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Abstract. One of the great challenges in glaciology is the ability to estimate the bulk ice anisotropy in ice sheets and glaciers,

which is needed to improve our understanding of ice-sheet dynamics. We investigate the effect of crystal anisotropy on seismic

velocities in glacier ice and revisit the framework which is based on fabric eigenvalues to derive approximate seismic velocities

by exploiting the assumed symmetry. In contrast to previous studies, we calculate the seismic velocities using the exact c-axis

angles describing the orientations of the crystal ensemble in an ice-core sample. We apply this approach to fabric data sets5

from an alpine (KCC) and a polar (EDML) ice core. Our results provide a quantitative evaluation of the earlier approximative

eigenvalue framework. For near-vertical incidence our results differ by up to 135 m s−1 for P-wave and 200 m s−1 for S-wave

velocity compared to the earlier framework (estimated 1 % difference in average P-wave velocity at bedrock for the short alpine

ice core). We quantify the influence of shear-wave splitting at bedrock as 45 m s−1 for the alpine ice core and 59 m s−1 for

the polar ice core. At non-vertical incidence we obtain differences of up to 185 m s−1 for P-wave and 280 m s−1 for S-wave10

velocities. Additionally, our findings highlight the variation in seismic velocity at non-vertical incidence as a function of the

horizontal azimuth of the seismic plane, which can be significant in case of non-symmetric orientation distributions and results

in a strong azimuth-dependent shear-wave splitting of max. 281 m s−1 at some depths. For a given incidence angle and depth

we estimated changes in phase velocity of almost 200 m s−1 for P-wave and more than 200 m s−1 for S-wave and shear-wave

splitting under a rotating seismic plane. We assess for the first time the change in seismic anisotropy that can be expected15

on a short spatial (vertical) scale in a glacier due to a strong variability in crystal-orientation fabric (±50 m s−1 per 10 cm).

Our investigation of seismic anisotropy based on ice-core data contributes to advancing the interpretation of seismic data, with

respect to extracting bulk information about crystal anisotropy without having to drill an ice core and with special regard to

future applications employing ultrasonic sounding.
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1 Introduction

One of the most important goals for glaciological research is the establishment of a thorough understanding of ice dynamics,

in which internal deformation plays a crucial role. This deformation is predominantly evident and described on a macro-scale

(O(km)) as most observations rely on remote sensing or ice sheet modeling. However, it is necessary to connect the bulk be-

haviour with the governing processes on the micro-scale (O(µm)) to be able to develop a comprehensive understanding of the5

deformation mechanisms (Weikusat et al., 2017). The fundamental deformation mechanisms on the atomic scale are driven by

the external stress field and lead to the alignment of single ice crystals in preferential directions (previous works are reviewed

in Faria et al., 2014). Due to the intrinsic anisotropy of each ice crystal an anisotropic bulk medium is formed as a result of the

crystal-preferred orientation (CPO, also known as lattice-preferred orientation, LPO, and crystal-orientation fabric, COF). The

anisotropy is evident in elastic, plastic and electromagnetic properties of the ice and the respective parameters can be connected10

to each other. The plastic anisotropy can have a considerable influence on the bulk deformation rate and vice versa. Hence, it

is desirable to incorporate the development of anisotropy in flow models (Pettit et al., 2007; Seddik et al., 2008; Martin et al.,

2009; Graham et al., 2018).

Currently, the development and extent of fabric anisotropy is mainly investigated by laboratory measurements on ice core sam-

ples which provide one-dimensional data (along the core axis, z-axis in Fig. 1) that only partially cover the length of the core.15

However, geophysical evidence of crystal-orientation fabric can also be obtained by exploiting the elastic anisotropy which

influences the propagation of seismic waves in ice (Blankenship and Bentley, 1987; Smith et al., 2017). Seismic waves propa-

gate from a seismic source to the seismic receivers on the glacier surface within the seismic plane (Fig. 1). This is the vertical

plane underneath the horizontal seismic profile, which runs along the surface of the glacier, and may also contain the vertical

ice core axis, along which fabric information is collected. Seismic reflections occur due to sudden changes of fabric (Horgan20

et al., 2008, 2011; Hofstede et al., 2013) and offer the chance to obtain spatially distributed information on the COF structure

in various depths of the ice column, the acquisition of which would be unfeasible using direct sampling via ice-coring.

The motivation of this study is to improve the interpretation of seismic data by connecting the micro- and the macro-scale

using the elastic properties of ice. Early work to this end were accomplished by Bennett (1968); Bentley (1972); Blankenship

and Bentley (1987) and more recent approaches include Gusmeroli et al. (2012),
::::::::::::::::::

Maurel et al. (2015) ,
:
and Diez and Eisen25

(2015). Specifically, the starting point of this paper is the study by Diez and Eisen (2015), who establish a connection between

the commonly reported fabric parameter of second-order orientation tensor eigenvalues and the elasticity tensor describing the

polycrystalline medium to calculate seismic velocities from ice-core fabric data. (We refer to the method of Diez and Eisen

(2015) as the ev framework.) They illustrate the proposed calculation framework on fabric data from the polar ice core EDML

(European Project for Ice Coring in Antarctica in Dronning Maud Land).30

Our main objective is to present an improved method for the estimation of the bulk elasticity tensor, and to use this to (i) evalu-

ate the use of the ev framework, and (ii) demonstrate the effect of a real fabric on seismic velocities. Our study concentrates on

the forward calculation of seismic velocities from the full crystal
::::
c-axis

:
orientation distribution. The application of an inverse

method will likely always require some simplification to symmetries, for which we now can quantify involved uncertainties –
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a required component of the covariance matrices for inverse methods.

We first present experimental measurements, theoretical basis and mathematical algorithm of our new framework (cx). We ap-

ply this framework to two ice cores and further investigate how fabric variability at the submetre scale is reflected in theoretical

seismic interval velocities. Finally, we assess the effect of asymmetrical fabric distributions on seismic velocity and explore

the potential of azimuth-dependent seismic surveys.5

2 Methodology

2.1 Laboratory ice fabric measurements

For our analysis of seismic velocities we use fabric data from the polar ice core EDML and the alpine ice core KCC. The

EDML ice core was drilled as part of EPICA (European Project for Ice Coring in Antarctica) between 2001 and 2006 at

Kohnen Station, Antarctica, and reaches to a depth of 2774 m (Oerter et al., 2009; Weikusat et al., 2017). The KCC ice core10

was drilled in 2013 on the alpine glacier Colle Gnifetti, Monte Rosa Massif, Switzerland/Italy (N 45°55.736, E 7°52.576,

4484 m a.s.l.) in 100 m distance from the ice core KCI, drilled in 2005 (Bohleber et al., 2018). KCC is 72 m long with the

firn-ice-transition at a depth of about 36 m and a borehole temperature between −13.6 °C in 13 m depth and −12.4 °C at the

bedrock, measured in 2014 (pers. comm. M. Hoelzle, University of Fribourg, 2014). Both KCC and EDML were stored at a

minimum of −18 °C during transport and at −30 °C during processing.15

Vertical and horizontal thin sections of the ice cores were prepared and measured using polarised light microscopy (e.g. Wilson

et al., 2003; Peternell et al., 2009) with an automatic fabric analyser from Russell-Head Instruments (models G20 and G50 in

case of EDML and G50 for KCC). For each identified ice crystal in the thin section the measurement provides the orientation

of the crystallographic c-axis c by two spherical coordinates, azimuth ϑ in the interval (0,2π) and colatitude ϕ in the interval

(0,π/2), with respect to the vertical ice-core axis that we define to coincide with the z-axis of the global coordinate system20

(Fig. 1). The c-axis is expressed in the global cartesian coordinate system {x,y,z} as a vector with unit length:

c(ϑ,ϕ) = (sin(ϕ)cos(ϑ),sin(ϕ)sin(ϑ),cos(ϕ)) (1)

Figure 1 illustrates the geometric relation between the angles ϑ,ϕ for describing the c-axis orientations from an ice core sample

and the setup of a seismic survey profile across an ice core. The incidence of a seismic wave on an ice sample is determined by

the angle of incidence ψ and the azimuth angle ϑs of the seismic plane.25

The EDML fabric data (data sets: Weikusat et al., 2013a, b, c, d) are presented in detail in Weikusat et al. (2017). The total data

set used in this study comprises 154 samples between 104 and 2563 m depth with a coarse sampling interval and 40 additional

vertical section samples that were measured continuously in several intervals between 2359 and 2380 m. These high resolution

measurements were performed with the G50 instrument. The KCC fabric data (data set: Kerch et al., 2016a, b) consist of 85

vertical thin sections covering 11 % of the entire ice core.30

Eigenvalues λi (i= 1,2,3) of the second-order orientation tensor a(2)ij are usually calculated from the c-axis distribution within

a thin section sample and can be grain-, area- or volume-weighted to describe the fabric (Woodcock, 1977; Durand et al., 2006;
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Figure 1. The global coordinate system {x,y,z}, typically corresponding to East, North and up, used for the description of a c-axis with unit

length: spherical coordinates ϑ and ϕ specify the orientation of the c-axis. For each grain the c-axis can be expressed in its local cartesian

coordinate system {p,q,r} by (0,0,1); p,q are not shown here. The equatorial plane corresponds to the horizontal thin section plane. The

z-axis is assumed to be parallel to the ice core axis. The orientation of a hypothetical seismic plane (grey) is defined by the seismic azimuth

angle ϑs, with the angle ψ of an incident seismic wave (dashed line) with unit vector normal to the plane wavefront n. The star symbolises

the seismic source and the triangles represent a line of seismic receivers.

Mainprice et al., 2011). They describe the type and strength of anisotropy in the crystal ensemble visible in the thin section

(e.g. Cuffey and Paterson, 2010). Typically, different types of fabric are identified (Diez and Eisen, 2015) by the relation of the

three eigenvalues with λ1 ≤ λ2 ≤ λ3 and
∑
λi = 1. By this classification the crystal anisotropy of the bulk can be described

in a convenient way, if a unimodal distribution can be assumed, and can be associated with different deformation regimes (e.g.

Weikusat et al., 2017).5

2.2 Seismic wave propagation in anisotropic ice

In a glacier, the fabric anisotropy also introduces an anisotropy of the elastic properties of the material. This elastic anisotropy

results in a seismic anisotropy, which means the propagation of seismic waves is influenced by the fabric anisotropy. To study

this connection, theoretical velocities can be calculated if the fabric anisotropy is known.

The mathematical background for the calculation of seismic phase velocities from the elastic properties in anisotropic ice can10

be found in many publications (e.g. Tsvankin, 2001; Diez and Eisen, 2015). For convenience the essential concepts are shortly

repeated in the following. Here we focus on phase velocities and group velocities are not considered.

For an anisotropic elastic medium – ice behaves elastically for the propagation of seismic waves – stress and strain are linearly

connected following the generalised Hooke’s law:

σmn = cmnopτop with m,n,o,p= 1,2,315
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where cmnop is the elasticity tensor, a fourth-order tensor which describes the medium’s elastic properties. The inverse relation

uses the compliance tensor smnop. Due to the symmetry of strain and stress tensor and thermodynamic considerations (Aki

and Richards, 2002), the 81 unknowns of the elasticity tensor reduce to 21 independent components for general anisotropy.

The elasticity tensor can then be expressed in a simplified manner, known as Voigt notation (Voigt, 1910), where pairs of

indices from the fourth-order tensor are replaced by single indices. The resulting elasticity tensor in Voigt notation Cij (i, j =5

1,2,3,4,5,6) is a symmetric second-order tensor. In the case of monocrystalline ice Ih, the components of the elasticity tensor

were measured in the laboratory by means of Brillouin spectroscopy (Gammon et al., 1983). There are five independent

components due to the hexagonal crystal symmetry. Several sets of values for the elastic moduli have been found by different

authors, as summarised in Diez et al. (2015). Here, the monocrystal elasticity tensor Cm by Gammon et al. (1983), as measured

on samples of artificial ice at −16 °C, is used for all calculations:10

Cm =



13.929 7.082 5.765 0 0 0

7.082 13.929 5.765 0 0 0

5.765 5.765 15.010 0 0 0

0 0 0 3.014 0 0

0 0 0 0 3.014 0

0 0 0 0 0 3.424


· 109 N/m2 (2)

To apply this description to the study of large ice sheets and glaciers, we have to consider the elastic properties of the polycrys-

tal. The understanding of the elastic behaviour of a monocrystal can be used together with the fabric description to estimate

the elastic properties of the polycrystal. Different theoretical models have been developed for the estimation of the elasticity

tensor of an anisotropic polycrystal, usually making use of fabric symmetries (e.g. Nanthikesan and Sunder, 1994; Maurel15

et al., 2015) or by calculating orientation density functions (ODF, Mainprice et al., 2011). In this context some authors refer to

the polycrystal as the "effective medium" (Maurel et al., 2015).

For the calculation of the polycrystal elastic properties from anisotropic monocrystal properties the concept of Voigt-Reuss-

bounds is often used (Nanthikesan and Sunder, 1994; Bons and Cox, 1994; Helgerud et al., 2009; Vaughan et al., 2016), and

we also use this approach here. Voigt-Reuss bounds provide estimates of the upper and lower limits for the elastic moduli20

of the polycrystal, as was shown by Hill (1952), with the Reuss bound exceeding the Voigt bound. Nanthikesan and Sunder

(1994) find that the difference of the Voigt-Reuss-bounds for the elastic moduli of polycrystalline ice does not exceed 4.2 %

and conclude that either of the bounds or an average is a good approximation.

Once the elastic properties for the polycrystal are known, the Christoffel equation provides the relationship to calculate seis-

mic velocities. For a linearly elastic, arbitrarily anisotropic homogeneous medium the wave equation is solved by a harmonic25

steady-state plane wave and we obtain the Christoffel equation:
G11− ρv2ph G12 G13

G21 G22− ρv2ph G23

G31 G32 G33− ρv2ph



U1

U2

U3

 = 0 (3a)
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or [cmnopnnnp− ρv2phδmo]Uo = 0 (3b)

with the density ρ, the polarisation vector U , the phase velocity vph, the unit vector normal to the plane wavefront n, and the

Kronecker delta δmo. Gmo = cmnopnnnp is the positive definite, thus symmetric Christoffel matrix. The vector n indicates the5

direction of wave propagation and depends on the angle of incidence ψ, which is measured from the vertical, and, if applicable,

the azimuth angle ϑs between the vertical plane of incidence and the azimuthal orientation of the ice core with respect to the

geocoordinates (Fig. 1):

n = (sin(ψ)cos(ϑs),sin(ψ)sin(ϑs),cos(ψ)) (4)

Eq. (3) constitutes an eigenvalue problem for Gmo. The real and positive eigenvalues are identified with the phase velocities10

vp,vsh,vsv for P-wave, SH-wave and SV-wave respectively. Different solutions are proposed, depending on the form of the

elasticity tensor. The solution used in this study for an arbitrarily anisotropic medium is outlined in section 2.4.

Instead of interval velocities often the root mean square (RMS) velocity vrms is considered, which gives the velocity of the

homogeneous half-space equivalent to the stack of N horizontal layers (i) to this depth:

vrms(N) =

√√√√∑N
i=1[v(i)]2t

(i)
0∑N

i=1 t
(i)
0

(5)15

with the two-way travel time (TWT) t0 of a seismic wave that travels vertically through a single layer with the corresponding

interval velocity v. For a layered anisotropic medium a reliable depth-conversion from travel times is only feasible if the RMS

velocity for zero-offset can be deduced (Diez et al., 2014).

In-situ temperature and density are essential when comparing seismic velocities. However, as this study is focused on the

comparison of calculation frameworks that use the same elastic moduli, a temperature correction is not applied.20

2.3 Recap: Eigenvalue framework

Diez and Eisen (2015) presented a framework for calculating seismic velocities from COF data in form of eigenvalues, which

we briefly recapture here. In the following, this framework is referred to as ev framework and associated variables are indicated

with ev.

2.3.1 From eigenvalues to seismic interval velocities25

The ev framework can be summarised in three steps:

1. The fabric data in the standard parameterisation of second-order orientation tensor eigenvalues are sorted into three

fabric classes (cone, thick girdle, partial girdle), where each is defined by one or two opening angles χ,φ, symmetrical

with respect to the vertical, and enveloping the c-axis distribution of a sample.
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2. The opening angles characterising the fabric of each sample are used to integrate the elasticity tensor of the monocrystals,

Eq. (2), to obtain the elasticity tensor of the polycrystal, which exhibits an orthorhombic symmetry with respect to the

vertical.

3. From the polycrystal elasticity tensor the approximative solutions to the Christoffel equation (3) for the orthorhombic

case provided by Daley and Krebes (2004) are applied to obtain seismic interval phase velocities vevp ,v
ev
sh ,v

ev
sv , which5

can be used for comparison with measured seismic data. Voigt calculation is used following the argument that Reuss and

Voigt bounds are close enough.

2.3.2 Uncertainty of ev framework

The advantages of this approach are (Diez and Eisen, 2015):

• Eigenvalues are a standard parameter for expressing the strength of fabric and can be directly used for the ev framework10

without additional information about the particular measurement of thin sections from an ice core.

• By assuming an orthorhombic symmetry the solution to the Christoffel equation can be readily found. No information

on the azimuthal orientation of the ice core (relative to any seismic measurements on a glacier) is needed, although this

could be considered to improve the results in case of girdle fabric.

However, some uncertainty is inherent in the framework:15

• The eigenvalues of the second-order orientation tensor do not constitute a complete and unambiguous description of the

fabric. Specifically, they do not provide information on preferential orientations with regard to the coordinate system.

To get a rough idea about the orientation of the fabric the eigenvectors would have to be used in addition, an approach

seldomly followed. Instead, the orientation of the eigenvector to the largest eigenvalue is typically assumed to correspond

to the vertical, which may in fact not be the case and could introduce an unknown uncertainty.20

• By assuming an orthorhombic symmetry while using opening angles to describe the c-axis distribution any informa-

tion on asymmetric fabric (with respect to the vertical) is dismissed and approximation errors are introduced for more

asymmetric c-axes distributions.

• Fabric data from ice cores indicate that transitions between fabric classes usually occur gradually, and sudden changes

are only expected to occur due to changes in impurity content or deformation regime (Montagnat et al., 2014; Weikusat25

et al., 2017). However, the classification into fabric groups based on threshold values for the eigenvalues can introduce

artificial discontinuities in the calculated velocity profile.

We will provide a quantitative estimate of the uncertainty of the ev framework in the following sections.
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Figure 2. Flowchart to illustrate the steps for both frameworks. The work flow for the ev framework is framed in black boxes, starting with

the eigenvalues. The work flow for the cx framework is framed in red and uses the c-axis distribution as input.

2.4 C-axes framework

In this study we aim to provide a quantitative estimate of the error introduced by the approximation of the ev framework and

to assess the potential of the hitherto neglected information for future analyses. For that purpose the exact angle information of

each individual c-axis is used in the following to derive the elasticity tensor Cp of the polycrystal. Then, the phase velocities

in an arbitrarily anisotropic medium are calculated. We refer to the new approach as cx framework. Both frameworks are5

summarised in Figure 2.

2.4.1 Calculating the elasticity tensor for discrete crystal ensemble

If not indicated otherwise, elasticity/compliance tensors and velocities are calculated for the effective medium, which, in this

study, is typically represented by a thin section comprising a number of grains (Ng) of the order of a hundred to a thousand.

Specifically, for EDML the number of grains is mostly between 100 and 650 grains per sample with the exception of some10
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large-grained samples from the depth interval 2300− 2380 m with less than 100 grains. For KCC the number of grains is

between 155 and 1707 grains per sample and there are more than 250 grains per sample in the lowest 5 m of the ice core.

A data set of COF measurements from an ice core is considered that gives pairs of angles determining the c-axis of each grain

c(ϑ,ϕ) in a grain ensemble per thin section. We apply the following steps to obtain the effective elasticity tensor for a thin

section sample:5

1. Transformation of the monocrystal elasticity tensor: Considering the monocrystal elasticity tensor Cm,k, given by

Eq. (2), in the k-th grain’s local coordinate frame {p,q,r} with c = (0,0,1), a transformation (indicated by t) to the

global coordinate frame {x,y,z} by using the angles ϑ,ϕ is necessary:

Ct
m,k = R>C,z R

>
C,y Cm,k RC,y RC,z (6)

with rotation matrix RC as given by Eq. (A3) and R>C its transpose matrix. Ct
m,k is unlikely to have vertical transversely10

isotropic (VTI) symmetry, as most c-axes in a real fabric do not coincide with the z-axis, but will lie obliquely in the

{x,y,z} coordinate frame.

2. Grain area weighting: If grain size information is available, each transformed monocrystal elasticity tensor Ct
m,k is

multiplied by the grain cross-section area (Ak) fraction fk =Ak/
∑
kAk. Otherwise, it is multiplied by 1/Ng for an

equal contribution of all grains to the effective medium elasticity tensor.15

3. Discrete summation over the transformed monocrystal elasticity tensor for all grains to obtain the polycrystal elasticity

tensor Cp in the global coordinate frame:

Cp =
∑
k

Ct
m,k (7)

The obtained elasticity tensor Cp is very likely to have only non-zero components and describes an arbitrarily anisotropic

medium.20

Derivation via the compliance tensor: To determine the Voigt-Reuss bounds as introduced above, the polycrystal elasticity

tensor is also calculated via the compliance tensor Sm. To accomplish this, the monocrystal elasticity tensor is inverted: Sm =

C−1m . Steps 1 to 3 are then applied accordingly using Eq. (A4) to derive the compliance tensor of the polycrystal Sp, which is

then again inverted to provide CR
p , where R denotes Reuss.

2.4.2 Deriving seismic interval phase velocities for an arbitrarily anisotropic medium25

The phase velocities vph(ψ,ϑs) are obtained from the polycrystal elasticity tensor Cp by applying the analytical solution

to find the eigenvalues vph of the Christoffel matrix for an arbitrarily anisotropic medium, following Tsvankin (2001). The

algorithm is presented in Appendix B and variables associated with the cx framework are annotated by superscript cx. Thus,

the velocities are calculated for any fabric, incidence angle ψ, and azimuthal orientation ϑs of the seismic plane.
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Figure 3. a) P-wave velocity vcxp for cone fabric from randomly generated c-axes. b) Difference in P-wave velocity between the two frame-

works for cone fabric. Blue color shows where the ev framework obtains higher velocities than the cx framework. Red shades indicate the

opposite. They differ by −50 to 20 m s−1 (corresponding to ≤ 1.5%).

2.4.3 Framework comparison for cone fabrics

The frameworks (ev and cx) were compared by applying them to cone fabric for all cone angles 0◦ ≤ φ≤ 90◦, thus excluding

any effects from asymmetric fabric. We generated artificial fabric with 1000 c-axes, randomly distributed in a solid (cone)

angle, in 1° steps, and calculated the respective eigenvalues. Figure 3a shows the theoretical P-wave velocity distribution

vcxp (ψ,φ) for all cone and incidence angles as calculated with the cx framework and Figure 3b gives the difference between the5

calculation results from both frameworks. As is to be expected the maximum velocity is found for a seismic wave at vertical

incidence on a narrow single maximum fabric. The strongest velocity deviation between the frameworks is found for cone

angles of approximately 50− 60° at vertical incidence, where the ev velocity exceeds the cx velocity by approx. 50 m s−1

(deviation of 1.5 %).

3 From ice core fabric to seismic velocities – case studies10

We apply the cx framework, outlined in section 2.4, to two fabric data sets from ice cores EDML and KCC, respectively. Thus,

we investigate the potential of the new framework with respect to the earlier established ev framework, which was already
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Figure 4. Comparison of zero-offset velocities calculated from EDML fabric data (without high resolution samples) via ev and cx framework.

a) Eigenvalues (symbols and solid lines for visual assistance) and threshold values (dashed lines, ev framework) for girdle fabric classification.

The different symbols used for eigenvalue data indicate horizontal (h, triangle) and vertical (v, square) thin sections, and the used fabric

analyser model. b) presents the calculated interval P-wave velocities for the two frameworks. The shaded interval around 2270 m indicates

where high resolution measurements where taken (Fig. 5). c) relates the difference ∆vp0 = vcxp0− vevp0 to the fabric classes that are indicated

by shading (dark gray: cone, light gray: thick girdle, white: partial girdle). The shading extends for each data point to half the distance to

the neighbouring data points. d) shows the seismic RMS velocities resulting from the interval velocities integrated from the surface (without

taking density, temperature and firn into account); S-wave velocities refer to the upper x-axis and P-wave velocities to the lower x-axis.

applied to fabric data from EDML (Diez et al., 2015). We use the same EDML data set (c-axis angles and grain-weighted

eigenvalues), complemented by 40 additional thin sections measured more recently. The threshold eigenvalues for classifying

the EDML fabric within the ev framework are as follows: girdle fabric is given if λ2 ≥ 0.2 and λ1 ≤ 0.1, with thick girdle fabric

for 0.05< λ1 ≤ 0.1 and partial girdle for λ1 ≤ 0.05; cone fabric is identified otherwise. The threshold values for classifying

the KCC fabric are chosen such that only cone fabric is recognised by the algorithm, i.e. the threshold for girdle fabric is set5

to λ2 ≥ 0.4 and λ1 ≤ 0.1; cone fabric is identified otherwise. This is justified by the evaluation of stereographic projections of

the c-axis distributions which shows that cone fabric is dominant in all KCC samples, although some tendencies towards girdle

is observed in deeper samples, and artificial discontinuities are prevented. KCC eigenvalues are area-weighted as grain size

information is available from automatic image processing. The results obtained from the cx framework are considered to be

more accurate for the purpose of comparing the frameworks in the following case studies. If not stated otherwise, all velocities10
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Figure 5. Comparison of P-wave velocities at vertical incidence, calculated from EDML fabric data measured in high resolution (vertical

sections) between 2358 and 2380 m depth with the fabric analyser G50. The same variables as in Fig. 4a-c are shown: a) eigenvalues, with the

same symbols as defined in Fig. 4 b) calculated interval P-wave velocity for vertical incidence c) the velocity difference between frameworks

and fabric classes are indicated by shading (dark gray: cone, light gray: thick girdle, white: partial girdle).

are interval velocites, i.e. the seismic wave velocity within a layer, for which an elasticity tensor is calculated based on the

fabric in this layer. The velocity differences between the frameworks for the two case studies are summarised in Table 2.

3.1 Seismic interval velocity for vertical incidence

We now assess the velocity difference between the eigenvalue and the cx framework vp0 at vertical incidence of a seismic

wave (Figure 1, ψ = 0°) as indicated by subscript 0, with a focus on the effect of the ev framework fabric classification.5

Vertical incidence refers to the direction parallel to the ice core axis, which we assume to be normal to the glacier surface. As

the seismic P-wave velocity for vertical incidence is invariant under azimuthal rotation of the seismic plane of the core, it is

possible to assess the uncertainty introduced by using the eigenvalues. We mainly show results for the P-wave velocity, but

included the S-wave velocity in our assessment of RMS velocities.

Vertical incidence at EDML10

The evolution of the fabric of the EDML ice core becomes apparent when assessing the eigenvalues (Fig. 4a) and is discussed

in detail in Weikusat et al. (2017). In the following, observations are made for the comparison of the velocitites from the EDML
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ice core.

The general trend of the velocities of the two frameworks is in good agreement (Fig. 4b). However, a systematic difference can

be observed (Fig. 4c): for cone fabric the P-wave velocity is overestimated by the ev framework, for girdle fabric the P-wave

velocity is underestimated.

In the upper 1785 m the velocity from the cx framework clearly exhibits a higher variability, as quantified by the standard5

deviation s(vp0) (Table 1). Below that depth, there is less variation in the velocity of the cx framework. The higher variability

in the eigenvalue velocity below 1785 m is due to several transitions between fabric classes in the depth interval of 1800

to 2035 m; notably the prominent peak at 1802 m is an example of this. In the lower part of the core at 2306 m a sudden

weakening of the fabric anisotropy is evident in the results of both frameworks. The velocity is, however, underestimated by

the ev framework by 48 m s−1 due to a switch from cone to girdle fabric classification. RMS velocities were calculated from the10

interval velocities for P- and S-wave (Fig. 4d) using Eq. (5) in order to assess the cumulated effect of the velocity deviation. In

the anisotropic case the zero-offset RMS velocities are needed for the depth conversion in classical reflection seismic profiles

(Diez et al., 2014). For EDML, the P-wave RMS velocities vp0,rms for the two methods converge towards the bedrock as a

serendipitous result of the systematic under- and overestimation described before. The S-wave RMS velocities vs0,rms show a

similar shear-wave splitting of 67 m s−1 and 59 m s−1 at the bedrock but the cx velocities also show a small split in the upper15

750 m of the ice core, where the ev framework assumes a VTI fabric with no resulting shear-wave splitting.

Figure 5 is a close-up of the shaded depth in Fig. 4b and shows high resolution measurements completed since Diez et al.

(2015) providing ten data points per metre (filled diamonds). The new data exhibit a strong submetre-scale variability in fabric

strength (Weikusat et al., 2017) which has not been regularly observed in ice-core fabric data so far (Fig. 5a). Only in recent ice

core projects have fabric measurements covered continuous intervals (ongoing measurements at the site of the East Greenland20

Ice-Core Project (EGRIP); North Greenland Eemian Ice Drilling (NEEM), Eichler et al., 2013), providing new information

on fabric variability. This leads to two observations: (i) Both frameworks produce fast changes in the interval velocity on the

submetre scale and (ii) the fabric classification of the ev framework switches several times within two metres. The velocities

differ by up to 90 m s−1, where the ev framework produces more pronounced peaks than the cx framework.

Vertical incidence at KCC25

We show the results of the velocity calculations for vertical incidence from the KCC fabric data in Fig. 6. The cone angle

calculated from the eigenvalues varies between 10–30° for each depth interval (Fig. 6a). A detailed discussion of the fabric

data is beyond the scope of this paper. The P-wave interval velocities calculated with both frameworks (Fig. 6b) increase

with depth as a stronger anisotropic single-maximum fabric evolves and show high variability between adjacent 10 cm long

samples. The difference in P-wave velocity between the two frameworks is shown in Fig. 6c. The ev framework overestimates30

the P-wave velocity on average by 46 m s−1. Hence, differences between the frameworks are similar for the KCC ice core as

for the cone fabric regions of the EDML ice core. In the bottom layer the largest difference in P-wave velocity is −135 m s−1,

due to the strong single maximum inclined to the vertical. The change in c-axes velocity δvcxp0 of each 10 cm sample to the

previous within a continuous measurement interval can exceed 40 m s−1 (Fig. 6d). For the estimate of P-wave and S-wave

13



Table 1. Standard deviation of mean interval P-wave velocities at vertical incidence for several depth intervals of the EDML ice core.

depth in m std. dev. s(vevp0) std. dev. s(vcxp0)

in m s−1 in m s−1

0 – 1785 10.9 20.3

1802 – 2035 32.8 24.1

2045 – 2563 38.5 36.4

2359 – 2360 48.3 27.9

2372 – 2374 32.3 23.0

2379 – 2380 40.3 21.3

RMS velocities the average velocities for each continuous measurement interval are calculated first. Then the layer boundaries

are chosen such that the measured intervals are centered within the layer as indicated in Fig. 6e by the alternating shading

to obtain the RMS velocities. Neither temperature nor density corrections are applied. The difference between the framework

velocities at bedrock amounts to −39 m s−1 for the P-wave which corresponds to an equivalent change in estimated depth of

1 %. The cx framework S-wave RMS velocity illustrates the shear-wave splitting which is increasing with depth and amounts5

to 45 m s−1 (2.3 %) at bedrock.

3.2 Seismic interval velocities for non-vertical incidence

During typical seismic profile surveys the seismic wave will have an inclined angle of incidence with respect to the vertical,

normal to the glacier surface. The velocities will vary depending on the incidence angle if the medium is anisotropic and this

will affect the recorded travel times (Diez and Eisen, 2015). For a single maximum (or cone) fabric that is symmetric around10

the vertical this angle dependency is invariant under rotation of the seismic plane. However, the symmetry axis of a fabric

described by a set of eigenvalues could also be inclined with respect to the vertical depending on the deformation regime on

site. The recorded travel times will then depend on the direction of the seismic profile on the glacier surface. This, in turn, can

be exploited to acquire additional information on the anisotropy. As the cx framework does not restrict the description of the

crystal anisotropy of the effective medium to a symmetry with respect to the vertical, the variation of seismic velocities under15

a rotating seismic plane can be studied.

In the following we assess how the seismic velocities will change when the ice core fabric data and the seismic plane of in-

cidence are rotated with respect to each other. The zero orientation (ϑs = 0) is not associated with any specific geographical

direction. The largest uncertainty for this assessment originates in the difficulty to identify the ice core’s orientation during

drilling. Although it is usually tried to fit the consecutive ice core pieces during logging to maintain the correct relative orien-20

tation it is not guaranteed that there are no discontinuities. We use the term difference to refer to the comparison of differently
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Figure 6. Comparison of zero-offset velocities calculated from KCC fabric data via ev and cx framework. a) shows cone angles derived from

eigenvalues following Diez and Eisen (2015) and Schmidt diagrams illustrating the distribution of c-axes in the upper and the lower part of the

core (projection of c-axes onto the horizontal ice core plane). b) presents the calculated P-wave velocities for the two frameworks for all thin

sections (symbols) and the average velocities for each continuously sampled depth interval (lines). c) shows the difference ∆vp0 = vcxp0−vevp0
per sample and per interval average. d) illustrates the velocity change δvcxp0 = vcxp0(di+1)− vcxp0(di) between subsequent 10 cm sections at

depths di. e) shows the RMS velocities which were calculated from the averaged velocities for layers centered around the measurement

intervals (alternating shading); S-wave velocities refer to the upper x-axis and P-wave velocities to the lower x-axis.

calculated velocities, while change is used here for the azimuth-dependent observations. In this section we focus on, and begin

with, the results of the alpine ice core KCC to demonstrate the relevance of the cx framework for asymmetric fabric.

Non-vertical incidence at KCC

The change of the P-wave velocity with increasing angle of incidence and rotated seismic plane as calculated with the azimuth

sensitive cx framework is displayed in Fig. 7. The seismic plane is rotated around the ice core axis in steps of ∆ϑs = 45◦.5

Several core pieces were presumably rotated relative to the majority of all ice core pieces during processing to optimise the

aliquot cutting. The rotation was estimated and the data is corrected accordingly before applying the cx framework algorithm.

The influence of the asymmetry of the anisotropic fabric in the deeper part of KCC appears very clear. For some layers a spread

of velocities of up to 120 m s−1 is observed for a given angle of incidence when considering different seismic plane azimuth

angles.10
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Figure 7. Seismic P-wave velocities for KCC calculated with cx framework for incidence angles up to 70° and eight seismic plane azimuth

angles ϑs. The extreme values (vp0 = [3779,4030] m s−1) lie in the saturated range of the color scale for better visual contrast. Note the

breaks of the depth axis (white lines), where noted depth values refer to the top of the downward extending depth interval. The thickness of

the color bands is constant for each 10 cm sample.

Figure 8. Left panel: Difference of KCC seismic P-wave velocity between cx and ev framework (vcxp − vevp ) for incidence angles up to

70°. The other panels show the change in P-wave velocity as calculated with cx framework for different seismic plane azimuth angles ϑs

compared to ϑs = 0◦ (vcx,ϑs
p − vcx,ϑs=0

p ). The extreme values (vcxp − vevp = [±185] m s−1 and vcx,ϑs
p − vcx,ϑs=0

p = [−194,109] m s−1) lie

in the saturated range of the color scale for better visual contrast, see Table 2. Note the breaks of the depth axis where noted depth values

refer to the top of the downward extending depth interval.
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Figure 9. Top left: Difference of KCC seismic velocities between SH- and SV-wave as calculated with the cx framework for incidence angles

up to 70°. The other seven panels give the change of the S-wave velocity difference for different seismic plane azimuth angles ϑs. The

extreme values (∆ϑ (vcxsv − vcxsh) = [−269,238] m s−1) lie in the saturated range of the color scale for better visual contrast, compare Table

2. Note the breaks of the depth axis where noted depth values refer to the top of the downward extending depth interval.

The difference between the framework velocities vcxp (ψ)− vevp (ψ) is shown in Fig. 8, for ϑs = 0. vevp (ψ) is invariant under

the rotation of the seismic plane in case of cone fabric. Thus, only the cx velocity is changing with rotation. The change

from vcxp (ψ,ϑs = 0◦) to vcxp (ψ,ϑs) is shown for ϑs > 0◦. The difference in P-wave velocity when comparing the calculation

frameworks reaches up to ±190 m s−1 for the bottom layer and ±50− 100 m s−1 for most depths below 48 m ice depth for

various incidence angles and seismic plane azimuth angles.5

Although the slower S-waves are not routinely acquired during seismic imaging in polar environments, they provide a better

resolution and are of special interest for the study of the elastic properties of ice from traditional seismic reflection profiles

(Picotti et al., 2015). In particular, the splitting of the shear waves can provide unique information about the anisotropy of the

medium (Anandakrishnan et al., 1994; Smith et al., 2017). In the case of the evidently asymmetric fabric of the KCC ice core

we observe S-wave splitting of well above 200 m s−1 in the lower half of the ice core with a maximum value of 281 m s−1. The10

strength of the shear-wave splitting for a particular seismic incidence angle changes when rotating the seismic plane. Figure 9

shows the difference between SV- and SH-wave velocities for non-vertical incidence (for ϑs = 0◦) and investigates how the

difference between the S-wave modes changes when rotating the seismic plane. The initial difference vcxsv − vcxsh at ϑs = 0◦ is

low for small angles except for the bottom samples. It reaches more than 200 m s−1 for angles > 40°. For specific azimuth

angles the change in shear-wave splitting reaches about 200 m s−1 for many depths below 48 m ice depth for incidence angles15

of 10− 30°. For angles above 40° the change in S-wave velocity difference reaches −250 m s−1. The major part of this large

change under seismic plane rotation is caused by the SV-wave variation.
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Figure 10. Left panel: Difference of EDML seismic P-wave velocity between cx and ev framework (vcxp − vevp ) for incidence angles up to

70°. The other panels show the change in P-wave velocity as calculated with cx framework for different seismic plane azimuth angles ϑs

compared to ϑs = 0◦ (vcx,ϑs
p −vcx,ϑs=0

p ). The extreme values (vcx,ϑs
p −vcx,ϑs=0

p = [−97,150] m s−1) lie in the saturated range of the color

scale for better visual contrast, see Table 2. Where the core orientation is insufficiently known and corrected with respect to neighbouring

core pieces, vertical variation in velocity in dependence of the incidence angle may not be a true variation.

Non-vertical incidence at EDML

For the EDML core, no information on the core pieces’ azimuth angle relative to the ice sheet or to each other is provided.

However, it is assumed that no sudden short-scale change in the flow regime can occur. Thus, abrupt offsets in girdle orientation

must be caused by the unnoticed rotation of core pieces. Prior to the application of the cx framework any misorientation needs

to be corrected, or at least highlighted, to avoid misinterpretation of the results from applying the cx framework for seismic5

velocity calculation considering non-vertical incidence angles. For the EDML data set the orientation of several single thin

sections was corrected according to the girdle orientation of the neighbouring thin sections. For instance, a sharp change of

girdle direction of about 45° in 1705 m (Weikusat et al., 2017) could not be corrected and has to be kept in mind when looking

at the velocity calculation results for non-vertical incidences.

As the ev framework does not aim to include the orientation of the girdle, the velocity in girdle fabric is considered as invariant10

under the rotation as well. We therefore only assess the change in P-wave velocity vcxp as calculated with the cx framework

(Fig. 10). The respective figures for S-wave velocities can be found in Kerch (2016). The highest seismic P-wave velocities

(∼4028 m s−1) calculated with the cx framework for non-vertical incidence are found deeper than 2000 m, where the fabric

anisotropy is strong, for incidence angles below 20°. Seismic P-wave velocities are underestimated by the ev framework by

max. 131 m s−1 and overestimated by max. 84 m s−1. The difference is only small (± 20 m s−1) for cone fabric in the upper15

part (0− 800 m). The highest change is apparent for the lower part of the girdle fabric, below the earlier mentioned sudden
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rotation of the dominant azimuth direction, and for cone fabric in the deep part of the core. There, the change in interval

velocity can exceed 100 m s−1 for some seismic azimuth planes as compared to the defined 0°-plane.

4 Discussion

Evaluation of the cx framework

The cx framework provides a refined approach for the use of fabric information to obtain seismic velocities in ice. By including5

all the c-axis observations, instead of using eigenvalue representation, we keep information that is lost with the ev framework

and we avoid the approximation to the true c-axis distribution by deriving opening angles. We average on the crystal scale

to obtain the full elasticity tensor for the polycrystalline ice. This is, to our knowledge, the first time this approach has been

applied to actual ice-core fabric data. Recent work from Vaughan et al. (2017) presents P-wave velocities from cryo-EBSD

data on artificial ice using the MTEX toolbox (Mainprice et al., 2011).10

By using the fabric data from thin sections we acknowledge the uncertainty which arises from sampling with a relatively small

sample size. We use less than 1 % of the ice core EDML and 11 % of the ice KCC to infer the fabric development in the ice cores.

There is currently no comprehensive data available to investigate the sampling effect on real ice. As we are concerned with the

comparison of theoretical seismic velocities calculated from the same fabric data, we assume that the sampling uncertainty can

be neglected. For the comparison with measured seismic data the uncertainty needs to be considered, and appropriate density15

and temperature corrections are required.

The observed variation in eigenvalues in the EDML ice core (Fig. 4a) can partly be attributed to a systematic deviation between

horizontal and vertical thin sections which is a bias produced by the older fabric analyser model G20 (Weikusat et al., 2017).

Both the short-scale variation in the high resolution intervals in the EDML ice core and in the KCC ice core are not affected by

the instrument bias. The cx framework propagates this systematic variability more that the ev framework, with a higher standard20

deviation for the EDML depth interval 0− 1785 m (Table 1), illustrating the higher sensitivity to small fabric differences. The

measurement of c-axes from thin sections with the instrument and the subsequent automatic image processing, which provides

the c-axis angles as an average per grain, contribute to a smaller extent to the overall uncertainty at a level which is difficult to

quantify. However, the processing routine (Eichler, 2013) has proven to provide robust results with respect to minor changes

in the procedure and algorithm.25

The currently employed algorithms for the calculation of seismic velocities in ice polycrystals on the crystal scale (including

this study) do not consider any possible effects on the grain boundaries. For laboratory measurements the difference in stress

on a polycrystalline ice sample as compared with in-situ conditions can affect the degree to which grains are bonding and, thus,

the elasticity (Helgerud et al., 2009). Processes like grain boundary sliding are currently explored in the context of deformation

mechanism on the micro-scale (pers. comm. E.-J. Kuiper, Univ. of Utrecht, 2017) but can also influence the elastic behaviour30

of ice (Elvin, 1996). These issues should be addressed for future applications employing ultrasonic methods for the estimation

of elastic properties of ice.

The lack of knowledge about the dispersion of seismic waves in ice introduces an unknown uncertainty to the calculation
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based on a monocrystal elasticity tensor that was measured in the laboratory by means of ultrasonic sounding. Again, for the

application of ultrasonic methods, which operate in the same frequency range, this uncertainty can be neglected. The connection

of fabric and seismic velocities on the crystal scale we present here complements this advancing field of study.

We have shown in section 2.4.3 that the ev and cx frameworks differ slightly in the case of vertically symmetric cone fabric

for vertical incidence and large cone angles. This type of fabric can commonly be expected in the shallower depth of any5

glacier where vertical compression is dominant. We conclude that the observed deviation in the vertical P-wave velocity profile

(EDML) between the ev and the cx velocity for cone fabric could partly be attributed to this inherent difference between the

frameworks.

In the case of asymmetric c-axis distributions, as observed in the KCC ice core, we obtain large differences between the

interval velocities of the two frameworks, resulting in a detectable difference between the RMS velocities at the bedrock which10

is relevant for the depth conversion. We can confirm the assessment of Voigt-Reuss bounds to lie below 1 % (for P-wave) in

our study.

An advantage of the cx framework is the lack of a need for the fabric classification, thus eliminating artificial discontinuities.

In synthetic seismograms derived from the modelled velocities, such artefacts could result in artificial reflectors and, thus, lead

to false interpretations. The example of high resolution sampling in the EDML ice core demonstrates the importance of this15

advance, allowing us to separate the true high variability in seismic velocities from the artificially enhanced variability. This

finding could, however, be used to tune the threshold values for the fabric classification in the ev framework.

Potentially, our framework can be used in principle for the development of inverse methods to derive the fabric distribution

from seismic velocities. Following experience from other fields of active seismology, this would, first, most likely require

comprehensive data sets suitable for full-waveform inversion not yet available for glaciological applications, and, second,20

some simplifying assumptions on the distribution of crystal fabric, e.g. in terms of considered symmetries. The framework

we presented allows to quantify the potential effect of simplifying assumptions and could help to more accurately specify

covariance matrices, thus enabling the quantification of uncertainties coming along with the results produced by application of

an inverse method.

Azimuth-sensitive seismic velocities25

The cx framework we developed and employed in this study takes into account the asymmetry of anisotropic fabric, with

respect to the vertical. This is especially relevant for glacial environments with a complex flow pattern, for example in sloping

mountain glaciers, fast-flowing polar outlet glaciers (Hofstede et al., 2018) and ice streams (Smith et al., 2017). For such

sites the approximation of the fabric by opening angles centered around the vertical can deviate much more from the reality

than for sites that are located in the vicinity of an ice divide. It becomes evident from the presented KCC case study that the30

azimuthal change of the fabric and the resulting velocities are not negligible. On the contrary, the velocities calculated with

the cx framework for non-vertical incidence angles from an arbitrary seismic azimuth can change strongly for both P- and

S-waves and the associated shear-wave splitting. If the velocity depth profile changes continuously, as is illustrated in Fig. 7, 8

and 9, this should, in principle, be resolved in seismic surface profile data from different seismic azimuth directions, providing
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information about the (asymmetric) crystal anisotropy evolution with depth.

A requirement of the cx framework is the dependency on accurate core orientation information, i.e. the orientation of the

fabric distribution in the equatorial plane has to be known for the consecutive fabric samples. To date, the retrieval of ice cores

with known azimuth remains a challenge. Hence, the uncertainty in the calculation of seismic velocities is much larger in the

vertical direction than under azimuthal rotation. On the other hand, analysing seismic data with azimuthal resolution around5

an ice core drilling site could provide the information to improve the reconstruction of the core orientation. The appearance of

a non-symmetric fabric might also be induced by inclined drilling. Ideally, to be able to link calculated and measured seismic

velocities a possible inclination of the ice core with respect to the vertical and to the horizontal seismic profile should be

considered.

Rapid velocity changes over short vertical distances10

We use COF measurements on a submetre scale for our analysis of seismic velocities. The results suggest the existence of

closely spaced reflective surfaces for elastic seismic waves (and also radar waves). The relevance of the presented analysis

for real seismic data is based on the major assumption of a laterally extended and coherent fabric layering on the scale of

the first Fresnel zone (Drews et al., 2012). Although fabric layering is regularly observed in the KCC ice core and also in

the continuously sampled depth intervals in EDML, it is still unclear how representative these short-scale variations are for15

both the close vicinity and a larger region in a glacier. However, evidence has been presented for abrupt COF changes as a

frequent cause of seismic reflectivity (Horgan et al., 2011). Other studies do not observe such a high reflectivity due to COF but

identify a high degree of gradually evolving fabric anisotropy (Picotti et al., 2015) or single strong reflections associated with

transitions in fabric classes, e.g. from cone to girdle (Diez et al., 2015). The coherence of thin layers with distinct fabric will

largely depend on the unresolved question of how they evolve exactly. If the short-scale fabric stratigraphy is largely governed20

by local conditions and heterogeneous small-scale deformation, possibly resulting in “layer roughness” (Drews et al., 2009),

no coherent structure is to be expected (Diez et al., 2015). In this case, it should be challenged, how representative the elastic

properties derived from thin sections are, and the question arises, how incoherent short-scale fabric changes alter the rheological

properties of the bulk. It can be hypothesised that under the increasing influence of large-scale shear deformation in the deeper

regions of the glacier coherent fabric layers might develop. Accordingly, more seismic reflectivity should be expected in depth25

and from more dynamic settings, as proposed by Horgan et al. (2011). Eisen et al. (2007) show that transitions in COF in the

deep ice can be followed with radio-echo sounding over longer horizontal distances of several kilometres. However, variations

in seismic velocity on short vertical scales cannot be resolved with conventional surface-based seismic techniques with large

wavelengths of the order of 10 m, depending on the source of the seismic waves and the sounding depth. Still, Hofstede et al.

(2013) obtain numerous laterally continous reflections at Halvfarryggen, Antarctica. They suggest that closely spaced layers30

(“stacks”) of varying fabric, possibly as have been observed in this study, are the major cause for the reflections.

Far more fabric data than is currently sampled in ice core studies, is required to pursue this hypothesis in the future. To

this end, ultrasonic methods can be applied in ice core boreholes (Bentley, 1972; Gusmeroli et al., 2012) to infer crystal-

orientation fabric in situ. Although the interpretation of these data is not straightforward (Maurel et al., 2015), it is currently
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the only technique that is capable of a continuous fabric measurement. However, a sonic pulse samples the volume around

the borehole (∼ 2 m3, Gusmeroli et al., 2012), which means the method is not azimuth-sensitive. While it cannot provide

the two-dimensional microstructure nor exact and highly resolved fabric information, it can help to bridge the gap between

laboratory-based interval fabric measurements and large-scale seismic data.

Following the findings of our study we recommend for seismic data acquisition in the field to (1) consider polarimetric survey5

setups (with two or even more crosslines) with both reflection and wideangle measurements, and to (2) focus on accurate

travel time recordings at high source frequencies. This should be supported by 3-component vertical seismic profiling where

boreholes are available. Also, S-waves should be acquired as they provide useful information on crystal anisotropy due to

shear-wave splitting. On the crystal scale, we suggest to include the investigation of the possible influence of variations in grain

size for the elastic wave propagation in polycrystalline ice, which is currently not considered for theoretical calculations, to10

complement recent work on the temperature dependency of elastic properties (Vaughan et al., 2016). Ongoing microstructure

studies on both alpine and polar ice provide indications of considerable vertical short-scale variability in grain topology. Recent

laser ultrasound measurements on ice have provided first high-resolution data (Mikesell et al., 2017) and promise further

advances towards understanding and efficiently measuring the elastic properties of polycrystalline ice on the crystal scale.

5 Conclusions and Outlook15

The presented cx framework contributes to the understanding of the propagation of seismic velocities in glacial ice by deriving

bulk elastic properties on the crystal scale. Based on anisotropic fabric from two ice cores, we showed that the fabric clas-

sification scheme in the ev framework can mask the true velocity variability by producing artificially enhanced peaks in the

velocity profile. By applying the cx framework we extract the velocity variability that is caused by the actual fabric variability.

The velocity difference between the cx and ev frameworks is larger for the alpine than for the polar core. This suggests that20

the ev framework provides a good enough approximation for the polar site, situated on an ice divide, for the current degree of

seismic resolution and interpretation of physical properties, not considering the artificial discontinuities, but is not adequate for

the alpine site.

We found that the azimuthal change in P-wave velocity and shear-wave splitting can be as large as ∼ 200 m s−1. We conclude

that the possibility of an azimuthal asymmetry of the fabric distribution should be considered when planning seismic surveys25

(e.g. polarimetric profiles around a drilling site) as well as for the calculation of seismic velocities from fabric data. This also

offers an opportunity to further constrain azimuthal ice-core orientation.

The results of our study demonstrate for the first time that a short-scale variability in anisotropic fabric as observed in these

polar and alpine ice cores causes a corresponding high short-scale variability in seismic interval velocities. Current laboratory

fabric measurements from an ice core drilled on an ice stream also show early indications of a high fabric variability and30

unexpected fabric types (pers. comm. J. Eichler, 2017), offering an ideal target for extending this study to an environment with

another deformation regime. Based on the presented evidence in this study the next steps should include the investigation of

how a succession of short-scale fabric layers could induce englacial reflections as has been reported and hypothesised in earlier
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studies (Horgan et al., 2011; Hofstede et al., 2013).

As conventional surface-based seismic surveys are not likely to resolve this short-scale variability, ultrasonic techniques for

borehole and laboratory studies could be the solution to both issues of lost core orientation and low resolution. For this emerg-

ing field of applications, we offer further insight into what to expect from crystal-orientation fabric anisotropy in ice. Equally,

our results can provide context for data collected with frozen-in seismometers in boreholes, where evidence for shear-wave5

splitting on non-vertical ray paths was found (pers. comm. David Prior, 2018). Lastly, we want to highlight that while the

depth scale of the KCC ice core differs from that of the EDML ice core by a factor of 1/35, the presented case study is another

example (Eisen et al., 2003; Diez et al., 2014) of the importance of mid-latitude high-altitude glaciers as in-situ laboratories to

study fundamental processes in glaciers.

Data availability. The fabric and eigenvalue data sets for the ice cores KCC (Kerch et al., 2016a, b) and EDML (Weikusat et al., 2013a, b, c, d; Weikusat et al., 2018) are10

published in the open-access database PANGAEA®and available upon request.

Appendix A: Tensor transformation

A fourth-order tensor rotation is expressed as:

crotmnop = RmiRnjRokRplcijkl

or Crot = R ·R ·C ·R> ·R>15

The general rotation matrix in three dimensions is given by the cosines between the axes of local {p,q,r} and global {x,y,z}
coordinate frame:

R =


cos(x,p) cos(x,q) cos(x,r)

cos(y,p) cos(y,q) cos(y,r)

cos(z,p) cos(z,q) cos(z,r)

=


l1 l2 l3

m1 m2 m3

n1 n2 n3

 (A1)

For a coordinate transformation of the monocrystal elasticity tensor Cm from crystal to global frame two basic rotations are

needed, one around the y-axis given by the colatitude angle ϕ and another around the z-axis with azimuth ϑ:20

Ry =

 cos(ϕ) 0 sin(ϕ)

0 1 0

−sin(ϕ) 0 cos(ϕ)

 , Rz =

cos(ϑ) −sin(ϑ) 0

sin(ϑ) cos(ϑ) 0

0 0 1

 (A2)

It is possible to express both rotations in a single rotation matrix (as done by Maurel et al., 2015, section 3).

By using Voigt notation, which mathematically implies a change of base, the rotation matrix RC for the elasticity tensor

is constructed following Sunder and Wu (1990, see appendix) using the parameterisation in Eq. (A1) and Eq. (A2) for the
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respective rotation:

RC =

l21 m2
1 n2

1 m1n1 n1l1 l1m1

l22 m2
2 n2

2 m2n2 n2l2 l2m2

l23 m2
3 n2

3 m3n3 n3l3 l3m3

2l2l3 2m2m3 2n2n3 m2n3 +m3n2 n2l3 +n3l2 l2m3 + l3m2

2l3l1 2m3m1 2n3n1 m3n1 +m1n3 n3l1 +n1l3 l3m1 + l1m3

2l1l2 2m1m2 2n1n2 m1n2 +m2n1 n1l2 +n2l1 l1m2 + l2m1


(A3)

The rotation matrix RS for the compliance tensor is given by:

RS =

l21 m2
1 n2

1 2m1n1 2n1l1 2l1m1

l22 m2
2 n2

2 2m2n2 2n2l2 2l2m2

l23 m2
3 n2

3 2m3n3 2n3l3 2l3m3

l2l3 m2m3 n2n3 m2n3 +m3n2 n2l3 +n3l2 l2m3 + l3m2

l3l1 m3m1 n3n1 m3n1 +m1n3 n3l1 +n1l3 l3m1 + l1m3

l1l2 m1m2 n1n2 m1n2 +m2n1 n1l2 +n2l1 l1m2 + l2m1


(A4)

The expressions for RC and RS as given in Diez and Eisen (2015, Eq. (A.6) and (A.7)) are reversed by mistake.5

Appendix B: Analytical solution to finding eigenvalues to the elasticity tensor

From the characteristic polynomial of Eq. (3) a cubic equation can be derived with the substitution ρv2ph→ y− a/3:

det[Gmo− ρv2phδmo] = y3 + dy+ q = 0

where the coefficients d and q follow from combinations a, b, c given by the components of the Christoffel matrix Gmo:

a = −(G11 +G22 +G33)10

b = G11G22 +G11G33 +G22G33−G2
12−G2

13−G2
23

c = G11G
2
23 +G22G

2
13 +G33G

2
12−G11G22G33

−2G12G13G23

d = b− a2/3

q = 2a3/27− ab/3 + c15

For k = 0,1,2 the velocities vcxp , vcxsh , vcxsv are found from

vph(k) =

{[(
2
√

3

√
−dcos

[
1

3

(
arccos

(
−

q

2
√

(−d/3)3

)

+ 2πk

)])
−
a

3

]
ρ−1

}1/2

(B1)

and are real under the conditions:

q2

4
+
d3

27
≤ 0 and 0≤ arccos

(
−

q

2
√

(−d/3)3

)
≤ π (B2)

The algorithm is implemented in MATLAB® for this study.20
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Table 2. Summary of the results from the seismic velocity comparison between frameworks. Values are calculated depth-profile average

(with standard deviation) and/or extreme (±) interval velocity differences (other than RMS) for incidence angles of 0−70°. Negative values

indicate smaller velocities from the cx framework relative to the ev framework. The reported extreme values can be influenced by outliers

from the general trend.

Description Notation EDML KCC

V-R bounds for cx framework ∆vcxp0 = vcxp0− v
cx,R
p0 22.3± 4.5 m s−1 20.9± 6.0 m s−1

Difference between framework

velocities at vertical incidence

∆vp0 = vcxp0− vevp0 2± 23 m s−1, −74/+ 90 m s−1 −47± 25 m s−1,

min. −135 m s−1

∆vsh0 = vcxsh0− v
ev
sh0 −2± 22 m s−1, −49/+ 55 m s−1 9± 15 m s−1

∆vsv0 = vcxsv0− vevsv0 −9± 43 m s−1,

−115/+ 110 m s−1

65± 42 m s−1, max. 212 m s−1

Difference between zero-offset

RMS velocities at bedrock

vcxp0,rms− vevp0,rms 0 (cancels out due

to systematic bias)

−18 m s−1 at 750 m depth

−39 m s−1

vcxsv0,rms− vcxsh0,rms 59 m s−1 45 m s−1

vevsv0,rms− vevsh0,rms 67 m s−1 no shear-wave splitting

Difference between framework

velocities at non-vertical incidence

vcx,ϑs
p (ψ)− vevp (ψ) −84/+ 131 m s−1 ± 185 m s−1

vcx,ϑs
sh (ψ)− vevsh (ψ) −184/+ 86 m s−1 −91/+ 65 m s−1

(*) vcx,ϑs
sv (ψ)− vevsv (ψ) −142/+ 168 m s−1 −273/+ 279 m s−1

Change of cx velocity

with azimuth ϑs

vcx,ϑs
p (ψ)− vcx,ϑs=0

p (ψ) −97/+ 150 m s−1 −194/+ 109 m s−1

vcx,ϑs
sh (ψ)− vcx,ϑs=0

sh (ψ) −73/+ 50 m s−1 ±65m s−1

vcx,ϑs
sv (ψ)− vcx,ϑs=0

sv (ψ) −210/+ 191 m s−1 −231/+ 273m s−1

Shear-wave splitting vcx,ϑs
sv (ψ)− vcx,ϑs

sh (ψ) max. 281 m s−1 max. 281 m s−1

Change of shear-wave splitting

with azimuth ϑs

∆ϑ

(
vcxsv − vcxsh

)
−177/+ 216 m s−1 −269/+239 m s−1

Variability (std. dev.) of

ev framework velocity

s(vevp0) 10–49 m s−1

(depending on depth interval)

17 m s−1

(detrended)

Variability (std. dev.) of

cx framework velocity

s(vcxp0) 20–37 m s−1

(depending on depth interval)

17 m s−1

(detrended)

Vertical change (between 10 cm

samples) in cx velocity

δvcxp0 ∼ ±50 m s−1

(high resolution intervals)

−46/+ 64 m s−1

δvcxsh0 ±54 m s−1

δvcxsv0 −57/+ 42 m s−1

(*) Example of how to read the table: "For a specific seismic plane azimuth ϑs, an incidence angle ψ and a specific interval at the KCC site the SV-wave velocity as calculated with

the cx framework is found to be 279ms−1 higher than is calculated with the ev framework which is the maximum difference for any combination of ϑs,ψ and depth."30


