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Abstract. Bayesian hierarchical modeling can assist the study of glacial dynamics and ice flow properties. This approach

will allow glaciologists to make fully probabilistic predictions for the thickness of a glacier at unobserved spatio-temporal

coordinates, and it will also allow for the derivation of posterior probability distributions for key physical parameters such

as ice viscosity and basal sliding. The goal of this paper is to develop a proof of concept for a Bayesian hierarchical model

constructed, which uses exact analytical solutions for the shallow ice approximation (SIA) introduced by Bueler et al. (2005).5

A suite of test simulations utilizing these exact solutions suggests that this approach is able to adequately model numerical

errors and produce useful physical parameter posterior distributions and predictions. A byproduct of the development of the

Bayesian hierarchical model is the derivation of a novel finite difference method for solving the SIA partial differential equation

(PDE). An additional novelty of this work is the correction of numerical errors induced through a numerical solution using a

statistical model. This error correcting process models numerical errors that accumulate forward in time and spatial variation10

of numerical errors between the dome, interior, and margin of a glacier.

1 Introduction

The shallow ice approximation (SIA) is a nonlinear partial differential equation (PDE) that describes ice flow when glacier

thickness is relatively small compared to the horizontal dimensions. Derived from the principle of mass conservation, the

SIA PDE depends on two key physical parameters: ice viscosity and basal sliding (sometimes described as basal friction or15

drag). The primary objective of this paper is to develop a Bayesian hierarchical model (BHM) for glacier flow utilizing the

framework espoused by Wikle (2016) and Cressie and Wikle (2015), which allows one to: 1) infer ice viscosity and basal

sliding parameters and 2) make probabilistic predictions for glacial thickness at unobserved spatio-temporal coordinates. This

BHM relies upon a finite difference scheme for solving the SIA that is inspired by the Lax-Wendroff method (Hudson). To

validate this BHM, we utilize exact analytical solutions from Bueler et al. (2005). Hence, in addition to the development of a20

BHM for shallow glaciers, this paper serves as a case-study for the strategy of using exact analytical solutions to validate or

tune BHMs governed by physical dynamics. Moreover, the BHM developed can be applied to the general “physical-statistical"
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problem (Berliner, 2003). This BHM is verified and diagnosed through a combination of assessments of posterior probability

intervals, checks of predictive accuracy for glacial thickness prediction, and a comparison between observed and expected

errors due to the numerical solution of the SIA.

1.1 An Overview of Bayesian Modeling and BHMs

Before describing how BHMs are used in physical-statistical models, particularly for geophysical problems, a very terse5

overview of Bayesian modeling and Bayesian hierarchical modeling is given for the uninitiated reader. A main component

of Bayesian statistics is the use of probability distributions to model parameters thought to be fixed quantities (i.e., scientific

constants); this assumption allows one to use rules of conditional probability (i.e., Bayes’ theorem) to derive probability dis-

tributions for scientific quantities of interest, such as physical constants or predictions of future quantities of a system being

studied. Typically, the major assumptions required as input to the analysis are prior distributions for parameters as well as a10

probabilistic model for the data. The output is a probability distribution for parameters or predictions conditional on data that

has been collected or observed; canonically, this is referred to as the posterior distribution.

A BHM is a Bayesian model in which the probabilistic model for data is specified in a hierarchy. Working with such a hierar-

chy has a number of advantages – it is usually easier to conceptualize the probabilistic model for the data, and it is also easier to

model various parts of a system of interest modularly instead of all at once. Such an approach is conducive to the construction15

of a probabilistic model that tightly corresponds to a scientific system of interest, which is naturally thought of in separate

components or modules. In a BHM, the rules of conditional probability can be used to specify the relevant distributions. For

example, let us consider a mock system that has parameter vector θ, an intermediate unobserved vector S, and observations Y .

θ might be statistical or physical parameters, S could be a quantity of scientific interest, and Y could be noisy observations of

S. A schematic for such a model is given in Figure 1, and the joint probability distribution is p[Y,S,θ] = p[θ]p[S|θ]p[Y |S,θ].20

The distribution p[θ] represents prior beliefs about parameters before data is collected, while p[S|θ] represents prior knowledge

or assumptions for how S is generated given parameters. For instance, this prior knowledge could entail clustering or some de-

pendence between the elements of S. The process that models Y conditional on S and θ is p[Y |S,θ]. The posterior distribution

of scientific quantities of interest, P [θ,S|Y ], is proportional to p[Y,S,θ] by the definition of conditional probability. Estimates

and assessments of uncertainty of scientific parameters and quantities can be extracted from the posterior distribution.25

1.2 An Overview of Physical-Statistical Modeling with BHMs

The case for applying Bayesian hierarchical modeling and methodology in geophysics is strongly made by Berliner (2003),

which he describes as “physical-statistical modeling". Particularly, employing the Bayesian hierarchical approach has the pri-

mary advantage of incorporating all relevant sources of uncertainty and randomness into one coherent probabilistic framework.

The sources typically modeled together are: 1) measurement errors in the data collection process, 2) lack of full knowledge of30

the precise functional form of the underlying physical equations describing the physical phenomenon being modeled, or else

simplification of the physical system description 3) numerical errors induced while approximating the solution to a system of

partial differential equation PDEs, and 4) lack of precise knowledge of fundamental parameters (constants) in the underlying
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Figure 1. Schematic of a simple Bayesian hierarchical model.

PDEs describing said phenomenon. In the Bayesian hierarchical framework (Wikle, 2016; Cressie and Wikle, 2015), each of

these sources of uncertainty is modeled by conditioning on the appropriate quantities, and inference is performed by sam-

pling from or approximating the posterior distribution (the distribution of the unknown quantities of interest conditional on the

observed data).

At the highest level of a BHM, prior probability distributions are laid out for the physical parameters of interest. At the5

intermediary level, a probability distribution for the physical process of interest is laid out conditional on the parameters,

which is typically motivated by a numerical scheme for solving PDEs. In particular, this level may be modeled as the sum of

the output from a numerical solver and an error correcting process. Finally, at the observed level, a probability distribution is set

forth for the observed data conditional on the latent physical process and other relevant measurement parameters, which include

variances of measuring procedures or devices. The product of these probability distributions specifies the joint distribution of10

all relevant quantities, which is proportional to the posterior distribution by the definition of conditional probability. While a

traditional analysis may handle each of these disparate sources of uncertainty in an ad-hoc and disjointed fashion, the Bayesian

hierarchical approach leverages probability measures to cohesively model major sources of uncertainty and undertake inference

in a principled manner. Figure 2 diagrams what a prototypical physical-statistical Bayesian hierarchical model might look like.

To put the contributions of this work into context, we briefly review glaciology papers that have employed Bayesian mod-15

eling. In Berliner et al. (2008), a Bayesian hierarchical approach is used to model ice streams in one spatial dimension. A

combination of Markov chain Monte Carlo (MCMC) and empirical Bayes methodology is used to fit the model, and basal

shear stress and resistive stresses are included. Furthermore, wavelets are used for dimensionality reduction purposes so as to

make the computations more feasible. In Pralong and Gudmundsson (2011), a Bayesian model is constructed for an ice stream

where the likelihood and prior are Gaussian. The observed data are surface topography, horizontal and vertical surface veloc-20

ities, and the latent system state is basal topography and slipperiness. The goal is to infer the system state given the observed

data, and ultimately a maximum a posteriori (MAP) point estimate is used for inference in conjunction with an iterative method

for posterior maximization. Physics is incorporated by solving for the steady state solution with a finite element method (FEM)

solver, given the system state. In Brinkerhoff et al. (2016) a flowline model of the SIA is considered with vertically integrated
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Figure 2. Schematic of a prototypical physical-statistical Bayesian hierarchical model.

velocities. Gaussian process priors are used for all unknowns, and the Metropolis–Hastings algorithm is used to fit the model.

The approach yields convincing results in simulations and a real data set. In Isaac et al. (2015), numerical methods are presented

for solving a nonlinear Stokes equation boundary value problem for an ice sheet in Antarctica. The method ultimately uses a

low rank approximation to a covariance matrix for the posterior distribution of a basal parameter field. Finally, and perhaps

most directly related to this research, in Minchew et al. (2015) interferometric synthetic aperture radar (InSAR) is used to de-5

termine velocity fields at Langjökull and Hofsjökull in early June 2012. The velocity directions match the surface gradient, but

magnitudes do not appear to coincide with the theoretical predictions of other authors (likely due to the inappropriate modeling

of basal sliding).

The main differentiating contribution of this paper is to utilize the exact analytical solutions from Bueler et al. (2005) to

evaluate the BHM employed. An additional novelty is the derivation and utilization of a novel finite difference method for10

solving the SIA PDE that operates in two spatial dimensions; consequently, the Bayesian model employed also operates in two

spatial dimensions, in addition to time. Finally, we explicitly model the errors due to a numerical solver with a spatio-temporal

statistical process, which accounts for different scales of spatial variability within the dome, within the interior, and within the

margin of the glacier, as well as accumulation of numerical errors forward in time.
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2 Description of Models

2.1 Shallow ice approximation

The physics of glaciers is an extensive topic; hence, only the portions which are most relevant to this paper are described. The

reader is pointed to the comprehensive works by Cuffey and Paterson (2010) and van der Veen (2017) for further reading on

the subject. PDEs for glaciers are derived from the following considerations. First, glaciers are modeled as very slowly moving5

and viscous fluids. By applying the principle of mass conservation, the net ice flux moving in or out of an infinitesimal column

of the glacier located at some spatial coordinate, plus the net mass change due to precipitation or melting, yields the change in

the height of the column over an infinitesimal time interval. Such a heuristic argument provides a PDE in two dimensions for a

glacier, with averaged velocities in two spatial dimensions. The PDE relates the time derivative of the thickness of the glacier

to the flux and net mass change (i.e., mass balance). The main assumptions are that ice is isotropic and homogeneous, and also10

that longitudinal and transverse stress terms can be ignored, which is reasonable when the overall thickness of the glacier is

small in comparison to its width. Under these assumptions, the velocity of the ice is made up of two additive components. The

first component of the velocity is based upon deformation due to gravity, which acts in the direction of steepest descent of the

surface and is a function of the ice viscosity parameter. The second component of velocity also acts along the gradient of the

glacier surface and is a function of the basal sliding parameter field. The formulations stem from Glen’s flow law (Glen, 1955,15

1958) and Weertman’s sliding relation (Weertman, 1964).

Written in terms of glacial thickness, H(x,y, t), the SIA PDE is:

Ht = −[ūH]x− [v̄H]y + ḃ.

−[ūH]x = −[−C0γ(−ρgH[H +R]x)H +
2B
n+ 2

(ρgα)n−1Hn+1(−ρgH[H +R]x)]x

−[v̄H]y = −[−C0γ(−ρgH[H +R]y)H +
2B
n+ 2

(ρgα)n−1Hn+1(−ρgH[H +R]y)]y20

α =
√

[H +R]2x + [H +R]2y

Here H(x,y, t) is the thickness of the glacier at spatial coordinate (x,y) and time t, ū is the average velocity in the x direction

and v̄ is the average velocity in the y direction. This model is vertically integrated, and hence only two spatial dimensions are

modeled. R(x,y, t) is the bedrock elevation which is assumed to be constant in time, so it can be written as R(x,y); ḃ(x,y, t)

is the mass balance field, B and C0γ are physical parameters governing the viscosity and basal sliding; ρ governs the mass25

density of the ice; and finally n is Glen’s flow law constant, typically set to 3. Initial conditions (i.e., H(x,y,0)) are assumed

to be given, and the boundary condition H ≥ 0 is assumed, just as in Table 2 of Bueler et al. (2005). Additional derivations and

details on the SIA are covered in a variety of sources, including Fowler and Larson (1978), Hutter (1982), Hutter (1983), and

Flowers et al. (2005).

It is important to make explicit that there are some limitations of this PDE. Besides ignoring longitudinal and transverse30

stress terms, the PDE does not model subglacial hydrology, tunneling systems, jökulhlaups, or surges, the dynamics of which

are believed to contribute to dynamics of glaciers as a whole. Nonetheless, one hopes these equations may serve as a first
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approximation for shallow glacier dynamics. In addition to dynamics, another important physical consideration of glaciers

is the relationship between temperature and viscosity, which follows an Arrhenius relationship (Cuffey and Paterson, 2010).

However, in the context of Icelandic glaciers like Langjökull, this is not consequential since they are temperate (i.e., their

temperature is at melting point).

2.2 Bayesian hierarchical model5

In this section, we provide an overview and set–up of the BHM employed in addition to notation for the key parameters,

both statistical and physical. The reader is referred, however, to Table 1 for a summary of the model parameters utilized and a

schematic illustrating the BHM in Figure 3. We use index i to refer to spatial coordinates (for this model space is assumed to be

discretized into squares) and index j to refer to time coordinates. Furthermore, the notation S.,j refers to the surface elevation

at all spatial coordinates for a particular time index j. Keeping in line with the Bayesian hierarchical modeling framework10

from Wikle (2016) and Cressie and Wikle (2015), we delineate the models used for the data level, process level, and parameter

level. The primary inferential goals are to infer physical process parameters (i.e., ice viscosity and basal sliding) and to predict

the height of the glacier at various time points and spatial locations besides those that have been observed (aligned to a grid

for which we have bedrock and initial surface height conditions). Within the Bayesian framework, all inferential goals may

be achieved by determining the posterior distribution of these quantities (i.e., their probability distributions conditioned on15

observed data).

At the data level, the observed height for each grid point is modeled with a normal distribution (denoted with the notation

N(µ,τ2), where µ is the mean and τ2 is the variance), where the mean is the physical process value, and the variance is assumed

to be known. That is, Yij ∼ N(Sij ,σ
2). Here, Yij is the observed surface elevation of the glacier at location i and time index j,

Sij is the latent (i.e., unobserved) surface elevation at location i and time index j (equivalent to sum of the glacier thickness and20

bedrock level), and σ2 is the variance of the measurement errors for the surface height observations. The number of observed

spatial indices is assumed to be much smaller than the number of total spatial indices modeled at the latent level.

At the process level, S.,j ∼ f(S0,B, ḃ,C0γ,j)+Xj , where f is a numerical solution to the SIA at time index j, andXj is an

error-correcting process at time index j. A finite difference version of the SIA PDE is described in full detail in Appendix A. In

principle, however, the function f may be derived from other numerical solvers. Also, S0 denotes the glacier surface elevation25

values at the initial time point, which are assumed to be known; e.g., with high precision light detection and ranging (LIDAR)

initial conditions provided by the Institute of Earth Sciences at the University of Iceland. ḃ.,j is the mass balance field for time

index j at all the grid points, which is assumed to be fixed and known for the purpose of this analysis. B is the ice viscosity

parameter and C0γ is the basal sliding field, which itself is parametrized with µmax as in equation (16) of Bueler et al. (2005)

and, furthermore, is static in time. For compact notation, θ is used to refer to B in test cases B-D and (B,µmax) jointly in test30

case E.

Since we believe numerical errors will accumulate over time (Bueler et al., 2005), we define the error correcting process

as follows: Xj+1 =Xj + εj+1, where εj+1 is MVN(0,Σ). (MVN stands for multivariate normal, and the first argument is

the mean and the second is the covariance.) Σ is block diagonal, with three blocks for indices corresponding to the margin,
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interior, and dome of the glacier (the margin is defined as the last grid squares before the glacier drops to 0 thickness, and

the dome is the origin grid square), respectively. Each block is defined from a square-exponential kernel with the same length

scale, denoted by φ, but distinct marginal variances, σ2
interior, σ

2
margin and σ2

dome. The motivation for using different marginal

variance parameters is to account for the widely different errors exhibited at the dome, interior, and margin, as is demonstrated

by Bueler et al. (2005) and Jarosch et al. (2013). This error correcting process leads to a tractable likelihood function, as is5

shown in the next section.

Finally, at the parameter level, B and µmax are endowed with truncated normal distributions as priors. B has a normal

prior with mean 3.5× 10−24, standard deviation 3× 10−24, truncated to have support [1,70]× 10−24. µmax has a normal prior

with mean 3× 10−11 and standard deviation 1× 10−11, truncated to have support [1,70]× 10−12. (Units are s−1Pa−3 for ice

viscosity and Pa−1ms−1 for basal sliding.) These are plausible values for temperate ice caps.10

It is prudent to discuss the motivations and justifications of the various modeling choices employed in the model previously

delineated. The data level is assumed to have independent normal errors with fixed variance; this is justified because of the

uniformity of the measuring technology used from site to site (e.g., digital GPS) and symmetry of errors. On the other hand, the

precise functional form of the data level is chosen somewhat arbitrarily as a Gaussian, which affords one analytical convenience.

Similarly, the error correcting process at the process level uses a zero mean Gaussian process with a parameterized covariance15

kernel (e.g., square exponential), mostly as an analytically manageable way to induce spatial correlation in the error correcting

process. Spatial correlation in numerical errors has been demonstrated, for example, in Bueler et al. (2005).

Moreover, it is appropriate to consider potential variations of this model for slightly different scenarios; naturally, these could

fall into: alternate choices of covariance kernel at the process level (e.g., Matérn, to allow for a less smooth error correcting

process) and varying errors at the data level, for example to account for compaction or densification that occurs between20

seasons. For the latter, a suggestion is to use conjugate inverse-gamma distributions for the variances, so that sampling can be

accomplished with a Gibbs sampler. Additionally, as aforementioned, one can conceivably use any numerical solver for a PDE

at the process level. Future variations may consider utilizing non-zero mean Gaussian processes for the error correction process,

which may be more computationally costly yet perhaps more realistic. Generally, this model can be adapted to any science

or engineering system that is driven by physically meaningful parameters, whose dynamics are solved by noisy numerical25

methods, and for which noisy and continuous data is collected with well probed errors.

The mathematical details for how to do posterior computation within this model are given in Appendix B, which includes

a derivation of an approximation to the log-likelihood that allows for computational efficiency. In summary, we compute the

posterior of physical parameters directly on a grid since there are at most two physical parameters, and we use samples from

the posterior distribution of physical parameters to generate predictions for glacier thickness in the future.30
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Parameter Name Symbol Description

Time index j A subscript which refers to discrete time points

Spatial index i A subscript which refers to discrete spatial points

All spatial points for a time index ., j Refers to entire spatial field at time j

ice viscosity B Key physical parameter driving the SIA

Basal sliding C0γ Basal sliding field and key parameter driving the SIA

Max basal sliding µmax Parameter for the basal sliding field of test case E in Bueler et al. (2005)

Physical parameters θ Refers to physical parameters

Measurement error σ Measurement error of surface elevation measurements

Error correcting covariance matrix Σ Covariance matrix used for the error correcting process

Error correcting parameters (σdome,σinterior,σmargin,φ) Parameters corresponding to Σ

Mass balance field ḃ.,j Mass balance field at time index j

Initial surface elevation S0 Initial surface height of the glacier

Table 1. A summary of main parameters and notation utilized.

3 Experiments to assess the Bayesian hierarchical model

3.1 Analytical solutions

In Bueler et al. (2005), analytical solutions to the SIA are presented as benchmarks for numerical solvers of the SIA. As opposed

to using other benchmarks such as the EISMINT experiment (Payne et al., 2000), which itself is based on numerical modeling

and hence subject to numerical errors, the benchmark solutions provided in this work can be treated as ground truth to compare5

to. (This is in the sense that these are exact solutions of the SIA, but it must be stressed that the SIA is an approximation of

the true physical dynamics governing a glacier.) These analytical solutions serve as a basis for simulating data sets to validate

the Bayesian hierarchical approaches developed in this paper. In other words, the exact analytical solutions provide the latent

process in the BHM, conditioning on given initial conditions and mass balance functions. Hence to simulate data from the

BHM, one can bypass the need to numerically solve the PDE and introduce errors.10

We make use of four analytical solutions from Bueler et al. (2005) that are summarized here, but the reader is referred to the

original paper for the exact mathematical formulation and derivation of these analytical solutions. All of the analytical solutions

assume a flat bedrock. Test case B includes no mass balance or basal sliding, and, consequently, the motion of the glacier is

only attributable to deformation due to gravity. Test case C makes use of a mass balance field that is inversely proportional to

time and directly proportional to thickness, but there is no basal sliding field modeled. Similarly, test case D utilizes a mass15

balance field with no basal sliding field modeled. In distinction from test case C, however, the mass balance field of test case

D is such that the overall solution for glacial thickness is periodic in time. Finally, in contrast to the other tests, test case E has
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 θ Parameter Level: Ice viscosity and basal sliding.

f(θ,j,S_0,b) Numerical solver for the SIA PDE.

        t_0           t_0+△t   t_0+2△t       t_0+3△t   t_0+4△t   t_0+5△t   ……         t_0+T△t

        t_0           t_0+△t   t_0+2△t       t_0+3△t   t_0+4△t   t_0+5△t   ……         t_0+T△t

X_j, Σ Error correcting statistical model.

Time

Time

S_j Physical Process Level: Glacier thickness values at discrete time points.

        Y_0                                                                                   Y_5         …..            Y_T

Y, σ Data Level: Glacier thickness at regularly spaced time intervals and sparsely sampled and fixed spatial locations.

Figure 3. Schematic of the physical-statistical BHM that has been constructed based on the SIA PDE. The main parameters and variables

for each module of the physical-statistical model are highlighted in red.

a spatially varying basal sliding field, yet the overall solution is static in time. Note that test A was not utilized in this study

because it is a steady state solution without a varying mass balance or basal sliding field.
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3.2 Simulation study test details

Conditions of the simulation study have been chosen as to closely emulate the data collected at Langjökull ice cap by the

Institute of Earth Sciences at the University of Iceland (IES-UI). In particular, 20 years of data are assumed, which is compa-

rable to data provided by the IES. 25 fixed measurement sites are used for bi-annual surface elevation measurements, which

are geographically distributed on the glacier in a manner that is comparable to the real data provided by the IES-UI. Surface5

elevation measurements for these sites are taken twice a year (i.e., for summer and winter mass balance measurements). The

surface elevation measurements are generated by adding Gaussian noise (zero mean, unit variance) to the analytical solutions

at the spatio-temporal coordinates of the fixed measurement sites. The choice of unit variance is larger than the errors produced

by digital-GPS measurements. Remaining physical parameters were chosen using the values from Bueler et al. (2005) Table 2

to allow for comparisons to this work and the EISMINT I experiment (Payne et al., 2000).10

4 Results

Validation and diagnostics of the BHM were achieved through a combination of an assessment of posterior probability intervals,

a test of the predictive error of thickness values 100 years from the initial time point t0, and a comparison between observed

and expected values for numerical errors based on the error correcting process utilized. As is discussed in more detail below,

these assessments suggest that the BHM is useful for inference of posterior probability distributions for physical parameters,15

prediction of future glacial thickness values on the order of 100 years, and the modeling of numerical errors at the margin,

interior, and dome of the glacier.

Table 2 contains posterior credibility intervals for ice viscosity in test cases B-D. Similarly to Brinkerhoff et al. (2016), the

.99 posterior credibility interval was computed by taking 3 standard deviations below and above the maximum a posteriori

estimate (MAP) of the posterior samples. In all of these test cases, the .99 posterior credibility interval covers the actual ice20

viscosity. Furthermore, as is apparent in Table 3, the predictive error, relative to thickness values on the order of a kilometer,

appears be small overall, particularly at the interior; predictive error is the root mean squared difference between predictions

and the exact analytical values for each of the test cases. Note that test E was not included with the predictive checks since

it is static in time. Consistent with Bueler et al. (2005) and Jarosch et al. (2013), however, errors are greatest at the margin

and dome of the glacier (evident in Figure 5). Nonetheless, the predictive distributions cover the actual thicknesses even at25

these extremes. This illustrates the utility of the BHM for accounting for errors induced by the numerical solution of the SIA.

Additionally, an illustration comparing the posterior and prior distributions for test case D is shown in Figure 6.

To investigate the frequentist properties of the posterior probability distribution for ice viscosity (i.e., its performance under

repeated sampling of data), 500 simulations were completed under repeated sampling of the surface elevation data at the 25

fixed measurement sites for test cases B-D. The coverage of ice viscosity for a .99 credibility interval was computed for each30

of the simulations, where coverage for a given interval is binary; either the actual parameter value is in the interval or it is not.

The proportion of .99 posterior credibility intervals that contained the actual viscosity was at least 99 percent, indicating that

posterior intervals have the stated coverage probability.
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For test case E, one assumes that the field is described by parameterized equation (16) of Bueler et al. (2005). That is, in

polar coordinates with radius r and angle Θ:

C0γ(r,Θ) =
µmax4(r− r1)(r2− r)4(Θ− θ1)(θ2−Θ)

(r2− r1)2(θ2− θ1)2

for θ1 <Θ< θ2 and r1 < r < r2, and C0γ = 0 otherwise. In addition to ice viscosity, the inferential object of interest is the

scale parameter µmax. The .99 posterior credibility interval for B is (4,43) in units of 10−25s−1Pa−3, and for µmax it is (1,46)5

in units of 10−12Pa−1ms−1. The actual values for B and µmax are 32× 10−25s−1Pa−3 and 25× 10−12s−1Pa−1ms−1,

respectively. Hence, the credibility intervals cover both parameters.

To assess the accumulating error-correcting process model, we estimated the marginal variances of the error correcting

process for each of the time points with observed data in test case B, by examining the residuals formed by the difference

between the numerical solver and the observed data. According to the model, the standard deviation of these residuals at the10

interior of the glacier should grow as
√
σ2 + tσ2

interior, where t is the number of time steps (and likewise at the dome and

margin). Figure 7 shows a match between observed and expected in this regard, and, in particular, the 99 percent confidence

bands appear to cover the expected variability as time progresses. Also apparent from this figure is that, as time progresses,

the errors at the margin, dome, and interior contribute more error than measurement error, which is on the order of 1 meter.

Moreover, this is also evident in Table 4, since after 200 time steps from t0 (i.e., 20 years), the marginal variances will be15

200σ2
interior, 200σ2

margin, and 200σ2
dome based on the accumulating errors model; all of these values exceed 1, the measurement

variance.
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Figure 4. Grid map used to interpret the following box-plots in Figure 5. Eight randomly chosen grid points are selected. Only one quadrant

of the glacier is shown due to symmetry as is done in Figures 9,10, and 12 of Bueler et al. (2005), and the width of each cell is 105m.

Additionally, the red squares indicate locations at or close to the margin, the blue squares indicate locations that are between the dome and

margin of the glacier, and the black squares indicate locations at or close to the dome of the glacier. Moreover, glacier grid squares with

non-zero thickness are shaded in grey, as to indicate the glacier location.
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Figure 5. Thickness prediction samples 100 years from t0 for test case B. Triangles indicate the actual thickness values from the analytical

solution. The first set of plots are close to the margin (red squares of Figure 4), the second set of plots are between the dome and margin

of the glacier (blue squares of Figure 4), and the final set of plots are towards the dome of the glacier (black squares of Figure 4). Refer to

Figure 4 for a grid map to spatially reference each of the boxplots. As can be expected according to Bueler et al. (2005), largest errors occur

at the dome and the margin. Note on interpretation: the middle of each box is the median, the interquartile range is denoted by the box, and

1.5 of the interquartile range is illustrated with the whiskers.
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Figure 6. Comparison of posterior and prior distributions of ice viscosity for test case D.
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Figure 7. An illustration comparing the expected variability of the error correcting process (as per the Bayesian hierarchical model) to the

observed variability of residuals at the interior, margin, and dome for test case B. These residuals are the differences between the observed

data and the numerical solution.
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Test Case Actual Viscosity .99 Credibility Interval

Bueler B 32 [6,34]

Bueler C 32 [4,33]

Bueler D 32 [13,42]

Units 10−25 s-1Pa-3 10−25s-1Pa-3
Table 2. Ice viscosity posterior intervals.

Test Case Absolute Dome Error Interior RMSE Margin RMSE

Bueler B 66 20 75

Bueler C 76 22 82

Bueler D 1.4 17 49

Units m m m
Table 3. Results of prediction at t0 + 100 years.

Test Case σ2
dome σ2

interior σ2
margin φ

Bueler B 1 .1 15 71

Bueler C 1 .15 15 64

Bueler D .1 .1 10 62

Bueler E .1 .1 10 60

Units sq. m sq. m sq. m km
Table 4. Error correcting process hyper-parameters. See Results section for further discussion.
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5 Summary, discussion, and future work

The primary contribution of this work has been to construct a BHM for glacier flow based on the SIA that operates in two spatial

dimensions and time, which successfully models numerical errors induced by a numerical solver that accumulate with time and

vary spatially. This BHM leads to full posterior probability distributions for physical parameters as well as a principled method

for making predictions that takes into account both numerical errors and uncertainty in key physical parameters. Furthermore,5

the BHM operates in two spatial dimensions and time, which, to our knowledge, is new to the field of glaciology. An additional

contribution is the derivation of a novel finite difference method for solving the SIA. When tested using simulated data sets

based on analytical solutions to the SIA from Bueler et al. (2005), the results herein indicate that our approach is able to infer

meaningful probability distributions for glacial parameters, and, furthermore, this approach makes probabilistic predictions

for glacial thickness that adequately account for the error induced by using a numerical solver of the SIA. A future goal is to10

create an R package for fitting a generalized version of the model used within this work, where the function f(.) is provided

by the user. This will allow glaciologists to extend the modeling approach we have developed to other similar scenarios in

which the physical dynamics are more complex than the SIA. An additional scenario for which this package can be useful is

when the numerical method is not a finite difference method; e.g., a FEM. To this end, we will attempt to utilize Bayesian

numerical analysis (Owhadi and Scovel, 2017) and emulator inference (Hooten et al., 2011); this will be crucial to ensure that15

the methodology scales well computationally, since each posterior sample requires a forward PDE solve. Finally, and perhaps

most importantly, future work will involve the application of the modeling and methodologies developed within this paper to

real data collected by the IES-UI, which includes bedrock elevation and mass balance measurements.

Author contributions. All of the glaciologists contributed equally to this work.
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Appendix A: Finite difference method for the shallow ice approximation

Here a finite difference scheme is derived for the SIA PDE. The overarching strategy in developing this finite discretization

scheme is to take a second order Taylor expansion for H(x,y, t) with x,y fixed, and then equate the resultant time derivatives,

Ht and Htt, to functions of spatial derivatives by using the original SIA PDE. That is, one starts with the approximation

H(x,y, t+ ∆t)≈H(x,y, t) +Ht(x,y, t)∆t+Htt(x,y, t)∆t2/2 and uses the first equation of section two to write Ht and25

Htt in terms of spatial derivatives. Finally, central differences in space are substituted for the spatial derivatives. This finite

difference scheme is motivated by the Lax-Wendroff (Hudson) method, which is generally better than finite difference methods

that use only a single order Taylor expansion (indeed, in the advection-diffusion equation such methods may be unconditionally

unstable).
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In the following derivations note that the subscripts mean ‘derivative with respect to’ (e.g., Ht means derivative of H with

respect to t).

Ht = −[ūH]x− [v̄H]y + ḃ

Htt = −[ūH]xt− [v̄H]yt + b̈.

Now we solve for these derivatives in terms of spatial derivatives inH(x,y, t), the glacier thickness, andR(x,y), the bedrock5

level. The derivation makes repeated use of the differentiation rule for products, the chain rule for differentiation, and equality

of mixed partials (e.g., Hxt =Htx).

−[ūH]x = −C0γρgT1 +
2B
n+ 2

(ρg)nT2

T1 = [2HHx(Hx +Rx) +H2(Hxx +Rxx)]

T2 = [[αn−1]x[Hn+2Hx +Hn+2Rx] +αn−1[(n+ 2)Hn+1H2
x + (n+ 2)Hn+1HxRx +Hn+2Hxx +Hn+2Rxx]]10

By symmetry in x and y, −[v̄H]y can be analogously derived:

−[v̄H]y = −C0γρgT3 +
2B
n+ 2

(ρg)nT4

T3 = [2HHy(Hy +Ry) +H2(Hyy +Ryy)]

T4 = [[αn−1]y[Hn+2Hy +Hn+2Ry] +αn−1[(n+ 2)Hn+1H2
y + (n+ 2)Hn+1HyRy +Hn+2Hyy +Hn+2Ryy]]

Derivatives [αn−1]x and [αn−1]y:15

[αn−1]x =
n− 1

2
(S2

x +S2
y)

n−3
2 (2SxSxx + 2SySyx)

[αn−1]y =
n− 1

2
(S2

x +S2
y)

n−3
2 (2SySyy + 2SxSxy)
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Now we derive −[ūH]xt

−[ūH]xt = −C0γρgT1t +
2B
n+ 2

(ρg)nT2
t

T1t = [2HtH
2
x + 4HHxHxt + 2HHxtRx + 2HHxRxt + 2HtHxRx + 2HHtHxx +H2Hxxt + 2HHtRxx +H2Rxxt]

T2t = [T5 +T6 +T7 +T8]

T5 = [αn−1]xtH
n+2Hx5

T6 = [αn−1]xtH
n+2Rx

T7 = [αn−1]x[(n+ 2)Hn+1HtHx +Hn+2Hxt + (n+ 2)Hn+1HtRx +Hn+2Rxt]

T8 = [αn−1]xtH
n+2Hx +αn−1

x (n+ 2)Hn+1HtHx +αn−1
x Hn+2Hxt

+ [αn−1]xtH
n+2Rx +αn−1

x (n+ 2)Hn+1HtRx +αn−1
x Hn+2Rxt

+ [αn−1]t(n+ 2)H(n+1)H2
x +αn−1(n+ 2)(n+ 1)HnHtH

2
x10

+ αn−1(n+ 2)Hn+12HxHxt

+ [αn−1]t(n+ 2)Hn+1HxRx

+ αn−1(n+ 2)(n+ 1)HnHtHxRx

+ αn−1(n+ 2)Hn+1HxtRx

+ αn−1(n+ 2)Hn+1HxRxt15

+ [αn−1]tHn+2Hxx

+ αn−1(n+ 2)Hn+1HtHxx

+ αn−1Hn+2Hxxt

+ [αn−1]tHn+2Rxx

+ αn−1(n+ 2)Hn+1HtRxx20

+ αn−1Hn+2Rxxt

Note that terms with a time derivative of bedrock such as Rxt can be set to 0 since R is assumed to be static in time. However,

we keep the time derivatives for R in the above equation for full generality in case a scenario is revisited where this does not

hold. Next we derive [αn−1]t:

[αn−1]t =
n− 1

2
(S2

x +S2
y)

n−3
2 (2SxSxt + 2SySyt)25

Next we derive [αn−1]tx:

[αn−1]tx =
n− 1

2
[
n− 3

2
(S2

x +S2
y)

n−5
2 (2SxSxx + 2SySyx)(2SxSxt + 2SySyt)

+ (S2
x +S2

y)
n−3

2 (2SyxSyt + 2SySytx + 2SxxSxt + 2SxSxtx)]
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Next we derive [αn−1]ty:

[αn−1]ty =
n− 1

2
[
n− 3

2
(S2

x +S2
y)

n−5
2 (2SxSxy + 2SySyy)(2SxSxt + 2SySyt)

+ (S2
x +S2

y)
n−3

2 (2SxySxt + 2SxSxty + 2SyySyt + 2SySyty)]

Note that Stx =Rtx +Htx =Htx since R is assumed to be fixed as a function of t. Note that the same argument holds for

other derivatives of S with respect to t. Next we derive Htx,Htxx,Hty,Htyy,Htyx:5

Htx = −[ūH]xx− [v̄H]yx + ḃtx

Htxx = −[ūH]xxx− [v̄H]yxx + ḃtxx

Hty = −[ūH]xy − [v̄H]yy + ḃty

Htyy = −[ūH]xyy − [v̄H]yyy + ḃtyy

Htyx = −[ūH]xxy − [v̄H]yyx + ḃtyx10

Hence, these partial derivatives allow us to substitute purely spatial derivatives into the forward in time approximation for H .

Without loss of generality, we use a central difference approximation for all spatial derivatives. Furthermore, we used ∆t = .1

years and ∆x = ∆y = 105 m for the analysis in this paper. In total, 441 grid squares were modeled (i.e., 21 by 21) with the

dome grid square at the origin. While a coarse grid was chosen for computational convenience, it is expected that numerical15

errors will go to zero as the grid width goes to zero, as is demonstrated both by Bueler et al. (2005) and Jarosch et al. (2013).

Appendix B: Model fitting

In the following subsections, we go through the key details regarding Bayesian computation for the model used in this work.

Assume n total grid points are modeled, of whichm<< n are observed. LetXj ∈ Rn be the error correcting process at time j,

Sj ∈ Rn be the latent glacier surface values at time j, f(θ,j) ∈ Rn be shorthand for the output of the numerical solver at time20

point j, and εj be an independent and identically distributed MVN(0,Σ) noise term at time j. Furthermore, assume that data

is collected regularly at every kth time point, such that one observes Yk,Y2k, ...,YNk ∈ Rm, and the corresponding observation

error Zk,Z2k, ...ZNk is i.i.d MVN(0,σ2I). For convenience, we denote Nk as T . Finally, let A ∈ Rm×n be a matrix which

selects the grid squares of the latent process S that are observed; that is, its rows are unit basis vectors corresponding to those

indices that are observed.25

B1 The likelihood and an approximation

In this subsection we derive an approximation to the likelihood of the observed data.
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The overall model is specified as follows.

Xj = Xj−1 + εj

Sj = f(θ,j) +Xj

Yck = ASck +Zck

5

Assume j ∈ 1,2, ...T and c ∈ 1,2, ..N ; hence there areN total observations observed with a period of length k. Furthermore,

X1 is marginally MVN(0,Σ).

The joint distribution p(Yk, ...,YT |θ) can be written as p(Yk|θ)p(Y2k|Yk,θ)...p(YT |Yk, ..,Y(N−1)k,θ). Since we expect that

the data level errors are quite small (on the order of 1m) in comparison to the overall surface elevation measurements (on the or-

der of 1 km), we can approximate p(S(c−1)k|Yk, ..,Y(c−1)k,θ) with p(S(c−1)k|Y(c−1)k,θ). Consequently, p(Yck|Yk, ..,Y(c−1)k,θ)10

will be close to p(Yck|Y(c−1)k,θ). Therefore, it suffices to solve for the distribution of p(Yck|Y(c−1)k,θ), since the likelihood

can be approximated as p(Yk|θ)p(Y2k|Yk,θ)...p(YT |Y(N−1)k,θ). From the above recursive relationship, we can write:

Yck = Y(c−1)k +A[f(θ,ck)− f(θ,(c− 1)k)] +Zck −Z(c−1)k +
ck∑

j=(c−1)k+1

Aεj

The first terms are constants (conditioning on Y(c−1)k and θ), and the latter terms are sums of independent 0 mean multivariate15

normal distributions. Hence the distribution of this quantity, conditioning on Y(c−1)k, is MVN with mean Y(c−1)k+A[f(θ,ck)−
f(θ,(c−1)k)] and covariance matrixA(kΣ)Aᵀ+2σ2I . The same argument shows that p(Yk) is multivariate normal with mean

0 and covariance matrix A(kΣ)Aᵀ +σ2I .

B2 Posterior computation

Posterior inference is accomplished with grid sampling (Gelman et al., 2013); this approach directly computes the posterior20

distribution, p(θ|Yk, ...,YT ) of the parameter, proportional to p(Yk, ...,YT |θ)p(θ), on a grid of plausible values. The likelihood

is derived in the previous subsection. Parameters for the error correcting process are selected using knowledge elicited from

the studies of Bueler et al. (2005).

B3 Making spatio-temporal predictions of glacial surface elevation

In this section, we give details for how to make predictions under the proposed Bayesian model. Denote STend
∈ Rn for25

future glacier elevation values we want to make a prediction for at time point Tend. Our goal is to approximate the posterior

predictive distribution p(STend |Yk, ...YT ). To make this computationally simple, our first assumption (as in the computation

of the likelihood) is to suggest that p(ST |Yk, ...YT ,θ) is approximately equivalent to p(ST |YT ,θ). This is because relative to

the overall glacier surface elevation values (an average of about 2000 m), the measurement errors are small, on the order of

1 m. Moreover, based on the model specified above, we know that STend =XT +
∑Tend

j=T+1 εj+f(θ,Tend). This suggests the30
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following iterative procedure to generate a posterior sample for the prediction of STend : for each independent sample θl from

p(θ|Yk, ...,YT ), generate a sample from a multivariate normal whose mean is 0 and covariance given by (Tend−T )Σ, add the

sample to f(θl,Tend), and then add this sum to a sample from p(XT |θ = θl,YT ).

We must then determine how to sample from the distribution of p(XT |θ = θl,YT ). Let XTobs ∈ Rm be a subvector of

XT corresponding to the indices that are observed at the data level, and XTpred ∈ Rn−m be a subvector of XT correspond-5

ing to unobserved indices. The distribution for p(XTobs|θ,YT ) is multivariate normal due to conjugacy. The precision, de-

noted by Qobs, is σ−2I+[A(TΣ)Aᵀ]−1. The mean, denoted by µobs, is Q−1
obs(σ

−2IYT +[A(TΣ)Aᵀ]−1Af(θ,T ))−Af(θ,T ).

p(XTpred|XTobs,θ,YT ) is multivariate normal, whose mean and variance can be derived with the well-known conditional mul-

tivariate normal formula, as in Theorem 2.44 of Wasserman (2013). That is, the mean is TΣpred,obsQobs and the variance is

TΣpred,pred−TΣpred,obsQobsTΣobs,pred. Here, Σpred,obs is the submatrix of Σ that contains the rows of Σ that correspond to the10

indices that are to be predicted, and the columns correspond to the indices which are observed. Σobs,pred is analogously defined.
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