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First of all, we would like to thank the editor Olivier Gagliardini, the anonymous reviewer and
Christian Schoof for their helpful and excellent comments and their efforts to create the detailed
reviews!
In our response and in the revision of the manuscript we addressed the main issues raised by
the first reviewer:

1. We detailed the description of our inverse methodology (see, e.g., comments on ‘flux for-
mula’ and first comment on the ‘buttressing factor’) and created figures to underpin that
our findings are independent of the details of the inversion as requested (Figs. 2, 1).

2. We discuss that the exact grounding line location does not affect our results (see, e.g.,
second comment on ‘buttressing factor’, lines 4f on page 19 of the marked-up manuscript,
and Figs. 2, 1 here).

We are further very happy about the evaluation of our manuscript by Christian Schoof and
would like to thank him for his discussion about the underlying reasons for the formula to fail
at Antarctic grounding lines. We would be very happy to collaborate with him along the lines
of his suggestions to approach this task in an further study.
We provide detailed answers to all comments below. The reviewer’s comments are given in black
and the authors responses in blue. The changes made to the main document can be found at
the end (created with latexdiff). Page and line numbers given below relate to this document.
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Anonymous referee 1
Received and published: 23 Feburary 2018
Interactive comment on The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-289, 2018

The comment was uploaded in the form of a supplement:
https://www.the-cryosphere-discuss.net/tc-2017-289/tc-2017-289-RC1-supplement.pdf

Summary
As reported in several studies, resolution is key for an appropriate representation of grounding
line migration in ice-flow models. Yet for continental-scale forward simulation, a trade-off has to
be made between resolution and computational costs. On longer time-scales, the mesh has fur-
thermore to be adapted and updated according to the migration of the grounding line. Avoiding
these mesh issues, boundary layer theory allows to infer ice-flux values across the grounding line
(Schoof, 2007). This flux relation (Eq. 1) has since been implemented as an internal boundary
condition in several ice-sheet models using coarse resolution (∼ 5km). Inter-comparison studies
confirmed the utility of this parameterisation. Yet the effect of ice-shelf buttressing, which can
be included in the parameterisation, did not receive much attention. The authors of this study
try to shed light on the applicability of the buttressing correction term (buttressing factor) in
the flux parameterisation at the grounding line. For this purpose, a state-of-the-art ice-flow
model is applied over Antarctica. Ice velocity observations are matched by a bi-variate inversion
for the basal slipperiness and the rate factor. For this setup, it is reported that the computed
buttressing factor shows high spatial variability along the grounding line of the two largest ice-
shelves in Antarctica. Moreover, negative values are widespread, which leads to unphysical flux
values in the parameterisation. The authors therefore strongly question the applicability of this
correction term. The study is soundly structured, to the point and well written. Yet I have ma-
jor questions and concerns on important details of the methodology and on theit interpretation.
As the simultaneous inversion of two parameters is not well posed, their quantification is under-
determined. Thus, essential parameters for the flux parameterisation are not well constrained.
Further issues concerning the buttressing factor θ come from uncertainties in the exact location
of the grounding line, which might have severe consequences for the interpretation. Therefore, I
recommend that this manuscript undergoes a major revision. I advise the editor to only consider
publication of this article, if the authors were able to adequately address the comments below.

We would like to thank the anonymous reviewer for his/her effort to review our manuscript and
appreciate his/her comments for improving our study. His/Her main points are raised on the
inversion method to initialize our model and the positioning of the grounding line in the study.
We give in-depth responses to both issues that the reviewer detailed in the questions below (see
comments on ‘buttressing factor’ and ‘flux formula’).
However, we would like to point out that θ becomes negative independently of the initialization
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method of our study and of the exact grounding line position in the setup: In Institute Ice
Stream, this fact is already visible in the velocity data set. Ice velocities decrease approaching
the grounding line (see Fig. 1 below, also added to Fig. 1 of the main manuscript). Negative,
longitudinal strain rates are the underlying reason for the buttressing value to become negative.
Similar strain rates are found within a region that extends 20km upstream and 100km down-
stream of the grounding line. Negative strain rates in longitudinal direction relate to compressive
stresses and θ ≤ 0, as described on page 10 in lines 15ff of the marked-up manuscript. Hence,
θ ≤ 0 is independent of both main issues raised by the reviewer: (1) the inversion methodology
to determine the basal slipperiness and ice rate factor and (2) the exact position of the grounding
line in the model experiments. Unrelated to both, the formula will hence fail in this case.

Figure 1: Speed along the centerline of Institute Ice Stream. Observed and modelled velocities decrease
towards the grounding line.

Main comments
Buttressing factor

• As you seek to infer flux values at the grounding line, special attention has to be given to
its positioning in the model. Errors in the positioning can have large impacts on the flux
formula. I therefore highly appreciate the effort to correct the ice density by firn informa-
tion from a regional climate model. Yet in regions of high inflow from outlet glaciers, the
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used flotation criterion is possible not very accurate. Certainly in light of the fact that
the Bedmap2 thickness values near the grounding line are subject to large uncertainties.
For any mismatch of the grounding line position or in ice thickness, the inversion has to
compensate by accordingly adjusting the basal slipperiness (C) and the rate factor (A)
such that observed velocities are reproduced. I cannot foresee what effects this might have
on the stress regime and ultimately on the buttressing parameter (θ).

We agree with the reviewer that the position of the grounding line needs particular care,
especially in respect with the uncertainties in the Bedmap2 data set. That is the reason
why we adjusted the Bedmap2 bedrock data within a range of 50m so that the grounding
line position aligns with the observed position from (Bindschadler et al., 2011). This is de-
scribed on page 7 in lines 7f in the marked-up manuscript. Thus, the modelled grounding
line position, which is determined from the physically-based flotation criterion, matches
closely observed grounding lines. However, the results of our study are independent of
the exact position of the grounding line. As Fig. 1 below as well as Fig. 3 in the main
manuscript show, velocities decrease as the ice approaches the grounding line, which gives
rise to the negative θ values along the grounding line of Institute Ice Stream. This pat-
tern is not restricted to the grounding line exclusively, but extends also upstream and
downstream of the grounding line and will hence not depend on the exact location of the
grounding line in that region. This is already discussed on page 16, lines 22ff as well as
page 10, line 32ff of the manuscript.

• Considering uncertainties in the grounding line position, you could rely on Antarctic-wide
grounding line observations (e.g. Rignot et al. (2011a)), rather than using a flotation crite-
rion. Bedmap2 also comprises a flotation mask. A sensitivity assessment to the grounding
line position might indeed be valuable.

As stated above, we make use of the observed grounding line position from Bindschadler
et al. (2011) in order to adjust the bed topography around the grounding line. The ad-
justment of the bed topography within the range of Bedmap2 uncertainties was done only
for the Antarctic-wide setup presented in the main manuscript, for the alternative mesh,
described in the Appendix B and shown in Figs. B1 and B2, this procedure was not ap-
plied. While its grounding line position hence deviates from the observed positions, the
results are qualitatively and quantitatively very similar and we conclude that our findings
are robust with respect to the grounding line position. We added this on page 19, line 4f
of the marked-up manuscript.

• You nicely explain how you retrieve the grounding line position. For the calculation of
the buttressing factor θ and the flux parameterisation (Eq. 1), you interpolate the relevant
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stress and thickness values within the corresponding mesh element. Any grounding-line
mesh element will by definition include nodal information from the grounded side. There-
fore, your buttressing calculation is biased by a stress regime that is influenced by basal
friction. From how I understand the buttressing factor, it should represent the stress
regime on the ice shelf-side only because it is this side which exerts buttressing upstream.
Unfortunately, this is highly uncharted research territory and there are certainly no best
practices. From my experience, some spatial smoothing of the shelf-side deviatoric stress
regime is beneficial.

We do not fully understand this comment and hope that we can address it appropriately:
we calculate the buttressing number from the stress fields at the grounding line position
diagnosed from the floatation criterion. Since stresses within the ice are continuous across
the grounding line using an interpolation method is valid here. A closer look into the stress
fields (see Fig. 2) reveals that it is rather uniform in the vicinity of the grounding line and
hence the stresses are independent of the exact position of the grounding line and of the
interpolation method.

• Using your three buttressing definitions, you compute the ‘analytical’ parameter θ all along
the grounding line. Yet these values remain uncontested or unvalidated. You concentrate
on the fact that negative values are widespread and that the flux parameterisation would
yield ‘unphysical’ results. Buttressing can however be estimated in another way for com-
parison. The idea is that you should remove the ice shelf entirely and recompute the
associated unbuttressed velocity field. Then, you can directly compute the ratio between
ice fluxes in the buttressed and unbuttressed case. These values would be very informative
to quantify the buttressing effect along the grounding line. Moreover, the variability could
be compared to the θ values. With some luck the two values show a significant correlation,
which you might want to exploit for an improved adjusted quantification of buttressing in
the flux formula.

While we agree that the effect of buttressing could also be quantified by relating mod-
elled fluxes in the presence and absence of an ice shelf, it is unclear to us how such an
experiment relates to the topic of our manuscript, which is to test the accuracy of the
flux formula under realistic conditions. In particular, it is unclear how this would produce
θ values of relevance for calculating analytical ice fluxes. As there appears to be some
misunderstanding on the behalf of the reviewer as to how θ is defined in the original work,
it is done by replacing condition (9) with 2Ā−1/nh|∂u∂x |

1/n−1 ∂u
∂x = θ ·

(
1
2ρi

(
1− ρi

ρw

)
gh2

)
at

x = xgl in order to account for modification in stress at the grounding line from the 1HD
unbuttressed case (see description in Section 4.2 of (Schoof, 2007)).
The reviewer appears to suggest that if θ was somehow defined or calculated in a differ-
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ent way, the analytical fluxes would show a better agreement with calculated ones (but
provides no evidence to support this). As we explain in the manuscript several slightly
different definitions of θ have been used in the literature. While our first definition of θ (i.e.
θ1) is in our opinion the correct definition, we found after having conducted a thorough
review of the literature that two further definitions have also been used. We therefore
decided to conduct our analysis using all three definitions of θ. In all cases our conclusions
are the same: The flux formula produces either grossly incorrect or quite simply physically
unrealistic fluxes for all major Antarctic ice streams.
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Figure 2: Close-up of the grounding line of Institute Ice Stream from Fig. 3a in the main manuscript
(location indicated in the inset).

Flux formula

• Similar to above, any uncertainties in the location and ice thickness of the grounding line
will affect the inferred parameters (C,A). Moreover, it was shown by (Arthern and Gud-
mundsson, 2010) that a similar bi-variate inversion for C and A is highly underdetermined.
This means that multiple combinations of C and A (on grounded ice) are possible. As
both parameters enter the flux parameterisation, with different weighting, these two issues
cannot be ignored. I even fear that the usage of the flux parameterisation in such a situ-
ation is almost a vain exercise. An option to prove me wrong would be the following: (1)
Infer A and C using velocity observations. (2) Remove all ice shelves, either by reducing
the computational domain or by setting the ice-shelf thickness to a very small value. Then
compute the corresponding velocity field for this unbuttressed case (3) Compare modelled
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ice flux with the ‘analytical’ flux parameterisation. I fear that no consistency will be found
in the unbuttressed flux values between the ‘modelled’ and ‘analytical’ values. This is cer-
tainly a very useful and informative exercise.

We have some difficulties understanding the purpose of the proposed exercise. In the
unbuttressed case the analytical and the numerical fluxes will (of course) agree. This has
been tested many times in the past both with our ice-flow model Úa, and with other
similar models. There seems to be little use in repeating this exercise here. However we
would like to point out that simply removing ice shelves will not provide a flowline-type
unbuttressed situation as the reviewer seems to suggest, as even in that situation the flow
can be convergent/divergent at the ice margin, in which case the buttressing parameter
θ will not be equal to unity. We would also like to point out that the example given in
Arthern and Gudmundsson, 2010, referred to a datum flow where there are no spatial
variations in ice or bed properties. The more general situation (i.e. where A and C vary
spatially) has yet to be studied, but we expect the results of such a study to be somewhat
similar to the conclusions by Gudmundsson and Raymond, 2008, who studied a similar
type of an inverse problem involving spatial variations in both basal slipperiness and basal
topography. There it was found that the problem was, giving the right surface data, not
necessarily under-determined. We did test for a number of different degrees of regulariza-
tion as well as different values of m, which yield different A and C fields. We find our
results to be robust, with details given in Appendix B. Again, we would like to stress that
the reason for θ ≤ 0 in the region of Institute Ice Stream is already visible in the observed
flow fields. This is true for observed fields from (Gardner et al., 2017) as well as Rignot
et al. (2011b). The simplest explanation for the differences between the numerically and
analytically calculated fluxes is that not all the assumptions made to derive the formula
are satisfied. An in-depth discussion on these assumptions is given by Reviewer 2.

Unbuttressed situation

• I understand why you strongly focus on highly buttressed ice shelves. In this way, your
evaluation of the buttressing parameter θ is deliberately biased to the buttressed cases. I
would therefore suggest to add an unconfined ice-shelf setup. An example could be the
Thwaites Glacier area, though there might be some complication from a pinning point not
present in the Bedmap2 geometry. The pinning point might however not matter to much,
as the western portion of the floating tongue is certainly not much buttressed. In such a
clearly unconfined setup, I would expect θ values consistently close to 1.0 or even above.

In our study, we focus on the current Antarctic Ice Sheet. Since most of its major ice
streams and glaciers are highly buttressed, we believe that focusing on buttressed ice
streams is of particular importance. Figs. 1 from (Fürst et al., 2016) and (Reese et al.,
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2017) show that all Antarctic ice shelves buttress upstream ice flow. In Table 1 of the
manuscript we compare the modelled to formula-predicted fluxes and find that also for
the (probably) less buttressed grounding line of Thwaites glacier, fluxes disagree by more
than 50%. This is true for all major ice shelves. We added a Figure for West Ice Shelf
(see Fig. 3, as the reviewer points out in Thwaites a pinning point is missing and we
hence do not fully trust the results for Thwaites). The western part of West Ice Shelf is
largely unconfined, and θ values are generally close to 1, but since the grounding line is
not perfectly straight, they vary locally and in some areas, θ values are very low. Fluxes
here do not show perfect agreement, which might be pinned down to the fact that one of
the assumptions in the derivation of the formula fails as discussed by the second reviewer
Christian Schoof. We tested our calculations and the model also for a flowline setup where
we find very good agreement between the formula and the modelled fluxes.

Figure 3: Same as Figure 3 in the paper, here for West Ice Shelf.

Specific comments

P7 L21-23 I suppose that you compute the ‘modelled’ ice flux over the grounding line by using the
velocity component perpendicular to the grounding line. Is that right?
Yes.

P8 L12-13 I do not see the velocity decrease along the central flowline of Institute Ice Stream in Fig.
1. A velocity profile, as an inset to Fig. 1 or 3, would help.
Please find the velocity profile in Fig. 1, also as an inset to Fig. 1 of the main manuscript.

Eq. 14 I wonder how you compute the velocity mismatch in the cost function. Do you do this
on the model mesh nodes or directly at the location of each velocity observation. This
matters, because you have refined your grid near the grounding line. So the nodal difference
computation would introduce a strong bias in the cost towards the grounding line area.
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This might even be desirable in your case.
We are not sure that we understand this comment correctly. The misfit function is given
as an integral over velocity mismatches. The integral is numerically evaluated at nodes of
the mesh. But by integrating over the entire domain, the areas of the respective elements
are taken into account and the misfit function is not biased towards the highly-resolved
regions of the mesh.

Fig. 1 The vectors in this plot are hard to discern. I would prefer a 2D magnitude plot of the
velocity fields with superposed streamlines. As mentioned above, an along-flow profile of
velocity magnitudes would help to see the velocity decrease upstream of the grounding
line.
Done.

Fig. 3b, 5, B2 Use a different colour map for the flux difference because the colours are very similar to
the buttressing parameter θ.
Done.

Fig. B3-5 Legend entries are too tiny. Please take a larger font size.
Done.

Fig. S3 A comparison of the inferred viscosity field on Ronne Ice Shelf by Larour et al. (2005),
I miss well imprinted weak zones along the lateral ice-shelf margins. Do you have any
explanation for that?
We did not invert for the viscosity but for the rate factore A, and there are clearly defined
bands of weak ice (i.e. high A values) in the vicinity of most margins.
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Referee 2: Christian Schoof
Received and published: 27 March 2018
Interactive comment on The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-289-RC2,
2018

This paper presents a systematic comparison of remotely-sensed ice fluxes through Antarctic
grounding lines with the fluxes predicted by a suite of "flux formulae" based on a particular
boundary layer model for ice flow at the grounding line. The basal friction parameter - a key
variable in the flux formula - estimated using an inversion of the same velocity data set. In
general, the procedure adopted shows terrible agreement, demonstrating that said flux formulae
do not work at all well when applied to present-day Antarctica. I believe the result is robust,
and I am generally happy for the paper to be published more or less as is.

We would like to thank you for your efforts and your in-depth, detailed discussion on the
underlying reasons for the formula to fail along Antarctic grounding lines. We are happy that
you agree with our main conclusion that the applicability of the formula to Antarctic grounding
lines is limited. As you mention, θ ≤ 0 is more of a symptom and the underlying reason for
the formula to fail is that one of the assumptions made to derive the formula is not satisfied for
the Antarctic grounding lines. These assumptions are (a) that the boundary layer is in quasi-
steady state, (b) that the flow is transversally homogeneous and (c) the flow is unidirectional
and perpendicular to the grounding line. We added a remark in the main text to clarify that
we do not focus on the underlying reasons here (page 16, lines 10f and page 17, line 13) and we
addressed all minor changes (see also specific comments below).
We want to thank you for pointing out various tests to understand which of those conditions
fails and we would be very happy to collaborate with you in future along those lines. In this
manuscript, we aim to make the point that the amended formula does not work for Antarctic
ice streams, independently from the underlying reasons for it to fail, and we are happy that you
recommend the paper to be published in its current state.

There are a few items that one could go after a bit more. My view of the review process
has become pretty cynical (is my role really to hold up decent work just because it could be
improved? Where does that process end?). In short, I am under no illusion that the points I
raise will, or even should, feature in a revised paper, and so I have no desire to force the authors
to address them. Rather, my argument is that writing off the methodology behind the offending
flux formulae may be somewhat premature, and this could be investigated further. In that vein,
here goes:

1. The discussion regarding the reason for the discrepancy between observed fluxes and fluxes
predicted by the flux formulae is a bit weak. The discrepancy is primarily put down to large
buttressing factors. I actually think that is inaccurate, in the following sense: if I really had
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a locally uniaxial flow, and buttressing due to a larger-scale reduction in extensional stress at
the grounding line, I’d expect an amended flux formula (with buttressing factor θ1 as defined
in the paper here) to work pretty well, and I wouldn’t expect θ1 = 1/4 to cause major issues.
In fact, it had been my impression that Gudmundsson et al. (2012) had found reasonably good
agreement, at least where the grounding line cuts across the channel in the geometry used in
that paper, rather than at its sides (where the flow is presumably heavily affected by shearing
parallel to the grounding line).

2. The flux formula being discussed was dervied under a number of conditions (for this you
really have to look in detail at Schoof 2007 in JFM, the JGR version won’t help), which can
really be boiled down as follows: there is a boundary layer near the grounding line over which
extensional stress decays to values compatible with a shallow ice approximation further inland.
In order for the flux formula being tested to work, the following conditions must be met a)
the boundary layer must be in a pseudo-steady state. This is justified by a separation of time
scales: the boundary layer should equilibrate much faster than the ice sheet as a whole, so in the
absence of rapid changes in forcing (or in bed condition due to internal feedbacks! - see Robel
et al 2016 in The Cryosphere) b) the flow at the boundary layer scale must not depend on the
transevrse position (that is, if I move parallel to the grounding line by a distance comparable
with the boundary layer length scale, the flow field should still look the same) c) the flow must
be unidirectional and perpendicular to the grounding line. The condition that depth-averaged
extensional stress (‘R’) at the grounding line is equal to 1/2rho(1− rho/rhow)gH is really not
essential at all, which is where the simple correction factor theta in Schoof (2007) came from.
It is true that making theta very small should change things - in fact, the extensional stress
can become comparable to those that are experienced in a shallow ice flow and the need for a
boundary layer almost goes away, as discussed in the appendix to Schoof (2007, JFM), Kowal et
al (2013, JFM) as well as the supplementary material to Schoof et al (2017, The Cryosphere).
A superficial reading of Reese et al would suggest that the value of theta is the crux of the
problem, and I think that obscueres a few things (in the sense that some of the theta values
observed, notably the negative ones, are likely to be the symptom rather than the cause; bear
with me).

3. Out of the conditions listed above, c) is actually the easiest to surmount (I am currently
working on an extension to the unidirectional flow model that would take shearing parallel to the
grounding line into account, this changes the relationship between flux, thickness and extensional
stress to take account of grounding-line-parallel shear stress, but nothing too exciting happening
here). My impression is that the conditions that are most likely to be violated by the real data
considered in this paper are a) and b). I’ll touch on both below, in a way that may be at least
partially testable.

4. Pseudo-steady state (point a above). This is likely to be violated relatively frequently, at
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least *in the data*. By that, I mean that bedmap ice thicknesses and ice velocities are taken at
face value here, and the inversion is done purely as a snapshot inversion to find C, presumably
at the cost of generating quite large ice flux divergences, if one were to compute them. If so,
then it is likely that a "progonostic" forward computation of the model with time stepping would
lead to significant transients that result from an incompatibility between velocity field and bed
geometry, and these transients may not be ‘real’. See the work by Morlighem et al on inverting
for bed topography to suppress the effect, and also the work by Goldberg and Heimbach on the
use of data assimiliation techniques to avoid the pitfalls of using snapshot inversions for bed
properties.

From the MISMIP model intercomparison in one horizontal dimension (Pattyn et al 2012, The
Cryosphere), we know that violating the pseduo-steady state assumption (in that case, due to
step changes in the ice viscosity parameter) can lead to singificant but sort-lived departures
from the ‘flux formula’, with the ice flux at the grounding line potentially settling back onto the
flux formula over a time scale that is equal to the advective time scale for the boundary layer
(boundary layer length / scale for velocity in the boundary layer). I’m not saying that this is
likely to happen here, but it’s worth illustrating - if you run your model forward over the time
scale I identify, do you end up somewhere closer to the flux formula?

A corollary of this is actually the negative theta values computed. If I supposed that the flow
were unidirectional and laterally homogeneous as per points c) and b) above, then the only way
I could have a negative theta value would be if du/dx < 0 (u and x being measured along the
flowline, naturally. If that is the case, then the assumption of the boundary layer model of a
fixed flux through the boundary layer, corresponding to a pseudo-steady state, must fail, since
such a flux would require d(hu)/dx = hdu/dx + uhd/dx = 0 and we can assume that u, h > 0
and, as we ought to be thinning towards the grounding line, dh/dx < 0. If also du/dx < 0, both
terms are negative and there is no way that we can have hdu/dx+ uhd/dx = 0.

That leads to two possibliities: either the pseudo-steady state condition is violated (so a) does
not apply, which could occur due to short-time-scale changes in forcing) or the assumption of
laterally homogeneous flow (point b) above) must be false. I expect we are looking at the latter
rather than the former: the flow of the ice streams in question slows as the grounding line is
approached. Mass is not lost here, but rather, I expect that the flow simply spreads laterally:
as the centreline slows, a wider region flows at ice stream speeds. I confess I haven’t bothered
to check this in the data set, but it would certainly be worth doing that.

5. Lateral homogeneity. This is probably the big one. The original boundary layer theory did
not deal with this at all, and I fully expect that ice streams violate this assumption pretty much
every time. There is plenty of evidence for the force balance of ice streams to be singificantly
affected by lateral shear stresse, and I expect this holds true near the grounding line. This is
intrinsically a loss of lateral homogeneity: we have gradients in the velocity component normal
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to the grounding line with respect to the coordinate that measures distance parallel to the
grounding line, and an extra term appears in the force balance that does not feature in the
original Schoof (2007, JFM) boundary layer theory. In that sense, I would not expect the
resutls of the latter paper to hold, though I know how one would update the boundary layer
theory presented there to account for it. In fact, it may be worth pointing out that various
papers have already tried to do that, though only in a form where lateral drag is parameterized.
The most complete version of this can be found in Schoof et al (2017, The Cryosphere), with
parts of the problem also addresed by Pegler (2016 and earlier papers).

Is this testable? The answer is yes. Both Schoof (2007) papers give estimates for the size of the
boundary layer as a function of the various model parameters, such as C, m etc. All you would
have to do is check whether any mdoel parameters (such as extensional stess at the grounding
line, or C, or ice thickness at the grounding line) vary singificantly within that boundary layer
length scale. It is not acutally enough to do that *along* the grounding line, you should really
also check that C in particular does not vary by an O(1) fractional amount when going a single
boundary layer length scale inland. If there is singificant variability, you immediately have good
reason to say that the flux formula won’t hold.

6. I’m not particularly bothered by wanting to "defend" simulation models that use a flux for-
mula. I can ceratinly see their appeal in simulating long time scales, and for testing qualititative
ice sheet behaviour without getting lost in computational detail. But I haven’t built a career
on such a model. That said, I would be quite interested in a comparison of long-time-scale
prognostic modelling using a flux formula model - admitting that it is going to give locally ter-
ribly wrong fluxes at a given point in time - and a fully resolved model like Ua. If I care about
grounded ice volume changes over long time scales, how different are the predicitons? And are
they *qualitiatively* different, in the sense that irreversible retreat occurs not just at different
values of forcing parameters, but depends in a fundamentally different way on the forcing that
is imposed?

Minor comments:

• “Within the context of the shallow ice-stream computational models — a commonly-used
flow approximation for describing the flow of ice streams and ice shelves (e.g., MacAyeal,
1989; Morland, 1987) — it has, for example, been suggested that for many applications a
horizontal resolution of around one ice thickness or less is suitable (Cornford et al., 2016;
Gladstone et al., 2012; Pattyn et al., 2012).” This is a somewhat bizarre thing to say; the
whole point about a shallow ice theory is that it does not know about how long a horizontal
distance equal to one ice thickness is: the limit of a small aspect ratio is already implicit
in constructing a shallow ice theory. The fact that a grid or node spacing comparable to
something like 1-3 km (or whatever) is regarded as adequate should not be equated with a
mesh element size of one ice thickness. More relevant is what fraction of the linear domain
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size the typical distance between grid points or nodes should be - probably 1 in 1000 is
really implied here.
Many thanks for pointing this out. We changed the wording to ‘..it has, for example, been
suggested that for many applications a horizontal resolution of around one kilometer or
less is suitable...’.

• equation 14 “I(f) = ...” what does the argument “f” signify, given that f does not appear
on the right-hand side of equation (14)? Should this be I(v)?
Thanks for bringing this typo to our attention. The argument should indicate the data
misfit vmodeled − vobserved, which we omit now for simplicity.

• page 9 “can not be used”: this should be “cannot be used”
Done.

• figure 4: The Ua flux looks terrible - as in, very non-smooth. I’d expect H1-type con-
vergence of ice velocities under grid refinement - is the jaggedness mostly a result of a
misalignment between grounding line and mesh, or of forcing the grounding line to lie
along a mesh (and therefore having sharp corners at every node?) Probably worth ex-
plaining.
This is a discretization issue, depending on the diagnostic location of the grounding line.
We diagnose it as a curve of line-segments crossing the (triangular) elements with floating
and grounded nodes, with an example given in Fig. B1, Panel 2. This creates a ‘wiggly’
grounding line. To obtain fluxes, we calculate the grounding line normal for each such
segment which causes an element-by-element variation of the normal, and in fluxes. Es-
pecially in areas where the flow direction is more or less aligned with the grounding line,
this leads to positive-to-negative fluctuations in fluxes. We added this discussion to our
manuscript on page 13, lines 1 and 2. If we apply a moving average smoothing to the data
(in Fig. 4 displayed for a span of 5 neighbours) Úa fluxes look much better, but we felt
better to show the element-wise results.

• page 13 bottom “However, in the presence of ice-shelf buttressing no such simple conclu-
sions can be drawn (e.g Goldberg et al., 2009; Gudmundsson et al. ,2012; Gudmundsson,
2013; Pegler, 2016).” Without wishing to advertise my own work too much, Schoof et al
2017 in the Cryosphere also gives a qualitatively different example (with calving, which I
believe differs from the other references given here) where the usual stability argument is
reversed.
We added this study to our manuscript.

• multiple instances, for instance figure caption B1. "Exemplary" is not usually used syn-
onymously with "an example of". A brief internet search gives me the following mean-
ings 1. serving as a desirable model; representing the best of its kind. "an award for
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exemplary community service" synonyms: perfect, ideal, model, faultless, flawless, im-
peccable, irreproachable; More excellent, outstanding, admirable, commendable, laud-
able, above/beyond reproach; textbook, consummate, archetypal "her exemplary behavior"
antonyms: deplorable 2. (of a punishment) serving as a warning or deterrent. "exemplary
sentencing may discourage the ultraviolent minority" synonyms: deterrent, cautionary,
warning, admonitory; raremonitory "exemplary jail sentences" You might want to consider
whether this is what you mean
Thanks for bringing this to our attention. We changed the wording accordingly.

Figure 4: Comparison of fluxes calculated with Úa (blue) and analytical fluxes (black) along the ground-
ing lines of four major ice streams draining into Filchner-Ronne Ice Shelf. All values are
smoothed applying a moving average filter with span 5. Locations where the flux formula
provides unphysical results are marked in grey. Plotted grounding line segments are located
as displayed in the inset with western margins indicated by a yellow dot.
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Abstract. Currently, several large-scale ice-flow models impose a condition on ice-flux across grounding lines using an an-

alytically motivated parameterization of grounding-line flux. It has been suggested that employing this analytical expression

alleviates the need for highly resolved computational domains around grounding lines of marine ice sheets. While the analyt-

ical flux formula is expected to be accurate in an unbuttressed flow-line setting, its validity has hitherto not been assessed for

complex and realistic geometries such as those of the Antarctic Ice Sheet. Here the accuracy of this analytical flux formula5

is tested against an optimized ice flow model that uses a highly-resolved computational mesh around the Antarctic grounding

lines. We find that when applied to the Antarctic Ice Sheet the analytical expression provides inaccurate estimates of ice fluxes

for almost all grounding lines. Furthermore, in many instances direct application of the analytical formula gives rise to un-

physical complexed-valued ice fluxes. We conclude that grounding lines of the Antarctic Ice Sheet are, in general, too highly

buttressed for the analytical parameterization to be of practical value for the calculation of grounding-line fluxes.10

1 Introduction

Estimating the future impact of the Antarctic Ice Sheet (AIS) on global sea levels invariably involves calculating changes in ice

fluxes across grounding lines, as well as determining the migration of the grounding lines themselves. Accurately describing

grounding-line dynamics can therefore be considered an essential prerequisite for any numerical ice-flow simulation of marine

ice sheets such as the AIS. Accordingly, over the last decades, considerable efforts have focused on ensuring that large-scale ice-15

flow models are capable of capturing correctly the dynamical behavior of grounding lines (e.g. Goldberg et al., 2009; Gladstone

et al., 2010; Seroussi et al., 2014; Feldmann et al., 2014; Gagliardini et al., 2016; Pattyn et al., 2017). As part of these efforts,

several model inter-comparison experiments have been conducted to assess different approaches within the ice-sheet modeling

community regarding the numerical modeling of marine-type ice sheets (Pattyn et al., 2012; Drouet et al., 2013; Pattyn et al.,

2013; Asay-Davis et al., 2016). Although still a subject of active research, one of the outcomes of these inter-comparison20

experiments has been to stress the need for a sufficiently fine resolution of the computational domain around grounding lines.

Within the context of the shallow ice-stream computational models — a commonly-used flow approximation for describing

the flow of ice streams and ice shelves (e.g., Morland, 1987; MacAyeal, 1989) — it has, for example, been suggested that
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for many applications a horizontal resolution of around one ice thickness
::::::::
kilometer or less is suitable (Gladstone et al., 2012;

Pattyn et al., 2012; Cornford et al., 2016). However, for large-scale ice flow models using uniform grids employing such a high

resolution globally for large ice sheets such as the AIS can be computationally prohibitively expensive. As a way of resolving

this issue, and to allow for an accurate description of grounding-line dynamics without resorting to high spatial resolution, in a

number of numerical modelling studies a ‘flux condition’ is imposed at the grounding line whereby the grounding-line flux is5

prescribed using an analytical expression (e.g., Docquier et al., 2011; Thoma et al., 2014; DeConto and Pollard, 2016; Pattyn,

2017)or grounding line retreat is decided depending on such an expression
:
.
::
In

::::
other

:::::::::
instances,

:::
the

::::::::::::
grounding-line

:::::::::
migration

:::
rate

::
is

:::::::::
prescribed

::::::
directly

:
(e.g. without buttressing parameterisation, Ritz et al., 2015).

The analytical flux expression most often used is based on a theoretical study by Schoof (2007a)
:::::::::::::::
Schoof (2007a, b) and

was derived under the assumption that the ice shelf provides no buttressing to the ice at the grounding line. The absence of10

buttressing implies that the (vertically integrated) horizontal stresses at the grounding line are not affected by the presence of

the ice shelf, and were the ice shelf to be removed and replaced by ocean water, the state of stress (in a vertically integrated

sense) would remain unaffected (e.g., Schoof, 2007a; MacAyeal and Barcilon, 1988). However, in general, and this is certainly

the case for the AIS today (e.g. De Rydt et al., 2015; Fürst et al., 2016; Reese et al., 2017), ice shelves do provide some

buttressing. To account for this, numerical models use a modified analytical expression of ice flux based on Schoof (2007a)15

involving an additional buttressing parameter (θ) describing the modification in axial stress due to the mechanical impact of the

ice shelf on the stress state at the grounding line. The buttressing parameter (θ) needs to be calculated by the numerical ice flow

model, and then inserted into the analytical flux expression. The resulting flux is then used by the corresponding numerical

model as a flux condition along all grounding lines.

Previous numerical model inter-comparison experiments (Pattyn et al., 2012) have shown that in the unbuttressed case there20

is, in general, a good agreement between the analytically and numerically calculated ice fluxes for steady-state conditions. For

one particular synthetic model setup, Gudmundsson (2013) also found,
::
in

::::::
places,

:
a good agreement between analytically and

numerically calculated ice fluxes for buttressed ice. The question now arises as to how accurately the analytical expression

predicts grounding-line ice fluxes for realistic geometries such as that of the present-day AIS. More specifically, if one were

to apply sufficiently high resolution around all Antarctic grounding lines, would fluxes calculated directly by such a high-25

resolution numerical model agree with the predictions of the analytical flux formula? Answering this question is the subject of

this study.

Here we assess the accuracy
:::
and

:::
the

:::::::
general

::::::::::
applicability

:
of the analytical flux formula for calculating ice fluxes across

grounding lines of present-day Antarctica. We do this by comparing predicted analytical fluxes with independently numerically

calculated ice fluxes using the
:::::::::
community ice-flow model Úa (Gudmundsson, 2013). The ice flow model is applied continent-30

wide, using high spatial resolution around all grounding lines of few hundreds of meters.

The paper is structured as follows: First, we
::::::
describe

::::
our

::::::::
numerical

:::
ice

::::
flow

:::::
model

:::
Úa,

::::
and

::
the

::::::
model

::::::::::
initialization

:::::::::
procedure

::
in

::::
Sect.

:::
3.

:::
We

::::
then

:
give a brief overview over the flux formula derived by Schoof (2007a), and discuss several different

approaches to quantifying ice-shelf buttressing. We then describe our numerical ice flow model Úa, and the model initialization

procedure in Sect. 3. The following Sect. 4 on the comparison between numerically calculated grounding-line ice fluxes and35
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those by the flux formula forms the main part of the paper. This is followed by a discussion of the results and final conclusions,

Sect. 5 and Sect. 6.

2 Ice shelf buttressing and grounding-line ice flux
::::::
Model

::::::::::
description

In Schoof (2007a) , an expression for the grounding-line flux (q) of marine ice sheets is derived. While the analysis is primarily

focused on a flow-line configuration where ice-shelf buttressing plays no role, Schoof (2007a) also estimates how the flux5

might be affected by a reduction θ in axial stress at the grounding line due to ice-shelf buttressing. The resulting analytical flux

expression is

q(x) = θ
nm
m+1 ρih

1+m(n+3)
m+1

1

4n
A(ρig)

n+1(1− ρi/ρw)nC1/m m
m+1

where q is the ice flux across the grounding line, h the ice thickness, ρi the ice density, ρw the density of ocean water and g

the gravitational acceleration (please note that in the related Eq. 17 of Gudmundsson (2013) for the flux q there is a typo in10

the exponent of the basal slipperiness C). For grounded ice, the tangential component of the basal traction (τb) is related to the

basal velocity (vb) through the Weertman-type sliding law

τb = C−1/m|vb|1/m−1vb,

where C is the basal slipperiness, and m the stress exponent, while deviatoric stresses and strain rates ε̇ij in ice flow are linked

via Glen’s flow law15

ij =Aτn−1τij ,

with τ =
√
τijτij/2 the second invariant of the deviatoric stress tensor, exponent n (often set to 3) and rate factor A. Here τij

denote the components of the deviatoric stress tensor and ε̇ij the components of the strain rate tensor.

As mentioned above θ is a scalar quantity that describes the deviation in deviatoric axial stress at the grounding line from

the unbuttressed situation. For an unbuttressed grounding line in one horizontal dimension (i.e. no variations in any quantities20

transverse to the flow direction) and assuming that the x-axis of the coordinate system is aligned with the flow, we have

τxx = τf (see Appendix A) where

τf =
ρig

4
1− ρi

ρw
h.

In the buttressed case, τxx is however no longer necessarily equal to τf , and θ is defined as

θ1HD =
τ1HDxx

τf
.25

We have here used the superscript 1HD to indicate that this definition of θ is only unambiguous in the one horizontal

dimensional situation (1HD). In the more general two horizontal dimensional situation (2HD), where the flow direction is
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not necessarily aligned with the (horizontal) normal to the grounding line, several different definitions of θ are possible, and in

the literature at least three different definitions of θ have been suggested. In the following we denote these by θ1, θ2, and θ3,

with

θ1 =
n1 ·Rn1

2τf
,

where n1 is a normal to the grounding line pointing horizontally outwards from the grounded ice into the ice shelf, and5

θ2 =
n1 · τn1

τf
,

and

θ3 =
n2 · τn2

τf
,

where n2 is the direction of ice flow at the grounding line and

=τxxτxyτxyτyy,10

is the (horizontal) deviatoric stress tensor, and

=2τxx+ τyyτxyτxyτxx+2τyy,

the tensor of resistive stresses. In the 1HD unbuttressed case wheren1 = n2, τxx = ρigh(1− ρi/ρw)/4, and τyy = τxy = 0, all

these three definitions of θ result in θ1 = θ2 = θ3 = 1. The first definition (i.e. θ1) has, for example been used by Gudmundsson (2013) to

diagnose buttressing at the grounding line of an idealized setup, the second definition by Pollard and DeConto (2012) , Thoma et al. (2014) and15

Pattyn (2017) as a flux condition, and the third one by Fürst et al. (2016) to diagnose ‘flow-buttressing’ within Antarctic ice

shelves. Note however that for instance Pollard and DeConto (2012, see section 2.3) , Thoma et al. (2014, see section 4.4) ,

Fürst et al. (2016, see Supplementary Eq. 2) and Pattyn (2017, see Eq. 20) appear to use a different expression for τf , with

τf = ρigh(1− ρi/ρw)/2, in which case θ = 1/2 in the unbuttressed case and θ in Eq. (6) must be replaced by 2θ.

The definition of θ1 is motivated by the form of the boundary condition at the calving front in the shallow ice-stream20

approximation (see Appendix A). For θ1 = 1 the normal traction at the grounding line equals that of a calving front. In the

general 2HD situation, this same interpretation does not hold for the definitions of θ2 and θ3. If θ1 > 1 the ice shelf can be

considered to be ‘pulling’ the ice at the grounding line, while θ1 < 1 implies that the ice shelf is reducing the normal traction

at the grounding line. Note that for all these three different definitions, it is possible for θ to become negative. If, however,

a negative θ value is inserted into Eq. (6), the resulting value for the flux q is a negative or even a complex number for25

most combinations of n and m — a clear indication that the analytical flux formula fails in such situations. Only the specific

combinations of n and m such that nm/(m+1) = 2k for k ∈ N (for instance the combination n= 3 and m= 2) ‘fix’ the flux

back to a positive real number, however they introduce a non-substantiated dependency between the flow law and the sliding
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law. Furthermore, for these combinations and θ < 0, enhanced buttressing - inconsistently - yields an increase in ice flux.

Physically, θ1 < 0 corresponds to a situation where the traction vector at the grounding line points in upstream direction. One

possible situation giving rise to θ1 < 0 would be τxx < 0 while τyy = 0, with x being the flow direction and the grounding line

aligned with the y axis. In this case, the ice at the grounding line experiences compression in along-flow direction and, hence,

longitudinal strain rates are negative and ice velocities become smaller as the grounding line is approached from upstream5

direction. Another situation giving rise to θ1 < 0 is that of equal transversal compression and vertical extension of the ice

column at the grounding line, i.e.τyy =−τzz < 0 while τxx = 0.

2.1 Model description

We diagnose the fluxes at the grounding line with the finite-element ice-flow model Úa (Gudmundsson, 2013). The flow model

Úa has been used to calculate the ice-flow for various geometries involving ice-shelf buttressing (e.g. De Rydt and Gudmunds-10

son, 2016; Royston and Gudmundsson, 2016; Gudmundsson et al., 2017), and results obtained by the model submitted to a

number of model inter-comparison experiments (MISMIP, Pattyn et al., 2012) and (MISMIP3d, Pattyn et al., 2013). The model

employs an unstructured grid and hence allows for resolving the grounding line zone locally with high resolution. The model

further allows for nodal-based or element-based, and simultaneous inversion of the ice rate factor
:
(A

:
)
:
and the basal slipperiness

:
(C

:
) using either Bayesian or Tikhonov type regularization.15

Here we use Úa to solve the shallow ice-stream equations (e.g., Morland, 1987; MacAyeal, 1989) in a diagnostic mode using

a Weertman-type sliding law (see Eq. 7) and Glen’s flow law (see Eq. 8). In the glaciological literature the shallow ice-stream

equations are also referred to as the Shallow-Shelf/Shelfy-Stream Approximation and often abbreviated as SSA. In 2HD the

SSA momentum equations are

∇xy · (hR)− τ bh = ρigh∇xy s+
1

2
gh2∇xy ρi , (1)20

where

∇xy = (∂x,∂y) (2)

and R is the tensor of resistive stresses given by Eq. (15), h is the ice thickness, s the ice surface elevation, ρi the vertically

averaged
:::::::::::::::
vertically-averaged

:::
ice density, and τ bh is the horizontal part of the bed-tangential basal traction τ b. Where the ice is

floating τ bh = 0. In the SSA the flotation criterion has the form h < hf with25

hf = (S−B)ρw/ρi, (3)

where S is the ocean surface, B the bedrock, and ρw is the ocean density. The flotation criterion in Úa is evaluated at each

integration point of the elements of the finite element mesh and the basal drag term evaluated accordingly through a standard

finite-element procedure involving element-wise integration.
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Figure 1. Observed (
::::
upper left panel) and modelled (middle

::::
upper

::::
right

:
panel) ice velocities

::::
speed

:
in the region of Institute Ice Stream.

The inset displays the location of the plotted area in Antarctica. Grounding lines are shown as black lines and colorscales indicate the

speed
::::::::
streamlines

:::
are

:::::::
displayed

::
in

::::
blue. The right

::::
lower

::
left

:
panel shows a normalised bivariate histogram of the velocity residuals which are

the differences between modeled and observed velocities within this area, that is, ∆u= umodeled −uobserved and ∆v = vmodeled − vobserved, and

u and v are the horizontal components of the surface velocity vector, respectively.
:::
The

::::
lower

::::
right

::::
panel

:::::
shows

::
an

::::::::
ice-speed

:::::
profile

::::
along

:::
the

:::::
central

:::
line

::
of

::::::
Institute

:::
Ice

::::::
Stream

:::
that

:
is
:::::::
indicated

::
in
:::::
green

::
in

::
the

:::::
upper

:::
left

::::
panel.

2.1 Methodology

Using the ice flow model Úa, we calculate ice velocities for the entire Antarctic Ice Sheet, including all ice shelves. The SSA

equations are solved throughout the computational domain. Stress boundary conditions (i.e. Neumann boundary conditions)

are applied at the margins of the computational domain. Since the modeling domain covers the whole of the AIS, no inflow or

outflow boundary conditions (i.e. Dirichlet boundary conditions) need to be applied at any sections of the boundary.5

Two different computational meshes were generated and the sensitivity of the results evaluated using linear (3-node),

quadratic (6-node), and cubic (10-node) triangular elements. All results presented here were obtained using a very high reso-

lution mesh generated with the finite-element mesh generator Gmsh (Geuzaine and Remacle, 2009) with 1,360,894 triangular

linear elements and 689,042 nodes. Within 5 km distance to the grounding line, the mesh was refined such that element sizes

decrease towards the grounding line to a maximum size of 250 m directly at the grounding line. Overall, the elements have a10
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maximal size of 179,307 m in the interior of the continent and minimal size of 56 m along the grounding line. Mean element

size is 1596 m and median 480 m. A regional example of the mesh is given in Fig. S.1. The robustness of the results was also

tested based on the mesh used in Reese et al. (2017), as discussed in Appendix B.

Ice thickness and bed geometry input is based on the Bedmap2 estimates (Fretwell et al., 2013). Vertically averaged ice

densities were calculated using firn thickness fields from RACMO2 (Lenaerts et al., 2012) and assuming a constant ice density5

of 910 kgm−3 and a firn density of 500 kgm−3. Resulting densities range from 770 kgm−3 to 910 kgm−3 and the horizontal

gradients in vertically averaged densities are hence small, see Fig. S.2. In a few places the bathymetry around grounding lines

was vertically modified to improve its alignment with Bindschadler et al. (2011), with vertical adjustments of maximally 50 m

being allowed.

For the entire Antarctic setup we inverted for basal slipperiness C (see Eq. 7) and ice softness fields A (see Eq. 8) to match10

observed 2015/2016 velocities derived from Landsat 8 imagery (Gardner et al., 2017). The stress exponent of Glen’s flow law

was set to n= 3 and we repeated the inversion for a whole sequence of sliding law exponents m= 1,2,3,4,5,7,9,11. We

inverted for A and C over the computational nodes using Tikhonov type regularization. The inversion procedure minimizes the

function

J(u,p) = I(u)+R(p)15

with respect to p, where p stands for model parameters to be determined (i.e. A and C, here C was set to 0 within ice shelves),

u are modeled surface velocities, I the data misfit function, and R the regularization term. The misfit function I has the form

I(f) =
1

2A

∫
(vmodeled−vobserved)2/e2 dA (4)

whereA=
∫
dA is the total area, vmodeled and vobserved modeled and observed velocities, respectively, and e data errors. The

regularization function R has the form20

R=
1

2A

∫ (
γ2s (∇(log10(p)− log10(p̂)))

2
+ γ2a (log10(p)− log10(p̂))

2
)
dA

=
1

2A

∫ (
γ2s (∇ log10(p/p̂))

2
+ γ2a (log10(p/p̂))

2
)
dA (5)

where γa and γs are regularization parameters, and p̂ the a priori values for model parameters. Inversions were done for a wide

ranges of γs and γa and optimal values determined from an L-curve analysis. In the results shown here, we use γa = 1 and

γs = 10,000m. However our results are insensitive to the particular values chosen.25

For γs = 10,000m, γa = 1 and the sliding exponent m= 3, the corresponding basal slipperiness C and the ice rate factor

A distributions are shown in Figs. S.3 and S.4. The average difference between modeled and observed ice speed is 29 meters

per year with a median of 13 meters per year and a root mean square error of 103 meters per year. The measured and modeled

velocity fields for the region of Institute Ice Stream are displayed in the left and middle
::::
upper

:
panels of Fig. 1. They agree well

in this area, as the residual histogram for this region shows in the right
::::
lower

::::
left panel, but also for the entire continent, see30

Fig. S.5. As a consequence of our inverse methodology, modeled ice velocities are in close accordance with measurements.
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From the modeled stresses obtained with our ice-flow model we calculate the buttressing parameter θ as defined in Sect. 3.

We do this for each of the three different definitions for θ (see Eqs. 11, 12, and 13). We then calculate the analytical fluxes

predicted by the flux formula, i.e. Eq. (6). Note that we refer to these fluxes as ‘analytical’ fluxes although their calculation

involves the use of our numerical ice-flow model for estimating the buttressing number θ.

We also calculate modeled grounding-line fluxes from modeled ice velocities. Since our modeled velocities are in a good5

agreement with observed velocities, these modeled grounding-flux estimates will be in an equally good agreement with fluxes

estimated directly from observed velocities. The analytical and the modeled flux estimates are then compared and analysed.

When calculating grounding-line fluxes we interpolate nodal quantities of the computational mesh onto the (calculated)

grounding line. The grounding line does not, as such, enter the numerical calculations done by our numerical ice flow model.

As described in Sect. 2.1, it is the flotation mask — evaluated at the integration points — that determines the impact of the10

basal drag term. However, in a post-processing step we determine the positions of the grounding lines from the flotation mask.

Our approximation of the grounding line is a piecewise linear curve, with each linear segment representing the grounding line

within a given computational element (see Figs. S.1 and B1). We then interpolate nodal values onto the central point of each

such linear segment. This same procedure is employed when calculating both analytical and modeled fluxes.

3
:::
Ice

::::
shelf

::::::::::
buttressing

::::
and

:::::::::::::
grounding-line

:::
ice

:::
flux15

::
In

:::::::::::::
Schoof (2007a) ,

:::
an

:::::::::
expression

:::
for

::
the

:::::::::::::
grounding-line

:::
flux

:::
(q)

::
of

::::::
marine

:::
ice

:::::
sheets

::
is

:::::::
derived.

:::::
While

:::
the

:::::::
analysis

::
is

::::::::
primarily

::::::
focused

:::
on

::
a

:::::::
flow-line

::::::::::::
configuration

:::::
where

::::::::
ice-shelf

::::::::::
buttressing

:::::
plays

::
no

:::::
role,

::::::::::::::::
Schoof (2007a) also

:::::::::
estimates

::::
how

:::
the

::::
flux

:::::
might

::
be

:::::::
affected

::
by

::
a
::::::::
reduction

:
θ
::
in

:::::
axial

::::
stress

::
at
:::
the

:::::::::
grounding

:::
line

::::
due

::
to

:::::::
ice-shelf

::::::::::
buttressing.

:::
The

::::::::
resulting

::::::::
analytical

::::
flux

:::::::::
expression

:
is
:

q(x) = θ
nm
m+1 ρih

1+m(n+3)
m+1

::::::::::::::::::::

(
1

4n
A(ρig)

n+1(1− ρi/ρw)nC1/m

:::::::::::::::::::::::::::

)
m

m+1
:::

(6)20

:::::
where

:
q
::

is
:::
the

:::
ice

::::
flux

::::::
across

:::
the

::::::::
grounding

:::::
line,

:
h
:::
the

:::
ice

:::::::::
thickness,

::
ρi:::

the
:::
ice

:::::::
density,

:::
ρw :::

the
::::::
density

::
of

::::::
ocean

:::::
water

:::
and

::
g

::
the

:::::::::::
gravitational

::::::::::
acceleration

:::::::
(please

::::
note

:::
that

:::
in

:::
the

::::::
related

:::
Eq.

:::
17

::
of

:::::::::::::::::::::
Gudmundsson (2013) for

:::
the

::::
flux

:
q
:::::
there

::
is

:
a
:::::
typo

::
in

::
the

::::::::
exponent

::
of

:::
the

:::::
basal

::::::::::
slipperiness

:::
C).

:::
For

::::::::
grounded

::::
ice,

:::
the

::::::::
tangential

:::::::::
component

::
of

:::
the

:::::
basal

:::::::
traction

:::
(τb)::

is
::::::
related

::
to

:::
the

::::
basal

:::::::
velocity

::::
(vb) ::::::

through
:::
the

:::::::::::::
Weertman-type

::::::
sliding

:::
law

:

τb = C−1/m|vb|1/m−1vb,
::::::::::::::::::::

(7)25

:::::
where

::
C

::
is

:::
the

::::
basal

:::::::::::
slipperiness,

:::
and

::
m

:::
the

:::::
stress

::::::::
exponent,

:::::
while

:::::::::
deviatoric

::::::
stresses

::::
and

:::::
strain

::::
rates

:::
ε̇ij ::

in
::
ice

::::
flow

:::
are

::::::
linked

::
via

::::::
Glen’s

::::
flow

::::
law

ε̇ij =Aτn−1τij ,
::::::::::::

(8)

::::
with

::::::::::::
τ =

√
τijτij/2:::

the
::::::
second

::::::::
invariant

::
of

:::
the

::::::::
deviatoric

:::::
stress

::::::
tensor,

::::::::
exponent

::
n

:::::
(often

:::
set

::
to

::
3)

:::
and

::::
rate

:::::
factor

:::
A.

::::
Here

:::
τij

:::::
denote

:::
the

::::::::::
components

:::
of

:::
the

::::::::
deviatoric

:::::
stress

:::::
tensor

::::
and

::
ε̇ij:::

the
:::::::::::
components

::
of

:::
the

:::::
strain

:::
rate

::::::
tensor.30
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::
As

:::::::::
mentioned

::::::
above

:
θ
::
is

::
a

:::::
scalar

:::::::
quantity

::::
that

::::::::
describes

:::
the

::::::::
deviation

::
in

::::::::
deviatoric

:::::
axial

:::::
stress

::
at

:::
the

:::::::::
grounding

:::
line

:::::
from

::
the

:::::::::::
unbuttressed

::::::::
situation.

:::
For

:::
an

::::::::::
unbuttressed

:::::::::
grounding

:::
line

:::
in

:::
one

:::::::::
horizontal

::::::::
dimension

::::
(i.e.

:::
no

::::::::
variations

::
in

:::
any

:::::::::
quantities

::::::::
transverse

::
to
::::

the
::::
flow

::::::::
direction)

::::
and

::::::::
assuming

::::
that

:::
the

::::::
x-axis

:::
of

:::
the

:::::::::
coordinate

::::::
system

::
is
:::::::

aligned
::::
with

::::
the

::::
flow,

:::
we

:::::
have

:::::::
τxx = τf::::

(see
::::::::
Appendix

:::
A)

:::::
where

:

τf =
ρig

4
:::::::

1− ρi
ρw

::::::

h.
:

(9)5

::
In

:::
the

::::::::
buttressed

:::::
case,

:::
τxx::

is
:::::::
however

:::
no

:::::
longer

:::::::::
necessarily

:::::
equal

::
to
:::
τf ,

::::
and

:
θ
::
is

::::::
defined

:::
as

θ1HD =
τ1HDxx

τf
.

::::::::::::

(10)

:::
We

::::
have

::::
here

:::::
used

:::
the

::::::::::
superscript

:::::
1HD

:::
to

:::::::
indicate

::::
that

:::
this

:::::::::
definition

::
of

::
θ
::

is
:::::

only
:::::::::::
unambiguous

:::
in

:::
the

::::
one

:::::::::
horizontal

::::::::::
dimensional

:::::::
situation

:::::::
(1HD).

::
In

:::
the

:::::
more

:::::::
general

:::
two

:::::::::
horizontal

:::::::::::
dimensional

:::::::
situation

:::::::
(2HD),

:::::
where

::::
the

::::
flow

::::::::
direction

::
is

:::
not

:::::::::
necessarily

::::::
aligned

::::
with

:::
the

::::::::::
(horizontal)

::::::
normal

::
to

:::
the

:::::::::
grounding

::::
line,

::::::
several

:::::::
different

:::::::::
definitions

::
of

::
θ
:::
are

:::::::
possible,

::::
and

::
in10

::
the

::::::::
literature

::
at
::::
least

:::::
three

:::::::
different

:::::::::
definitions

:::
of

:
θ
:::::
have

::::
been

:::::::::
suggested.

::
In

:::
the

::::::::
following

:::
we

::::::
denote

:::::
these

:::
by

::
θ1,

:::
θ2,

::::
and

:::
θ3,

::::
with

θ1 =
n1 ·Rn1

2τf
,

::::::::::::

(11)

:::::
where

:::
n1 ::

is
:
a
::::::
normal

::
to

:::
the

:::::::::
grounding

:::
line

:::::::
pointing

:::::::::::
horizontally

:::::::
outwards

:::::
from

:::
the

::::::::
grounded

:::
ice

:::
into

:::
the

:::
ice

:::::
shelf,

:::
and

:

θ2 =
n1 · τn1

τf
,

::::::::::::

(12)15

:::
and

θ3 =
n2 · τn2

τf
,

::::::::::::

(13)

:::::
where

:::
n2 ::

is
::
the

::::::::
direction

::
of

:::
ice

::::
flow

::
at

:::
the

:::::::::
grounding

:::
line

::::
and

τ=
:

τxx::
τxy
::

τxy
::

τyy
::

 , (14)

:
is
:::
the

::::::::::
(horizontal)

:::::::::
deviatoric

:::::
stress

:::::
tensor,

::::
and20

R=
:

2τxx+ τyy
::::::::

τxy
::

τxy
::

τxx+2τyy
::::::::

 , (15)

::
the

::::::
tensor

::
of

:::::::
resistive

:::::::
stresses.

::
In

:::
the

::::
1HD

:::::::::::
unbuttressed

::::
case

:::::
where

::::::::
n1 = n2,

::::::::::::::::::::::
τxx = ρigh(1− ρi/ρw)/4,

:::
and

::::::::::::
τyy = τxy = 0,

:::
all

::::
these

::::
three

:::::::::
definitions

::
of

::
θ

:::::
result

:
in
:::::::::::::::
θ1 = θ2 = θ3 = 1.

::::
The

:::
first

::::::::
definition

::::
(i.e.

:::
θ1)

:::
has,

:::
for

:::::::
example

::::
been

::::
used

:::
by

:::::::::::::::::::
Gudmundsson (2013) to

9



:::::::
diagnose

:::::::::
buttressing

::
at

:::
the

::::::::
grounding

::::
line

::
of

::
an

::::::::
idealized

:::::
setup,

:::
the

::::::
second

::::::::
definition

::
by

::::::::::::::::::::::::
Pollard and DeConto (2012) ,

::::::::::::::::::::
Thoma et al. (2014) and

:::::::::::::
Pattyn (2017) as

::
a

:::
flux

:::::::::
condition,

::::
and

:::
the

::::
third

::::
one

::
by

:::::::::::::::::
Fürst et al. (2016) to

::::::::
diagnose

:::::::::::::::
‘flow-buttressing’

::::::
within

::::::::
Antarctic

:::
ice

::::::
shelves.

:::::
Note

::::::::
however

:::
that

::::
for

:::::::
instance

:::::::::::::::::::::::::::::::::::::
Pollard and DeConto (2012, see section 2.3) ,

:::::::::::::::::::::::::::::::
Thoma et al. (2014, see section 4.4) ,

:::::::::::::::::::::::::::::::::::::::
Fürst et al. (2016, see Supplementary Eq. 2) and

::::::::::::::::::::::::::
Pattyn (2017, see Eq. 20) appear

:::
to

:::
use

::
a
::::::::
different

:::::::::
expression

:::
for

:::
τf ,

:::::
with

:::::::::::::::::::::
τf = ρigh(1− ρi/ρw)/2,

::
in

:::::
which

::::
case

:::::::
θ = 1/2

::
in

:::
the

::::::::::
unbuttressed

::::
case

::::
and

:
θ
::
in

::::
Eq.

::
(6)

:::::
must

::
be

:::::::
replaced

:::
by

:::
2θ.5

:::
The

:::::::::
definition

::
of

:::
θ1 ::

is
::::::::
motivated

:::
by

:::
the

:::::
form

::
of
::::

the
::::::::
boundary

::::::::
condition

:::
at

:::
the

::::::
calving

:::::
front

::
in
::::

the
:::::::
shallow

:::::::::
ice-stream

::::::::::::
approximation

::::
(see

::::::::
Appendix

:::
A).

::::
For

::::::
θ1 = 1

:::
the

::::::
normal

:::::::
traction

::
at

:::
the

:::::::::
grounding

::::
line

:::::
equals

::::
that

::
of

::
a
::::::
calving

:::::
front.

:::
In

:::
the

::::::
general

::::
2HD

::::::::
situation,

::::
this

:::::
same

:::::::::::
interpretation

::::
does

::::
not

::::
hold

:::
for

:::
the

:::::::::
definitions

::
of

:::
θ2 :::

and
:::
θ3.

::
If
::::::
θ1 > 1

:::
the

:::
ice

:::::
shelf

:::
can

:::
be

:::::::::
considered

::
to

::
be

::::::::
‘pulling’

:::
the

:::
ice

::
at

:::
the

:::::::::
grounding

::::
line,

:::::
while

::::::
θ1 < 1

:::::::
implies

:::
that

:::
the

:::
ice

:::::
shelf

::::::
causes

:
a
::::::::
reduction

::
in
:::::::

normal

::::::
traction

::
at
:::
the

:::::::::
grounding

:::::
line,

:::
i.e.

:::
the

:::
ice

:::::
shelf

:::::
‘holds

:::
the

:::
ice

::::::
back’.

:::::
Note

:::
that

:::
for

:::
all

:::::
these

:::::
three

:::::::
different

::::::::::
definitions,

::
it

::
is10

:::::::
possible

:::
for

:
θ
:::

to
:::::::
become

:::::::
negative.

:::
If,

::::::::
however,

::
a

:::::::
negative

::
θ

:::::
value

::
is

:::::::
inserted

::::
into

:::
Eq.

::::
(6),

:::
the

::::::::
resulting

:::::
value

:::
for

:::
the

::::
flux

:
q
::
is

::
a

:::::::
negative

::
or

:::::
even

:
a
::::::::
complex

:::::::
number

:::
for

::::
most

::::::::::::
combinations

::
of

::
n

::::
and

::
m

:::
—

:
a
:::::

clear
:::::::::
indication

:::
that

:::
the

:::::::::
analytical

::::
flux

::::::
formula

::::
fails

::
in

::::
such

:::::::::
situations.

::::
Only

:::
the

:::::::
specific

:::::::::::
combinations

::
of

::
n

:::
and

::
m

::::
such

::::
that

:::::::::::::::
nm/(m+1) = 2k

:::
for

:::::
k ∈ N

::::
(for

:::::::
instance

::
the

:::::::::::
combination

:::::
n= 3

::::
and

::::::
m= 2)

::::
‘fix’

:::
the

::::
flux

:::::
back

::
to

:
a
:::::::
positive

::::
real

:::::::
number,

:::::::
however

::::
they

::::::::
introduce

::
a
:::::::::::::::
non-substantiated

::::::::::
dependency

:::::::
between

:::
the

::::
flow

:::
law

::::
and

:::
the

::::::
sliding

::::
law.

:::::::::::
Furthermore,

:::
for

:::::
these

:::::::::::
combinations

::::
and

:::::
θ < 0,

::::::::
enhanced

::::::::::
buttressing15

:
-
:::::::::::
inconsistently

::
-
:::::
yields

:::
an

:::::::
increase

::
in

:::
ice

::::
flux.

:::::::::
Physically,

::::::
θ1 < 0

:::::::::::
corresponds

::
to

:
a
::::::::
situation

:::::
where

:::
the

:::::::
traction

::::::
vector

::
at

:::
the

::::::::
grounding

::::
line

:::::
points

::
in

::::::::
upstream

::::::::
direction.

::::
One

:::::::
possible

:::::::
situation

::::::
giving

:::
rise

::
to

::::::
θ1 < 0

::::::
would

::
be

:::::::
τxx < 0

:::::
while

:::::::
τyy = 0,

::::
with

:
x
:::::
being

:::
the

::::
flow

::::::::
direction

:::
and

:::
the

:::::::::
grounding

:::
line

::::::
aligned

::::
with

:::
the

::
y
::::
axis.

::
In

::::
this

::::
case,

:::
the

:::
ice

::
at

:::
the

::::::::
grounding

::::
line

::::::::::
experiences

::::::::::
compression

::
in
::::::::::

along-flow
:::::::
direction

:::::
and,

:::::
hence,

:::::::::::
longitudinal

:::::
strain

::::
rates

::::
are

:::::::
negative

:::
and

::::
ice

::::::::
velocities

:::::::
become

::::::
smaller

:::
as

::
the

:::::::::
grounding

::::
line

::
is

::::::::::
approached

::::
from

::::::::
upstream

::::::::
direction.

:::::::
Another

::::::::
situation

:::::
giving

::::
rise

::
to

::::::
θ1 < 0

::
is

:::
that

:::
of

:::::
equal

:::::::::
transversal20

::::::::::
compression

:::
and

:::::::
vertical

::::::::
extension

::
of

:::
the

:::
ice

:::::::
column

:
at
:::
the

:::::::::
grounding

::::
line,

:::
i.e.

::::::::::::
τyy =−τzz < 0

:::::
while

::::::::
τxx = 0.

4 Results

From the numerically modeled stress field we calculate the buttressing parameter θ1 (given by Eq. 11) for all grounding lines

of the Antarctic setup described in Sect. 2.1. While we here focus on the buttressing parameter θ1, our findings are independent

of the exact definition of θ, the choice of the sliding law exponents m, the mesh and the details of the inverse methodology25

applied (see Appendix B).

We find that the grounding lines of Filchner-Ronne and Ross ice shelves are, in general, highly buttressed with buttressing

values significantly different from unity (see Fig. 2). Typically, θ1 ≤ 0.4, and in many cases θ1 < 0. Among the ice streams of

these two biggest ice shelves of the AIS, the dormant Kamb Ice Stream is the relatively least buttressed one, with θ1 ≈ 0.4.

Over all other ice streams θ values are even smaller. Negative θ values are also found over grounding-line segments located30

between active ice streams, for example along the grounding line running between the Rutford and Institute Ice Streams.

An example of an ice stream where θ1 < 0 over most of its grounding line is the Institute Ice Stream (see Figs. 3 and 4).

Inspection of the velocity field in the vicinity of the grounding line of that ice stream reveals that ice flow velocities decrease

10



Figure 2. Buttressing ratio θ1 along the grounding lines of Filchner-Ronne Ice Shelf (left panel) and Ross Ice Shelf (right panel). Insets

indicate the ice shelves’ locations in Antarctica, correspondingly. Regions where the grounding line is ‘over-buttressed’, that is, θ ≤ 0, are

displayed in black. Modelled speed is plotted in gray ranging up to 1,500 ma−1. Grounding line and ice front locations are indicated in

black. IS denotes ice streams, IR denotes ice rises or rumples.

with distance as the grounding line is approached from up-stream direction
:::
(see

::::
also

:::
Fig.

::
1,
:::::
lower

:::::
right

:::::
panel). Consequently,

both along-flow strain rates and along-flow deviatoric stresses are negative (compressive). This general feature of ice flow

around the grounding line of Institute Ice Stream implies that its grounding line is ‘over-buttressed’ with the traction vector at

the grounding line pointing in inland direction. Hence, independently of our numerical simulation of the stress field, it is clear

that for this ice stream θ must be negative.5

As discussed in Sect. 3 the analytical flux formula (Eq. 6) is clearly not applicable in situations where θ becomes negative(see

also Sec. 3). As θ is found to become negative over large sections of the grounding lines of many the ice streams of the two

largest Antarctic ice shelves, i.e. Ross and Filchner-Ronne ice shelves, it follows that the formula can not
::::::
cannot be used to

calculate grounding-line ice fluxes over significant parts of the AIS.

We furthermore compare analytical and numerically modeled grounding-line ice fluxes in all regions where θ1 ≥ 0, i.e.10

where the application of the analytical flux formula (Eq. 6) results in real-valued ice fluxes. In particular we compare both the

flux values point-wise along all grounding lines (Fig. 5) and the total cumulative fluxes over grounding-lines of ice streams

and ice shelves (Table 1). When comparing cumulative analytical fluxes, we are forced to assume values for those sections of

grounding lines for which θ is negative (and q complex). There we assume q = 0, which is equivalent to setting θ = 0.

In general, we find significant differences between analytically calculated and numerically modeled flux values. Analytical15

fluxes are much lower than modeled in many locations of Filchner-Ronne Ice Shelf, especially along the grounding lines of

the Rutford, Institute and Moeller ice streams (Fig. 5). However, cumulative analytical fluxes over all grounding lines of the

Filchner-Ronne Ice Shelf are about 30% larger than modeled for θ1, and this difference is considerably larger for θ2 and

11



Figure 3. Buttressing ratio and differences in grounding line flux for Institute Ice Stream draining into the Filchner-Ronne Ice Shelf (location

shown in inset). (a) Buttressing values θ1 are displayed along the grounding line and principle deviatoric stresses are shown, with compression

in red and extension in blue. The length of the vectors indicate the magnitude of each principle stress. (b) Differences between analytical

and modeled fluxes and observed ice velocities ranging up to 500 m a−1 (Gardner et al., 2017). Analytical fluxes are set to 0 where θ1 < 0.

Grounding line positions are indicated in black.

θ3 (Table 1). Similar disagreement between analytical and modeled fluxes is found for the Siple Coast Ice Streams such as

Bindschadler and MacAyeal Ice Streams, and for Byrd Glacier (Panel b of Fig. 5). For Ross Ice Shelf the overall difference is

only 5%, but given the fact that θ1 is negative over significant sections of its grounding line (where we set the analytical flux

values to zero), this agreement appears somewhat fortuitous.

For other ice shelves, cumulative fluxes are generally underestimated by the flux formula. Analytical fluxes for Pine Island5

Glacier and Thwaites Glacier, for example, deviate by −33% and −52% from the modeled fluxes, respectively. For George VI

ice shelf, cumulative analytical fluxes are several times smaller than modeled ones (Table 1).

The analytical flux formula tends to strongly overestimate fluxes over grounding lines where ice flow is approximately tan-

gential to the grounding line. This failure of the flux formula to correctly predict fluxes in such circumstances is not surprising

as the underlying assumptions of the formula are clearly not met in such situations. Nevertheless, this demonstrates the inherent10

conceptual difficulties in applying the formula to the Antarctic Ice Sheet.

Moreover, the analytical formula produces much higher spatial variability in fluxes than the numerically modeled ones. This

can be clearly seen in Fig. 4 where analytical and modeled ice fluxes are plotted along the grounding lines of Rutford, Institute,

Foundation and Recovery ice streams. Here, gray background indicates sections of the respective grounding lines where the

flux formula yields unphysical results. Variability in fluxes calculated with Úa occurs when ice flow is nearly aligned with the15

12



Figure 4. Comparison of fluxes calculated with Úa (blue) and analytical fluxes (black) along the grounding lines of four major ice streams

draining into Filchner-Ronne Ice Shelf. Locations where the flux formula provides unphysical results are marked in grey. Plotted grounding

line segments are located as displayed in the inset with western margins indicated by a yellow dot.

grounding line.
:::
We

:::::::
calculate

::::::
fluxes

::::::
within

::::
each

::::::::
triangular

:::::::
element

:::::
using

::::
the

::::::
normal

::
of

:::
the

::::::::::::::
piecewise-linear

:::::::::
grounding

::::
line

::::
curve

::::::
which

::::
may

::::
vary

:::::::::
in-between

:::::::::
individual

:::
line

:::::::::
segments.

We test the sensitivity of our analytical flux calculations to different degrees of regularization (γs and γa) and different

values of the sliding law stress exponent (m), for which our findings are summarized in Figs. B3 and B5. Numerically modeled

fluxes are, as expected, mostly independent of the value of the sliding law stress exponent m. This can be considered to5

be a consequence of the inversion procedure, which ensures that modeled velocity fields agree closely with measured data,
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Figure 5. Difference between the analytical and the modeled fluxes along the grounding lines of Filchner-Ronne Ice Shelf (left panel) and

Ross Ice Shelf (right panel). Analytical fluxes are calculated based on θ1 defined in Eq. 11. In locations where the formula yields unphysical

results, fluxes are set to zero. Grey arrows show the modeled ice flow. IS denotes ice streams, IR denotes ice rises or rumples. Grounding line

and ice front locations are indicated in black.

independently of the value of m. On the other hand, analytically calculated flux values are highly sensitive to the value of

m (see Fig. B3). For example, cumulative analytical fluxes for Filchner-Ronne Ice Shelf increase by about a factor of five

as m is changed from 1 to 7, while numerically modeled fluxes change by less than 10 %. Numerically modeled fluxes are

also insensitive to the exact degree of regularization applied, whereas analytically calculated flux values change significantly

(Fig. B5). The dependency of the analytically calculated fluxes on the amount of regularization used in the numerical model is5

due to the impact regularization has on modeled stresses and, therefore, on the value of θ.

We also compare analytical fluxes as calculated using the three different definitions (11), (12) and (13) for θ. While overall

spatial variability of θ is similar for these three definitions, with all definitions giving rise to extended areas of negative θ values,

the cumulative flux for the alternative definitions θ2 and θ3 are generally higher than for θ1 (see also Fig. B4).
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Table 1. Ice flux integrated along the grounding lines of Antarctic ice shelves. QÚa denotes the modeled ice flux with Úa, Q1 was derived

from the analytical flux formula based on θ1, Q2 based on θ2 and Q3 based on θ3, respectively. Last column shows the deviation of the

analytical flux Q1 from the modeled QÚa.

Ice shelf QÚa [Gt a−1] Q1 [Gt a−1] Q2 [Gt a−1] Q3 [Gt a−1] (Q1 −QÚa)/QÚa [%]

Filchner-Ronne 216 282 694 755 30

Pine Island 123 82 148 190 -33

Ross 120 126 280 155 5

Thwaites 117 57 82 133 -52

Getz 91 27 52 60 -70

Totten 65 44 158 243 -32

George VI 64 9 21 21 -85

Amery 55 16 135 56 -70

Moscow-University 43 16 44 120 -63

West 40 27 33 49 -32

Shackleton 37 20 62 61 -48

Crosson 34 17 38 38 -51

Larsen C, D 25 9 19 38 -64

Brunt/Stancomb-Wills 22 18 24 40 -16

Fimbul 21 7 15 15 -67

Stange 16 3 13 15 -81

Riiser-Larsen 12 9 20 25 -29

Dotson 11 2 13 19 -84
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5 Discussion

The analytical grounding-line flux formula Eq. (6) was derived for a flow-line configuration (Schoof, 2007a), and there is no

reason to doubt its validity in that particular case. When applied to a flow-line configuration, many current ice-flow mod-

els employing the shallow ice-stream approximation (SSA) with Weertman-type sliding law, have demonstrated an excellent

agreement between modeled and analytical grounding-line fluxes (Pattyn et al., 2012). Ice fluxes and grounding line positions5

calculated with the ice flow model Úa also agree closely with those predicted by Eq. (6) where such an agreement is to be

expected. The inclusion of the buttressing parameter θ was used by Schoof (2007a) to illustrate the potential impacts of ice-

shelf buttressing on ice flux, provided its effects were sufficiently small as not to invalidate too strongly the basic assumption

of a flow-line setting. However, we find that most of the grounding lines of the AIS are highly buttressed with θ significantly

different from unity. Therefore the assumptions of the flux formula are in most cases not met.
:
It

:::::
seems

:::::
likely

::::
that

::
at

::::
least

::::
part10

::
of

:::
the

:::::
reason

::::
why

:::
the

:::::::::
analytical

:::
flux

:::::::
formula

::::
fails

::::::
relates

::
to

:::
the

::::
high

::::::
degree

::
of

:::::::::
buttressing

::::
that

:::
we

:::
find

::
to

:::
be

:::::::::::
characteristic

:::
for

::::
most

::::::::
Antarctic

:::
ice

:::::::
streams.

When applied to the current geometry and the current flow field of the AIS, the flux formula predicts either unphysical or

highly inaccurate flux values when compared to modeled ones. While we have done the comparison with numerically modeled

fluxes, comparison with observed fluxes — as calculated from measured surface velocities, observed grounding-line positions,15

and measured ice thicknesses — would not alter our conclusions as, due to our inversion procedure, observed and modeled

surface velocities are in good agreement.

The strongest indication that the analytical flux formula fails when applied to the Antarctic Ice Sheet is arguably the fact

that it predicts non-real valued fluxes over significant parts of Antarctic grounding lines. This happens whenever θ becomes

negativeexcept
:
.
::::::::
Although for specific combinations of n and m which also yield unphysical solutions as discussed in

:::::
(such

::
as20

:::::
n= 3

:::
and

::::::
m= 2)

:::
the

:::::::
resulting

:::::::::
exponents

::
in

:::
the

:::
flux

:::::::
formula

:::
are

::::
even

:::::::
numbers

:::
—

::
in

:::::
which

::::
case

:::
the

::::::::
analytical

:::::
fluxes

:::
are

::::::
always

:::
real

:::::::
positive

:::::::
numbers

:::
—

:::
the

:::
flux

::::::
values

:::
are

:::
still

::::::::::
unphysical

:::
(see

:
Sect. 3

:
). As we point out above, even a cursory inspection of

the velocity field of the AIS suffices to show that θ is negative for a number of grounding lines (e.g. the Institute Ice Stream

grounding line). Hence, the occurrence of negative θ values is not simply a feature of our particular numerical approach, but a

general aspect of the current ice-flow regime of the AIS.25

As analytical ice fluxes are strongly dependent on ice thickness (h) at the grounding line, they depend somewhat on the

specifications of the numerical model: the exact location of the grounding line is influenced by the mesh resolution used by the

model. The resulting error is an example of a discretization error that becomes smaller as the mesh is refined. Other numerical

models using a different computational mesh may locate the grounding line differently and hence calculate flux values different

to some extent. We tested the dependency of our modeled ice fluxes to grid resolution by using several different meshes — an30

example of two such meshes is given in Fig. B1 — and found none of our main conclusions to be affected by differences in

mesh resolution.

As measured by the buttressing parameter θ1, almost all grounding lines of the AIS can be considered to be strongly but-

tressed with, in most cases, θ < 0.4. Hence, theoretical concepts based on the assumption of none, or insignificant, ice-shelf
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buttressing may not apply to present-day Antarctica. One such theoretical prediction of considerable relevance for the possible

future of the AIS relates to the stability of its grounding lines. In the absence of ice-shelf buttressing, grounding-line stability

is predicted to be related to local bed slope (Weertman, 1974; Thomas and Bentley, 1978; Schoof, 2007a, b, 2011). However, in

the presence of ice-shelf buttressing no such simple conclusions can be drawn (e.g Goldberg et al., 2009; Gudmundsson et al., 2012; Gudmundsson, 2013; Pegler, 2016)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g Goldberg et al., 2009; Gudmundsson et al., 2012; Gudmundsson, 2013; Pegler, 2016; Schoof et al., 2017) .

Possibly, rather than being dominated by local bed slope, the stability regime of the Antarctic Ice Sheet is to a leading-order5

dependent on the properties of the ice shelves downstream of its grounding lines (e.g. geometry and structural integrity),
:::

as

:::
also

:::::::::
supported

::
by,

::::
e.g.,

::::::::::::::::::::::::::::::::::::::::::
Pegler et al. (2013); Haseloff and Sergienko (2018) . Further work is needed to address the question of

the stability of Antarctica’s grounding lines.

6 Conclusions

In our study, we compare grounding-line ice fluxes obtained by an ice-sheet model with fluxes predicted by an analytical flux10

formula based on Schoof (2007a)
:::::::::::::::
Schoof (2007a, b) . The formula includes a parameter (θ) to account for ice-shelf buttressing,

and the resulting flux is sometimes applied as a grounding-line flux condition in numerical simulations. We find that the formula

results in unphysical and grossly inaccurate grounding-line fluxes for most of the AIS. We furthermore find that almost all

Antarctic grounding lines are highly buttressed, suggesting that the assumption
:::::::::
underlying

::::::::::
assumptions

:
of the analytical flux

formula of weakly buttressed grounding lines is
::
are

:
not met for the current configuration of the Antarctic Ice Sheet.15
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Appendix A: Vertically integrated stress boundary condition at a free calving front

A derivation of the boundary condition at the calving front for the momentum equations in 2HD can be found for example in

Cuffey and Paterson (2010) and van der Veen (1999). At the calving face:
s∫
b

σ ·ncf dz =−
S∫
b

pw ·ncf dz

where n= (nx,ny,0) is the normal of the calving front pointing outwards, s the ice surface, S the sea-level and pw is hydro-5

static pressure in the ocean pw = ρwg(S− z). The balance in x-direction reads:
s∫
b

(σxxnx+σxyny)dz =

S∫
b

−ρwg(S− z)nx dz =−
ρ2i g

2ρw
h2nx (A1)

We can rewrite σxx = 2τxx+ τyy+σzz (since σxx = τxx+p, σzz = τzz+p and τxx+ τyy =−τzz). Under the assumptions of

the hydrostatic approximation, σzz =−ρig(s− z). The vertically integrated horizontal stress balance equals
s∫
b

(σxxnx+σxyny)dz = 2hτxxnx+hτyynx+hτxyny −
ρig

2
h2nx, (A2)10

since τxx, τyy,nx and ny do not vary vertically. Inserting this in Eq. A1 yields:

(2τxx+ τyy)nx+ τxyny =
ρig

2

(
1− ρi

ρw

)
hnx. (A3)

Similarly for the y-direction. This can be abbreviated as

R ·n=
ρig

2

(
1− ρi

ρw

)
hn. (A4)

Following Gudmundsson (2013) we obtain the normal buttressing value which compares the RHS and LHS of the equation15

above in direction of the normal n at the grounding line:

θ =
n ·Rn

ρig
2

(
1− ρi

ρw

)
h
=
n ·Rn
2τf

. (A5)

In the case of a laterally uniform unconfined ice shelf with τyy = 0 and τxy = 0, this reduces to τxx/τf .

A different approach to define θ would be based on this vertically integrated stress boundary condition in 1HD with θ1HD =

τxx/τf . In 1HD the normal at the grounding line is equal to the flow direction. In 2HD, this is not necessarily true. Thus, to20

generalize the longitudinal direction in the 1HD buttressing ratio, a choice needs to be made. The longitudinal direction can

either be generalized as the normal at the grounding line (θ2) or as the flow direction (θ3).

Appendix B: Consistent results using different model parameters

We test the robustness of our findings with respect to the mesh, the sliding law stress exponent m, the definition of the

buttressing parameter θ and the regularization parameter γs. In a second Antarctic setup, based on a different, continent-25

wide mesh with quadratic base functions (instead of linear elements, see Fig. B1), we find a similar pattern of θ1 ≤ 0 which
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yields similar flux differences as exemplified in Fig. B2 for the Filchner-Ronne Ice Shelf. In this case, inversion was done for

element-based basal slipperiness and ice softness (instead of inverting on a nodal basis) using a Bayesian methodology (instead

of Tikhonov regularization) and the MEASURES velocity data set (Rignot et al. (2011) instead of Landsat 8 (Gardner et al.,

2017)). This setup is further described in Reese et al. (2017).
::
In

::::
this

:::::
setup,

::::::::
Bedmap2

::::::::::
bathymetry

::
is

:::
not

:::::::
adjusted

:::::::
around

:::
the

::::::::
grounding

::::
line.

::::
This

::::::::
indicates

:::
that

:::
the

:::::
exact

:::::::
location

::
of

:::
the

:::::::::
grounding

:::
line

::::
does

::::
not

:::::
affect

:::
our

:::::::
findings.

:
5

For the Antarctic-wide setup described in Sect. 2.1, we test for the choice of the stress exponent m in the sliding law.

Different choices m= 1,3,7 yield good agreement in modeled fluxes but large disagreement in-between analytical fluxes, see

Fig. B3. Comparing shelf-wide integrated fluxes for major Antarctic ice shelves shows that also the definitions θ2 and θ3 of

the buttressing parameter yield large deviations from the modeled fluxes, see Fig. B4. Similarly, we find that the choice of the

regularization parameter γs does not influence the results significantly, see Fig. B5. Our findings are hence independent of the10

details of numerical modeling choices.
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Figure B1. Exemplary zoom
:::::
Zoom into the Bindschadler grounding line for two different meshes. Left panel: elements and nodes of the

mesh presented in the main text. The mesh was refined especially around the grounding line and linear 3-node elements were employed.

Right panel: alternative mesh with 6-node elements with quadratic base functions. The grounding line position is indicated in both meshes

in orange.
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Figure B2. Difference between formula-derived and modeled fluxes along the grounding lines of Filchner-Ronne Ice Shelf. In contrast to

Fig. 5 a different mesh was employed (exemplified in the right panel in Fig. B1), the data assimilation was conducted using Bayesian inversion

and based on the MEASURES velocity data set (Rignot et al., 2011). The analysis was done using quadratic elements. This Antarctic-wide

setup is described in more detail in Reese et al. (2017).
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Figure B3. Comparison of fluxes calculated with Úa (x-axis
::::
x-axis) and with the analytical flux formula (y-axis

::::
y-axis), integrated along

the grounding lines of exemplary
::
the

:
ice shelves

:::::::
indicated

::
in

::
the

::::::
legend. Symbols indicate the different sliding law exponents m= 1,3,7

employed. All other parameters agree with the reference run (indicated by a circle). The dotted
:::::
dashed line shows where fluxes calculated

with Úa and predicted by the formula would agree.

20



0 50 100 150 200 250
q Úa  (Gt/a)

0

100

200

300

400

500

600

700

800

q
fo

rm
ul

a
 (

G
t/a

)

1

2

3

Filchner-Ronne
Pine Island
Ross
Thwaites
Getz
Totten

Figure B4. Comparison of fluxes calculated with Úa (x-axis
::::
x-axis) and with the extended flux formula (y-axis

:::::
y-axis), integrated along the

grounding lines of exemplary
::
the

:
ice shelves

::::::
indicated

::
in
:::
the

:::::
legend. Symbols indicate the different definitions of θ as described in Sect. 3.

All other parameters agree with the reference run (indicated by a circle). The dotted
:::::
dashed line shows where fluxes calculated with Úa and

predicted by the formula would agree.
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Figure B5. Comparison of fluxes calculated with Úa (x-axis
::::
x-axis) and with the extended flux formula (y-axis

:::::
y-axis), integrated along the

grounding lines of exemplary
::
the

:
ice shelves

:::::::
indicated

::
in

::
the

::::::
legend. Symbols indicate the different regularization parameters γs used. All

other parameters agree with the reference run (indicated by a circle). The dotted
:::::
dashed

:
line shows where fluxes calculated with Úa and

predicted by the formula would agree.
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