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Abstract. Rock glaciers are typical periglacial landforms. They can indicate the existence of permafrost, and can also shed 

light on the regional geomorphological and climatic conditions under which they may have developed. This article provides 

the first rock glacier inventory of Daxue Shan, southeastern Tibetan Plateau. The inventory is based on analyses of Google 

Earth imagery. In total, 295 rock glaciers were identified in Daxue Shan, covering a total area of 55.70 km2, between the 10 

altitudes of 4,300 and 4,600 m above sea level. Supported by ArcGIS and SPSS software programs, we extracted and calculated 

morphometric parameters of these rock glaciers, and analyzed the characteristics of their spatial distribution within Daxue 

Shan. Our inventory suggests that the lower altitudinal boundary for permafrost across the eight aspects of slopes observed in 

Daxue Shan differs significantly, and that the lower altitudinal permafrost boundary is ~104 m higher on western rather than 

eastern facing slopes. Moraine-type and talus-derived rock glaciers exhibit mean gradients that are all concentrated within the 15 

22°-35° range. However, tongue-shaped (22°-35°) and lobate rock glaciers (27°-45°) display a greater difference in mean 

gradient. Shady (i.e., N, NE and E) slopes appear more conducive to the formation of moraine-type rock glaciers, and sunny 

(i.e., W, SW and S) slopes appear more conducive to the formation of talus-derived rock glaciers. In addition, Tertiary 

monzonitic granite is more sensitive than other lithological components to the freeze-thaw process, and continuous weathering 

of this monzogranitic substratum thus provides the ideal raw material for the rock glaciers of Daxue Shan. These results show 20 

that environmental controls (i.e., topographical, climatic, lithological factors) greatly affect the formation and development of 

rock glaciers. This study provides important data for exploring the relation between maritime periglacial environments and the 

development of rock glaciers on the southeastern Tibetan Plateau (TP). It may also highlight the characteristics typical of rock 

glaciers found in a maritime setting. 
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1 Introduction 

The term ‘rock glacier’ was first proposed by the American scholar Capps when the investigating Kennicott Glacier in Alaska 

(Capps, 1910). By definition, rock glaciers consist of perennially frozen masses of ice and debris that creep downslope under 

the weight of gravity (Haeberli, 1985; Barsch, 1996; Haeberli et al., 2006). As many Himalayan rock glaciers develop out of 5 

moraines and it is hard to distinguish where the moraine ends and the rock glacier begins. The bodies of rock glaciers are 

similar to moraines, in that as their ice mass moves over a pore ice surface, they do not sort materials in relation to the thickness 

of the debris they contain. Statistically, rock glaciers occupy extensive areas above the forest line in the mountainous regions 

of the world (Haeberli, 1985). Indeed, there are ~73,000 rock glaciers in the world (Jones et al., 2018a), with ~1,000 active 

rock glaciers in the Swiss Alps alone. The freeze-thaw process experienced by the ice masses within rock glaciers can exert a 10 

major impact on the hydrological cycle (Azócar and Brenning, 2010; Jones et al., 2018a; Jones et al., 2018b), and creep of 

rock glaciers can significantly negatively influence any infrastructure built on top. Rock glacier research may therefore aid a 

more detailed and accurate understanding of the genesis of periglacial geomorphology and of the ongoing and developmental 

relation between rock glaciers and their local environments. 

Over the last twenty years, with the rapid development of more advanced Geographical Information System (GIS), remote 15 

sensing (RS), and statistical techniques, rock glacier research has entered a new, accelerated phase. This phase has included 

the compilation of rock glacier inventories (e.g., Bolch and Marchenko, 2009; Cremonese et al., 2011; Bolch and Gorbunov, 

2014; Falaschi et al., 2014; Colucci et al., 2016; Janke et al., 2017; Wang et al., 2017; Jones et al., 2018a), the mapping of their 

spatial distributions and their relations with environmental controls such as topography and climate (e.g., Chueca, 1992; 

Brazier et al., 1998; Brenning, 2005; Janke, 2007; Johnson et al., 2007; Kenner and Magnusson, 2017; Onaca et al., 2017; 20 

Jones et al., 2018b), estimations of the distribution of permafrost based on rock glaciers (e.g., Allen et al., 2008; Boeckli et al., 

2012; Schmid et al., 2015; Sattler et al., 2016), and the dynamic movement of rock glaciers (e.g., Haeberli et al., 2006; Liu et 

al., 2013; Muller et al., 2016; Wang et al., 2017). However, compared with ice glaciers, rock glaciers remain poorly described 
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and infrequently studied. One reason is because they are mixtures of rock fragments of different sizes and are spectrally similar 

to their surroundings, and therefore cannot easily be automatically mapped from optical RS data (Brenning, 2009). In addition, 

both supraglacial-debris (upon the glacier) and debris along the glacier margins originate from surrounding valley rock (Jones 

et al., 2018b), thus their debris surfaces do not produce distinct spectral signals. As a result, it is often difficult to distinguish 

relict rock glaciers from inactive rock glaciers that still contain ice using optical RS imagery (Millar and Westfall, 2008; 5 

Kenner and Magnusson, 2017). 

Rock glacier research in China has, up to this point, focused principally on the Tianshan Mountains (Cui and Zhu, 1989; Qiu, 

1993; Zhu et al., 1996; Wang et al., 2017), rather than the rock glaciers of Daxue Shan on the southeastern margins of the TP. 

As this region has been, and continues to be, strongly uplifted and deformed due to the extrusion and collision of the Indian 

and Eurasian continental plates since the beginning of the Quaternary. This region is therefore characterized by an extremely 10 

complex matrix of relations between different environmental factors such as climate and geomorphology. It is therefore of 

particular importance to study the environmental controls on the rock glaciers of Daxue Shan as an aid to the further study of 

the complex geographical environment, natural hazards, and to aid environmental planning and management. The purpose of 

this study was twofold: first, to describe and complete a systematic inventory of the previously undocumented rock glaciers in 

Daxue Shan; and second, to characterize their distribution and environmental controls (i.e., climatic, topographical and 15 

lithological factors). In addition, there was an analysis and discussion of the mechanisms driving the formation, development 

and spatial distribution of the rock glaciers of Daxue Shan rock glaciers in relation to different environmental controls. 

2 Study Area 

The study area is situated in China’s Sichuan Province between 29.956°N~30.573°N and 101.477°E~101.974°E (Fig. 1). To 

the west is the uplifted eastern sector of the TP, and to the east are mountain gorges, both of which are important geographical 20 

boundaries (Zhang et al., 2017). The topography of Daxue Shan is characterized by the strong downcutting of high energy 

water courses, resulting in a great altitudinal range (1349 m asl ~ 7321 m asl). The region’s climate is relatively warm and 

humid, and is strongly influenced by a southwesterly monsoonal atmospheric circulation (Wang et al., 2017). East of Daxue 
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Shan is a subtropical monsoon climatic zone which is principally affected by the aforementioned southwesterly monsoonal 

atmospheric circulation, but also by a southeasterly monsoonal atmospheric circulation and the Westerlies, all of which 

transport abundant precipitation to this region. West of Daxue Shan the subtropical monsoon and continental plateau climatic 

zones intersect, producing a cold-temperate climate, as well as abundant precipitation. Geologically, Daxue Shan is located 

where the Songpan, Chuandian and South China tectonic blocks intersect. The Xianshuihe (Ganzi-Yushu) Fault passes to the 5 

northwest of Daxue Shan (Zhang, 2013). 

3 Methods 

3.1 Rock glacier inventory, classification and database 

The availability of more powerful RS tools such as Google Earth has transformed geomorphological fieldwork and has, on the 

whole, made the recognition of landforms in remote and poorly accessible areas both fast and easy (Slaymaker, 2001; Bolch, 10 

2004; Kaab et al., 2005). This is beneficial to the present study as Daxue Shan is remote and difficult to access, therefore we 

compiled an inventory of the rock glaciers of Daxue Shan using high-resolution Google Earth satellite imagery (for the period 

October 2014~January 2017). Google Earth has been previously used for rock glacier identification in the Bolivian Andes 

(Rangecroft et al., 2014) and the Hindu Kush-Himalayan region (Schmid et al., 2015). Google Earth contains the best freely 

available imagery for detecting rock glaciers across large spatial areas. 15 

Rock glaciers are characterized by distinct flow features and structural patterns. Transversal or longitudinal flow features 

(ridges and furrows) are common on rock glaciers due to the deformation of their internal ice structures (Clark et al., 1998; 

Humlum, 2000; Haeberli et al., 2006; Berthling, 2011). Many rock glaciers also exhibit structural patterns such as steep frontal 

slopes and side slopes with swollen bodies. Due to the constant supply of talus or debris, the surface textures of rock glaciers 

are usually different from those of the surrounding slopes. Depending on the mobility and permafrost presence, rock glaciers 20 

are usually divided into active, inactive, and relict rock glaciers (Sattler et al., 2016). In general, the presence of ice within 

active/inactive rock glaciers is indicated by a steep (>35°) frontal slope (Ikeda and Matsuoka, 2002) and a well-developed 

flow-like morphology defined by sets of parallel and curved ridges separated by long V-shaped furrows (Barsch, 1996; Roer 
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and Nyenhuis, 2007), and the absence or sparse occurrence of vegetation (Onaca et al., 2013). Inactive rock glaciers also 

contain ice, but are immobile. In contrast, relict rock glaciers are characterised by surface collapse features as a result of 

permafrost degradation, with gentler frontal and marginal slopes, and are often vegetated (Wahrhaftig and Cox, 1959; Haeberli, 

1985; Scotti et al., 2013). Based on these criteria, we visually examined the Google Earth images and identified any potential 

rock glaciers. We mapped the distribution of rock glaciers in the study region using the ASTER GDEM dataset (to within a 5 

horizontal accuracy of 30 m) and the Google Earth imagery, before marking the geographical location of each identified rock 

glacier and delineating its outline using Google Earth. 

The topographical characteristics of the rock glaciers identified in the inventory were recorded in a GIS environment (ArcMap 

10.2) and then extracted and attributed to each rock glacier. These characteristics were both qualitative and quantitative and 

included each rock glacier’s geographical location (i.e., the coordinates of its center), type as determined using dynamic, 10 

genetic and geometric criteria (moraine-talus; tongue-lobate), aspect, mean gradient of slope (°), area (km2), centerline length 

(m), average width (m), average altitude (m asl), debris source area (parameter), and bedrock lithology. A geological layer was 

added to the GIS so that the relevant class of bedrock could be attributed to each rock glacier within the spatial distribution 

database. 

Based on the main source of the mass input of debris into each rock glacier and its subsequent transport downslope, we 15 

subdivided rock glaciers into two distinct categories: talus-derived rock glaciers developing below talus slopes; and moraine-

type rock glaciers evolving mainly from glaciogenic materials (Lilleøren and Etzelmüller, 2016; Onaca et al., 2017) (Fig. 2). 

In terms of their planar geometry, these rock glaciers could be subdivided into two types: lobate and tongue-shaped (Fig. 2). 

The length/width ratio was used to distinguish between lobate (length/width ratio <1) and tongue-shaped (length/width ratio >1) 

rock glaciers (Giardino and Vick, 1987; Martin, 1987; Barsch, 1996; Guglielmin and Smiraglia, 1998; Onaca et al., 2017). The 20 

overall aspect of each rock glacier was manually derived for each feature according to the main direction of the rock glacier 

flow before being recoded into eight categories which corresponded to the orientation of each rock glacier. 

However, due to the lack of data regarding the flow behavior of rock glaciers, it remains to be determined whether these 

landforms are currently active, or whether they represent rock glaciers. In addition, some aspects of digitisation were 

challenging based on visual interpretation of remotely sensed imagery alone and thus the mapped rock glaciers are inherently 25 
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associated with further uncertainty (Sattler et al., 2016; Jones et al., 2018b). There are some rock glaciers that may not be 

correctly delineated. Especially, delimitation of the upper boundary of rock glaciers through geomorphic mapping is arbitrary 

(Krainer and Ribis, 2012), and delineation of individual polygons where multiple rock glaciers coalesce into a single body is 

inherently subjective (Scotti et al., 2013; Schmid et al., 2015). Moreover, several complex landforms may are delineated as 

rock glaciers which could also be landslide deposits or relict rock glaciers. Therefore, in the future research, adding additional 5 

data sources and further in situ observations would be useful to constrain methods of rock glacier identification and increase 

accuracy when building rock glacier inventories; such fieldwork would also supplement results rendered by the Digital 

Elevation Model (DEM) we used to determine the altitude and aspect of each rock glacier, and which we set to a 30 m spatial 

resolution. Further, use of a higher resolution DEM paired with in situ climate datasets would likely produce a more accurate 

representation of the distribution of the rock glaciers in Daxue Shan. Due to the limitations imposed by the 30 m spatial 10 

resolution and the uncertainties inherent in any visual identification, we may have failed to identify all the rock glaciers in the 

study area. These uncertainties explain why we chose to adopt a range of values rather than exact numerical figures during our 

statistical analyses of the formation and development of the mapped rock glaciers as controlled by local environmental factors. 

3.2 Spatial and statistical analyses 

When there is collinearity between the terrain variables, principal components analysis (PCA) can used to determine the 15 

relationships between them (White and Copland, 2015; Ran, 2017). However, in this study, we performed the Kaiser-Mayer-

Olkin (KMO) and Bartlett's tests to examine the suitability of the data for factor analysis and found that with a KMO value of 

0.387<0.5 (Table 1), the original variables are not suitable for PCA because there is weak collinearity between the terrain 

variables. Therefore, we retained the original variable information, which allows for in the case of convenient interpretation 

and calculation (not too many dimensions), without dimensionality reduction. 20 

We set the eight geographical and topographical parameters (i.e., latitude, longitude, rock glacier (RG) area, length, width, 

altitude asl, mean gradient and aspect) for each of the rock glaciers of Daxue Shan to an eight-dimensional random variable 

(i.e., X1, X2, X3 ... X8). A correlation coefficient ρij (i, j = 1, 2 ... 8) of Xi and Xj was introduced into the correlation matrix of 

the random dimensional vector as an eight order matrix for each element, and was denoted by R, thus: 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/polygon
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R = [

𝜌11 𝜌12 ⋯ 𝜌18

𝜌21 𝜌22 ⋯ 𝜌28

⋮ ⋮ ⋮ ⋮
𝜌81 𝜌82 ⋯ 𝜌88

], 𝜌𝑖𝑗 =
𝑐𝑜𝑣(𝑋𝑖,𝑋𝑗)

√𝐷𝑋𝑖√𝐷𝑋𝑗
, 𝑐𝑜𝑣(𝑋𝑖 , 𝑋𝑗) = 𝐸((𝑋𝑖 − 𝐸(𝑋𝑖)) · (𝑋𝑗 − 𝐸(𝑋𝑗))) 

The diagonal element of the correlation matrix was 1, and the correlation matrix itself was a symmetrical matrix. We performed 

the statistical analysis using SPSS20® software. Correlations between the quantitative topographical variables were evaluated 

using Pearson correlation coefficients at a corresponding significance level of p<0.05. 

4 Results 5 

In total, 295 rock glaciers were identified in Daxue Shan (Fig. 3), covering an area of 55.70 km2 (Table 2). Of these, 50.51% 

were talus-derived rock glaciers, the other 49.49% were moraine-type rock glaciers. 94.58% of the rock glaciers were tongue-

shaped, and remaining were lobate-shaped. Discussion material most rock glaciers in Daxue Shan are therefore tongue-shaped 

rock glaciers. 

The 295 rock glaciers are found at altitudes of between 4,300 and 4,600 m asl, with the mean altitude being 4,471 m asl. 10 

Moraine-type rock glaciers are mainly concentrated between 4,400-4,600 m asl, and talus-derived rock glaciers between 4,300-

4550 m asl. Tongue-shaped and lobate-shaped rock glaciers are mainly concentrated between 4,350-4,600 m asl (Fig. 4a). We 

found that the altitudes of moraine-type rock glaciers were at least 50-100 m higher than for talus-derived rock glaciers. The 

upper boundaries for the vast majority of rock glacier types were ~4,600 m asl, because at higher altitudes there are often ice 

glaciers. Figure 4b shows the range in areas covered by different types of rock glaciers. Apart from a few outliers, the area of 15 

most rock glacier types area is <0.3 km2, and in this regard there is no clear difference between rock glacier types. Figure 4c 

shows the range in the mean gradients of the slopes of different types of rock glaciers. Moraine-type and talus-derived rock 

glaciers exhibit mean gradients that are all concentrated within the 22°-35° range. However, tongue-shaped and lobate rock 

glaciers display a greater difference in mean gradient. Tongue-shaped rock glaciers have slopes with mean gradients which 

are concentrated in the 22°-35° range, whereas the mean gradients of lobate rock glaciers fall within the 27°-45° range. This 20 

means that the upper (~10°) and lower (~5°) slopes of tongue-shaped rock glaciers are both lower than for lobate rock glaciers. 

Figure 4d displays the range in the lengths of different types of rock glaciers. Moraine-type, talus- type and tongue-shaped 
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rock glaciers are typically 500-1000 m long, whereas lobate rock glaciers are usually 200-400 m long. Compared with lobate 

rock glaciers, moraine-type and tongue-shaped rock glaciers have more sediment supplies and last longer on gentle slopes. 

Consequently, that moraine-type and tongue-shaped rock glaciers flow further than lobate rock glaciers. 

Our dataset revealed that, apart from south-facing (5.44%), southeast-facing (3.06%) and northeast-facing (20.75%) slopes, 

the rock glaciers are fairly evenly distributed on slopes with the remaining five aspects that each account for ~15% of the total. 5 

Moraine-type rock glaciers are most often northeast-facing (30.34%) or north-facing (20%), whereas talus-derived rock 

glaciers are most often southwest-facing (22.82%) or west-facing (17.45%). Lobate rock glaciers tend to be found less on 

south-facing (6.25%) and southeast-facing (0%) slopes, but more commonly on north-facing, northwest-facing and east-facing, 

which each aspect accounting for ~18.75% of the total. We compared all our results and discovered that shady (i.e., N, NE and 

E) slopes appear more conducive to the formation of moraine-type rock glaciers, and sunny (i.e., W, SW and S) slopes appear 10 

more conducive to the formation of talus-derived rock glaciers. In addition, there are more steep rock walls on the north faces 

producing debris, north-facing (i.e., N, NW and NE) slopes seem to be more favorable for the formation of lobate rock glaciers 

than do south-facing (i.e., SW, S and SE) ones (Fig. 5).  

5 Discussion 

The spatial distribution and dynamics of rock glaciers are especially dependent upon the local topography and climate 15 

(Springman et al., 2012; Delaloye et al., 2013). Also, the lithology exert considerable control on the rock glaciers (Onaca et 

al., 2017). Analyzing local environmental factors (i.e., climatic, topographical and lithological factors) is therefore crucial to 

obtaining an understanding of the formation, development and spatial distribution of rock glaciers. 

5.1 Topographical controls on rock glaciers 

The results showed that there is a significantly positive correlation (p=0.05) between latitude, altitude, and rock glaciers length 20 

(Table 3), a relation which is locally determined by the topographical characteristics. With the increase of latitude from the 

south to the north in Daxue Shan, the high altitude rock glaciers increase in count, and flow further downvalley than those at 

low altitude. The altitudes of the mountains and rock glacier length increase with latitude, along with a latitudinal decrease in 
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air temperatures, implying that the northern sector of Daxue Shan has an environment which is more conducive to the formation 

of rock glaciers and other periglacial landforms. Likewise, there is a significantly negative correlation (p=0.01) between 

latitude and longitude, indicating no significant impact upon the NW-SE clusters of rock glaciers found in the Daxue Shan 

region. There is also a significantly negative correlation (p=0.01) between longitude and altitude, as lower altitude areas to the 

east are less conducive to the development of rock glaciers where warmer and more humid conditions are not conducive to the 5 

formation of permafrost landforms. A significantly negative correlation (p=0.01) exists between rock glacier length and mean 

gradient of slope; the shortest rock glaciers are the talus-derived variety, and these have usually developed in steep 

topographical environments. Rock glacier area and mean gradient of slope have a significantly negative correlation (p=0.01); 

the larger rock glaciers are mostly concentrated on gentle slopes, meaning that they are more conducive to the development of 

large rock glaciers. In summary, the topography of Daxue Shan is an important environmental control on the formation, 10 

development, and spatial distribution of the region’s rock glaciers. 

The mean altitude of a rock glacier’s front (MAF) has often been taken to be a good approximation of the lower boundary of 

the discontinuous permafrost zone (i.e., Scotti et al., 2013). We found a substantial altitudinal difference between the lower 

permafrost boundaries identified on the abovementioned eight aspects. For example, permafrost was assumed to be probable 

above 4,300 m asl on east-facing slopes, and above 4,403 m asl on west-facing slopes. The mean lower permafrost boundary 15 

was calculated as occurring at 4,352 m asl (derived from a mean value of 4,315 m asl for east-facing slopes at 4315m, and 

4,419 m asl for west-facing slopes). The mean lower permafrost boundary on east-facing (shady) slopes would therefore be 

~104 m lower than that of west-facing (sunny) slopes (Fig. 6). 

In addition, the formation and development of the rock glaciers of Daxue Shan are also strongly influenced by the landforms 

created by glacial erosion and deposition. The southeastern margins of the TP are in a region of Quaternary glaciation which 20 

has been, and continues to be, strongly affected by monsoonal atmospheric circulations (Owen et al., 2005). This region 

possesses numerous ancient glacial relics and abundant landforms created by glacial erosion and deposition (Li and Yao, 1987). 

We found that the distribution of rock glaciers is in close association with ice glaciers, as the upper boundaries for rock glaciers 

were ~4,600 m asl, and at higher altitude there are often ice glaciers. In the context of global warming, it is widely accepted 

that the majority of glaciers on the Tibetan Plateau (TP) and its surroundings have experienced accelerated reduction (Bolch 25 
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et al., 2012; Yao et al., 2012). The rate of glacier decline in Daxue Shan was -0.25 ± 0.20% a-1 during 1990-2014 (Wang et al., 

2017), with some ice glaciers transforming to rock glaciers. Glacial depositional landforms (e.g., moraine ridges) are highly 

conducive to the formation and development of moraine-type rock glaciers. Moraine ridges or moraines left after the retreat 

of the ancient glaciers can provide significant quantities of boulders, erratic blocks, debris, sand, and ground ice. In the process 

of down-slope movement, rock glaciers can incorporate old moraine material as well as the debris from both sides of the 5 

moraine ridge. Glacial erosional landforms in particular have a close relation with the formation and development of talus-

derived rock glaciers. Ice structures, snow layers and moraines within glaciers collapse from time to time, supplying talus to 

the feet of mountains. As a result of the freeze-thaw process and the effect of gravity, talus creep then forms rock glaciers. 

5.2 Climatic controls on rock glaciers 

The west-facing slopes of Daxue Shan lie in the intersection between a sub-frigid monsoonal and a continental plateau climatic 10 

zone, and therefore experience a cold-temperate climate. At the Daofu meteorological station (2,957.2 m asl), mean annual 

precipitation (MAP) is ~613.5 mm, and mean annual temperature (MAT) is ~8.14C (Fig. 7b). Based on an adiabatic rate of 

0.65C/100 m, we estimated the MAT at 4,311 m asl (i.e., the lower permafrost boundary) to be ~-0.66C. The east-facing 

slopes of Daxue Shan are affected by a subtropical monsoonal climatic environment, and are affected principally by a 

southwesterly monsoonal atmospheric circulation, but also by a southwesterly monsoonal atmospheric circulation, and by the 15 

Westerlies. These slopes therefore experience high levels of precipitation (snowfall). MAP at the Kangding meteorological 

station (2,615.7 m asl) reaches 858.3 mm; MAT is ~7.29 °C (Fig. 7a). We calculated the MAT at 4,352 m asl (i.e., the lower 

permafrost boundary) to be ~-4.00C. Here, the freeze-thaw process would be frequent (Fig. 7), meaning that the climatic 

environment would provide temperature and precipitation conditions highly favorable to the formation and development of 

rock glaciers.  20 

Compared with Gruber’s (2012) global Permafrost Zonation Index (PZI) map, the distribution of rock glaciers in Daxue Shan 

is in general agreement, but many rock glaciers are situated within the PZI fringe of uncertainty (Fig. 3). However, the PZI is 

strictly controlled by temperature that decreases with increasing altitude, further indicating the climatic controls on 

development of permafrost such as rock glaciers. In addition, compared with the distribution of ice glaciers in Daxue Shan, 
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the distributions of rock glaciers also has characteristic small differences between the south and north, owing to a north–south 

corridor effect for water and heat transport and diffusion through the longitudinal gorges (Wang et al., 2017), and it is the 

result of climatic and topographical comprehensive control on rock glaciers. 

5.3 Lithological controls on rock glaciers 

Lithology is a critical control for the supply of talus to ice- and rock-glacier surfaces (Haeberli et al., 2006). Figure 8 shows 5 

that the major exposed strata in the Daxue Shan region are composed of Tertiary monzonitic granite, consistent with the NW-

SE trending Xianshuihe Fault. The surrounding mountains in this area generally consist of biotite-muscovite granite that 

intruded 16~13 Ma ago (Roger et al., 1995). Also located in this region is the tectonically important Zheduotang Fault, which 

runs through the Zheduo Valley, and is one of the most active fault systems on the TP’s margins (Allen et al., 1991). It can be 

seen from Figure 8 that the distribution of rock masses along the Xianshuihe Fault in the Daxue Shan region is clearly 10 

controlled by this NW-SE left-lateral strike-slip fault. 

In contrast to other regions (Lilleøren and Etzelmüller, 2016; Onaca et al., 2017), we found that in Daxue Shan both moraine-

type and talus-derived rock glaciers have developed in the monzogranitic areas, and that rock glacier and monzonitic granite 

exhibit a high spatial correlation and interdependence. The Tertiary monzogranites of Daxue Shan are clearly highly conducive 

to the formation and development of rock glaciers. This is consistent with the findings of Onaca et al. (2017) in the southern 15 

Carpathian Mountains. According to Popescu et al. (2015), rock glaciers located in granitic and granodioritic massifs are 

composed of larger clasts compared with those found in metamorphic massifs. Thus, the higher porosity of the substrata in 

granitic and granodioritic massifs allows for a significant cooling beneath the bouldery mantle because the denser cold air is 

trapped between the large boulders (Balch, 1900). The lithological and mineralogical characteristics which accompany the 

high porosity of tertiary monzogranites are therefore more favorable to the formation and development of local rock glaciers 20 

than are other lithologies. In addition, rock glacier formation is also controlled by slope and sedimentation rates contributing 

debris to the landforms (Müller et al., 2016). There are large sources of sediment and sediment storages in Daxue Shan, which 

are controlled by the processes occurring within this setting (Müller et al., 2014). An abundance of steep rock walls and 
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deepened valley sides, provides catchment areas for rock glacier development, and when combined with intense monsoonal 

precipitation and tectonic activity, drives sediment transport processes and rock glacier development in Daxue Shan. 

Several researchers (e.g., Cui and Zhu, 1989; Zhu, 1992; Zhu et al., 1992; Liu et al., 1995; Bolch and Gorbunov, 2014) have 

previously identified hundreds of rock glaciers in the northern Tianshan Mountains. They found that most of the identified 

rock glaciers were tongue-shaped, and were located at altitudes between 3,300 and 3,900 m asl, on north-facing slopes. Most 5 

rock glaciers in Daxue Shan are also tongue-shaped. However, the altitudes at, and the aspects on, which these rock glaciers 

are found differ between the Daxue and the Tianshan mountain ranges. First, in terms of altitude, the rock glaciers of Daxue 

Shan are located between 4,300 and 4,600 m asl, higher than the Tianshan rock glaciers by approximately 700-1000 m. It 

would be reasonable to assume, therefore, that the rock glaciers located in lower latitudes are more likely to be found at higher 

altitudes. Second, in terms of aspect, the rock glaciers of Daxue Shan are more evenly distributed across all eight 10 

abovementioned aspects than are the rock glaciers of the Tianshan Mountains. This could be explained by several factors, 

including the differences in overall altitude, as well as in the orientation of the main massif of each mountain range. Daxue 

Shan lies along an approximately NW-SE axis, whereas the Tianshan Mountains are roughly W-E in presentation. Rock 

glaciers are therefore less commonly found on the east- and west-facing slopes of the Tianshan. The effect of solar radiation 

is stronger on the south-facing slopes of the Tianshan Mountains than on its north-facing ones, meaning that conditions on 15 

these south-facing slopes are less conducive to the development of rock glaciers; most of the range’s rock glaciers are therefore 

found on its north-facing slopes. Furthermore, when higher altitudes are reached, all aspects experience lower air temperatures, 

resulting in a lessening of the impact caused by the difference between air temperature and solar radiation exposure; this 

phenomenon is similar to that found in Daxue Shan, and explains why rock glaciers there are fairly evenly distributed on all 

eight aspects. However, when altitudes are lower, the impact of solar radiation, combined with warmer air temperatures, is 20 

greater, particularly on south-facing slopes; both temperature and solar radiation are lesser on shady north-facing slopes, 

however, explaining the predominance of north-facing rock glaciers in the Tianshan Mountains. 
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6 Conclusions 

Rock glaciers are widespread in Daxue Shan, and of these, tongue-shaped rock glaciers cover the largest area. The occurrence 

and characteristics of these rock glaciers can mostly be explained by local environmental controls (i.e., climatic, topographical 

and lithological factors). 

In total, 295 rock glaciers were identified in Daxue Shan, covering a total area of 55.70 km2. The altitudes at which moraine-5 

type rock glaciers are found (i.e., 4,400-4,600 m asl) are at least 50-100 m higher than for talus-derived rock glaciers (i.e., 

4,300-4,550 m asl), although the upper altitudinal limit for both these types of rock glacier is ~4,600 m asl. At higher altitude 

there are often ice glaciers. Except for a few outliers, the area of each type of rock glacier is no greater than 0.3 km2. There is 

no significant difference between moraine-type and talus-derived rock glaciers in terms of the mean gradients of the slopes 

upon which the glaciers are found (i.e., they are all clustered within the 22-35° range), but the upper and lower mean slope 10 

gradients of tongue-shaped rock glaciers are ~10° and ~5° lower than for lobate rock glaciers, respectively. Moraine-type, 

talus-derived and tongue-shaped rock glaciers are longer (i.e., 500-1000 m) than lobate rock glaciers (i.e., 200-400 m). We 

found shady (i.e., N, NE and E) slopes more conducive to the formation of moraine-type rock glaciers than sunny (i.e., W, SW 

and S) ones, while sunny (i.e., W, SW and S) slopes appear more conducive to the formation of talus-derived rock glaciers. In 

addition, north-facing (i.e., N, NW and NE) slopes appeared more favorable to the formation of lobate rock glaciers than did 15 

south-facing (i.e., SW, S and SE) ones. The mean regional lowest altitudinal limit of rock glaciers is 4,352 m asl, an altitude 

which was taken to indicate the local permafrost’s mean lower boundary. On east-facing slopes, the permafrost’s lower 

boundary can therefore reasonably be assumed to be ~104 m lower than on west-facing slopes. 

The correlation matrix of rock glacier parameters indicates that the formation of rock glaciers is closely related to local 

topographical parameters. The local climatic environment leads to a frequent freeze-thaw process within these rock glaciers, 20 

a process which is also beneficial to their formation and development. Tertiary monzonitic granite, with its large clastic and 

highly porous characteristics, is more sensitive than other lithological components to the freeze-thaw process, and continuous 

weathering of this monzogranitic substratum thus provides the ideal raw material for the rock glaciers of Daxue Shan. 
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Tables and Figures: 

Table 1. KMO and Bartlett's Test. 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy.  .387 

Bartlett's Test of Sphericity 

Approx. Chi-Square 1216.315 

df 28 

Sig. .000 
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Table 2. Statistics for the 295 rock glaciers found in Daxue Shan. 

RG type 
Number of 

landforms 

RG 

area 

(km2) 

Altitude (m asl) 
Length 

(m) 

Width 

(m) 

 

Gradient of 

Slope (°) 

MAF 

(m asl) 

Moraine 146 28.11 4,501 793 235  28.45 4,385 

Talus 149 27.59 4,442 805 228  30.05 4,321 

Tongue 279 52.87 4,470 829 211  28.89 4,347 

Lobate 16 2.83 4,491 275 582  35.69 4,447 

MTRG 139 26.86 4,496 817 218  27.96 4,377 

MLRG 7 1.25 4,592 303 564  38.29 4,539 

TTRG 140 26.01 4,444 841 204  29.81 4,317 

TLRG 9 1.58 4,412 253 595  33.67 4,376 

All RG 295 55.70 4,471 799 231  29.26 4,352 

Note: RG=rock glaciers; MTRG= moraine-type and tongue-shaped rock glaciers; MLRG= moraine-type and lobate rock 

glaciers; TTRG=talus-derived and tongue-shaped rock glaciers; TLRG= talus-derived and lobate rock glaciers; MAF= 

minimum altitude of rock glacier front. Altitude of rock glacier, altitude of rock glacier front, length, width and gradient of 

slope are all mean values. 5 
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Table 3. Correlation matrix of rock glacier parameters; marked correlations (bold) are significant at the significance level of p=0.01 

(**) and p=0.05 (*). 

 Latitude Longitude Altitude Length Width RG area Mean slope Aspect 

 Latitude 1.000 -0.893** 0.116* 0.102* -0.020 0.029 0.092 -0.016 

Longitude -0.893** 1.000 -0.290** -0.062 0.025 0.002 -0.004 -0.034 

Altitude 0.116* -0.290** 1.000 -0.075 0.087 0.031 -0.102* 0.045 

Length 0.102* -0.062 -0.075 1.000 0.063 0.776** -0.341** 0.013 

Width -0.020 0.025 0.087 0.063 1.000 0.572** -0.004 -0.026 

RG area 0.029 0.002 0.031 0.776** 0.572** 1.000 -0.265** 0.010 

Mean slope 0.092 -0.004 -0.102* -0.341** -0.004 -0.265** 1.000 -0.068 

Aspect -0.016 -0.034 0.045 0.013 -0.026 0.010 -0.068 1.000 
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Figure 1: (a) The location of the study area in the permafrost zone of the TP. The Permafrost Zonation Index (PZI), or a 

corresponding map color, indicates to what degree permafrost exists only under the most favorable conditions (yellow), or nearly 

everywhere (blue); the map was produced using a temporal resolution of 30 arc-seconds (<1km) on a WGS84 lat/lon grid plotted in 

a projected coordinate system (Gruber, 2012). (b) and (c) are the geographical and topographical maps of the study area based on 5 

a spatial resolution of 30 m using ASTER-GDEM v2 software, as shown in the WGS84 coordinate system. 
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Figure 2: Google Earth images of different types of rock glaciers in Daxue Shan: (a) moraine-type and tongue-shaped rock glaciers 

(30.332767ºN, 101.707756ºE) (30th January, 2017); (b) moraine-type and lobate rock glaciers (30.217147ºN,101.791585ºE) (15th 

November, 2015); (c) talus-derived and tongue-shaped rock glaciers (30.067066ºN, 101.819432ºE) (21st October, 2014); (d) talus-5 

derived and lobate rock glaciers (30.127825ºN, 101.812158ºE) (21st October, 2014). The red lines show the outlines of the rock 

glaciers; the blue arrows indicate the direction of flow of the rock glaciers. 



28 
 

 

Figure 3: Spatial distribution of rock glaciers and Gruber’s (2012) Permafrost Zonation Index (PZI) in Daxue Shan. The green area 

represents the fringe of uncertainty. 
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Figure 4: Boxplots illustrating the distributional characteristics of rock glaciers in Daxue Shan: (a) average altitude (m asl); (b) area 

(km2); (c) range in the gradient of the slope (°); and (d) length (m). Boxplots represent 25-75% of all values, the caps at the ends of 5 

the vertical lines represent 10-90% of values, and the line in the center of each box indicates the median value. The number of the 

population of the different kinds of rock glacier is in the brackets of the legend. 

  



30 
 

 

 

Figure 5: Analysis of the abundances of different rock glacier types versus aspect. The number of rock glaciers for each aspect on 

each of the four radar plots is shown as a percentage (%). (Note: RG=rock glaciers; MTRG= moraine-type and tongue-shaped rock 

glaciers; MLRG= moraine-type and lobate rock glaciers; TTRG=talus-derived and tongue-shaped rock glaciers; TLRG= talus-5 

derived and lobate rock glaciers) 
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Figure 6: Minimum altitudinal rock glacier fronts (MAF) for all eight aspects, along with the overall mean. These values are taken 

to represent the lower boundaries of the potential permafrost extent in the Daxueshan region (bars indicate standard errors of the 

mean). Because Daxue Shan lies along an approximately NW-SE axis, we used this NW-SE axis as the boundary separating east-

facing (i.e., N, NE, E), shady slopes from west-facing (i.e., S, SW, W), sunny slopes. 5 
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Figure 7: Climatographs for the Kangding (2,615.7 m asl, 30.03°N, 101.58°E), Daofu (2,957.2 m asl, 30.59°N, 101.07°E), Danba 

(1,949.7 m asl, 30.53°N, 101.53°E) and Ganzi (3,393.5 m asl, 31.37°N, 100°E) meteorological stations. Data sources: Meteorological 

Data Center of the China Meteorological Administration (http://data.cma.cn/, calculated for the period 1981–2010, inclusive). 5 
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T2-3zg-z Middle-Late Triassic meta-sandstone and slate Dw Devonian metapelites 

T3xd Late Triassic slate and phyllite T3bd Late Triassic sandstone and conglomerate 

T1b Early Triassic sandstone and siltstone Z1m-sh Lower Sinian meta-sandstone and phyllite 

P2d Middle Permian volcanic lava and breccia C2-P1xg-s Middle Carboniferous-Early Permian Carbonatite 

Rηγ Tertiary monzonitic granite PΣ Permian unclassified ultrabasicrock 

T3zh Late Triassic sandstone Pt1K.  Palaeoproterozoic amphibolite and migmatitic gneiss 

Tηγ Triassic monzonitic granite P2k Middle Permian carbonate and pelite 

T3lh Late Triassic meta-sandstone T2l Middle Triassic dolomite and limestone 

Figure 8: The rock glaciers of Daxue Shan superimposed on the local lithologic-geologic environment. Stratigraphic data from the 

China Geological Survey (http://www.cgs.gov.cn/). 

http://www.cgs.gov.cn/

