is also expected to be important for an Arctic Ocean ice shelf. Building on a Ross Ice Shelf

study by MacAyeal (1984), Jakobsson et al. (2016) developed a conceptual oceanographic model of the circulation in a huge10

flat-roofed ice cavity, representative of an Arctic Ocean ice shelf. In their model, plausible variations of the weakly constrained

parameters such as oceanic temperature and vertical mixing can give changes in basal melting that have a larger impact on

the ice-shelf mass balance than the ones who Colleoni et al. (2016a) attributed to atmospheric-circulation differences between

the MIS 6 and the LGM. Marine sedimentary records suggest that immediately before and during the LGM, the deep Arctic

Ocean and Nordic Seas were several degrees warmer than today (Cronin et al., 2012; Thornalley et al., 2015). Despite that no15

comparable information exits for the MIS 6, this raises the possibility that differences in oceanic conditions may explain the

absence of a thick LGM ice shelf.

Can the time available to build ice shelves explain the difference between the LGM and the MIS 6? Analyses of stable

isotope records indicate that MIS 6 represents a longer period of fully-glaciated conditions that the LGM (Jouzel et al., 2007).

With plausible net accumulation rates in the range of 0.05–0.1 m year

�1
(Bigg and Wadley, 2001; Colleoni et al., 2016a) and in20

the absence of ice export, it would take some 10 000 to 20 000 years to build a kilometre thick ice shelf

7

. Evidently, Fram Strait

ice export slows the ice-shelf growth. By how much will depend on the relation between ice export and ice-shelf thickness. If

the export increases sharply with ice thickness, the export loss becomes significant in the mass balance first when the ice-shelf

thickness approaches the equilibrium thickness. In this case, the ice shelf reaches its equilibrium thickness at a time essentially

set by the net accumulation rate. A weaker sensitivity of the ice export on ice thickness can significantly prolong the time25

required to reach the equilibrium ice-shelf thickness.

:
A

:::::::::
significant

:::::::::
difference

::
in

::::::
volume

:::
of

:::
the

:::::
Arctic

:::
ice

::::::
shelves

::::::
during

:::
the

:::::
LGM

:::
and

:::
the

::::
MIS

::
6

:::
has

::::::::::
implications

:::::
when

::::::::
inferring

:::::
glacial

:::
sea

:::::
levels

:::::
from

:::::
ocean

::::::
oxygen

:::::::
isotope

::::::
records.

::::::::::::::::::::::::
Broecker (1975) emphasised

:::
that

:::::::
floating

:::
ice

::::::
shelves

::::
have

:::::::::
essentially

:::
no

:::::
impact

:::
on

:::
the

:::
sea

:::::
level,

:::
but

:::
that

:::
the

:::::::::::::::
isotopically-light

::::::
oxygen

::::::::
contained

::
in

:::
ice

:::::::
shelves

:::::::
increases

:::
the

:::::
mean

:::::::
oceanic

::::
�

18
O

::::::
value.

:::::
Thus,

::::::::::::::::::
temperature-corrected

:::::
�

18
O

::::
data

::::
from

:::
the

:::::
deep

:::::
ocean

::
as

::::
well

:::
as

::::
from

:::
the

::::
Red

::::
Sea

:::
will

:::::::::::
overestimate

::::::
glacial

::::::::
sea-level30

::::::::
decreases

:
if

:::::
large

:::
ice

::::::
shelves

::::
were

:::::::
present.

::::
The

:::::::::::::
fully-developed

::::
MIS

:
6

::::::
Arctic

::::::
Ocean

::
ice

:::::
shelf

::::::
should

::::
have

::::::::
increased

:::
the

:::::
mean

::::::
oceanic

:::::
�

18
O

:::::
value

::
by

:::::::
roughly

::::
0.15

::::::
permil,

:::::::::
equivalent

::
to

:::
the

:::::::
increase

::::::
caused

::
by

::
a

:::::::
sea-level

::::::::
decrease

::
of

::::::
around

::
15

::::::
meters

::::
due

::
to

:::::::::
continental

:::
ice

:::::::::::
accumulation

::::::::::::::::::::::::::::::::::::::::::
(Mix and Ruddiman, 1984; Jakobsson et al., 2016).

::
It

:::
can

:::
be

:::::
noted

:::
that

:::
the

:::::
deep

:::::
ocean

:::::
�

18
O

7

In 30 000 model-year long numerical simulations, Colleoni et al. (2016a) have obtained basin-covering Arctic Ocean ice shelves with thicknesses reaching

over 2 km. However, details of ice-thickness evolution and Fram Strait ice export are nor provided in the paper.
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:::::
values

::::
were

::::::
similar

::::::
during

::::
MIS

::
6

:::
and

:::::
LGM

:::::::::::::::::::::::
(Lisiecki and Raymo, 2005).

:::
By

:::::::::
accounting

:::
for

:::
the

::::::::
difference

::
in

::::::::
ice-shelf

:::::::
volume,

::
the

:::::
deep

:::::
ocean

:::::
�

18
O

:::::
record

::::::::
indicates

:::
that

:::
the

:::
sea

:::::
level

:::::
should

:::::
have

::::
been

:::::
some

:
5

::
to

:::
10

::::::
meters

:::::
lower

:::::
during

:::::
LGM

:::::::::
compared

::
to

::::
MIS

::
6.

::::::::
However,

:
it

::::
may

:::
be

::::::::::
challenging

::
to

::::
infer

:::::::
volumes

::
of

::::::
glacial

::::::
Arctic

:::
ice

::::::
shelves

:::::
from

::::::::::
comparisons

::
of

:::
sea

:::::
level

::::::::
estimates

:::::
based

::
on

:::::::::
landforms

:::
and

::::::
ocean

::::::
oxygen

::::::
isotope

:::::::
records.

::::
The

::::::
reason

::
is

:::
that

:::
the

:::::::
oceanic

:::::
�

18
O

::::::::
signature

::
of

:::::
Arctic

:::
ice

:::::::
shelves

::
is

:::::::::
comparable

::
to

:::::::::::
uncertainties

::::::
related

:::
to

::::::
various

:::::
steps

::
in

:::::::
deriving

:::::
�

18
O

:::::
values

::::
and

::::::::::
assumptions

::::::::
involved

::
in

:::::::::
converting

:::::
them

::
to5

:::
sea

::::
level

::::::::::::::::::
(Siddall et al., 2004).

::::
Still,

::
it

::::
may

::
be

::::::::::
worthwhile

::
to

::::::
revisit

:::
the

:::::::
question

:::
of

:::
the

::::::
relative

:::
sea

::::::
levels

:::::
during

:::::
MIS

:
6

::::
and

::::
LGM

:::
in

:::::
light

::
of

:::
the

::::
new

:::::::::
data-based

::::::
support

::
of

:::
an

::::::::
extensive

::::
MIS

:
6

:::
ice

::::
shelf

::
in

:::
the

::::::
Arctic

::::::
Ocean.

5.4 Threshold effects and Arctic ice-sheet stability

Hughes et al. (1977) emphasised the stabilising role of a glacial Arctic Ocean ice shelf for the contiguous marine ice sheets,

and proposed a scenario for how ice-shelf disintegration could lead to rapid de-glaciation. Such ”uncorking” effects of marine10

ice sheets, associated with rapid loss of buttressing, may occur when the ice-shelf thickness passes certain thresholds controlled

by bed and basin geometries (Schoof, 2007a; Pollard and DeConto, 2009). A critical stability point for Arctic marine sheets

may be passed when a glacial ice shelf un-grounds from the Lomonosov Ridge: Figure 8 indicates that the Amerasian Basin

ice-shelf thickness may change sharply when the ice shelf grounds on or un-grounds from the Lomonosov Ridge. Moreover,

when the ice shelf becomes afloat from the Lomonosov Ridge, oceanic heat transport into the Amerasian Basin ice cavity is15

expected to increase, which could further erode the ice shelf. A rapid decrease in ice-shelf thickness reduces drastically the

buttressing of the contiguous ice sheets (Hughes et al., 1977; Dupont and Alley, 2005; Goldberg et al., 2009). As a response,

the grounding-line stress and mass flux increase, causing the continental ice sheet to surge and the grounding line to retreat.

The increased ice-sheet mass flux to the Arctic Ocean may cause the ice shelf to temporarily re-ground on the Lomonosov

Ridge, yielding an oscillatory adjustment towards a new equilibrium. Accordingly, changes in climatic conditions that cause20

the ice shelf to ground and and un-ground on the Lomonosov Ridge may trigger ice-sheet surges to the Arctic Ocean, which

in some respects could resemble Heinrich events in the North Atlantic Ocean (Clarke et al., 1999), or surges associated with

instabilities of the West Antarctic ice sheet (Pollard and DeConto, 2009; Joughin and Alley, 2011).

The Yermak Plateau at the northern edge of the Fram Strait (Fig. 1) could also serve as a dynamical switch of the ice

shelf. This is a broad and heavily ice eroded plateau with a depth of around 600 m below the present sea level (Dowdeswell25

et al., 2010; Jakobsson et al., 2014). When an ice shelf becomes thick enough to ground on the Yermak Plateau, basal drag

should increase sharply and ice export through the Fram Strait should decrease temporarily. To reattain equilibrium conditions,

in which ice export and net accumulation balance, the Arctic Ocean ice-shelf thickness needs to increase. Thus, ice-shelf

grounding on the Yermak Plateau could represent another threshold, associated with a sharp increase in equilibrium ice-shelf

thickness, which could have been passed during the MIS 6 but not during the LGM.30

5.5 Concluding remarks

Motivated by earlier hypotheses of Arctic Ocean ice shelves during glacial conditions (Mercer, 1970; Hughes et al., 1977;

Grosswald and Hughes, 1999) and new observationally-based evidence (Dowdeswell et al., 2010; Jakobsson et al., 2010;
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Niessen et al., 2013; Jakobsson et al., 2016), we have theoretically analysed the physical features of an extensive and effectively

dammed Arctic Ocean ice shelf. The present results indicate that some puzzling glacial questions concerning formation of

kilometre-thick basin-covering ice shelves hinges on the ice-shelf flow resistance through the Fram Strait and its associated

ice-shelf back stresses in the central Arctic Ocean. Appropriately designed simulations with numerical ice-shelf models should

be able to provide critical information on this issue. Furthermore, numerical ice-shelf modelling may be used to analyse how the5

two-dimensional Arctic Ocean ice-flow pattern depends on the distribution of ice flux from the Arctic continental margins and

local surface mass balance. Combined with the data-inferred ice flow directions, such numerical experiments could provide

important constraints on ice-shelf features and continental ice sheet configurations: the hypothesised existence of an East

Siberian ice sheet during MIS 6 has been difficult to confirm on the basis of terrestrial records (Niessen et al., 2013; Jakobsson

et al., 2014). Another intriguing question is how ocean–ice interactions operate in the special stetting

:::::
setting

:
of an Arctic Ocean10

ice shelf. Although studies on Antarctic ice shelves provide useful insights (MacAyeal, 1984; Jacobs et al., 2011; Rignot et al.,

2013), the glacial Arctic Ocean should entail some different aspects of ocean–ice interactions. Distinguishing features of the

glacial Arctic Ocean include very weak tidal currents and a vast flat-roofed ice cavity with water depths exceeding 2 km, which

has a highly isolated ”Snow Ball Earth” like Amerasian Basin compartment (Ashkenazy et al., 2013). In conclusion, glacial

Arctic Ocean ice shelves feature a rich and interesting set of dynamical questions that can provide illuminating perspectives on15

the dynamics and evolution of Antarctic ice shelves as well as analogies with glacial Snow Ball Earth scenarios.
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