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Response to Comments by Anonymous Reviewers #1 and #2 

We sincerely thank the two anonymous reviewers for their constructive comments, and henceforth their substantial 

contribution to the improvement of the manuscript. 

In this Response, Reviewers’comments are in blue, response to them is in black, modifications to the manuscript are 

highlighted in yellow. A corrected version of the manuscript, including Figures, is provided after the Response (from p. 18 5 

on).  

 

Response to Reviewer #1 

General comments 

1. The study explores the spatial variability of snow properties at the polygonal tundra site at 10 

Samoylov site, Russia. Researchers use 1D snow and heat flow models to study spatial impact of snow on polygonal 

tundra, which somewhat limits the full understanding of the corresponding changes. 

We thank the reviewer for pointing our this important limitation, which we only partially mentionned and adressed in Sect. 

7.4.  

To day, only few 3-D thermo-hydrological models have been deployed over polygonal tundra landscapes. We are especially 15 

aware of recent work by Kumar et al. (2016), with the PFLOTRAN model deployed over 4 different polygonal tundra sites. 

At these sites, a considerable amount of field data were collected, which is currently unequalled eslewhere in the Arctic : 

meteorological data (including air temperature, summer precipitation, snow depth, relative humidity, wind speed and 

radiation), soil temperature data (at 16 different depths for 9 points across 4 transects, one at each site), and detailed 

subsurface characterization through 30 cm deep soil cores at each site and micro-topographic condition. Despite this 20 

tremendous amount of data, the authors «believe that insufficient characterization and parameterization of heterogeneous 

properties [of the soil] due to limited data availability is one of the key reasons for [the warm model] bias. » and further 

invoke «poorly bounded [thermal] boundary conditions at the bottom of the modeling domain ».  

This means that the state-of-the art observations and models still fail to fully address the problem of spatial variability in soil 

temperatures 3-dimensionally. 25 

Knowing these limitations, we addressed the question of the thermal impact of spatial variability in snow conditions from a 

1-D perspective, which has 2 main limitations : (i) we omit the lateral heat conduction flux and (ii) we disregard the spatial 

variability in soil thermal properties and water content. 

Despite these limitations, we believe our study has value, as it provides a needed complement to present-time studies like the 

one by Kumar et al. (2016), who focused only on soil processes. For a comprehensive (future) 3D model it is necessary that 30 

all factors contributing to spatial variability in soil temperatures, most notably snow, are well characterized and we regard 

our study as an important step in this direction. 

Following the Reviewer’s suggestion, we made the limitations of using a 1-dimensional model in Sect. 7.4 more explicit:  
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« Our approach disregards the spatial variability in soil properties and soil saturation, which is also related to micro-

topography, as well as the lateral heat fluxes between different landscape units. Distributed, 3-dimensional simulations that 

include the effect of snow redistribution by wind and spatial variations in soil conditions could, in theory, support a more 

consistent assessment of spatial variability in soil temperatures. However, they require a considerable amount of in situ data 

that is currently unavailable even at the most instrumented sites (Kumar et al., 2016). » 5 

 

2. The current version of the paper lacks of discussion of the previous work that includes the effect of wind and 

vegetation (see SnowModel by Liston and Elder [2006]). It is important to include the description on how the 

SnowModel is different/similar from the current model development. 

We thank the reviewer for pointing out the missing reference to the work of Liston and Elder (2006). Our approach in the 10 

treatment of wind effect on vegetion follows the work of Liston and Elder (2006) by considering no accumulation of high-

density, wind-blown snow as long as snow depth has not exceeded the snow-holding capacity of the basal vegetation. This 

generates a lower density of the snowpack in a « vegetation layer », which actually corresponds to the snow-holding capacity 

defined by Liston and Elder (2006). 

We clarified the relationship of our work to the work by Liston and Elder (2006) by stressing both the heritage and 15 

differences to this work in the manuscript : 

L2 p11 : « The underlying hypotheses are that i) while snow hasn't filled the snow-holding capacity of the basal vegetation, 

snow is not available for transport (Liston and Elder, 2006) and therefore snow accumulation in the grass-layer consists in 

precipitation particles of lower density than typical wind-blown rounded grains; and ii) that grasses form a rigid structure 

that protects snow from wind compaction. » 20 

L7 p 11 : « Note that our approach however differs from the SnowModel  by Liston and Elder (2006)  in the sense that we 

focus on snow microstructure and properties (density, Kth) as influenced by the wind conditions, while the SnowModel and 

its blowing snow sublimation and redistribution scheme SnowTran3D target the spatial distribution and time evolution 

snow-water-equivalent, and the way they are affected by vegetation. » 

 25 

3. I was not sure what is the purpose of doing WIND, WIND+VEG, WIND+VEG+ANISO, since all three looks 

similar to me (Figure 3). Wind is the dominant factor in tundra, why should we care about other cases? For example, 

if you calculate the total difference between calculated and observed ground temperatures, I bet you would not see 

much improvement between those three cases. The changes in the snow over first part of the winter (dark winter) can 

be done by increasing snow density (i.e. chose the right empirical formula and adjust snow densities).  30 

We assume that the Reviewer is referring to Figure 7 in this comments, as Figure 1 to 6 of the original manuscript do not 

deal with WIND, WIND+VEG and WIND+VEG+ANISO simulations. In Figure 9 and 10, we indeed inter-compared the 

simulated soil temperatures in the WIND, WIND+VEG and WIND+VEG+ANISO setups, and compared them to 

observations. Figure 10 (which shows an improved setup with respect to Figure 9, see original manuscript) shows equal 

performances over winter phases 1 to 3 for WIND and WIND+VEG, while WIND+VEG+ANISO performs better.  35 
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However, soil temperature is not the only benchmark variable that we considered, as a proper modelling of the snow 

stratigraphy is essential for other important applications of SNOWPACK-like models. To improve the consistency of the 

paper and justify our effort to simulate a reasonable snowpack structure, we added the following lines to the Introduction :   

« A reliable simulation of snow structure in SNOWPACK-like models is essential not only for the simulation of the ground 

thermal regime but also for a variety of applications ranging from the exploitation of remote-sensing data (e.g. Montpetit et 5 

al., 2013), to the assessment of snowpack structure impact on wildlife (e.g. Ouellet et al., 2017). » 

Following this philosophy, Figures 7 and 8 clearly reveal that the WIND option alone is not enough to capture snow vertical 

structure in terms of stratigraphy, density and Keff-z profile : whichever empirical « wind-density » formulation you adjust, if 

it takes only wind into account, it will fail to reproduce the vertical structure of these variables. Oppositely, the WIND+VEG 

setups perform better in this respect, while not degrading the bulk values of these variables.  10 

In conclusion, wind is surely the dominant factor shaping the snowpack in tundra environments, but basal vegetation (here 

the high sedges) introduces a second-order modulation by i) affecting the surface roughness at the soil-atmosphere interface 

(snow-retention effect of grasses) and ii) affecting the snow compaction and snow metamorphic processes. It is important 

that snow models deployed in the Arctic for a variety of applications are able to account for these processes. 

 15 

4. To me the most interesting part would be matching temperatures toward the end of snow season (snowmelt). 

How should it be done, what kind of parametrization can improve the Figure 10, May jump in the temperatures. 

We completely agree with the high interest of studying melt-time soil temperature and associated processes. However, these 

were clearly not the target of our study, which focuses on dry snow properties and their thermal impact, as outlined by the 

INTERACT SSTIS project that provided our funding. Therefore, our modelling strategy did not target the melt period, and 20 

our model design is not appropriate to study the associated processes. 

 

5. Overall, there is a lack of the discussion on what scientific knowledge does it add to the current state of 

knowledge on snow.  

We believe that our contributions to the state of the knowledge on Arctic snow are thouroughly summarized in the 25 

Conclusion of our manuscript as follows : 

- 1. An analysis of the drivers of the spatial variability in snow insulating power across a polygonal tundra 

landscape, and an assessment of the thermal impact of this variability 

- 2. First CT estimates of DH and wind-slab conductivities in an Arctic tundra snowpack (validated against the 

ground thermal regime through numerical simulations) 30 

- 3. An inter-comparison between 3 recent parameterizations for Keff-z with different philosophies (see later in the 

Response to specific comments) 

- 4. The sucessful use of a density and anisotropy-based parameterization of Keff-z in a  detailed snow model (as 

envisionned by Löwe et al., 2013) 

- 5. The highlight of the early and polar night winter periods as the most sensitive to the thermal properties of 35 

snow, helping prioritize the future snow investigations through field work or modelling 

These points are respectively discussed in Sections 3.2, 7.1, 3.3, 5.1 and 7.1, 7.3. 
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If we missed to raise other relevant points, we would appreciate if the reviewer could more specifically pinpoint what is 

missing.  

 

6. The flow in the manuscript require further improvement / Current version of manuscript requires flow 5 

improvement and more clarity. 

We worked on several aspects to improve the flow and clarity of the manuscript : 

- First, the objectives and decsription of the paper’s approach was refined at the end of the Introduction, 

following joint advice from Reviewer #2 : 

« Our objectives in this study were (1) to investigate the thermal properties of snow in an Arctic snowpack and their link to 10 

microstructure and microtopography, (2) propose adaptations to a detailed snow model to these local snow conditions, to be 

validated against snow and soil temperature observations and (3) quantify the thermal impact of spatial variability in snow 

depth and snow structure across a typical polygonal tundra microtopography. To this end we relied on snow samples 

analysed by CT, on a variety of in situ snow observations collected during a dedicated field program at Samoylov in April 

2013, and on more long-term observations on meteorology and soil variables. The model adaptations we propose were made 15 

to the detailed snow model SNOWPACK, which we used in combination with the CryoGrid3 (CG3, Westermann et al., 2016) 

permafrost-soil model for the simulation of the ground thermal regime, as this model was extensively validated at 

Samoylov. » 

- Second, section 3 and section 6 were completely revised, including condensation of the text, paragraph merging 

and structural changes. Typically, the focus of Section 3 was tightened around the thermal properties of the 20 

snowpack. This is reflected by changes in the titles and subtitles, in the organisation of the paragraphs and in 

the shortening of the section. Section 6 was mostly re-written and simplified. We do not exhibit here all the 

changes made, and refer to the manuscript with corrections highlighted for an overview of the modifications. 

- Finally, effort was made to better synthesize relevant informations in the Figures, leading to one Figure less in 

the revised manuscript. 25 

 

7. Snow modeling literature review has to be complemented with the work by Liston and Elder (2006). 

Done – see response to 2. 

 

8. How these results can be extrapolated locally/globally?  30 

More field data originating from other tundra environment would definetly be ideal to further validate and generalize parts of 

our findings. This is typically the case for the characterization  of the spatial variability of the snow thermal properties, and 

for the evaluation of the modified SNOWPACK simulations on soil temperature observations. These data would idealy 

feature co-located soil and surface temperature observations, and snow-depth sensors, at places with intensive 

characterization of the soil (many replication of measurements within each micro-topographical class) to exclude or limit 35 

error compensations originating from soil thermal modelling.  
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However, some of our findings have a more general value, as the highlight of the early and polar night winter periods as the 

most sensitive to the thermal properties of snow, or the inter-comparison of the 3 parameterization for Keff-z. 

We complemented our manuscript so as to specify the local vs general flavour of our conclusions: 

- Sect 7.1 : « On the one hand, our adaptations to SNOWPACK are inherently local, tied to the specific 

Samoylov conditions, and should be verified at other tundra sites comprising co-located snow and soil 5 

observations together with a complete set of meteorological driving data. » 

- We recall a sentence from the Conclusion : « We also estimated the impact of the natural snowpack spatial 

variability on the underlying permafrost thermal regime during an entire winter, based on our Keff-z and density 

observations and on our understanding of the snowpack dynamics. Beyond this quantitative estimate, which is 

intrinsically tied to the local climatology and micro-topography of our site, an important conclusion is that the 10 

sensitivity of the ground thermal regime to the overlying snow reaches a maximum during the cooling winter 

period, when temperature gradients between atmosphere and soil are at their steepest. » 

  

9. What improvements the CLM modeling community have to do in order to improve snow representation in 

the current CLM type models? Please check and add that to the literature review.  15 

We answer here regarding the possibilities of improvement of the snow schemes of GCMs and ESM in tundra environement 

only (excluding schrub tundra and taiga). From our study, we judge that significant improvements would proceed from (i) 

taking wind compaction into account, (ii) representing a basal DH layer (of lower density / conductivity), and (iii) carefully 

considering the extinction of solar radiation within very dense snowpacks. To our knowledge, this is not yet the case in most 

snow schemes (e.g. Wang et al., 2013). Furthermore, these snow schemes should be validated at places with co-located 20 

observations of snow (depth, SWE), meteorological variables and soil temperatures,  that help verify that the mass balance, 

density and thermal role of the snowpack are captured properly. This latter point is raised in Sect 7.4 of the original 

manuscript. To enrich our manuscript with the former elements, we complemented the Conclusion section: 

« Finally, our study pinpointed processes that exert an important control on the ground thermal regime of tundra regions 

while being neglected in the snow schemes of general circulation models or earth system models (e.g. Wang et al., 2013): the 25 

effect of wind compaction and DH growth on the insulating power of tundra snow, as well as the enhanced extinction of 

solar radiations in by dense wind-crusts within the snowpack. This suggests possible ways to improve snow modelling over 

Arctic regions in these models, of benefit for the representation of permafrost -processes. » 

Abstract 

P1. L20. Introduce the definition of the snow anisotropy. 30 

We here refer to the structural anisotropy of the three-dimensional microstructure, or loosely,  the anisotropy   of « Snow 

grains  and arrangements thereof », meaning that they do not have the same properties in all directions. We added 

« microstructural » to the abstract to point this out.  The definition of anisotropy with regard to Keff-z is given in the 

Introduction at the first occurrence of this term. 

 35 

P1. L23. Similarly, ‘depth hoar’ has to be defined. 
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Depth hoar is one of the 9 main grain shaped identified by the International Classification for seasonal Snow on the Ground 

(Fierz et al., 2009) and very common to snow observers. We do not feel it is necessary to explicitly repeat the definition 

from the classification. 

 

P1. L24-25. “The potential of an ...”, this sentence is not clear to me. 5 

We changed this sentence in the abstract, which should now be clearer : 

« Also, a density and anisotropy-based parameterization for Keff-z lead to further slight improvements» 

 

P1. L25. “Dark part of winter” has to be defined. 

We changed this sentence in the abstract : 10 

« Soil temperatures were found to be particularly sensitive to snow conditions during the early winter and polar night, 

highlighting the need for improved snow characterization and modelling over this period. » 

P1. L25-26. Is that local to the Samoylov only? 

It is likely the case in most of the Arctic land surface area experiencing low Snow accumulation (<50 cm), as this sensitivity 

is driven by the high value of the temperature gradient between the (warm) soil and (cold) air, which is at its highest during 15 

this period and particularly strong where the snowpack is shallow. The general value of this statement is stressed in the 

Conclusion (see point 8 above). 

P1. L27. It is common to reference Brown et al., (1997) about 24% of the land in Northern 

Hemisphere occupied by permafrost. Instead I suggest to say significant portion of land in 

Northern Hemisphere since permafrost is dynamic and shrinking spatially. 20 

We thank the reviewer for this correction, and added the referece in the manuscript. However, we decided to propose a rough 

approximation of the exact estimate from the cited publication (23.9 %), for permafrost is not the focus of our paper and this 

approximation is just meant to propose an order of magnitude to the reader. In this respect, the approximation we propose is 

- to our knowledge - still valid : mean global temperature change between 1998 and now is around 0.2 °C, and permafrost 

sensitivity to global warming has been assessed to 4 ± 1 .106 km2 C° -1 (Chadburn et al., 2017), hence a change of less than 25 

1% of permafrost extent is to be expected between 1998 and now.  

 

P2. L7. I would say, that soil temperatures beneath the thick snowpack would usually be warmer 

.... What is the difference between snowpack and seasonal snow? 

Snow is the material / medium, while snowpack refers to the snow covering a land surface. Snow can be grown/analysed in 30 

laboratory, where it does not form a snowpack anymore. 

In the present study, « snowpack » and « Snow » can be interchanged most of the time, because we study in situ snow, 

within a snowpack. Both are seasonal,  because the snow cover at Samoylov does not last all year long. Elsewhere like in 

Antarctica or in glaciers’accumulation zone, snow or snowpack could be perenial. 
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P2.L9. Why to study snow in tundra is important? To me, in tundra vegetation should not play much role, I would 

say that the wind will play the most dominant effect on snow. Why would even consider the effect of vegetation? 

See response to point 3 above. 

 5 

-. L17. ‘HS’ change to hs, otherwise it is associated with word abbreviation. 

HS is the official abbreviation for Height of Snowpack / Snow depth in the International Classification for seasonal Snow on 

the Ground (Fierz et al., 2009). Following your concern, we were careful to use only the official terms when designing this 

variable, changing one occurrence of « snow height » to « snow depth » in the manuscript. 

 10 

This paragraph has a lot of abbreviations (CT, HFP and so on). I suggest to make a table that reader can quickly 

refers to when forgets the abbreviation. The table can include short description of the method and a reference. 

We generally agree about curse and blessing of acronyms. We think though that the amount of acronyms in the present 

manuscript is still average and prefer to keep tables for actual findings from our study. 

 15 

P3. Model literature review paragraph does not include work by Liston and Elder (2006), which includes wind and 

vegetation. What lessons can be learned from that model? 

See response to point 2 above.  

 

P3.L27. 1m high rims. Is that true? 20 

The height of the rims was indeed over-estimated in this statement.  

We corrected the manuscript based on 3D laser-scanning performed in 2017 : 

« […] rims that are 20 to 50 cm high ». 

 

P5.L26 Add the equation used for the heat conductivity. 25 

The calculation of the effective thermal conductivity is based on the solution of the stationary (pore scale) heat equation 

which is solved directly on the binary CT image. This is now explicitly stated in Sect. 2.2.2.  

 

P5.L29. Changes “figures” to “values”. Does that mean that for other temperatures (not -10 oC) the values will 

change? Do you know what is the possible range? 30 

Done. Air conductivity diminishes and ice conductivity increases when temperature decreases. Typical values (in W m-1 K-1 ) 

are given in the following Table from engineering toolbox.com : 
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 0°C -10°C -20°C -30°C 

ki 2.22 2.30 2.39 2.50 

ka 0.024 0.024 0.023 0.022 

ki/ka 92.5 95.8 103.9 113.6 

The effective thermal conductivity of snow inherits the temperature dependence from both, ice and air conductivity in a non-

linear way. This effect of temperature could be estimated from the parametrization given in Löwe et al. (2013) which 

incorporates it via the explicit dependence of the parametrization on the phase conductivities. For an order of magnitude, the 

respective values for 0°C and -30°C given above can be used : we obtain a relative difference of 7 % for an isotropic 5 

microstructure with ice volume fraction of 0.3. The (ki, ka) values used for the analysis in the paper lie in the middle of that 

range, leading to an uncertainty of less than 4 %.  

We amended the manuscript to include this estimation : 

P5 L28 : « These values approximate the conductivity of the air and ice medium at temperatures between -15 °C and -20 °C 

(cf. engineering toolbox.com and data compiled by Waite et al., 2006), causing a maximum error in retrieved Keff of less than 10 

4 % for a snowpack between 0°C and -40°C (estimation based on the parametrization from Löwe et al 2013 using the 

respective values of ka and ki). » 

 

Figure 3A. Differentiating snow layers by colors are confusing, since several colors looks the same to me. Consider no 

colors, just boundaries to separate layers and add notations inside each layer (RG, FC and so on), can also increase 15 

the resolution to fit the notation. 

We changed the plot and preferentially used symbols to represent grain shapes, instead of colours. 

 

Figure 3B. Bulk density and Keff are they step functions or piece-wise linear functions? 

Bulk density is one single value per profile, indicated as text over each profile’s plot in Fig. 3b.  20 

Density and Keff-z profiles show one (averaged) value over each small volume or depth interval where the measurement or 

estimation was actually made. This depth interval depends on the instrument or estimation methods. It is typically around 2.5 

cm for the CT estimates of Keff-z and density shown in Fig. 3b. The snow profiles were not continuously sampled for density 

and Keff-z with the CT method. Instead, a few (4 to 6) depths intervals of about 2.5 cm, were selected, and the CT analysis 

provided density and Keff-z estimates averaged over these depth intervals (plain segments in Fig. 3b). For visualization 25 

purposes, a dashed line connects these plain segments in Fig. 3b, but it does not represent any measurement.  

We clarify this feature in the caption of Fig. 3 :  

« Density and Keff-z values are represented by piecewise constant functions over the layers where the CT analysis was 

performed; these segments are connected by a dashed line as a guide to the eye. 
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P9.L8. define the Rth 

Done. 

 

Figure 6. How anisotropy (Q) was calculated? Provide an equation. 5 

Providing the equation for Q would require a considerable overhead in additional, technical details from an entire section in 

Löwe et al. (2013), where this parameter was introduced. Reproducing these explanations in our paper, would considerably 

reduce its focus and introduce unecessary complexity. We agree though that a non-technical  description of Q is required in 

the manuscript, so we clarified the link between Q and micro-structure, and directly refered to the equation in Löwe et al. 

(2013). 10 

« It relies on an anisotropy parameter, Q, calculated directly from CT images based on the two-point correlation function 

(Löwe et al., 2013, their Eq. 4) » 

 

Section 3.3. List equations for C2011, R2013, L2013. Why only these three formulas? How do they compare with 

Sturm et al., (1997) or Goodrich (1982) or others equations for conductivities? It is not clear how those empirical 15 

relationships account for Q? 

Various comparisons of different parametrizations already exist in literature. The reason to include just these three is the 

following :  

Sturm et al. (1997) and C2011 rely on the exact same methodology, i.e. squared regression to density. As C2011 re-assessed 

the formulation from Sturm et al. (1997) based on recent data using the NP technique, it felt consistent to use C2011 as a 20 

benchmark for CT-assessed Keff-z. Then, R2013 and L2013 both differ from the philosophy of Sturm et al. (1997) and C2011, 

by regressing against anisotropic grain types with vertical preferential direction (R2013) and by relying on theoretical 

bounds for Keff-z (L2013).  From a comparison of these three it is possible to reveal the uncertainties in effective thermal 

conductivity for a snowpack (that is dominated by anisotropic depth hoar) when using a generic density-parametrization 

(C2011), or a density-parametrization that was mostly derived from anisotropic snow (R2013), or L2013 that explicitly 25 

accounts for both, density and anisotropy effects for a depth hoar dominated tundra snowpack. 

 

P12. L12-15. How Keff is calculated for each 4 cases (DEFAULT, WIND, ...)? 

We better explained this in the manuscript : 

Sect. 4 : « All setups except the one including the ANISO adaptation rely on the original Keff-z parameterization from 30 

SNOWPACK described in Sect. 2.5. » 

 

Figure 7. I assume these profiles are simulated by model. Are the grain type inputs or calculated by model? How 

these grain types evolve in the model? 
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The grain type are simulated by the SNOWPACK model. We add this element to the description of SNOWPACK in section 

2.5, where references to the snow grain evolution laws are given. 

Sect. 2.5 : « Snow is represented by a number of state variables (temperature, density, and water content) and the snow 

micro-structure by grain characteristics (grain size, size of bonds, sphericity, and dendricity) which allow a diagnostic of the 

grain type (Lehning et al., 2002b). » 5 

 

Figure8. Make c and d plots. Separate rim from grass. Is that possible to plot snow observed texture next to the 

profiles? 

This concerns Fig. 7 now. We added the observed snow shape and suppressed the ice-center profile which notably differed 

in terms of involved processes. 10 

 

P13. L23-26. Phases1-4 show them on the Figure 9. 

Done, also on the Fig. 10 and 11 of the original manuscript. 

 

Section 6. Think about how you can revise that section. There is too much information in it, 15 

which is hard to follow. 

See response to point 6.  

 

Figure 11. The colors on the plot is hard to see (especially magenta). 

Magenta color was changed to lightblue, improving the plot’s readability. 20 

 

P18. L30. P19.L24. It will be interesting to discuss how new version CROCUS might change the result of current 

modeling. It looks to me that the conductive heat transport within the snowpack during snowmelt is complemented 

by an adjective heat transport that the melted snow water carries with it in the snowpack. Typically, the temperature 

gradient changes in sign or fluctuates near 0 C (making thermal conductivity useless during snowmelt). It will be nice 25 

to discuss what could be an easy (straight forward) way to parametrize the adjective heat transfer introduced by 

flowing water in the snowpack. 

We interpret that the Reviewer means « advected heat transport ».  

The very interesting question raised by the Reviewer’s comment is however out of the scope of our manuscript, as explained 

in  point 4. 30 
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Reviewer 2 

Specific comments: 

 

 Last paragraph of introduction: the paragraph simply describes the various section of the paper. Typically, such 

paragraph can be found in theses, but I think it is not relevant here. I would remove this paragraph, which would 5 

reduce the introduction (already quite long). 

Done. 

 

 Figure-1 should include coordinates. 

Done. 10 

 

 The use of NIR to calculate the ratio of DH with respect to snow depth should be more detailed. Photos are simply 

showed with explanation on the method used to distinguish DH. Was the calculation made automatically, or was a 

threshold applied on reflectance? 

Following the reviewer’s advice we now provide more details as to the treatment of the NIR images in the Methods section : 15 

Sect 2.2.1: Near-infrared (NIR) images of the trench were realized to characterize the thickness of the basal depth hoar 

(DH) layer along this transect at 50 cm spatial steps. The NIR-images were treated in ImageJ (Schneider et al., 2012) by the 

following procedure: the green channel was extracted from the RGB-image. The brightness and contrast was visually 

optimised based on the histogram. The average brightness of the full profile was 125, the depth hoar region 106, the surface 

layer 125 (brightness range 0-255). The boundary between these two main layers was measured based on a ruler put in the 20 

center of the image. The resolution of the NIR images was better than 0.1 mm, so depth hoar crystals and especially depth 

hoar chains were in addition easy to discriminate from the upper layer with smaller, mostly rounded grains. 

 

Section 2.2.1: More details is needed regarding the spatial representativity of the SR50 measurements. Authors 

mention that small differences can be due to local scale variability, but a quantification should be done. Typically, the 25 

spatial variability is caught within 30-35m (1m spacing) in open tundra environments. 

What was the variability around the site? How does the average depths around the site compare to the SR50 

measurements? This should be clarified, especially since SNOWPACK is forced on observed depths by the SR50 

(section 2.4). 

The SR50 is placed 1.23 m above snow-free ground with a beam angle of approximately 22°. The SR50 measure is therefore 30 

representative of a circle of radius (surface) ranging from 0.23 m (0.17m2) in snow-free conditions, to 0.19 m (0.12 m2) with 

20 cm of snow. 

Spatial variability of the snowpack was indeed not investigated in our manuscript at such small, decimeter scale. However, 

we can rely on two sources to assess that this small-scale spatial variability in snow depth can be large. First, snow depth and 
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DH height were recorded at 0.2 m steps along a grass-polygon transect nearby the Samoylov station (Fig. R1). Although the 

delimitation of slope, rim and center is approximate and observer-dependant, these data illustrate that snow depth variations 

can reach 10 cm over 20 cm distance at Samoylov, which  is half the footprint of the SR50.  

 

Figure R1: Snow (lightblue) and DH height (dark blue) along a 13.6 m transect in a grass-polygon in the vicinity of the Samoylov 5 
main station, on 19-04-2013. An estimation of the local micro-topography is also given. 

Second, spatial variability of snow depth at the decimeter scale in link to (vegetation-induced) micro-relief was investigated 

by earlier publications, and we especially recall transect data from Sturm and Holgren (1994) showing spatial variations even 

higher than recorded at Samoylov over the sedge tussocks tundra landscape at Imnavait Creek, Alaska (Fig. R2, extracted 

from Sturm and Holgren (1994)). 10 

 

center slope rim slope center 
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Figure R2. Extract from Sturm and Holgren, 1994. 

For our SNOWPACK simulations we made use of SR50 data, rescaled so that their value in late April 2013 (13 cm) matched 

the mean of observed Snow depth at 20 polygon centers sites at this date (20 cm). This difference of 7 cm between SR50 

Snow depth and the mean of observed snow depths at the manual snowpits from center locations, can well be explained by 5 

the small, decimeter scale variability in snow depth, as illustrated above. 

We thank the reviewer for pointing out this missing quantification, and amended the manuscript subsequently : 

 

P5 L12 : Snow depth was recorded continuously over the 2012-2013 snow season by an SR50 sensor (Campbell Scientific, 

± 1 cm accuracy, ± 1 cm precision) located in the topographically low center of the reference polygon (Fig. 1). This 10 

instrument acquires data over a circular surface of ~ 20 cm radius. However, this snow depth record differed from data 

acquired at grass-center snowpits: on 21 April 2013 the SR50 measured 13 cm of snow while both the transect, CT and 

snowpit data indicated depths in excess of 17 cm for grass-center conditions (Fig. 3). This difference is likely due to small 

scale variability in snow depth induced by micro-relief (notably vegetation tussocks) and in processes such as wind erosion 

immediately below the SR50 sensor: ancillary snow depth data acquired over a 14 m grass polygon transect at 20 cm spatial 15 

resolution show a 7 cm variance in snow depth, and variations up to 9 cm over 40 cm horizontal distance in center 

conditions. To build a representative snow depth record for grass-center conditions, we matched the SR50 snow data to the 

median of manually recorded snow depths at grass-center snowpits (20 cm) on 21 April 2013, by multiplying the SR50 

record by a constant factor of 1.6. The 7 cm offset in late April is consistent given the observed small-scale variability in 

snow depth. Finally, a time-lapse camera provided daily, low-resolution images of the reference polygon. 20 

 

Section 2.4: the authors are well aware of the sensitivity of SNOWPACK to uncertainties in meteorological forcing 

data. Many products exist, the authors should justify why using ERA-interim rather that other meteorological 
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products... Also, it is mentioned that a comparison with in-situ meteorological stations showed that ERA is 

‘suitable’...this should be clarified. 

Section 7.4.: there needs to be a discussion on meteorological forcing uncertainties... The resolution of ERA is quite 

large compared to a single site. 

The only ERAi data used in our study were wind-speed, radiation, plus air temperatures over a 6-week period in February-5 

March. Here we rely on the following elements to justify the use of this atmospheric product for our application : 

i) Temperature, radiation and wind fields are rather homogeneous over large spatial scales in this Northern 

Sibirian region in the absence of marked relief perturbing the synoptic western atmospheric flow (Brun et al., 

2013). 

ii) Following, the local values of these atmospheric variables at Samoylov should not depart much from the 10 

reanalyzed field over larger (80 km for ERAi) scales 

iii) An exception of (ii) occurs for air temperature where oceans/seas cover a significant part of the reanalysis grid-

cell. However, the Samoylov Island in the Lena delta is far enough from the Laptev sea coast, for the entire 

ERA-i grid-cell containing Samoylov to be considered as an inland pixel in the reanalysis. 

iv) A comparison between air temperature observed at Samoylov and the reanalysis field for the 2012-2013 snow 15 

season (excepting 1-02-2013 to 15-03-2013 when Samoylov sensor saturated), confirms the extreme good 

quality of the ERA-i product for air temperatures (Fig R3). 

v) ERA-i was shown by previous literature to be an adequate forcing for Snow simulations in North-Eastern 

Europe including Siberia (Brun et al., 2013).  

vi) Finally, precipitation is often the atmospheric variable the most mis-represented in realyses fields (Troy et al., 20 

2011), but first, ERA-i only only minorly suffers from this issue  for winter precipitation (Troy et al., 2011 ; 

Brun et al. 2013) and second, we circumvent this possible issue by forcing the SNOWPACK model with 

observed Snow depths. 
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Figure R3: Comparison between ERA-i 2m air temperature (x axis) and  2m air temperature measured at the Samoylov station (y 

axis) over 2012-2013 (excluding the 1-02-2013 to 15-03-2013 period). Green line is the linear regression between these values.  

Following the Reviewer’s advice we modified the manuscript as follows : 

Sect 2.4: Unfortunately the sensor (HMP45, Campbell Scientific) became saturated at temperatures below -40 °C and so for 5 

the period between 1 February and 15 March 2013, when the air temperatures were below -40 °C, we used air temperature 

records from the ERA-interim reanalysis (ERA-i; Dee et al., 2011) instead: for the rest of the 2012-2013 winter period, ERA-

I temperatures show a high correlation with Samoylov observations (r2=0.97) and a low bias (-0.9°C). The incoming 

shortwave and longwave radiation and the wind-speed were also taken from ERA-i as none of these variables was recorded 

at Samoylov during the 2012-2013 snow season. ERA-I fields were proven to be a high quality source of driving variables to 10 

simulate the evolution of the Nothern Eurasian snowpack including Sibiria (Brun et al., 2013), with minor differences 

between station data and grid-field over large, rather flat areas like the Lena Delta. A comparison of ERA-i with locally 

acquired meteorological data from earlier years at Samoylov furthermore confirmed this validity for the skin surface 

temperature, which responds very sensitively to differences in the driving variables (Langer et al., 2013). 

Sect. 7.4: This uncertainty, together with uncertainty in the meteorological forcing that cannot be completely excluded, also 15 

affects our estimates of the thermal impact of snow spatial variability. Continuous monitoring of ice depletion at the base of 
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the snowpack, and snow monitoring programs focusing on the early and dark winter periods at sites comprising both 

meteorological and radiation observations, would help to provide better constraints for the thermal characteristics of the 

snowpack and the underlying metamorphic processes at this time, yielding substantial benefits for the next generation of 

coupled snow-soil models.  

Page 10, last sentence. Can you please clarify that you adjusted only the 5 

VEG...and not VAP...so that VEG would account for VAP+VEG processes? 

Indeed. We amended the manuscript for more clarity : 

« We therefore chose to address both VAP and VEG together: both effects are comprised in the phenomenological “VEG” 

adaptation, described below. » 

 10 

On the pdf, the figures are general poor quality-resolution such as would be a simple printscreen. Please ensure high 

resolution on final version as some axis are hard to read. 

Figures were carefully checked and modified, taking into account recommandations from Reviewer #1. Fig. 7 from the 

original manuscript, now Fig. 6, was notably improved. 

 15 
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Abstract. The shortage of information on snow properties in high latitudes places a major limitation on permafrost and 

more generally climate modelling. A dedicated field program was therefore carried out to investigate snow properties and 

their spatial variability at a polygonal tundra permafrost site. Notably, snow samples were analysed for surface-normal 15 

thermal conductivity (Keff-z) based on X-ray microtomography. Also, the detailed snow model SNOWPACK was adapted to 

these Arctic conditions to enable relevant simulations of the ground thermal regime. Finally, the sensitivity of soil 

temperatures to snow spatial variability was analysed.  

Within a typical tundra snowpack composed of depth hoar overlain by wind slabs, depth hoar samples were found more 

conductive (Keff-z = 0.22 ± 0.05 W m-1 K-1) than in most previously published studies, which could be explained by their high 20 

density and microstructural anisotropy. Spatial variations in the thermal properties of the snowpack were well explained the 

micro-topography and ground surface conditions of the polygonal tundra, which control depth hoar growth and snow 

accumulation. Our adaptations to SNOWPACK, phenomenologically taking into account the effects of wind compaction, 

basal vegetation and water vapour flux, yielded realistic density and Keff-z profiles that greatly improved simulations of the 

ground thermal regime. Also, a density and anisotropy-based parameterization for Keff-z lead to further slight improvements. 25 

Soil temperatures were found to be particularly sensitive to snow conditions during the early winter and polar night, 

highlighting the need for improved snow characterization and modelling over this period.  

1 Introduction  

Perennially frozen ground (permafrost) is a major feature of high-latitude regions, underlying about 25 % of the northern 

hemisphere (Zhang et al., 1999). This essential climate variable reacts sensitively to ongoing climate change, with important 30 

implications for terrain stability, coastal erosion, surface and subsurface water fluxes, the carbon cycle, and vegetation 

development (e.g. Grosse et al., 2016; Shuur et al., 2015). Understanding and modelling the thermal regime of permafrost is 

mailto:isabelle.gouttevin@gmail.com
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therefore essential for a broad variety of applications ranging from geo-engineering to landscape preservation and climatic 

projections, and also for ecological considerations. 

The influence of snow cover on the ground thermal regime has been highlighted by a number of authors (e.g. Sturm and 

Holmgren, 1994; Zhang et al., 1996; Zhang, 2005; Lawrence and Slater, 2010; Gouttevin et al., 2012; Langer et al., 2013; 

Dominé et al., 2015, 2016a, 2016b). Snow has a low thermal conductivity (Keff), ranging from 0.01 to 0.7 W m-1 K-1 5 

depending on microstructure, density and wetness, and it therefore insulates the underlying ground during the cold season. 

The soil temperatures beneath a thick snowpack will therefore be warmer than under a thin snowpack (or no snowpack at 

all), given similar meteorological conditions.  

Arctic tundra regions are usually characterized by thin but enduring snowpacks. At the Samoylov permafrost observatory 

(Lena River Delta, Siberia, 72° N, 126° E), snow covers the ground for on average 7 months of the year, with the mean 10 

February snow depth ranging between 15 and 30 cm (Langer et al., 2013). Under such conditions (long duration of the snow 

cover and thin snowpack) the sensitivity of the ground thermal regime to the surface-normal snow thermal conductivity Keff-z 

is particularly high (Zhang, 2005). An extensive investigation by Langer et al. (2013) into the sensitivity of the ground 

thermal regime at Samoylov showed that the thermal properties of the snow were the most essential parameters to constrain 

for accurate simulation of the permafrost thermal regime. 15 

The insulating power of snow on the underlying ground is linked to the surface-normal component of the conductivity tensor 

Keff-z and to the height of snowpack HS. It can be expressed as the thermal resistance (Rth), where Rth = HS / Keff-z. Assessing 

the Keff-z of a natural snowpack is not easy. It is often estimated in situ with the help of a needle-probe (NP) inserted in the 

snow parallel to the surface, which actually allows to estimate √𝐾𝑒𝑓𝑓−𝑧𝐾𝑒𝑓𝑓−𝑥 , i.e. a combination of the surface-normal (Keff-

z) and parallel (Keff-x) components of Keff (Riche and Schneebeli, 2013). Since most snow types are anisotropic with regard to 20 

Keff (meaning that Keff-z is not equal to Keff-x; Riche and Schneebeli, 2013), a correction for anisotropy needs to be applied in 

order to obtain Keff-z from an NP measurement. Snow samples also can be analysed for Keff-z in cold laboratories, either using 

a guarded heat-flux plate (HFP), or by combining X-ray microtomography with direct numerical simulations at a 

microstructural level (CT). The differences between these three measurement techniques have been investigated by Riche 

and Schneebeli (2013), who found that NP estimates were on average 35 % lower than CT estimates, even after correcting 25 

for anisotropy. While HFPs tended to yield higher estimates of Keff-z than CT, the difference was smaller than with NP (20 % 

on average) and could reasonably be ascribed to identified uncertainties in the HFP and CT methods. After improving their 

NP Keff retrieval algorithm and taking anisotropy into account, Dominé et al. (2015) reassessed the systematic residual 

difference between NP measurements and the CT results to about 20 %. However, an additional complication occurs when 

an NP is used in depth hoar (a columnar snow type frequently encountered in the lower part of Arctic snowpacks): apart 30 

from being highly anisotropic, the fragile structure of depth hoar can be damaged during needle insertion, reducing the 

quality of the measurements. The only depth hoar sample considered in the methodological comparison by Riche and 

Schneebeli (2013) exhibited the largest difference (55 %) between anisotropy-corrected NP measurements and CT estimates, 

probably as a result of these limitations. Overall, the CT method currently seems to provide the most reliable estimates for 
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Keff-z. However, the constraints of casting and transporting samples for cold-laboratory analysis reduce its applicability for 

continuous monitoring and for investigations at remote sites. Almost all present-day Keff-z estimates for Arctic snowpacks are 

therefore based on NP measurements (Barrere et al., 2017, Dominé et al., 2016b). 

Statistical models for Keff or Keff-z (mainly as functions of density) have been developed to provide this parameter to snow and 

permafrost models in the absence of observational data. Such density-based regressions are inherently only able to account 5 

for parts of the variations in Keff-z, as the development of some snow types (such as depth hoar) is accompanied by changes in 

their microstructural anisotropy that affect the Keff-z even if the density remains unchanged (Löwe et al., 2013; Calonne et al., 

2014). Although regressions that include the effect of anisotropy have been established (Löwe et al., 2013), they require 

additional input in the form of an anisotropy parameter.  

Most of the current generation of detailed snow models such as CROCUS (Vionnet et al., 2012) or SNOWPACK (Bartelt 10 

and Lehning, 2002; Lehning et al., 2002a, 2002b) rely solely on density to infer Keff-z. However, these models are unable to 

reproduce the density profiles actually observed in Arctic snowpacks (Barrere et al., 2017, Dominé et al., 2016a), which has 

an immediate impact on the inferred value of Keff-z. A first probable cause of this failure is that these models do not represent 

the upward water vapour flux, that redistributes ice from the bottom of the snowpack to the upper part as a result of steep 

temperature gradients. Dominé et al. (2016b) have estimated that this process could lead to density changes up to 100 kg m-3. 15 

Additional uncertainties occur in these models in their representation of wind-induced compaction (Groot-Zwaaftink et al., 

2013) and the effect of low or basal vegetation (dwarf shrubs, sedges) on snow compaction and metamorphism (Dominé et 

al., 2015): intertwined twigs within the snowpack can promote depth hoar formation by preserving an aerated layer, 

protected from wind erosion and compaction, where conductivity is weak and steep temperature gradients can establish, 

favouring rapid metamorphism (Hutchinson, 1965, Sturm and Benson, 1997). The warming effect of protruding twigs in 20 

early winter may also enhance snow metamorphism (Sturm and Holmgren, 1994). A reliable simulation of snow structure in 

SNOWPACK-like models is essential not only for the simulation of the ground thermal regime but also for a variety of 

applications ranging from the exploitation of remote-sensing data (e.g. Montpetit et al., 2013), to the assessment of 

snowpack structure impact on wildlife (e.g. Ouellet et al., 2017). 

The insulating power of snow depends not only on Keff-z but also on snow depth HS. Arctic and high-Arctic permafrost 25 

regions such as Samoylov commonly feature polygonal tundra landscapes, which are characterized by a distinctive micro-

topography with polygons that are typically about 10 m wide and rims that are 20 to 50 cm high. This micro-topography 

induces considerable variations in snow depth (Wainwright et al., 2017), with significant implications for the functioning of 

the local ecosystem including the thermal regime, hydrology, and carbon cycle (Liljedahl et al., 2016; Hobbie et al., 2000). 

Thus, an integral assessment of snow thermal conductivity, snow depth and their spatial variability, is needed to fully 30 

characterize the thermal impact of snow on permafrost in polygonal tundra landscapes.  

Our objectives in this study were (1) to investigate the thermal properties of snow in an Arctic snowpack and their link to 

microstructure and microtopography, (2) propose adaptations to a detailed snow model to these local snow conditions, to be 

validated against snow and soil temperature observations and (3) quantify the thermal impact of spatial variability in snow 
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depth and snow structure across a typical polygonal tundra microtopography. To this end we relied on snow samples 

analysed by CT, on a variety of in situ snow observations collected during a dedicated field program at Samoylov in April 

2013, and on more long-term observations on meteorology and soil variables. The model adaptations we propose were made 

to the detailed snow model SNOWPACK, which we used in combination with the CryoGrid3 (CG3, Westermann et al., 

2016) permafrost-soil model for the simulation of the ground thermal regime, as this model was extensively validated at 5 

Samoylov.  

2 Data and methods 

2.1 Samoylov site 

The Samoylov permafrost observatory is located within the zone of continuous permafrost, on Samoylov Island in the Lena 

River Delta, Siberia (72° N, 126° E; Fig. 1). The site has been used for intensive monitoring of ground temperatures and 10 

meteorological conditions since 1998 (Boike et al., 2013). The mean annual air temperature is -12.5 °C, with mean monthly 

temperatures ranging from -33 °C to 8.5 °C (1998-2011). The average annual rainfall is 125 mm, while snowfall averages 40 

mm yr-1. The landscape is characterized by polygonal tundra, i.e. a complex mosaic of dry polygonal ridges with wet 

depressed centers, and a number of larger water bodies (Muster et al., 2012; 2013).  

In the present study we analysed the snow properties with respect to the micro-topography and surface conditions (water-15 

logged, grass-covered, etc.) of the polygonal tundra. We divided the micro-topography into polygon rims, slopes, and 

depressed centers, referred to simply as rims, slopes, and centers. With regard to the surface conditions, the elevated rims 

and slopes are usually vegetated (mosses and Dryas species, ~ 20 cm high) while the polygon centers are typically either 

damp or water-logged. The damp centers are vegetated, mainly with mosses and Carex species (~ 15 to 20 cm high) and are 

referred to as “grass-centers” while the water-logged centers lie below the water table and are referred to as “ice-centers”. 20 

The ponded water in these ice-centers forms an ice base beneath the snow cover in winter and spring, which is clearly 

distinguishable from the moss-grass-snow interface of the ‘grass-centers’. We therefore ended up with four micro-

topographic classes summarizing the typical micro-topography and surface conditions at Samoylov: grass-centers, ice-

centers, rims, and slopes.  

During the winter the grasses of the rims, slopes and grass-centers tend to be flattened by snow and in places become 25 

intertwined at the base of the snowpack, up to a height of 7 to 10 cm (Fig. 1 d). 

2.2 Snow data 

2.2.1 In situ snow observations  

The Samoylov snow campaign in April 2013 (Fig. 1) focused on sampling the four afore-mentioned micro-topographic 

classes in polygons located close to, but not influenced by the Samoylov station. Sixteen stratigraphic profiles were carried 30 
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out, with records of grain type, size, and occasionally density, hand hardness, and temperature measurements. Snow samples 

were cast with diethyl-phtalate, as detailed in Heggli et al. (2009), and were later analysed in the SLF-Davos cold laboratory 

by CT (Coleou et al., 2001; Schneebeli and Sokratov, 2004). Four sets of samples that covered the stratigraphy of distinct 

ice-center, grass-center, rim, and slope profiles, were selected for our investigations on the basis of sample integrity. The 

corresponding sites will be referred to as CT sites (consisting of CT rim site, CT slope site, etc..). An east-west trench was 5 

excavated across a grass-center polygon, which will be referred to as the “reference polygon” due to its denser 

instrumentation (Fig. 1). Near-infrared (NIR) images of the trench were realized to characterize the thickness of the basal 

depth hoar (DH) layer along this transect at 50 cm spatial steps. The NIR-images were treated in ImageJ (Schneider et al., 

2012) by the following procedure: the green channel was extracted from the RGB-image. The brightness and contrast was 

visually optimised based on the histogram. The average brightness of the full profile was 125, the depth hoar region 106, the 10 

surface layer 125 (brightness range 0-255). The boundary between these two main layers was measured based on a ruler put 

in the center of the image. The resolution of the NIR images was better than 0.1 mm, so depth hoar crystals and especially 

depth hoar chains were in addition easy to discriminate from the upper layer with smaller, mostly rounded grains. 

Snow depth was recorded continuously over the 2012-2013 snow season by an SR50 sensor (Campbell Scientific, ± 1 cm 

accuracy, ± 1 cm precision) located in the topographically low center of the reference polygon (Fig. 1). This instrument 15 

acquires data over a circular surface of ~ 20 cm radius. However, this snow depth record differed from data acquired at 

grass-center snowpits: on 21 April 2013 the SR50 measured 13 cm of snow while both the transect, CT and snowpit data 

indicated depths in excess of 17 cm for grass-center conditions (Fig. 3). This difference is likely due to small scale variability 

in snow depth induced by micro-relief (notably vegetation tussocks) and in processes such as wind erosion immediately 

below the SR50 sensor: ancillary snow depth data acquired over a 14 m grass polygon transect at 20 cm spatial resolution 20 

show a 7 cm variance in snow depth, and variations up to 9 cm over 40 cm horizontal distance in center conditions. To build 

a representative snow depth record for grass-center conditions, we matched the SR50 snow data to the median of manually 

recorded snow depths at grass-center snowpits (20 cm) on 21 April 2013, by multiplying the SR50 record by a constant 

factor of 1.6. The 7 cm offset in late April is consistent given the observed small-scale variability in snow depth. Finally, a 

time-lapse camera provided daily, low-resolution images of the reference polygon.  25 

2.2.2 Laboratory analysis 

The samples cast in the field were transported to the cold laboratory in Davos and analysed by X-ray microtomography, 

thereby obtaining 3-dimensional images of the structure and bonding of the ice crystals. Binary micro-tomographic images 

were used as input for a finite element analysis to calculate the 3-dimensional heat conduction through the porous ice-air 

medium, based on the solution of the stationary (pore scale) heat equation which is solved directly on the binary CT image. 30 

The effective conductivity tensor of the analysed sample is thereafter derived. This conductivity only takes into account pure 

conduction through the ice-air network, ignoring the effects of water vapour flux and latent heat. For the heat conductivity 

calculations we used the procedure described in Löwe et al. (2013), based on NIST Finite Element programs (Garboczi, 
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1998), with an air conductivity (ka) equal to 0.024 W m-1 K-1 and an ice conductivity (ki) equal to 2.43 W m-1 K-1. These 

values approximate the conductivity of the air and ice medium at temperatures between -15 °C and -20 °C (cf. engineering 

toolbox.com and data compiled by Waite et al., 2006), causing a maximum error in retrieved Keff of less than 4 % for a 

snowpack between 0°C and -40°C (estimation based on the parametrization from Löwe et al., 2013, using the respective 

values of ka and ki).  5 

2.3 Soil temperature data 

Soil temperatures were recorded over the 2012-2013 snow season from three profiles within the reference polygon (rim, 

slope, and grass-center) at depths 5 cm, 20 cm and 40 cm, using thermistors (Temperature Probe model 107, Campbell 

Scientific Ltd., UK). The thermistors were calibrated at 0 °C so that the absolute error was less than 0.1 K over a temperature 

range of ± 30 °C.  10 

2.4 Meteorological data 

The SNOWPACK and CryoGrid3 models require as input the following meteorological data: 2 m air temperature, incoming 

shortwave and longwave radiation, wind-speed, and relative humidity of the air. We drive the models with snow depth 

recorded by the SR50 sensor instead of precipitation. Air temperature and relative humidity were recorded at the Samoylov 

meteorological station using an HMP45C air temperature and humidity sensor (Fig. 1). Unfortunately the sensor became 15 

saturated at temperatures below -40 °C and so for the period between 1 February and 15 March 2013, when the air 

temperatures were below -40 °C, we used air temperature records from the ERA-interim reanalysis (ERA-i; Dee et al., 2011) 

instead: for the rest of the 2012-2013 winter period, ERA-I temperatures show a high correlation with Samoylov 

observations (r2=0.97) and a low bias (-0.9°C). The incoming shortwave and longwave radiation and the wind-speed were 

also taken from ERA-i as none of these variables was recorded at Samoylov during the 2012-2013 snow season. ERA-I 20 

fields were proven to be a high quality source of driving variables to simulate the evolution of the Nothern Eurasian 

snowpack including Siberia (Brun et al., 2013), with minor differences between station data and grid-field over large, rather 

flat areas like the Lena Delta. A comparison of ERA-i with locally acquired meteorological data from earlier years at 

Samoylov furthermore confirmed this validity for the skin surface temperature, which responds very sensitively to 

differences in the driving variables (Langer et al., 2013). Snow depth data, meteorological data, and data on the ground 25 

thermal conditions at Samoylov during the 2012-2013 snow season are presented in Fig. 2. Meteorological and snow depth 

data are freely available at https://doi.org/10.1594/PANGAEA.879341. 

 

2.5 SNOWPACK snow model  

SNOWPACK is a one-dimensional, physically-based snow-cover model. Driven by standard meteorological observations 30 

(see Meteorological data), the model simulates the stratigraphy, microstructure, metamorphism, temperature distribution, and 

https://doi.org/10.1594/PANGAEA.879341
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settlement of snow, as well as surface energy exchange and mass balance. Snow is represented by a number of state variables 

(temperature, density, and water content) and the snow micro-structure by grain characteristics (grain size, size of bonds, 

sphericity, and dendricity) which allow a diagnostic of the grain type (Lehning et al., 2002b). The equations governing the 

evolution of the seasonal snowpack are described in Bartelt and Lehning (2002) and Lehning et al. (2002a, b), along with the 

parameterizations adopted for important snow properties, such as Keff-z. The latter is based on the work of Adams and Sato 5 

(1993), who considered the geometrical arrangement of spherical ice grains to derive an analytical formulation for Keff-z. The 

thermal effect of water vapour diffusion within grain interstices and the temperature dependence of ice conductivity are also 

taken into account in the parameterization currently used in SNOWPACK. A shape factor calibrated with alpine snow is 

used to take into consideration the non-sphericity of the snow grains. The SNOWPACK formulation for Keff-z depends in the 

end on three variables: temperature, density and the ratio between grain-size and bond-size. 10 

The SNOWPACK model was originally developed for alpine conditions (Lehning and Fierz, 2008) but has been recently 

adapted to different snow and meteorological conditions at the instance of the extreme conditions of the Antarctic Plateau at 

Dome C: the latter required a specific treatment of the effects of high wind speeds and low temperatures on snow 

accumulation, compaction and settlement (Groot-Zwaaftink et al., 2013). 

2.7 CryoGrid3 permafrost model 15 

CryoGrid3 (CG3, Westermann et al., 2016) is a one-dimensional permafrost-soil model that has been extensively adapted 

and validated for the Samoylov conditions (Westermann et al., 2016; Langer et al., 2016). Since the soil scheme in 

SNOWPACK lacks the detail and performance of CG3, we used CG3 to model the ground thermal regime but using the 

snow characteristics (density, depth, and bulk thermal conductivity) produced by SNOWPACK as input. 

CG3 is forced by standard meteorological variables (see Section 2.4: Meteorological data) which drive an explicit surface 20 

energy balance scheme that simulates the exchange of heat and water with the atmosphere. The model includes a transient 

heat transfer scheme for the soil that is specifically optimized for simulating freeze-thaw processes within permafrost. The 

soil physical properties such as heat capacity, thermal conductivity, and the freeze curve, are derived according to a 

parameterization suggested by Dall Amico et al. (2011). The soil composition is assumed to be constant, so that any changes 

in soil moisture other than those due to phase changes are ignored. This assumption is well justified as the soils at Samoylov 25 

are almost completely saturated (Langer et al., 2013). CG3 also includes a simplified snow cover representation that only 

takes into account a limited number of the natural processes that occur in snowpacks. It is therefore not comparable to more 

sophisticated snow models such as SNOWPACK or CROCUS. Therefore, in our simulations with CG3, the snow properties 

involved in conductive heat transfer were taken either from SNOWPACK simulations (in Sect. 5) or derived from an 

external construction (in Sect. 6), by-passing the CG3 estimates for these properties. All other properties or processes were 30 

calculated by CG3: this includes an exponential damping of incoming short wave radiation with snow depth, assuming a 

constant light extinction coefficient (e.g. O’Neill and Gray, 1972), and a snow albedo decreasing with snow ageing 

(Westermann et al., 2016). 
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3 Thermal properties of the Samoylov snowpack 

3.1 Composition and properties of individual layers 

Paragraph inversion, text condensing As in other tundra snowpacks described in literature, the Samoylov snowpack was 

largely made up of basal DH and of wind slabs with small rounded grains (RG) (Fig. 3 and Fig. 4). Based on the 4 profiles 

investigated by CT, the DH layers and wind slabs exhibited significantly distinct densities and Keff-z (Fig. 3, p-values < 0.05 5 

for a 2-sided t-test): the DH layers had a mean density of 236 kg m-3 and a mean Keff-z of 0.22 W m-1 K-1, while wind slabs 

had a mean density of 356 kg m-3 and a mean Keff-z of 0.36 W m-1 K-1. The general characteristics of the snowpack at the CT 

sites (grain types, snow depth, DH thickness-to-total snow depth ratio) were very similar to the median characteristics 

retrieved at the other snowpits dug in each micro-topographic class (Figure 7), which made them representative for their 

micro-topographic class. The only exception is the CT slope profile, which features an exceptionally high proportion of DH 10 

(80 %, while the median for slope sites was 50 %).  

In the middle or upper part of the snowpack at vegetated sites, we found DH layers exhibiting a higher density (up to 

300 kg m-3), together with a higher conductivity (above 0.3 W m-1 K-1), higher hand hardness (2 to 3) and smaller grain sizes 

(1 to 2 mm) than basal DH (hand hardness 1, grain size 5 to 10 mm). These dense DH layers have probably been formed by 

the metamorphism of former wind-crusts (i.e. they are indurated DH), thereby retaining a high density. They were all found 15 

above the vegetation layer, where wind effects are likely to be more pronounced. 

3.2 Spatial variability 

Title change, paragraph merging, text condensing Micro-topography and surface conditions clearly play a role in shaping the 

snowpack conditions at Samoylov. Based on our 16 snowpits and 4 CT profiles, we found the snow to be significantly 

deeper at slope sites and shallower at rim sites (27 cm vs. 10 cm median depths, p-value < 0.1 for a two-sided t-test) than at 20 

the center sites (19.5 cm median depth). This observation that has often been reported in literature from other tundra sites 

(e.g. Wainwright et al., 2017): indeed, the rim sites are the most exposed to wind and receive reduced deposition during 

blowing snow events, while slopes, especially those on the lee side, experience lower wind speeds and enhanced deposition. 

The larger number of distinct snow layers found in slope profiles is a further evidence of that process. In contrast to snow 

depth, the DH thickness-to-total snow depth ratio (hereafter 𝛼) was lower on slopes and higher on rims (0.5 vs. 0.8, median 25 

values, difference not significant at the 95% level). Rim profiles also exhibited a larger proportion of DH-chains (i.e. 

vertically structured DH crystals in which most of the lateral bonds have disappeared; Fierz et al., 2009) than the other 

micro-topographic classes: this is in line with an increased temperature gradient as a result of shallower snow depths. Grass-

center and ice-center sites had very similar snow depths but a significantly lower proportion of DH was found at ice-centers 

than in the other classes. This is easily explained by the higher conductivity of ice when compared to frozen ground (even 30 

saturated) which promotes colder temperature in the uppermost centimeters of frozen ponding water than in a frozen ground 
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surface, and hence reduced temperature gradients through the snow when snow onset occurs after initial freezing. Basal DH 

crystals formed over ice are therefore smaller (4 mm to 6 mm) than those found at grass-center sites (6 mm to 8 mm). 

We calculated the bulk Keff-z (Kbulk) at each CT site by weighted harmonic mean of the Keff-z of individual snow layers. Kbulk 

showed little variation between the three CT sites with underlying grasses: Kbulk was 0.21 W m-1 K-1 at the CT rim and slope 

sites and 0.23 W m-1 K-1 at the CT grass-center site (5 

 

Figure 6). A more representative slope site with a lower proportion of DH portion would probably have had a slightly higher 

Kbulk value. A much higher Kbulk, 0.33 W m-1 K-1, was however obtained at the ice-center site, where the much less DH had 

developed.  

We tested the assumption that differences in the DH-thickness to total snow depth ratio (𝛼) can mostly explain the variability 10 

in Kbulk across the four CT sites. For this we relied on the approach by Zhang et al. (1996), who considered that an Arctic 

snowpack can be approximated by two homogeneous layers, a DH layer and a wind-slab, each with its own distinctive 



27 

 

density and Keff-z value. Rutter et al. (2014) also used a similar approach for microwave emission modelling. Following this 

approach, Kbulk is expressed by: 

𝐾𝑏𝑢𝑙𝑘 =
1

𝛼
𝐾𝐷𝐻

+
1 − 𝛼
𝐾𝑐𝑟𝑢𝑠𝑡

                                                                                                                                           (1) 

where KDH  and Kcrust are the Keff-z for DH and wind crust layers, which we here approach by their mean values in our CT 

samples (0.22 W m-1 K-1 and 0.36 W m-1 K-1, respectively). Kbulk is thus a decreasing function of 𝛼. We found that 72 % of 5 

the variability in Kbulk between our four sites can be explained by this simple 2-layer approach. 

The insulating power of a snowpack is characterized by the thermal resistance Rth = HS / Kbulk (see Introduction). Hence, the 

variations in snow depth HS across our four sites, as shaped by micro-topography (see Section 3.1), also affect the local 

insulating power of the snowpack. Indeed, we found that the ice-center profile has a very low Rth (0.48 m2 K W-1) due to a 

high Kbulk and a moderate snow depth. The Rth of the snowpack however increases from the rim site (0.57 m2 K W-1), through 10 

the grass-center site (0.87 m2 K W-1), to the slope site (1.59 m2 K W-1): this increase follows the increase in snow depth 

between these sites (from 10 cm to 19.5 cm and 27 cm, respectively), despite variations in the Kbulk values (which at times 

also increase with snow depth).  

Our observations suggest that, when there is basal vegetation present, Rth is more sensitive to variations in total snow depth 

than to variations in the DH proportion 𝛼, which controls Kbulk. We assessed this by looking at the sensitivity of Rth to 𝛼 and 15 

HS in the 2-layer approach. Rth is expressed by: 

𝑅𝑡ℎ =
𝛼.𝐻𝑆

𝐾𝐷𝐻
+

(1−𝛼).𝐻𝑆

𝐾𝑐𝑟𝑢𝑠𝑡
                                                                                                                                               (2)      

implying a sensitivity to variations in HS (
𝜕𝑅𝑡ℎ

𝜕𝐻𝑆
) and a sensitivity to variations in 𝛼 (

𝜕𝑅𝑡ℎ

𝜕𝛼
) expressed by: 

 
𝜕𝑅𝑡ℎ

𝜕𝐻𝑆
=

𝛼

𝐾𝐷𝐻
+

1−𝛼

𝐾𝑐𝑟𝑢𝑠𝑡
                                                                                                                                                 (3)         

𝜕𝑅𝑡ℎ

𝜕𝛼
= 𝐻𝑆. (

1

𝐾𝐷𝐻
−

1

𝐾𝑐𝑟𝑢𝑠𝑡
)                                                                                                                                      (4).   20 

 

We estimated bounds of 3.5‒4.3 m K W-1 and 0.17‒0.71 m2 K W-1 for these sensitivities, respectively, considering the 

following ranges for 𝛼 and HS: 𝛼 = 0.4‒0.9 and HS = 0.1‒0.4 m. The HS decreased by 0.1 m from the CT grass-center 

profile to the CT rim profile, while 𝛼 increased by 0.22. From the median grass center profile to the median slope profile, HS 

increased by 0.08 m while 𝛼 decreased by 0.06. With these orders of magnitudes, it appears clearly that variations in HS 25 

have a greater influence than variations in 𝛼 on the insulating power of snow across the polygonal micro-topography when 

there is basal vegetation present. 
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3.3 Assessment of existing Keff-z parameterizations  

Title change In the four CT profiles Keff-z showed a strong correlation with density (r = 0.94). We investigated the ability of 

three different parameterizations for Keff or Keff-z to match the values obtained with our measurements (Figure 8). These 

parameterizations are from Calonne et al. (2011), Riche and Schneebeli (2013) and Löwe et al. (2013), and we refer to them 

hereafter as C2011, R2013 and L2013 respectively. C2011 expresses the mean of the vertical and horizontal components of 5 

Keff as a density-based regression. R2013 expresses the vertical component of Keff (Keff-z) as a density-based regression 

inferred from DH and faceted crystal (FC) samples only, that’s to say: grain types with a marked vertical anisotropy. Finally, 

L2013 is a regression of Keff-z based on density and anisotropy. It relies on an anisotropy parameter, Q, calculated directly 

from CT images based on the two-point correlation function (Löwe et al., 2013, their Eq. 4). Q is above 0.33 (resp. below 

0.33) when the snow grains arrangement shows preferential vertical (resp. horizontal) connexions. 10 

With respect to our data, there is an improvement in performance from C2011 (good correlation but noticeable bias) to 

R2013 (good correlation, reduced bias), and finally to L2013 (improved correlation and reduced bias). C2011 does not take 

anisotropy into account, nor does it attempt to represent the vertical component of the conductivity (Keff-z), which probably 

explains its relatively poor performance. A bias in R2013 for snow types with horizontal anisotropy (Q < 0.33) is to be 

expected as R2013 is designed to represent the Keff-z of vertically anisotropic grains. Our results confirm that R2013 is indeed 15 

biased on samples with Q < 0.33 (Figure 8b), consisting of RG and partly decomposed/fragmented particles (DF). R2013 

also underestimates Keff-z in the samples with the greatest vertical anisotropy, which may be due to the very small number of 

samples (only 2) used by the authors to constrain their parameterization at densities greater than 300 kg m-3. Being derived 

from a density-based regression, R2013 is furthermore structurally incapable of taking into account all possible degrees of 

anisotropy encountered in nature. The best performance was obtained with L2013, which confirms the importance of 20 

anisotropy in Keff-z estimations. The two largest biases obtained from regressions based on density only (underestimations of 

Keff-z by 47 % and 49 %) were obtained using C2011 on DH-chains, i.e. on highly anisotropic grain forms. 

4 Adaptations of the SNOWPACK model to the Arctic context at Samoylov 

In the Introduction we recalled that adaptations were required to the current generation of snow models if realistic density 

profiles (and consequently Keff-z profiles) were to be simulated in Arctic conditions. These adaptations concerned wind 25 

densification (WIND), the water vapour transport occurring under steep temperature gradients (VAP), and the mechanical, 

optical and metamorphic effects of basal vegetation protruding into the snowpack (VEG). The traditional density-based 

formulations for Keff-z also needed to improve and incorporate the effect of grain anisotropy (ANISO).  

Some of the effects of VEG (mechanically reduced compaction, enhanced grain growth) and VAP (reduced density in the 

basal layers as a result of upward flux, enhanced grain growth) are hard to disentangle in Arctic conditions, where they both 30 

contribute to density reduction and enhanced grain growth in basal layers. Furthermore, no explicit description of water 
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vapour transport and associated metamorphism is available in the current snow models. We therefore chose to address both 

VAP and VEG together: both effects are comprised in the phenomenological “VEG” adaptation, described below.  

For the mechanical effect of VEG we reduced the fresh snow density (𝜌0) for snow that occurs within the grasses, i.e. up to a 

thickness of 7 cm. The underlying hypothesis are that i) while snow hasn't filled the snow-holding capacity of the basal 

vegetation, snow is not available for transport (Liston and Elder, 2006) and therefore snow accumulation in the grass-layer 5 

consists in precipitation particles of lower density than typical wind-blown rounded grains; and ii) that grasses form a rigid 

structure that protects snow from wind compaction and introduces macroscopic voids that reduce its density. Different 𝜌0 

values were tested and 150 kg m-3 was chosen as giving the best match to end-of-season in situ density observations. Dominé 

et al. (2016a) chose to increase the dry snow viscosity in the CROCUS snow model by a factor of between 10 and 100, in 

order to take into account the limited snow compaction within the stems of shrubby vegetation. In our case, however, an 10 

alternative approach was required since self-compaction is very limited in the thin Samoylov snowpack. Note that our 

approach however differs from the SnowModel  (Liston and Elder, 2006)  in the sense that we focus on snow structure and 

properties (density, Kth) as influenced by the wind conditions, while the SnowModel and its blowing snow sublimation and 

redistribution scheme SnowTran3D target the spatial distribution and time evolution snow-water-equivalent, and the way 

they are affected by vegetation.  15 

The optical effect of VEG (i.e. the absorption of solar radiation by grasses and sandy impurities, which are common at 

Samoylov) was not taken into consideration but is addressed later in the Discussion section. 

The metamorphic effect of VEG was addressed by enhancing bond and grain growth rates by a constant factor within the 

grasses-and-snow layer. This phenomenologically represents the favourable conditions for grain growth within airy 

vegetation layers. We feel justified in taking this approach because the current metamorphism and diffusion laws of the snow 20 

models are unable to reproduce the commonly observed grain sizes in excess of 10 mm in basal DH layers accommodating 

vegetation. A factor of 5 was selected as best reproducing the observed end-of-season DH grain sizes at Samoylov. Both 

bond and grain growth rates were enhanced by the same factor in order to keep their ratio constant, as this ratio governs a 

number of mechanical and thermal properties in SNOWPACK.  

For WIND, we built on the work by Groot-Zwaaftink et al., (2013) who designed an adaptation of SNOWPACK to 25 

Antarctica Dome C conditions. These authors considered that effective snow deposition on the surface occurs only during 

wind-events, i.e. periods when the wind speed averaged over 100 hours (𝑈100−ℎ) exceeds a 4 m s-1 threshold (𝑈0= 4 m s-1). 

The density of fresh snow (𝜌𝑛𝑒𝑤𝑠𝑛𝑜𝑤) is then a logarithmic function of 𝑈100−ℎ: 

𝜌𝑛𝑒𝑤𝑠𝑛𝑜𝑤 = 𝜌0 + 𝛥𝜌. 𝑙𝑜𝑔 (
𝑈100−ℎ

𝑈0
)                                                                                                                        (5)  

The use of this approach is justified at Samoylov as wind conditions at the Samoylov station (mean annual wind speed 3.6 m 30 

s-1) are comparable to those at Dome-C (mean annual wind speed 2.9 m s-1), and more than 50 % of snow deposition at 

Samoylov occurs during wind events. Groot-Zwaaftink et al. (2013) used 𝜌0 = 250 kg m-3 as the lowest fresh-snow density. 

However, no value as low as that was recorded during the 2013 program from the wind slab layers at Samoylov, where the 
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density is always above 305 kg m-3. Such densities are furthermore essentially achieved by wind compaction (settlement in 

thin arctic snowpacks is negligible). We therefore used 𝜌0 = 305 kg m-3 in Eq. (5). The original value for 𝛥𝜌 (𝛥𝜌 = 361 kg m-

3) was retained. 

For the ANISO adaptation we implemented in SNOWPACK an alternative formulation derived from L2013 (Löwe et al., 

(2013), their Eq. (5)), which by considering anisotropy, explained a larger part of the observed variability in our Keff-z 5 

measurements than formulations relying solely on density. However, L2013 requires an anisotropy parameter Q, which can 

either be calculated from CT images of samples, or estimated from polarimetric radar data (Leinss et al., 2016), but is not yet 

included in current snow models. In order to implement L2013 in SNOWPACK we therefore had to derive an empirical 

relationship between Q and a modelled microstructural parameter. To this end, we used the data from Löwe et al. (2013) to 

obtain statistical regressions between Q and the optical equivalent diameter of snow grains. We calculated these regressions 10 

for different grain-type classes: rounded grains (RG), depth hoar (DH), faceted crystals (FC), decomposed-fragmented 

particles (DF), and melt forms (MF), most of which indicating reasonable linear dependences. These regressions were used 

in SNOWPACK in order to derive the parameter Q, using normalized grain size (within each grain type class) as a proxy for 

normalized optical diameter. We only took into account anisotropy for the RG, DH and FC grain types, as these are the 

dominant grain types in the Samoylov snowpack. Regressions coefficients and implementation details are in Appendix A.  15 

The three adaptations (WIND, VEG, and ANISO) can also be combined. Simulations were initially carried out for the 

default SNOWPACK setup (DEFAULT) and for each of these adaptations individually, but both the WIND and VEG 

adaptations proved to be essential for the Samoylov snowpack conditions to be reasonably well reproduced. Results are 

therefore shown in this paper for the following setups, each combining one or more adaptations. All setups except the one 

including the ANISO adaptation rely on the original Keff-z parameterization from SNOWPACK described in Sect. 2.5. 20 

 DEFAULT 

 WIND 

 WIND + VEG  

 WIND + VEG + ANISO 

5 Simulations of snow properties and ground thermal regime (grass-center site) 25 

We carried out simulations with SNOWPACK and CG3 to represent the snow and ground conditions in the grass-center of 

the reference polygon, where the SNOWPACK snow forcing data were acquired (see Sect. 2.2.1) and CG3 soil properties 

calibrated (see Sect. 2).  

5.1 Snow simulations 

The adaptations to SNOWPACK enable a reasonable simulation of the Samoylov snowpack (Fig. 6 and Fig. 7), but both 30 

VEG and WIND adaptations are critical. While all setups consistently produce a thick basal depth hoar layer at the end of the 
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season, DEFAULT simulates a density profile that has too low a mean value (190 kg m-3) when compared to the CT grass-

center (290 kg m-3) and to the average value for the four CT profiles (279 ± 34 kg m-3). This simulated density profile is also 

inverted, featuring higher values at the bottom and illustrating the typical bias highlighted by Dominé et al. (2016b) and 

Barrere et al. (2017). Bulk Keff-z obtained using DEFAULT is likewise too low compared to observations (0.11 vs. 0.23 W m-

1 K-1 for the CT grass-center), and is also inverted. This low bias is likely to have caused the rapid growth of DH in this 5 

setup, as a low Keff-z favours steep temperature gradients. The low density and Keff-z biases can be corrected by using the 

WIND option, which in its current form tends to overestimate bulk density. However, the WIND option alone produces quite 

flat (i.e. vertically uniform) density and Keff-z profiles. The VEG adaptation is then needed to produce a correct shape for 

these profiles, with higher values at the top and lower values at the base. Thus while the WIND option on its own reduces the 

DH growth due to dense and conductive bottom snow, the addition of the VEG option introduces lower densities and Keff-z 10 

values for the basal layers and permits a more rapid and thicker growth of DH. 

Combining the WIND and VEG options therefore yields reasonable simulations of bulk Keff-z (0.20 W m-1 K-1) and density 

(305 kg m-3). When the ANISO option is introduced (WIND+VEG+ANISO), the simulated bulk Keff-z (0.24 W m-1 K-1) also 

agrees well with the CT grass-center estimate (0.23 W m-1 K-1), while the inter-layer variability in Keff-z is enhanced, thus 

better reflecting the observed inter-layer variability (Figure 10). It is interesting to note that both the WIND+VEG and the 15 

WIND+VEG+ANISO setups produce a DH layer that is up to 10 cm thick at the end of the snow-season, above the 

vegetation layer: this means that former wind-crusts have been transformed into DH, producing the indurated DH layers 

reported in observations. 

Finally, all SNOWPACK setups produce a thick layer of faceted crystals in the upper part of the snowpack, but faceted 

crystals were rare in the late April 2013 Samoylov snowpack (Figure 7). We interpret this as a likely bias in SNOWPACK 20 

that results in too rapid formation of faceted crystals. On the other side it is possible that a wind event on 10 April 2013 

contributed to the high amount of RG found in the April 21 manual and CT profiles. Because it brought a very low 

accumulation at the SR50, this event was not captured in simulations with the WIND option.  

5.2 Soil simulations 

The ground thermal regime at the grass-center of the reference polygon was simulated by CG3 over the 2012-2013 snow 25 

season using snow properties calculated in SNOWPACK with the DEFAULT, WIND, WIND+VEG and 

WIND+VEG+ANISO setups, respectively. These simulations were compared with the soil temperature measurements from 

the same grass-center site. The reference polygon also hosts soil temperature measurements from a rim and a slope site: the 

spatial variability reflected in these three measurements was also considered and is referred to as "observed variability" in 

soil temperatures in both text and figures. 30 

To analyse the modelling performances we split the winter into 4 phases: 

 Phase 1 – freezing: 1 October (snow onset) to 7 November 

 Phase 2 – cooling: 7 November to 20 February (dark winter followed by a period with low-angle solar radiation) 
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 Phase 3 – warming: 20 February to 5 May (melt-out date) 

 Phase 4 – thawing: 5 May to 31 May 

The WIND, WIND+VEG, and WIND+VEG+ANISO setups produced soil temperatures in good agreement with the grass-

center measurements (Figure 11, Table 1), especially during freezing and cooling phases: the deviation from the measured 

soil temperatures when using the WIND+VEG+ANISO setup was of the same order of magnitude as the observed 5 

variability, while the deviations when using the WIND and WIND+VEG setups were slightly greater. The DEFAULT setup 

yielded a clear overestimation of soil temperatures at all depths, which could not be explained by the observed spatial 

variability in soil temperatures. This bias started during the freezing phase and persisted throughout the snow season; it is 

likely to be caused by the underestimation of Keff-z in the DEFAULT setup (see Sect. 5.1), which also starts in the early snow 

season during rapid DH formation. In light of the good agreement between our Keff-z estimates by CT and the simulated Keff-z 10 

profiles in the WIND+VEG+ANISO setup (Sect. 5.1), we interpreted these results as confirming the soundness of our CT 

estimates for Keff-z. 

The performance of the WIND, WIND+VEG and WIND+VEG+ANISO setups deteriorated during the warming phase, 

when all simulations showed at first a systematic warm bias, which then turned into a cold bias at the start of the thawing 

phase. The warm bias during the warming phase suggested that limitations exist in the modelling of energy transfer 15 

processes within the snow, as here modelled by CG3. We formulated two hypotheses: 

 Deficiencies in the parameterization of radiative heating within the snowpack may be involved as the bias concurs 

with the increase in shortwave radiation. 

 The formation of an air layer at the base of the natural snowpack (as a result of mass depletion due to a sustained 

upward vapour flux throughout the winter) may increase its insulating power as the season advances. The formation 20 

of such an air layer within an Arctic context has previously been reported by Dominé et al. (2016b) but is not 

represented the adapted SNOWPACK and therefore in the thermal properties passed to CG3. 

We tested the thermal impact of both hypotheses by conducting sensitivity simulations in which: 

(i) The penetration of radiation into the snowpack was switched off in the CG3 model. This was done for the four 

SNOWPACK setups. 25 

(ii) We inserted an air-layer (with Keff-z = 0.024 W m-1 K-1) at the base of the snowpack during the warming phase, 

growing in a linear fashion from 0 to 1.5 cm during the warming phase. This was done by modifying the snow 

properties from the WIND+VEG+ANISO setup, and resulted in a linear reduction in bulk Keff-z from 0.23 to 

0.16 W m-1 K-1 over that period. 

Suppressing the penetration of solar radiation in the snowpack considerably reduced the warm biases in soil temperatures 30 

during the warming phase for all WIND setups, while leaving their performances during the freezing and cooling phases 

unaffected (Figure 12). While physical reasons for a likely bias in radiative transfer in CG3 will be advanced in section 7, the 

remaining simulations in this study were carried out with the solar radiation penetration switched off. The air-layer 
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hypothesis did not, however, lead to any visually identifiable change in the simulations. This reveals a very low sensitivity of 

the soil thermal regime to variations in snow thermal conductivity during the warming phase. 

6 Thermal implications of snow spatial variability 

Simplification We made use of data from the reference polygon transect to more thoroughly characterize the spatial 

variability in snow depth, structure and insulating power across the polygonal tundra at Samoylov. We extracted DH 5 

thickness and snow depth at 31 points with 50 cm spacing along the transect, by post-processing of the NIR images (Fig. 1e, 

Sect. 2.2.1). The 2-layer approach by Zhang et al. (1996) (see Sect. 3) was then used to infer bulk Keff-z, Rth, and density at 

these 31 points at the time of the field observation (21 April 2013), relying on Eq. (1) and Eq. (2). Time series of these bulk 

snow properties were then computed, based on the 2-layer approach and time-evolution of the DH properties as simulated by 

the WIND+VEG+ANISO setup providing the best match to observed snow characteristics. Wind slab properties were 10 

considered constant in time and equal to their end-of-season values (mean of CT-estimates for wind slabs from April 2013 

samples; Table 2). The hypotheses behind the construction of these time-series and other relevant details are given in 

Appendix B.  

This approach lead to a small spread in Kbulk during the whole snow season (from 0.22 W m-1 K-1 to 0.29 W m-1 K-1) and a 

much higher dispersion in Rth (from 0.45 m2 K W-1 to 1.2 m2 K W-1), which reaches a maximum towards the end of the season 15 

where it covers a range similar to that inferred from CT analysis at the 3 CT sites with basal vegetation (from 0.48 m2 K W-1 

to 1.59 m2 K W-1; Fig. B2) 

When driving CG3 simulations of the ground thermal regime, these 31 different snow insulation time-series resulted in a 

pronounced spread of the simulated soil temperatures, which we refer to as “modelled variability” (Figure 13). Comparison 

to soil temperature observations from rim, slope and center, revealed that the modelled variability encompasses the observed 20 

variability in soil temperature (Figure 13), which is a desirable feature. However, the modelled variability is much higher 

than the observed one, especially during the cooling phase when it reaches 6.3 °C at 5 cm depth while the observed one does 

not exceed 2 °C. For different reasons, it is likely that the rim, slope and grass-center soil temperature observations captured 

only part of the thermal impact of snow spatial variability at Samoylov: first, because of the small sample size (only 3 

observations) ; second, due to possible lack of representativity of the snow conditions on top of the soil sensors (they were 25 

not co-located with the CT samples, and snow was not characterized on top of them to avoid destruction of the snowpack) ; 

and third, because these soil temperature observations are also affected by spatial variability in the soil's thermal properties, 

which may interfere with any thermal effect solely due to snow variability. Additionally, lateral heat fluxes tend to smooth 

out any spatial variability in soil temperature, and they are not represented in our modelling. Finally, we also noticed that the 

measured rim and slope temperatures, which determine the maximum amplitude of the spread in the observations, responded 30 

differently at the beginning of the cooling phase, with the temperature dropping rapidly for the slope profile in early 

November but only gradually for the rim profile. This behaviour reversed from early December until the end of the cooling 
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phase, with the spread in observed temperatures between a colder rim and a warmer slope reaching its maximum. The 

contrasting behaviour of rim and slope in November can be explained by several processes (e.g. contrasted early-season 

wind erosion/deposition, differences in the late autumn soil water content affecting the zero-curtain duration and soil cooling 

dynamics, etc) which are not captured by our modelling and may have limited the magnitude of the spread in observed 

temperatures.  5 

During the warming period the variabilities in both modelled and observed soil temperatures are considerably reduced. 

Warming from the air is more efficient at sites with little snow insulation, which exhibit the coldest soil temperatures during 

the cooling phase, than at sites with a higher snow insulation. This explains the reduction in the spread of soil temperatures 

after the month of April. However, the reduction in the spread of simulated and observed soil temperatures starts earlier, in 

late February. This again indicates a reduced sensitivity of the ground thermal regime to variations in the thermal properties 10 

of the overlying snow during the whole warming phase (cf. the sensitivity experiment with the insertion of a basal air layer 

in Sect. 5.2). This reduced sensitivity will be analysed in section 7 below.  

Finally, our more thorough assessment of the spatial variability in soil temperatures here, provides increased confidence to 

disqualify the simulations from the DEFAULT SNOWPACK setup: this setup was rejected in section 5 as yielding soil 

temperatures that were too far above the observed range. Despite a spread in simulated soil temperatures larger than in the 15 

observations, our conclusion regarding the DEFAULT setup remains unchanged as it yields soil temperatures also beyond 

the range of the simulated ones. 

7 Discussion 

7.1 Comparison with snow data from similar contexts  

The Samoylov snowpack shows similarities in its stratigraphy with Arctic snowpacks described previously by Dominé et al. 20 

(2015, 2016b) and Derksen et al. (2009). The tundra snowpacks investigated by these authors along a sub-arctic traverse 

comprised on average 65 % DH and had a mean density of 319 kg m-3. Both of these values are close to those from 

Samoylov (54 % and 279 kg m-3, resp.). The minor differences are probably due to differences in the wind conditions and the 

specific micro-topography of Samoylov, where some samples were collected from wind-sheltered slope/center sites or over 

frozen ponds. Derksen et al. (2009) also investigated the differences between snowpacks overlying lake ice, river ice, and 25 

tundra sites, identifying larger proportions of DH over ice, which is contrary to our own results. However, their study 

considered lake or river ice overlying liquid water that is warmer than the surrounding soil. This thermal contrast enhances 

the development of faceted grains. In contrast, the end-of-summer water level at the sampled ice-center site on Samoylov 

was shallow, and shortly after freezing the ice extended to the ground, so that there could not be any enhanced thermal 

contrast created by an underlying, relatively warm, body of liquid water. 30 

There are few published observations or reports on the thermal properties of Arctic tundra snow. To our knowledge, the 

Samoylov samples are among the first samples of tundra snow to be analysed by CT. Publications by Dominé et al. (2015, 
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2016a, 2016b) and Barrere et al. (2017), which relied on NP measurements and a refined retrieval algorithm for Keff, 

probably provide the most extensive thermal characterization of Arctic and sub-arctic snowpacks in recent years. These 

authors reported values of Keff lower than our Keff-z estimates, both for DH layers and for the bulk snowpack. Barrere et al. 

(2017) measured Keff values no higher than 0.12 W m-1 K-1 for basal DH in the May 2014 and 2015 snowpacks at Bylot 

Island (Baffin Island, Canada); they however reported much higher conductivities (0.37 W m-1 K-1) for indurated DH. After 5 

correcting for a 20 % systematic error associated with the NP method, these authors calculated bulk Keff values of less than 

0.1 W m-1 K-1 for the 2014 and 2015 Bylot snowpacks, resulting in highly insulating snow (bulk Rth values of 2.6 and 

5.8 m2 K W-1). We estimated a bulk Rth of 0.87 m2 K W-1 for our CT grass-center profile and a high upper bound of 

1.59 m2 K W-1 for the CT slope profile. The Rth values obtained by Barrere et al. (2017) indicate insulation that is closer to 

the end-of-season insulation simulated by the DEFAULT setup in SNOWPACK (Rth = 1.75 m2 K W-1 in April 2013). This 10 

setup led to an overestimation of February soil temperatures at Samoylov by about 6 °C. Such a bias can hardly be explained 

by the spatial variability in snow conditions (see Sect. 6). Despite the disagreement with published estimates for Keff under 

similar conditions, the consistency of the CT estimates for Keff-z with recent parameterizations and with measured soil 

temperatures after combined snow-soil modelling provides some confidence in them. The Samoylov snowpack appears more 

conductive than the 2013-2014 and 2014-2015 snowpacks observed at Bylot Island. Furthermore, our results compare very 15 

well with the conductivities obtained using inverse modelling by Jafarov et al. (2014) at Deadhorse (Alaska), a site with 

snow and meteorological conditions similar to Samoylov. 

We estimate that the ground temperature spread induced solely by snow spatial variability can reach 6.3 °C in the coldest 

part of the winter at Samoylov (Sect. 6). This estimate is consistent with those in previous publications: Sturm and Holmgren 

(1994) observed maximum differences in ground surface temperatures of up to 19.1 °C and mean winter temperature 20 

differences of up to 7.2 °C, between the tops and hollows of grass tussocks at Imnavait Creek, Alaska. Their investigations 

focused on smaller scale micro-relief (tenths of a cm) than ours, resulting from grass tussocks in the tussock tundra. Our 

study complements the sensitivity study by Zhang et al. (1996), who found a 12.6 °C spread in winter ground surface 

temperatures following an increase in the proportion of DH from 0 % to 60 % at West Dock near Prudhoe Bay, Alaska. This 

study included neither an observation-based range of the proportions of DH in the snowpack, nor the effect of co-varying 25 

DH thickness and snow depth. Furthermore, the DH and wind crust properties were kept constant over time. More recently, 

Gisnas et al. (2016) found a variability in ground temperatures of up to 6 °C in the Norwegian mountains, as a result of 

spatial variations in snow depth. 

7.2 Light penetration in the Samoylov snowpack 

The penetration of solar radiation in the natural snowpack at Samoylov is likely to be reduced by wind-blown sediments 30 

within some of the snow layers (Boike et al., 2003) and by the dense wind crusts at the top of the snowpack (Libois, 2014). 

While absorption of solar light in these layers may result in a localized increase in temperature within the snowpack, it is 

unlikely to have much warming effect on the underlying snow and soil because of the insulating nature of the snow. Brun et 
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al. (2011) had to reduce the penetration depth of solar radiation in the CROCUS snow model in the same way that we did, in 

order to reproduce the snow temperatures at depths greater than 20 cm within the Antarctic snowpack at Dome C (Brun, E. 

personal communication). Libois, 2014 modelled a temperature reduction of ~ 7 °C at 20 cm depth in the Dome-C snowpack 

in summer as a result of spatial variations in density between 150 and 300 kg m-3 and consequent reduction in the penetration 

depth of solar radiation. Although radiative transfer models exist with fine spectral resolution that are able to circumvent this 5 

bias (Libois et al., 2013; Libois, 2014), these complex schemes are not implemented by default in operational snow models, 

which tends to hinder a proper representation of the underlying snow and soil thermal regime.  

7.3 Temporal variations of the soil thermal sensitivity to snow properties 

A key result of our ensemble simulations and observations is the increase in spatial variability in soil temperatures during the 

winter cooling phase and its reduction during the warming phase (Figure 13). We ascribe this behaviour to two physical 10 

mechanisms. First, winter cooling is characterized by very steep temperature gradients between atmosphere and soil (about 

150 K m-1; see Fig. C1 in the Appendix), which are later reduced and eventually vanish during the course of the warming 

phase. From Fourier’s law for vertical heat flux (q): 

 𝑞 = −𝐾𝑒𝑓𝑓−𝑧 .
𝜕𝑇

𝜕𝑧
                                                                                                                                                    (6) 

it is apparent that the sensitivity of the heat flux to Keff-z is the temperature gradient. The greatest impact of spatial variations 15 

in Keff-z on ground temperatures is therefore expected to occur when temperature gradients are at a maximum (i.e. during the 

cooling phase), while a far smaller impact is expected when temperatures gradients are low (i.e. during the warming phase). 

Second, the reduction in the temperature gradient during the warming phase allows the soil temperatures to equilibrate 

laterally. At locations with more conductive snowpacks (e.g. polygon rims) the soil responds more rapidly to warming air, 

which further reduces the difference between these soil temperatures and those in more insulated locations (e.g. polygon 20 

slopes): this also contributes to the reduction in spatial variability of soil temperatures during the warming phase. 

7.4 Limitations of our approach and perspectives  

In Arctic snowpacks the water vapour flux induced by the steep temperature gradients redistributes ice mass from basal to 

upper snow layers, so that the density of the basal layers may actually decrease unless there is compensation through 

moisture flux from the soil. On the basis of Eq. (7) in Riche and Schneebeli (2013) and snow temperatures simulated with 25 

the WIND+VEG and WIND+VEG+ANISO options, we estimate that about 2 kg m-2 of ice is redistributed at Samoylov by 

this process between October and March. Unless sustained by soil water this flux could lead to a 1.3 cm thick ice-depleted 

layer at the base of the snowpack (assuming a basal density of 150 kg m-3). The magnitudes of soil and snow vapour fluxes 

are not currently well constrained by observations, and they are not represented in detailed snow models such as 

SNOWPACK or CROCUS. To bypass these shortcomings and still produce reasonable SNOWPACK simulations, we 30 

adopted a phenomenological parameterization for the combined effects of snow vapour flux and vegetation on basal snow 
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porosity. On the one hand, our adaptations to SNOWPACK are inherently local, tied to the specific Samoylov conditions, 

and should be verified at other tundra sites comprising co-located snow and soil observations together with a complete set of 

meteorological driving data. On the other hand, neither this approach nor the current observational datasets allow the 

retrieval of any dynamics in basal snow ice-depletion. A considerable uncertainty therefore remains regarding the thermal 

properties of snow in the early winter (cooling) period, when the sensitivity of ground thermal regimes to snow conditions is 5 

at its maximum. This uncertainty, together with uncertainty in the meteorological forcing that cannot be completely 

excluded, also affects our estimates of the thermal impact of snow spatial variability. Continuous monitoring of ice depletion 

at the base of the snowpack, and snow monitoring programs focusing on the early and dark winter periods at well 

instrumented sites (see above), would help to provide better constraints for the thermal characteristics of the snowpack and 

the underlying metamorphic processes at this time, yielding substantial benefits for the next generation of coupled snow-soil 10 

models.  

It also appears indispensable to include a more systematic and comprehensive treatment of anisotropy in snow models than 

the coarse diagnostic based on grain size and type that we have used, with a consistent link between water vapour flux, 

temperature gradient metamorphism, and anisotropy and with feedbacks on the mechanical (Srivastava et al., 2016), thermal, 

and optical properties of the snow. A promising way to further assess the relevance of anisotropy to the conductivity and the 15 

ground thermal regime may be to incorporate remote sensing observations. It has been recently demonstrated (Leinss et al., 

2016) that the depth-averaged anisotropy parameter (Q) of a snowpack can be estimated from polarimetric radar data such 

as, for example, that available from the TerraSAR-X satellite. Such an analysis could be used to produce global maps of the 

average anisotropy of snowpacks, as an indication of their metamorphic state. 

Our combined SNOWPACK and CG3 simulations show a cold bias during and after melt-out. Hydrological processes within 20 

the snowpack related to thaw and rain are known to have an important influence on soil thermal dynamics, as has been 

emphasized in a large number of publications (e.g. Marsh and Woo, 1984a, b; Putkonen, and Roe, 2003; Westermann, 2009). 

In naturally stratified snowpacks, water percolation and the associated heat transfer during early melt periods occur in part 

through "flow fingers", which are preferential infiltration paths through the snow cover that penetrate into the colder 

substrata (snow layers or soil), where they refreeze, releasing latent heat (Marsh and Woo, 1984a, b). This process is known 25 

to delay the bulk melting of the snowpack, while at the same time accelerating soil warming. Progress has recently been 

made in the representation of preferential flow features by applying the Richards equation to water flow within a snow 

matrix (Wever et al., 2015; D’Amboise et al., 2017), but their impact on soil temperatures has not yet been assessed. Snow 

schemes used in permafrost models such as CG3 do not currently represent these processes, inducing significant biases in the 

melt period.  30 

Finally, we assessed the impact of snow spatial variability linked to micro-topography, on the ground thermal regime. Our 

approach disregards the spatial variability in soil properties and soil saturation, which is also related to micro-topography, as 

well as the lateral heat fluxes between different landscape units. Distributed, 3-dimensional simulations that include the 

effect of snow redistribution by wind and spatial variations in soil conditions could, in theory, support a more consistent 
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assessment of spatial variability in soil temperatures. However, they require a considerable amount of in situ data that is 

currently unavailable even at the most instrumented sites (Kumar et al., 2016). Models that have lower degrees of 

complexity but inherently account for spatial variability in snow and soil conditions within a statistical framework (e.g. 

Gisnas et al., 2016) provide a promising alternative and will benefit from the enhanced understanding that we have achieved 

of the links between micro-topography and snow insulation. 5 

8 Conclusion 

Mixing in-situ observations, cold laboratory analysis, and modelling, our work contributed to an improved characterization 

and understanding of the properties and spatial variability of an Arctic polygonal tundra snowpack and its role in shaping the 

underlying permafrost thermal regime during winter. Snow depth, which showed a strong correlation with micro-

topographical features, was found to be a crucial driver of the insulating power of snow over vegetated surfaces. The 10 

proportion of DH in the snowpack, which showed a weaker correlation with micro-topography, introduced a second-order 

control. Water-logged polygon centers in which basal ice forms during winter, were an exception to this rule of thumb due to 

weak DH formation resulting in conductive snowpacks despite intermediate snow depths. 

The CT technique allowed estimates to be made of the thermal conductivity and anisotropy of Arctic snow samples that were 

mainly of depth hoar and wind slabs with rounded grains. The retrieved properties confirmed the validity of a recent 15 

anisotropy and density-based parameterization of Keff-z, that had not previously been tested on Arctic snow samples. A 

comparison with other regressions for Keff-z highlighted the importance of taking anisotropy into account in Keff-z 

formulations, especially for depth hoar.  

Phenomenological adaptations of the SNOWPACK snow model to the Samoylov conditions, related to wind densification 

and the combined effect of basal vegetation and strong water vapour flux in the lower snowpack, enabled the simulation of 20 

snow density and Keff-z profiles in good agreement with our CT estimates. Introducing anisotropy considerations in the 

formulation of Keff-z used in the model resulted in further improvements. These adaptations jointly allowed improved 

simulations of the soil temperatures, providing further support for the soundness of our CT estimates for Keff-z.  

We also estimated the impact of the natural snowpack spatial variability on the underlying permafrost thermal regime during 

an entire winter, based on our Keff-z and density observations and on our understanding of the snowpack dynamics. Beyond 25 

this quantitative estimate, which is intrinsically tied to the local climatology and micro-topography of our site, an important 

conclusion is that the sensitivity of the ground thermal regime to the overlying snow reaches a maximum during the cooling 

winter period, when temperature gradients between atmosphere and soil are at their steepest. It is therefore crucial to better 

constrain the thermal properties of snow and the relevant processes during the first half of the winter, a period that is often 

less well monitored due to the dark and harsh winter conditions.  30 

Finally, our study pinpointed processes that exert an important control on the ground thermal regime of tundra regions while 

being neglected in the snow schemes of general circulation models or earth system models (e.g. Wang et al., 2013): the 
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effect of wind compaction and DH growth on the insulating power of tundra snow, as well as the enhanced extinction of 

solar radiations in by dense wind-crusts within the snowpack. This suggests possible ways to improve snow representation 

over the Arctic regions in these models, of benefit for permafrost-related processes. 

 

  5 
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9 Figures and Tables 

Figure 4: Location of the Samoylov permafrost observatory within the continuous permafrost zone, Lena River Delta (a, b); 

instrumentation and observations in the reference polygon (c); cast CT sample (d); and NIR image of a transect’s wall with the 

upper boundary of the DH layer delineated (e). See main text for abbreviations. 
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Figure 5: Meteorological, snow and soil conditions at Samoylov over the 2012-2013 snow season. 
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Figure 6: (a) Grain shape, density and Keff-z profiles from the four CT sites. Density and Keff-z values are represented by piecewise 

constant functions over the layers where the CT analysis was performed; these segments are connected by a dashed line as a guide 

to the eye. Symbols for the grain shapes originate from Fierz et al. (2009). When several grain shapes coexist within a layer, the 

dominant type is listed first. (b) Boxplots of density and Keff-z for individual DH layers (11) and rounded grain (RG) layers (8) 5 
found within the CT profiles. RG shapes were occasionally associated with faceted crystals and decomposing and fragmented 

precipitation particles.  
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Figure 7: Mean composition (a) and median characteristics (b) of the Samoylov snowpack in the four micro-topographic classes. 

These statistics include the observations from the 16 snowpits and the four CT sites. DH ratio is the DH thickness-to-total snow 5 
depth ratio, also called 𝜶  in the manuscript. The abbreviations for the main grain types come from Fierz et al. (2009): 

PP=precipitation particles, DF=decomposing and fragmented precipitation particles, RG=rounded grains, FC=faceted crystals, 

DH=depth hoar, DHch=chains of DH, MF=melt forms. 

 

  10 

b. 

a. 
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Figure 8 : a. Comparison between estimates of 𝑲𝒆𝒇𝒇 or 𝑲𝒆𝒇𝒇−𝒛 made with the CT method (𝑲𝒆𝒇𝒇−𝒛
𝑪𝑻 ), and estimates made using 

parameterization “X” (𝑲𝒆𝒇𝒇
𝑿 , where X=C2011, R2013 or L2013: see manuscript for description of these parameterizations). b. 

Relative bias in 𝑲𝒆𝒇𝒇
𝑿  with respect to 𝑲𝒆𝒇𝒇−𝒛

𝑪𝑻  as a function of the anisotropy parameter Q. Each point represents a snow sample 5 

analysed by CT in this study. 
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Figure 9: SNOWPACK grain shapes in the 4 simulation setups. In addition to the colour code, the grain shapes from early April to 

the time of the snow campaign were coded using the symbols from Fierz et al. (2009). 

 5 
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Figure 10: Observed and simulated density and Keff-z profiles on 20-04-2013. Observations (OBS) are the estimates made using the 

CT method at the three CT sites with basal vegetation; grain shape is indicated on the plot for the CT grass-center site. 

Simulations (MODEL) were made with the four SNOWPACK setups; grain shape is indicated at the side for the 

WIND+VEG+ANISO setup. 5 
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Figure 11: Simulated vs. observed soil temperatures at depths of 5 cm, 20 cm, and 50 cm in the reference polygon's grass-center. 

OBS-variability (grey shading) is the envelope of observed soil temperatures from the monitored rim, center, and slope soil sites. 

The winter phases from Sect. 5.2 have been reported. 
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Figure 12: As for Fig. 8 but with radiative transfer in snow switched off and the air-layer scenario added to the 

WIND+VEG+ANISO option.  

 

 5 

Figure 13: Simulated and observed soil temperature variability (in °C) at 5 cm depth. Observed soil temperatures at rim, center 

and slope locations in the reference polygon are overlain.  
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Table 1: Nash-Sutcliff model efficiency criteria (Nash and Sutcliff, 1970) between the soil temperature simulations and 

measurements at different depths in the grass-center of the reference polygon. 

Depth 

setup 

5 cm 20 cm 40 cm 

DEFAULT 0.72 0.70 0.66 

WIND 0.96 0.97 0.98 

WIND+VEG 0.95 0.95 0.94 

WIND+VEG+ANISO 0.96 0.97 0.97 

 

Table 2: End-of-season properties for DH and wind-slabs.  5 

 DH Wind-slabs 

Density (kg m-3) 225 360 

Keff-z (W m-1 K-1) 0.20 0.36 
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Code availability 

The adaptations to SNOWPACK used in this study are not included in the SNOWPACK distribution but the description 

provided in the manuscript allows the simulations to be reproduced in their entirety. 

Data availability 

Meteorological and snow depth data are available at https://doi.org/10.1594/PANGAEA.879341. 5 

Appendices 

Appendix A: Regression of anisotropy parameter Q to grain size 

A.1 Regression of Q to optical diameter in data from Löwe et al. (2013) 

 

Figure A1: Regression of anisotropy parameter Q to optical diameter d within snow type classes in data from Löwe et al. (2013). 10 

  

https://doi.org/10.1594/PANGAEA.879341
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Table A1: Regression coefficients for Fig. A1. All data within a snow type class were fitted to QREG=a*d + b, where d is given in 

mm. When several grain types coexist, the dominant type is listed first. 

Snow type a [1/mm] b [-] R2 
PP -0.9631 0.3775 0.9954 
DF  0.2450  0.2372 0.3981  
RG  0.1250  0.2619 0.1872 
FC 0.1132 0.2880 0.4356  
DH 0.1620 0.2895 0.4645 
MF 0.3733  0.1354 0.9155 

All 0.1930  0.2587 0.4330 

 

A.2 Regression of Q to SNOWPACK grain radius, used in the ANISO adaptation 

  

 

In the ANISO adaptation, Q is parameterized as a function (QANISO) of SNOWPACK grain radius (rg) for each of the FC, DH 5 

and RG snow type class: 

𝑄𝐴𝑁𝐼𝑆𝑂(𝑟𝑔) =
𝑄𝑅𝐸𝐺(𝑑𝑚𝑎𝑥)−𝑄𝑅𝐸𝐺(𝑑𝑚𝑖𝑛)

𝑟𝑔𝑚𝑎𝑥−𝑟𝑔𝑚𝑖𝑛
. (𝑟𝑔 − 𝑟𝑔𝑚𝑖𝑛) + 𝑄𝑅𝐸𝐺(𝑑𝑚𝑖𝑛)   (A1) 

Figure A2: Evolution of Q as parameterized in SNOWPACK ANISO adaptation. 
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where rgmax and. rgmin are the maximum and minimum values of rg possibly achieved in SNOWPACK for the given snow 

type class (see Table A2), and dmax and dmin the maximum and minimum values of d obtained in the data from Löwe et al. 

(2013) in the given snow type class. 

Because SNOWPACK features a continuum between FC and DH grain radii, both grain type classes were merged in the 

ANISO adaptation by using and QREG(dmax) from DH and QREG(dmin) from FC in Eq. (A1) (see Fig. A2).  5 
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Table A2: Parameters of the ANISO adaptation; Eq. (A1) 

Snow type 𝑟𝑔𝑚𝑖𝑛(mm) 𝑟𝑔𝑚𝑎𝑥 (mm) 𝑄𝑅𝐸𝐺(𝑑𝑚𝑖𝑛) 𝑄𝑅𝐸𝐺(𝑑𝑚𝑎𝑥) 

RG 0.1 0.5 0.28 0.34 

FC  0.1 1 0.32  

DH 1 5  0.39 

FC and DH 0.1 5 0.32 0.39 

Appendix B: Construction of snow depth, DH height, Keff-z and Rth time-series at the transect data points 

A visual estimate of the DH thickness and total snow depth was made at each of the 31 transect points (pt), based on the NIR 

image from date t2=2013-04-20 (estimated accuracy +/- 0.5 cm). 

The following assumptions were made in the construction of DH thickness and snow depth (HS(t)) time-series over the 5 

entire snow season consistent with observations made at date t2:  

 The snow depth was assumed to build up in a spatially homogeneous manner until date t1=2012-10-31 

(confirmed by time-lapse photographs of the reference polygon). All 31 data points were therefore attributed 

the same snow depth until that date (i.e. the corrected snow depth (HS50(t) measured by the SR50 sensor). 

Erosion-deposition processes subsequently lead to different accumulations (HSpt) at each point along the 10 

transect. Do to the shortage of data, we linearly scaled HS50(t) that matched the end-of-season snow depth 

(𝐻𝑆𝑝𝑡(𝑡2)) for each point:  

𝐻𝑆𝑝𝑡(𝑡 > 𝑡1) = 𝐻𝑆𝑆𝑅50(𝑡1) +
𝐻𝑆𝑝𝑡(𝑡2)−𝐻𝑆𝑆𝑅50(𝑡1)

𝐻𝑆(𝑡2)−𝐻𝑆𝑆𝑅50(𝑡1)
. (𝐻𝑆(𝑡) − 𝐻𝑆𝑆𝑅50(𝑡1))                              (A2) 

 We also considered a homogeneous DH build-up until t1: we used the DH build-up from the 

WIND+VEG+ANISO simulation for all transect points until t1. For t>t1, we considered the DH thickness at 15 

each transect point to increase linearly to its end-of-season value. An exception was made when the observed 

end-of-season DH thickness was less than the modelled DH thickness at t1: in this case we considered the DH 

thickness to remain constant after its end-of-season value had been reached in the SNOWPACK simulation. 

The constructed snow depth and DH thickness time series are illustrated in Fig. B1. 

 20 
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Figure B1: Constructed snow depth and DH thickness time-series for each transect point. As in the manuscript, 𝜶 is the DH-

thickness to total snow depth ratio at time t2. 

Applying the 2-layer approach to the snow depths and DH thickness time-series using the snow properties described in the 

text (Sect. 6) leads to the Keff-z and Rth ensembles illustrated in Fig. B2. 5 

 

Figure 14: Simulated Keff-z and Rth time-series at the 31 transect data points. Overlain are the bulk properties estimated at the rim, 

slope and grass-center CT sites. 
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Appendix C: Thermal gradient between air and soil (5 cm depth) 

 

Figure C1: Temperature gradient between air and soil (5 cm depth) at the grass-center of the reference polygon. 
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