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Abstract. Currently, several large-scale ice-flow models impose a condition on ice-flux across grounding lines using an an-

alytically motivated parameterization of grounding-line flux. It has been suggested that employing this analytical expression

alleviates the need for highly resolved computational domains around grounding lines of marine ice sheets. While the analyt-

ical flux formula is expected to be accurate in an unbuttressed flow-line setting, its validity has hitherto not been assessed for

complex and realistic geometries such as those of the Antarctic Ice Sheet. Here the accuracy of this analytical flux formula5

is tested against an optimized ice flow model that uses a highly-resolved computational mesh around the Antarctic grounding

lines. We find that when applied to the Antarctic Ice Sheet the analytical expression provides inaccurate estimates of ice fluxes

for almost all grounding lines. Furthermore, in many instances direct application of the analytical formula gives rise to un-

physical complexed-valued ice fluxes. We conclude that grounding lines of the Antarctic Ice Sheet are, in general, too highly

buttressed for the analytical parameterization to be of practical value for the calculation of grounding-line fluxes.10

1 Introduction

Estimating the future impact of the Antarctic Ice Sheet (AIS) on global sea levels invariably involves calculating changes in ice

fluxes across grounding lines, as well as determining the migration of the grounding lines themselves. Accurately describing

grounding-line dynamics can therefore be considered an essential prerequisite for any numerical ice-flow simulation of marine

ice sheets such as the AIS. Accordingly, over the last decades, considerable efforts have focused on ensuring that large-scale15

ice-flow models are capable of capturing correctly the dynamical behavior of grounding lines (e.g. Goldberg et al., 2009;

Gladstone et al., 2010; Seroussi et al., 2014; Feldmann et al., 2014; Gagliardini et al., 2016; Pattyn et al., 2017). As part

of these efforts, several model inter-comparison experiments have been conducted to assess different approaches within the

ice-sheet modeling community regarding the numerical modeling of marine-type ice sheets (Pattyn et al., 2012; Drouet et al.,

2013; Pattyn et al., 2013; Asay-Davis et al., 2016). Although still a subject of active research, one of the outcomes of these20

inter-comparison experiments has been to stress the need for a sufficiently fine resolution of the computational domain around

grounding lines. Within the context of the shallow ice-stream computational models — a commonly-used flow approximation

for describing the flow of ice streams and ice shelves (e.g., Morland, 1987; MacAyeal, 1989) — it has, for example, been
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suggested that for many applications a horizontal resolution of around one kilometer or less is suitable (Gladstone et al., 2012;

Pattyn et al., 2012; Cornford et al., 2016). However, for large-scale ice flow models using uniform grids employing such a high

resolution globally for large ice sheets such as the AIS can be computationally prohibitively expensive. As a way of resolving

this issue, and to allow for an accurate description of grounding-line dynamics without resorting to high spatial resolution, in a

number of numerical modelling studies a ‘flux condition’ is imposed at the grounding line whereby the grounding-line flux is5

prescribed using an analytical expression (e.g., Docquier et al., 2011; Thoma et al., 2014; DeConto and Pollard, 2016; Pattyn,

2017). In other instances, the grounding-line migration rate is prescribed directly (e.g. without buttressing parameterisation,

Ritz et al., 2015).

The analytical flux expression most often used is based on a theoretical study by Schoof (2007a, b) and was derived under

the assumption that the ice shelf provides no buttressing to the ice at the grounding line. The absence of buttressing implies10

that the (vertically integrated) horizontal stresses at the grounding line are not affected by the presence of the ice shelf, and

were the ice shelf to be removed and replaced by ocean water, the state of stress (in a vertically integrated sense) would remain

unaffected (e.g., Schoof, 2007a; MacAyeal and Barcilon, 1988). However, in general, and this is certainly the case for the AIS

today (e.g. De Rydt et al., 2015; Fürst et al., 2016; Reese et al., 2017), ice shelves do provide some buttressing. To account

for this, numerical models use a modified analytical expression of ice flux based on Schoof (2007a) involving an additional15

buttressing parameter (θ) describing the modification in axial stress due to the mechanical impact of the ice shelf on the stress

state at the grounding line. The buttressing parameter (θ) needs to be calculated by the numerical ice flow model, and then

inserted into the analytical flux expression. The resulting flux is then used by the corresponding numerical model as a flux

condition along all grounding lines.

Previous numerical model inter-comparison experiments (Pattyn et al., 2012) have shown that in the unbuttressed case there20

is, in general, a good agreement between the analytically and numerically calculated ice fluxes for steady-state conditions. For

one particular synthetic model setup, Gudmundsson (2013) also found, in places, a good agreement between analytically and

numerically calculated ice fluxes for buttressed ice. The question now arises as to how accurately the analytical expression

predicts grounding-line ice fluxes for realistic geometries such as that of the present-day AIS. More specifically, if one were

to apply sufficiently high resolution around all Antarctic grounding lines, would fluxes calculated directly by such a high-25

resolution numerical model agree with the predictions of the analytical flux formula? Answering this question is the subject

of this study. Here we assess the accuracy and the general applicability of the analytical flux formula for calculating ice fluxes

across grounding lines of present-day Antarctica. We do this by comparing predicted analytical fluxes with independently

numerically calculated ice fluxes using the community ice-flow model Úa (Gudmundsson, 2013). The ice flow model is applied

continent-wide, using high spatial resolution around all grounding lines of few hundreds of meters.30

The paper is structured as follows: First, we describe our numerical ice flow model Úa, and the model initialization procedure

in Sect. 3. We then give a brief overview over the flux formula derived by Schoof (2007a), and discuss several different

approaches to quantifying ice-shelf buttressing. The following Sect. 4 on the comparison between numerically calculated

grounding-line ice fluxes and those by the flux formula forms the main part of the paper. This is followed by a discussion of

the results and final conclusions, Sect. 5 and Sect. 6.35
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2 Model description

We diagnose the fluxes at the grounding line with the finite-element ice-flow model Úa (Gudmundsson, 2013). The flow model

Úa has been used to calculate the ice-flow for various geometries involving ice-shelf buttressing (e.g. De Rydt and Gudmunds-

son, 2016; Royston and Gudmundsson, 2016; Gudmundsson et al., 2017), and results obtained by the model submitted to a

number of model inter-comparison experiments (MISMIP, Pattyn et al., 2012) and (MISMIP3d, Pattyn et al., 2013). The model5

employs an unstructured grid and hence allows for resolving the grounding line zone locally with high resolution. The model

further allows for nodal-based or element-based, and simultaneous inversion of the ice rate factor (A) and the basal slipperiness

(C) using either Bayesian or Tikhonov type regularization.

Here we use Úa to solve the shallow ice-stream equations (e.g., Morland, 1987; MacAyeal, 1989) in a diagnostic mode using

a Weertman-type sliding law (see Eq. 7) and Glen’s flow law (see Eq. 8). In the glaciological literature the shallow ice-stream10

equations are also referred to as the Shallow-Shelf/Shelfy-Stream Approximation and often abbreviated as SSA. In 2HD the

SSA momentum equations are

∇xy · (hR)− τ bh = ρigh∇xy s+
1

2
gh2∇xy ρi , (1)

where

∇xy = (∂x,∂y) (2)15

and R is the tensor of resistive stresses given by Eq. (15), h is the ice thickness, s the ice surface elevation, ρi the vertically-

averaged ice density, and τ bh is the horizontal part of the bed-tangential basal traction τ b. Where the ice is floating τ bh = 0.

In the SSA the flotation criterion has the form h < hf with

hf = (S−B)ρw/ρi, (3)

where S is the ocean surface, B the bedrock, and ρw is the ocean density. The flotation criterion in Úa is evaluated at each20

integration point of the elements of the finite element mesh and the basal drag term evaluated accordingly through a standard

finite-element procedure involving element-wise integration.

2.1 Methodology

Using the ice flow model Úa, we calculate ice velocities for the entire Antarctic Ice Sheet, including all ice shelves. The SSA

equations are solved throughout the computational domain. Stress boundary conditions (i.e. Neumann boundary conditions)25

are applied at the margins of the computational domain. Since the modeling domain covers the whole of the AIS, no inflow or

outflow boundary conditions (i.e. Dirichlet boundary conditions) need to be applied at any sections of the boundary.

Two different computational meshes were generated and the sensitivity of the results evaluated using linear (3-node),

quadratic (6-node), and cubic (10-node) triangular elements. All results presented here were obtained using a very high reso-

lution mesh generated with the finite-element mesh generator Gmsh (Geuzaine and Remacle, 2009) with 1,360,894 triangular30
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Figure 1. Observed (upper left panel) and modelled (upper right panel) ice speed in the region of Institute Ice Stream. The inset displays the

location of the plotted area in Antarctica. Grounding lines are shown as black lines and streamlines are displayed in blue. The lower left panel

shows a normalised bivariate histogram of the velocity residuals which are the differences between modeled and observed velocities within

this area, that is, ∆u= umodeled −uobserved and ∆v = vmodeled − vobserved, and u and v are the horizontal components of the surface velocity

vector, respectively. The lower right panel shows an ice-speed profile along the central line of Institute Ice Stream that is indicated in green

in the upper left panel.

linear elements and 689,042 nodes. Within 5 km distance to the grounding line, the mesh was refined such that element sizes

decrease towards the grounding line to a maximum size of 250 m directly at the grounding line. Overall, the elements have a

maximal size of 179,307 m in the interior of the continent and minimal size of 56 m along the grounding line. Mean element

size is 1596 m and median 480 m. A regional example of the mesh is given in Fig. S.1. The robustness of the results was also

tested based on the mesh used in Reese et al. (2017), as discussed in Appendix B.5

Ice thickness and bed geometry input is based on the Bedmap2 estimates (Fretwell et al., 2013). Vertically averaged ice

densities were calculated using firn thickness fields from RACMO2 (Lenaerts et al., 2012) and assuming a constant ice density

of 910 kgm−3 and a firn density of 500 kgm−3. Resulting densities range from 770 kgm−3 to 910 kgm−3 and the horizontal

gradients in vertically averaged densities are hence small, see Fig. S.2. In a few places the bathymetry around grounding lines
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was vertically modified to improve its alignment with Bindschadler et al. (2011), with vertical adjustments of maximally 50 m

being allowed.

For the entire Antarctic setup we inverted for basal slipperiness C (see Eq. 7) and ice softness fields A (see Eq. 8) to match

observed 2015/2016 velocities derived from Landsat 8 imagery (Gardner et al., 2017). The stress exponent of Glen’s flow law

was set to n= 3 and we repeated the inversion for a whole sequence of sliding law exponents m= 1,2,3,4,5,7,9,11. We5

inverted for A and C over the computational nodes using Tikhonov type regularization. The inversion procedure minimizes the

function

J(u,p) = I(u)+R(p)

with respect to p, where p stands for model parameters to be determined (i.e. A and C, here C was set to 0 within ice shelves),

u are modeled surface velocities, I the data misfit function, and R the regularization term. The misfit function I has the form10

I =
1

2A

∫
(vmodeled−vobserved)2/e2 dA (4)

whereA=
∫
dA is the total area, vmodeled and vobserved modeled and observed velocities, respectively, and e data errors. The

regularization function R has the form

R=
1

2A

∫ (
γ2s (∇(log10(p)− log10(p̂)))

2
+ γ2a (log10(p)− log10(p̂))

2
)
dA

=
1

2A

∫ (
γ2s (∇ log10(p/p̂))

2
+ γ2a (log10(p/p̂))

2
)
dA (5)15

where γa and γs are regularization parameters, and p̂ the a priori values for model parameters. Inversions were done for a wide

ranges of γs and γa and optimal values determined from an L-curve analysis. In the results shown here, we use γa = 1 and

γs = 10,000m. However our results are insensitive to the particular values chosen.

For γs = 10,000m, γa = 1 and the sliding exponent m= 3, the corresponding basal slipperiness C and the ice rate factor

A distributions are shown in Figs. S.3 and S.4. The average difference between modeled and observed ice speed is 29 meters20

per year with a median of 13 meters per year and a root mean square error of 103 meters per year. The measured and modeled

velocity fields for the region of Institute Ice Stream are displayed in the upper panels of Fig. 1. They agree well in this area,

as the residual histogram for this region shows in the lower left panel, but also for the entire continent, see Fig. S.5. As a

consequence of our inverse methodology, modeled ice velocities are in close accordance with measurements.

From the modeled stresses obtained with our ice-flow model we calculate the buttressing parameter θ as defined in Sect. 3.25

We do this for each of the three different definitions for θ (see Eqs. 11, 12, and 13). We then calculate the analytical fluxes

predicted by the flux formula, i.e. Eq. (6). Note that we refer to these fluxes as ‘analytical’ fluxes although their calculation

involves the use of our numerical ice-flow model for estimating the buttressing number θ.

We also calculate modeled grounding-line fluxes from modeled ice velocities. Since our modeled velocities are in a good

agreement with observed velocities, these modeled grounding-flux estimates will be in an equally good agreement with fluxes30

estimated directly from observed velocities. The analytical and the modeled flux estimates are then compared and analysed.
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When calculating grounding-line fluxes we interpolate nodal quantities of the computational mesh onto the (calculated)

grounding line. The grounding line does not, as such, enter the numerical calculations done by our numerical ice flow model.

As described in Sect. 2, it is the flotation mask — evaluated at the integration points — that determines the impact of the

basal drag term. However, in a post-processing step we determine the positions of the grounding lines from the flotation mask.

Our approximation of the grounding line is a piecewise linear curve, with each linear segment representing the grounding line5

within a given computational element (see Figs. S.1 and B1). We then interpolate nodal values onto the central point of each

such linear segment. This same procedure is employed when calculating both analytical and modeled fluxes.

3 Ice shelf buttressing and grounding-line ice flux

In Schoof (2007a), an expression for the grounding-line flux (q) of marine ice sheets is derived. While the analysis is primarily

focused on a flow-line configuration where ice-shelf buttressing plays no role, Schoof (2007a) also estimates how the flux10

might be affected by a reduction θ in axial stress at the grounding line due to ice-shelf buttressing. The resulting analytical flux

expression is

q(x) = θ
nm
m+1 ρih

1+m(n+3)
m+1

(
1

4n
A(ρig)

n+1(1− ρi/ρw)nC1/m

) m
m+1

(6)

where q is the ice flux across the grounding line, h the ice thickness, ρi the ice density, ρw the density of ocean water and g

the gravitational acceleration (please note that in the related Eq. 17 of Gudmundsson (2013) for the flux q there is a typo in15

the exponent of the basal slipperiness C). For grounded ice, the tangential component of the basal traction (τb) is related to the

basal velocity (vb) through the Weertman-type sliding law

τb = C−1/m|vb|1/m−1vb, (7)

where C is the basal slipperiness, and m the stress exponent, while deviatoric stresses and strain rates ε̇ij in ice flow are linked

via Glen’s flow law20

ε̇ij =Aτn−1τij , (8)

with τ =
√
τijτij/2 the second invariant of the deviatoric stress tensor, exponent n (often set to 3) and rate factor A. Here τij

denote the components of the deviatoric stress tensor and ε̇ij the components of the strain rate tensor.

As mentioned above θ is a scalar quantity that describes the deviation in deviatoric axial stress at the grounding line from

the unbuttressed situation. For an unbuttressed grounding line in one horizontal dimension (i.e. no variations in any quantities25

transverse to the flow direction) and assuming that the x-axis of the coordinate system is aligned with the flow, we have

τxx = τf (see Appendix A) where

τf =
ρig

4

(
1− ρi

ρw

)
h. (9)
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In the buttressed case, τxx is however no longer necessarily equal to τf , and θ is defined as

θ1HD =
τ1HDxx

τf
. (10)

We have here used the superscript 1HD to indicate that this definition of θ is only unambiguous in the one horizontal di-

mensional situation (1HD). In the more general two horizontal dimensional situation (2HD), where the flow direction is not

necessarily aligned with the (horizontal) normal to the grounding line, several different definitions of θ are possible, and in the5

literature at least three different definitions of θ have been suggested. In the following we denote these by θ1, θ2, and θ3, with

θ1 =
n1 ·Rn1

2τf
, (11)

where n1 is a normal to the grounding line pointing horizontally outwards from the grounded ice into the ice shelf, and

θ2 =
n1 · τn1

τf
, (12)

and10

θ3 =
n2 · τn2

τf
, (13)

where n2 is the direction of ice flow at the grounding line and

τ =

τxx τxy

τxy τyy

 , (14)

is the (horizontal) deviatoric stress tensor, and

R=

2τxx+ τyy τxy

τxy τxx+2τyy

 , (15)15

the tensor of resistive stresses. In the 1HD unbuttressed case where n1 = n2, τxx = ρigh(1−ρi/ρw)/4, and τyy = τxy = 0, all

these three definitions of θ result in θ1 = θ2 = θ3 = 1. The first definition (i.e. θ1) has, for example been used by Gudmundsson

(2013) to diagnose buttressing at the grounding line of an idealized setup, the second definition by Pollard and DeConto (2012),

Thoma et al. (2014) and Pattyn (2017) as a flux condition, and the third one by Fürst et al. (2016) to diagnose ‘flow-buttressing’

within Antarctic ice shelves. Note however that for instance Pollard and DeConto (2012, see section 2.3), Thoma et al. (2014,20

see section 4.4), Fürst et al. (2016, see Supplementary Eq. 2) and Pattyn (2017, see Eq. 20) appear to use a different expression

for τf , with τf = ρigh(1− ρi/ρw)/2, in which case θ = 1/2 in the unbuttressed case and θ in Eq. (6) must be replaced by 2θ.

The definition of θ1 is motivated by the form of the boundary condition at the calving front in the shallow ice-stream

approximation (see Appendix A). For θ1 = 1 the normal traction at the grounding line equals that of a calving front. In the

general 2HD situation, this same interpretation does not hold for the definitions of θ2 and θ3. If θ1 > 1 the ice shelf can be25

considered to be ‘pulling’ the ice at the grounding line, while θ1 < 1 implies that the ice shelf causes a reduction in normal

traction at the grounding line, i.e. the ice shelf ‘holds the ice back’. Note that for all these three different definitions, it is
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possible for θ to become negative. If, however, a negative θ value is inserted into Eq. (6), the resulting value for the flux

q is a negative or even a complex number for most combinations of n and m — a clear indication that the analytical flux

formula fails in such situations. Only the specific combinations of n and m such that nm/(m+1) = 2k for k ∈ N (for instance

the combination n= 3 and m= 2) ‘fix’ the flux back to a positive real number, however they introduce a non-substantiated

dependency between the flow law and the sliding law. Furthermore, for these combinations and θ < 0, enhanced buttressing5

- inconsistently - yields an increase in ice flux. Physically, θ1 < 0 corresponds to a situation where the traction vector at the

grounding line points in upstream direction. One possible situation giving rise to θ1 < 0 would be τxx < 0 while τyy = 0, with

x being the flow direction and the grounding line aligned with the y axis. In this case, the ice at the grounding line experiences

compression in along-flow direction and, hence, longitudinal strain rates are negative and ice velocities become smaller as

the grounding line is approached from upstream direction. Another situation giving rise to θ1 < 0 is that of equal transversal10

compression and vertical extension of the ice column at the grounding line, i.e. τyy =−τzz < 0 while τxx = 0.

4 Results

Figure 2. Buttressing ratio θ1 along the grounding lines of Filchner-Ronne Ice Shelf (left panel) and Ross Ice Shelf (right panel). Insets

indicate the ice shelves’ locations in Antarctica, correspondingly. Regions where the grounding line is ‘over-buttressed’, that is, θ ≤ 0, are

displayed in black. Modelled speed is plotted in gray ranging up to 1,500 ma−1. Grounding line and ice front locations are indicated in

black. IS denotes ice streams, IR denotes ice rises or rumples.

From the numerically modeled stress field we calculate the buttressing parameter θ1 (given by Eq. 11) for all grounding lines

of the Antarctic setup described in Sect. 2.1. While we here focus on the buttressing parameter θ1, our findings are independent

of the exact definition of θ, the choice of the sliding law exponents m, the mesh and the details of the inverse methodology15

applied (see Appendix B).
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Figure 3. Buttressing ratio and differences in grounding line flux for Institute Ice Stream draining into the Filchner-Ronne Ice Shelf (location

shown in inset). (a) Buttressing values θ1 are displayed along the grounding line and principle deviatoric stresses are shown, with compression

in red and extension in blue. The length of the vectors indicate the magnitude of each principle stress. (b) Differences between analytical

and modeled fluxes and observed ice velocities ranging up to 500 m a−1 (Gardner et al., 2017). Analytical fluxes are set to 0 where θ1 < 0.

Grounding line positions are indicated in black.

We find that the grounding lines of Filchner-Ronne and Ross ice shelves are, in general, highly buttressed with buttressing

values significantly different from unity (see Fig. 2). Typically, θ1 ≤ 0.4, and in many cases θ1 < 0. Among the ice streams of

these two biggest ice shelves of the AIS, the dormant Kamb Ice Stream is the relatively least buttressed one, with θ1 ≈ 0.4.

Over all other ice streams θ values are even smaller. Negative θ values are also found over grounding-line segments located

between active ice streams, for example along the grounding line running between the Rutford and Institute Ice Streams.5

An example of an ice stream where θ1 < 0 over most of its grounding line is the Institute Ice Stream (see Figs. 3 and 4).

Inspection of the velocity field in the vicinity of the grounding line of that ice stream reveals that ice flow velocities decrease

with distance as the grounding line is approached from up-stream direction (see also Fig. 1, lower right panel). Consequently,

both along-flow strain rates and along-flow deviatoric stresses are negative (compressive). This general feature of ice flow

around the grounding line of Institute Ice Stream implies that its grounding line is ‘over-buttressed’ with the traction vector at10

the grounding line pointing in inland direction. Hence, independently of our numerical simulation of the stress field, it is clear

that for this ice stream θ must be negative.

As discussed in Sect. 3 the analytical flux formula (Eq. 6) is clearly not applicable in situations where θ becomes negative.

As θ is found to become negative over large sections of the grounding lines of many the ice streams of the two largest Antarctic
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Figure 4. Comparison of fluxes calculated with Úa (blue) and analytical fluxes (black) along the grounding lines of four major ice streams

draining into Filchner-Ronne Ice Shelf. Locations where the flux formula provides unphysical results are marked in grey. Plotted grounding

line segments are located as displayed in the inset with western margins indicated by a yellow dot.

ice shelves, i.e. Ross and Filchner-Ronne ice shelves, it follows that the formula cannot be used to calculate grounding-line ice

fluxes over significant parts of the AIS.

We furthermore compare analytical and numerically modeled grounding-line ice fluxes in all regions where θ1 ≥ 0, i.e.

where the application of the analytical flux formula (Eq. 6) results in real-valued ice fluxes. In particular we compare both the

flux values point-wise along all grounding lines (Fig. 5) and the total cumulative fluxes over grounding-lines of ice streams5
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Figure 5. Difference between the analytical and the modeled fluxes along the grounding lines of Filchner-Ronne Ice Shelf (left panel) and

Ross Ice Shelf (right panel). Analytical fluxes are calculated based on θ1 defined in Eq. 11. In locations where the formula yields unphysical

results, fluxes are set to zero. Grey arrows show the modeled ice flow. IS denotes ice streams, IR denotes ice rises or rumples. Grounding line

and ice front locations are indicated in black.

and ice shelves (Table 1). When comparing cumulative analytical fluxes, we are forced to assume values for those sections of

grounding lines for which θ is negative (and q complex). There we assume q = 0, which is equivalent to setting θ = 0.

In general, we find significant differences between analytically calculated and numerically modeled flux values. Analytical

fluxes are much lower than modeled in many locations of Filchner-Ronne Ice Shelf, especially along the grounding lines of

the Rutford, Institute and Moeller ice streams (Fig. 5). However, cumulative analytical fluxes over all grounding lines of the5

Filchner-Ronne Ice Shelf are about 30% larger than modeled for θ1, and this difference is considerably larger for θ2 and

θ3 (Table 1). Similar disagreement between analytical and modeled fluxes is found for the Siple Coast Ice Streams such as

Bindschadler and MacAyeal Ice Streams, and for Byrd Glacier (Panel b of Fig. 5). For Ross Ice Shelf the overall difference is

only 5%, but given the fact that θ1 is negative over significant sections of its grounding line (where we set the analytical flux

values to zero), this agreement appears somewhat fortuitous.10

For other ice shelves, cumulative fluxes are generally underestimated by the flux formula. Analytical fluxes for Pine Island

Glacier and Thwaites Glacier, for example, deviate by −33% and −52% from the modeled fluxes, respectively. For George VI

ice shelf, cumulative analytical fluxes are several times smaller than modeled ones (Table 1).

The analytical flux formula tends to strongly overestimate fluxes over grounding lines where ice flow is approximately tan-

gential to the grounding line. This failure of the flux formula to correctly predict fluxes in such circumstances is not surprising15

as the underlying assumptions of the formula are clearly not met in such situations. Nevertheless, this demonstrates the inherent

conceptual difficulties in applying the formula to the Antarctic Ice Sheet.

Moreover, the analytical formula produces much higher spatial variability in fluxes than the numerically modeled ones. This

can be clearly seen in Fig. 4 where analytical and modeled ice fluxes are plotted along the grounding lines of Rutford, Institute,

Foundation and Recovery ice streams. Here, gray background indicates sections of the respective grounding lines where the20
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Table 1. Ice flux integrated along the grounding lines of Antarctic ice shelves. QÚa denotes the modeled ice flux with Úa, Q1 was derived

from the analytical flux formula based on θ1, Q2 based on θ2 and Q3 based on θ3, respectively. Last column shows the deviation of the

analytical flux Q1 from the modeled QÚa.

Ice shelf QÚa [Gt a−1] Q1 [Gt a−1] Q2 [Gt a−1] Q3 [Gt a−1] (Q1 −QÚa)/QÚa [%]

Filchner-Ronne 216 282 694 755 30

Pine Island 123 82 148 190 -33

Ross 120 126 280 155 5

Thwaites 117 57 82 133 -52

Getz 91 27 52 60 -70

Totten 65 44 158 243 -32

George VI 64 9 21 21 -85

Amery 55 16 135 56 -70

Moscow-University 43 16 44 120 -63

West 40 27 33 49 -32

Shackleton 37 20 62 61 -48

Crosson 34 17 38 38 -51

Larsen C, D 25 9 19 38 -64

Brunt/Stancomb-Wills 22 18 24 40 -16

Fimbul 21 7 15 15 -67

Stange 16 3 13 15 -81

Riiser-Larsen 12 9 20 25 -29

Dotson 11 2 13 19 -84

flux formula yields unphysical results. Variability in fluxes calculated with Úa occurs when ice flow is nearly aligned with the

grounding line. We calculate fluxes within each triangular element using the normal of the piecewise-linear grounding line

curve which may vary in-between individual line segments.

We test the sensitivity of our analytical flux calculations to different degrees of regularization (γs and γa) and different

values of the sliding law stress exponent (m), for which our findings are summarized in Figs. B3 and B5. Numerically modeled5

fluxes are, as expected, mostly independent of the value of the sliding law stress exponent m. This can be considered to

be a consequence of the inversion procedure, which ensures that modeled velocity fields agree closely with measured data,

independently of the value of m. On the other hand, analytically calculated flux values are highly sensitive to the value of

m (see Fig. B3). For example, cumulative analytical fluxes for Filchner-Ronne Ice Shelf increase by about a factor of five

as m is changed from 1 to 7, while numerically modeled fluxes change by less than 10 %. Numerically modeled fluxes are10

also insensitive to the exact degree of regularization applied, whereas analytically calculated flux values change significantly
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(Fig. B5). The dependency of the analytically calculated fluxes on the amount of regularization used in the numerical model is

due to the impact regularization has on modeled stresses and, therefore, on the value of θ.

We also compare analytical fluxes as calculated using the three different definitions (11), (12) and (13) for θ. While overall

spatial variability of θ is similar for these three definitions, with all definitions giving rise to extended areas of negative θ values,

the cumulative flux for the alternative definitions θ2 and θ3 are generally higher than for θ1 (see also Fig. B4).5

5 Discussion

The analytical grounding-line flux formula Eq. (6) was derived for a flow-line configuration (Schoof, 2007a), and there is no

reason to doubt its validity in that particular case. When applied to a flow-line configuration, many current ice-flow mod-

els employing the shallow ice-stream approximation (SSA) with Weertman-type sliding law, have demonstrated an excellent

agreement between modeled and analytical grounding-line fluxes (Pattyn et al., 2012). Ice fluxes and grounding line positions10

calculated with the ice flow model Úa also agree closely with those predicted by Eq. (6) where such an agreement is to be

expected. The inclusion of the buttressing parameter θ was used by Schoof (2007a) to illustrate the potential impacts of ice-

shelf buttressing on ice flux, provided its effects were sufficiently small as not to invalidate too strongly the basic assumption

of a flow-line setting. However, we find that most of the grounding lines of the AIS are highly buttressed with θ significantly

different from unity. It seems likely that at least part of the reason why the analytical flux formula fails relates to the high15

degree of buttressing that we find to be characteristic for most Antarctic ice streams.

When applied to the current geometry and the current flow field of the AIS, the flux formula predicts either unphysical or

highly inaccurate flux values when compared to modeled ones. While we have done the comparison with numerically modeled

fluxes, comparison with observed fluxes — calculated from measured surface velocities, observed grounding-line positions,

and measured ice thicknesses — would not alter our conclusions as, due to our inversion procedure, observed and modeled20

surface velocities are in good agreement.

The strongest indication that the analytical flux formula fails when applied to the Antarctic Ice Sheet is arguably the fact

that it predicts non-real valued fluxes over significant parts of Antarctic grounding lines. This happens whenever θ becomes

negative. Although for specific combinations of n andm (such as n= 3 andm= 2) the resulting exponents in the flux formula

are even numbers — in which case the analytical fluxes are always real positive numbers — the flux values are still unphysical25

(see Sect. 3). As we point out above, even a cursory inspection of the velocity field of the AIS suffices to show that θ is negative

for a number of grounding lines (e.g. the Institute Ice Stream grounding line). Hence, the occurrence of negative θ values is not

simply a feature of our particular numerical approach, but a general aspect of the current ice-flow regime of the AIS.

As analytical ice fluxes are strongly dependent on ice thickness (h) at the grounding line, they depend somewhat on the

specifications of the numerical model: the exact location of the grounding line is influenced by the mesh resolution used by the30

model. The resulting error is an example of a discretization error that becomes smaller as the mesh is refined. Other numerical

models using a different computational mesh may locate the grounding line differently and hence calculate flux values different

to some extent. We tested the dependency of our modeled ice fluxes to grid resolution by using several different meshes — an

13



example of two such meshes is given in Fig. B1 — and found none of our main conclusions to be affected by differences in

mesh resolution.

As measured by the buttressing parameter θ1, almost all grounding lines of the AIS can be considered to be strongly but-

tressed with, in most cases, θ < 0.4. Hence, theoretical concepts based on the assumption of none, or insignificant, ice-shelf

buttressing may not apply to present-day Antarctica. One such theoretical prediction of considerable relevance for the possible5

future of the AIS relates to the stability of its grounding lines. In the absence of ice-shelf buttressing, grounding-line stability is

predicted to be related to local bed slope (Weertman, 1974; Thomas and Bentley, 1978; Schoof, 2007a, b, 2011). However, in

the presence of ice-shelf buttressing no such simple conclusions can be drawn (e.g Goldberg et al., 2009; Gudmundsson et al.,

2012; Gudmundsson, 2013; Pegler, 2016; Schoof et al., 2017). Possibly, rather than being dominated by local bed slope, the

stability regime of the Antarctic Ice Sheet is to a leading-order dependent on the properties of the ice shelves downstream of its10

grounding lines (e.g. geometry and structural integrity), as also supported by, e.g., Pegler et al. (2013); Haseloff and Sergienko

(2018). Further work is needed to address the question of the stability of Antarctica’s grounding lines.

6 Conclusions

In our study, we compare grounding-line ice fluxes obtained by an ice-sheet model with fluxes predicted by an analytical

flux formula based on Schoof (2007a, b). The formula includes a parameter (θ) to account for ice-shelf buttressing, and the15

resulting flux is sometimes applied as a grounding-line flux condition in numerical simulations. We find that the formula results

in unphysical and grossly inaccurate grounding-line fluxes for most of the AIS. We furthermore find that almost all Antarctic

grounding lines are highly buttressed, suggesting that the underlying assumptions of the analytical flux formula are not met for

the current configuration of the Antarctic Ice Sheet.
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Appendix A: Vertically integrated stress boundary condition at a free calving front

A derivation of the boundary condition at the calving front for the momentum equations in 2HD can be found for example in

Cuffey and Paterson (2010) and van der Veen (1999). At the calving face:
s∫
b

σ ·ncf dz =−
S∫
b

pw ·ncf dz

where n= (nx,ny,0) is the normal of the calving front pointing outwards, s the ice surface, S the sea-level and pw is hydro-5

static pressure in the ocean pw = ρwg(S− z). The balance in x-direction reads:
s∫
b

(σxxnx+σxyny)dz =

S∫
b

−ρwg(S− z)nx dz =−
ρ2i g

2ρw
h2nx (A1)

We can rewrite σxx = 2τxx+ τyy+σzz (since σxx = τxx+p, σzz = τzz+p and τxx+ τyy =−τzz). Under the assumptions of

the hydrostatic approximation, σzz =−ρig(s− z). The vertically integrated horizontal stress balance equals
s∫
b

(σxxnx+σxyny)dz = 2hτxxnx+hτyynx+hτxyny −
ρig

2
h2nx, (A2)10

since τxx, τyy,nx and ny do not vary vertically. Inserting this in Eq. A1 yields:

(2τxx+ τyy)nx+ τxyny =
ρig

2

(
1− ρi

ρw

)
hnx. (A3)

Similarly for the y-direction. This can be abbreviated as

R ·n=
ρig

2

(
1− ρi

ρw

)
hn. (A4)

Following Gudmundsson (2013) we obtain the normal buttressing value which compares the RHS and LHS of the equation15

above in direction of the normal n at the grounding line:

θ =
n ·Rn

ρig
2

(
1− ρi

ρw

)
h
=
n ·Rn
2τf

. (A5)

In the case of a laterally uniform unconfined ice shelf with τyy = 0 and τxy = 0, this reduces to τxx/τf .

A different approach to define θ would be based on this vertically integrated stress boundary condition in 1HD with θ1HD =

τxx/τf . In 1HD the normal at the grounding line is equal to the flow direction. In 2HD, this is not necessarily true. Thus, to20

generalize the longitudinal direction in the 1HD buttressing ratio, a choice needs to be made. The longitudinal direction can

either be generalized as the normal at the grounding line (θ2) or as the flow direction (θ3).

Appendix B: Consistent results using different model parameters

We test the robustness of our findings with respect to the mesh, the sliding law stress exponent m, the definition of the

buttressing parameter θ and the regularization parameter γs. In a second Antarctic setup, based on a different, continent-25

wide mesh with quadratic base functions (instead of linear elements, see Fig. B1), we find a similar pattern of θ1 ≤ 0 which

15



yields similar flux differences as exemplified in Fig. B2 for the Filchner-Ronne Ice Shelf. In this case, inversion was done for

element-based basal slipperiness and ice softness (instead of inverting on a nodal basis) using a Bayesian methodology (instead

of Tikhonov regularization) and the MEASURES velocity data set (Rignot et al. (2011) instead of Landsat 8 (Gardner et al.,

2017)). This setup is further described in Reese et al. (2017). In this setup, Bedmap2 bathymetry is not adjusted around the

grounding line. This indicates that the exact location of the grounding line does not affect our findings.5

For the Antarctic-wide setup described in Sect. 2.1, we test for the choice of the stress exponent m in the sliding law.

Different choices m= 1,3,7 yield good agreement in modeled fluxes but large disagreement in-between analytical fluxes, see

Fig. B3. Comparing shelf-wide integrated fluxes for major Antarctic ice shelves shows that also the definitions θ2 and θ3 of

the buttressing parameter yield large deviations from the modeled fluxes, see Fig. B4. Similarly, we find that the choice of the

regularization parameter γs does not influence the results significantly, see Fig. B5. Our findings are hence independent of the10

details of numerical modeling choices.
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Figure B1. Zoom into the Bindschadler grounding line for two different meshes. Left panel: elements and nodes of the mesh presented in the

main text. The mesh was refined especially around the grounding line and linear 3-node elements were employed. Right panel: alternative

mesh with 6-node elements with quadratic base functions. The grounding line position is indicated in both meshes in orange.
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Figure B2. Difference between formula-derived and modeled fluxes along the grounding lines of Filchner-Ronne Ice Shelf. In contrast to

Fig. 5 a different mesh was employed (exemplified in the right panel in Fig. B1), the data assimilation was conducted using Bayesian inversion

and based on the MEASURES velocity data set (Rignot et al., 2011). The analysis was done using quadratic elements. This Antarctic-wide

setup is described in more detail in Reese et al. (2017).
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Figure B3. Comparison of fluxes calculated with Úa (x-axis) and with the analytical flux formula (y-axis), integrated along the grounding

lines of the ice shelves indicated in the legend. Symbols indicate the different sliding law exponentsm= 1,3,7 employed. All other parame-

ters agree with the reference run (indicated by a circle). The dashed line shows where fluxes calculated with Úa and predicted by the formula

would agree.
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Figure B4. Comparison of fluxes calculated with Úa (x-axis) and with the extended flux formula (y-axis), integrated along the grounding

lines of the ice shelves indicated in the legend. Symbols indicate the different definitions of θ as described in Sect. 3. All other parameters

agree with the reference run (indicated by a circle). The dashed line shows where fluxes calculated with Úa and predicted by the formula

would agree.
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Figure B5. Comparison of fluxes calculated with Úa (x-axis) and with the extended flux formula (y-axis), integrated along the grounding

lines of the ice shelves indicated in the legend. Symbols indicate the different regularization parameters γs used. All other parameters agree

with the reference run (indicated by a circle). The dashed line shows where fluxes calculated with Úa and predicted by the formula would

agree.
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