
Dear Dr. Eric Larour, Dr. Lambert Caron, and the anonymous second referee: 
 
We are very pleased by your thorough, incisive, and constructive comments, which we believe have 
greatly improved the quality of the revised paper. Please see our responses to all of the referee comments, 
followed by a pointer to the modifications in the revised text. Please note that we have bolded the 
manuscript changes as to be able to easily identify them. Also, kindly note that to mitigate redundancy, 
we have referenced the modifications made to the paper in the attached revision instead of copying the 
modifications into this document.  
 
Response to Dr. Lambert Caron: 
 
The figures and tables are straightforward to interpret and informative, although in some cases expanded 
captions would be more useful if more information was reminded to the user given the length of the paper 
(see technical comments below). 
 
We appreciate the suggestion to make the captions more informative. Accordingly, we have modified the 
specific captions referenced in the technical comments, and we have also modified all of the additional 
captions as well. 
 
1. The authors briefly mention in the summary and discussion that the method is applicable to broader 
problems in cryosphere science. Without going into further calculation, I believe expanding on that topic 
in the discussion would both provide better contextualization of the problem tackled here and increase the 
impact of the paper. What challenges do you expect for the cryosphere science community to apply BHM 
approach to the non-SIA regime, e.g. for fast-discharge ice streams, or to SIA problems without 
analytical solution (e.g. more realistic geometry)? 
 
We appreciate here the call to discuss the generality of this approach with respect to problems in 
cryosphere science. Essentially, the same BHM can be used for other cryosphere science problems by 
swapping out the numerical solver for the SIA with a numerical solver to a different set of dynamics. The 
biggest challenge with this is satisfactorily modeling the numerical errors of this solver in a general way, 
discussed in the following paragraph. 
 
Changes in revision: 

● Paragraph starting on line 11, page 5. 
 
2. ​The authors manage well to point out the limitations introduced by simplifications in the physical 
problem and choices for the statistical distribution of errors. However, even after a few readings, it 
remains a bit difficult for me to tell what are the limits or downsides of the BHM approach itself, 
particularly on the resolution of parameters and state variables (e.g. ice thickness or velocity field).  
 
The BHM approach is not infallible, and the biggest difficulty is in actually fitting a BHM given data 
(despite that coming up with a BHM may not be too difficult). In our test cases, the number of physical 
parameters is small (1 or 2), so model fitting is not computationally difficult. However, when the number 



of physical parameters becomes larger (e.g., a basal sliding field with a parameter for every spatial 
location), posterior computation will become inefficient, and more sophisticated approaches will be 
needed (for which there is a large battery of tools). Besides a large number of physical parameters, 
another potential difficulty in utilizing BHMs that incorporate physical dynamics via a numerical solver is 
that the numerical solver can also be computationally onerous, so that posterior computation is very 
inefficient. While this is not a hindrance in the examples studied in this paper, in general this can be 
problematic. We have discussed this in the following paragraph. 
 
Changes in revision: 

● Paragraph starting on line 17, page 3. 
 
- In the context of the SIA equations, can you say something about the relationship between the number of 
observations and the number of parameters? That is, how does the posterior evolve in the different cases 
with respect to the number of observations? 
 
The work of Brynjarsdóttir and O’Hagan (2014) gives us an indication of how the posterior for physical 
parameters will evolve with more observations. In their work, they show that in a simple physical system 
with only a single parameter, some uncertainty in the posterior distribution for the physical parameter 
won’t go away even as more data is collected. While this is attributed to improper modeling of the 
discrepancy between the output of a computer simulator and actual physical process values, and we have 
taken care in doing this, it is plausible that a similar phenomenon would occur in the BHM; that is, 
confounding between an error correcting process and the posterior of physical parameters results in 
posterior uncertainty never going away completely. In concordance with both this comment and the 
second referee’s comments, we have included posterior distributions for ice viscosity where the sampling 
period varies from once every 10 years, once every 5 years, once every year, and twice a year (as 
originally done to be consistent with summer and winter mass balance measurements per year). What we 
found is displayed in Figure 9; the general trend is that as more data is collected, the posterior becomes 
less biased but more diffuse. Thus, having posterior uncertainty that doesn’t go away as more data is 
collected appears consistent with Brynjarsdóttir and O’Hagan (2014).  
 
Changes in revision: 

● Paragraph starting on line 8, page 13. 
● Addition of Figure 9. 

 
 
- Given the symmetry and choice of displaying only one quadrant in Figure 4, I wonder if the information 
(or uncertainty quantification) retrieved on the ice viscosity reflects that of 8 observations or that of ∼ 32. 
If one would compute a similar problem with a non-idealized glacier, how many observations would one 
need to obtain a similar posterior distribution for ice viscosity? 
 
To clarify, Figure 4 displays test locations for predictions, but not the locations where data are collected. 
The locations where surface elevation data are collected are distributed across the glacier at 25 locations 
as delineated in Section 3.2; to clarify this we have included a map marking the locations of these 



measuring sites. We will update the manuscript to clarify this in the caption. A similar number of 
locations would be adequate in a non idealized glacier, so long as the locations included points of steep 
changes in glacial thickness (e.g., valleys and peaks), since it appears that numerical errors are largest at 
such locations (i.e., the dome and margin).  
 
Changes in revision: 

● Lines 17 and 18 of page 9. 
● Addition of Figure 4. 
● Caption of Figure 5. 

 
 - Similarly, do the authors expect the spatial distribution of the observations to play a critical role in 
determining the posterior given the different sensitivity of the dome, margin and interior of the glacier? 
 
The biggest numerical errors occur where there are sharp changes in glacial thickness (i.e., peaks and 
valleys), such as the dome and the margin in the idealized glacier studied in Bueler (2005) and in this 
work. It is crucial, therefore, to ensure that such locations are sampled. Qualititatively, it is suggested that 
locations where there is a rapid change in glacier thickness ought to be sampled to ensure that numerical 
errors are adequately represented; the locations sampled in our simulation study include both the dome 
and locations close to the margin. The number of samples needed in general will then depend on the 
number of peaks and valleys in the glacier. 
 
3. Although the true value always remains within the confidence interval, there seems to be a tendency to 
under-predict the ice viscosity (as seen in Table 2) and over-predict the thickness (Figure 5). Is there any 
reason for that or is this purely the result of randomness? 
 
A very similar phenomenon has been documented in the work of ​Brynjarsdóttir​ and O’Hagan (2014); in 
their work, it is noted that good prior information must be encoded into model discrepancy (essentially 
what we have termed an error correcting process) and physical parameters in order to get a less biased 
posterior distribution for both physical parameters and predictions. A similar phenomenon can be 
demonstrated in our BHM. In particular, if we consider a scenario where we ignore the prior information 
regarding different scales of numerical errors between the interior, dome, and margin of the glacier, the 
bias of the posterior distribution for physical parameters is more pronounced. So while bias of the 
posterior of physical parameters exists in our simulation studies, the prior information we have used 
appears to have helped reduce this bias, consistent with the findings of ​Brynjarsdóttir​ and O’Hagan 
(2014). We have revised the manuscript to include an example illustrating this point in the results section. 
 
Changes in revision: 

● Paragraph starting on line 27, page 12. 
● Addition of Figure 8. 

 
4. In a non-linear PDE system, it is not guaranteed that the posterior is Gaussian or even symmetric 
distribution (even when propagating Gaussian errors). While the authors put a certain emphasis on the 
ice viscosity and basal sliding parameter, with respect to which the problem is linear, this linearity might 



not hold in general for every parameter or state variable one might want to keep track of. After all, a 
major appeal of Bayesian methods is that they require no assumption on the physics that are being 
solved, and are thus well suited to nonlinear problems.  
 
As a minor point of clarification for readers, the PDE on line 11 page 6 is non-linear in H, glacial 
thickness, since it involves powers of H. However, I suspect the use of linear here refers to the fact that B 
and C_0gamma appear as constants (i.e., not functions thereof) in these equations. 
 
With that in mind, I believe using an accurate but more general terminology would be beneficial to future 
users of this work: 
 
- p10 l18-20: "the .99 posterior credibility interval was computed by taking 3 standard deviations below 
and above the maximum a posteriori estimate (MAP) of the posterior samples." Even though these 
indicators are equal for a Gaussian (or any symmetric) distribution, as a principle I would advise to refer 
to the mean or median instead of the maximum, as the former remain comparatively more adapted to 
characterize distributions even when they are not Gaussian. Perhaps the authors should also remind the 
reader that in a general (non-Gaussian) case, a distribution is best characterized by multiple indicators, 
e.g. quantiles as in Figure 5, and not just maximum and standard deviation​ . 
 
The MAP was used to be consistent with the previous related work in Brinkerhoff et al. (2016), but we 
have used the mean instead of the MAP in the revision (the results are essentially the same). It should be 
noted that constructing a credibility interval in this way (mean +/- 3 sd of posterior samples) does not 
necessitate that the posterior distribution is Gaussian.  
 
Changes in revision: 

● Sentence starting on line 3, page 12. 
● Sentences starting on line 15, page 12. 
● Sentence starting on line 23, page 12. 
● Change of .99 credibility interval to 3-sd credibility interval in Table 2. 

 
 - Throughout the manuscript the authors use interchangeably the phrases "3-Sigma" and ".99 
Confidence" interval, as pointed out above. In a Gaussian distribution, the 3-sigma interval accounts for 

∼ 0.9973 of the integral while the .99 interval represents ∼ 2.58-sigma, and clearly these are not the same. 
I think the authors should clarify and streamline this. It might otherwise introduce confusions and 
discrepancies in the exact numbers for readers that try to reproduce the results or compare them with a 
slightly different model setup (e.g. different geometry), especially if their method is based on numerical 
integration of the posterior. 
 
Thank you for pointing out the potential confusion this can cause. To be consistent, we have updated the 
terminology to be ‘3-sd credibility interval’ (again, constructed with mean +/- 3 sd of posterior samples). 
Also it should be noted that credibility interval refers to an interval derived from a posterior distribution, 
which is distinct from a confidence interval. The latter has a particular frequentist coverage probability.  
 



The changes in the revision  are the same as above, that is: 
● Sentence starting on line 3, page 12. 
● Sentences starting on line 15, page 12. 
● Sentence starting on line 23, page 12. 
● Change of .99 credibility interval to 3-sd credibility interval in Table 2. 

 
 - I recommend the authors to display the posterior distribution of µmax, as a supplemental figure. 
Likewise, Figure 7 suggests non-symmetric probability distributions of the thickness originating from the 
error propagation, it might be beneficial to highlight the non-linearity by plotting these distributions in a 
similar way as Figure 6. 
 
We have included a posterior plot of mu_max in the supplemental materials. In our humble collective 
opinion, individual predictive density plots do not appear to convey more information than Figure 7, so 
we have opted not to include these. 
 
III. Technical comments 
 
 -Figure 5: Outside of the whiskers, small circles are displayed, but the caption doesn’t indicate what they 
are. If they are important, the authors should improve their visibility and add explanations related to 
them in the caption. If these are not meaningful on the other hand, the authors should remove them. 
 
It is typical for box and whisker plots to display outliers, defined as more than 1.5 times the interquartile 
range beyond the first and third quartiles; these outliers are displayed as circles. Agreeably, it is important 
for us to be clear about this, so we have included a note in the caption. 
 
Changes in revision: 

● Last two sentences of the caption in Figure 6. 
 
 -Figures 5, 6, 7: when referring to test cases, remind the readers the specificity of these tests, e.g. “test 
case B (no mass balance or basal sliding)”. This would lessen the need for cross-referencing. 
 
Thank you for this suggestion, which we have taken heed of in the revision. 
 
Changes in revision: 

● Caption of Figure 6. 
● Caption of Figure 7. 
● Caption of Figure 8. 
● Caption of Figure 9. 
● Caption of Figure 10. 

 
 
 -Table 2: The exponents of units are not displayed in superscript.  
 



Thank you for spotting this, which we have corrected. 
 
Changes in revision: 

● Last row of Table 2. 
 
-Table 3: Is the dome error not calculated the same way as the margin and the interior? If so, I did not find 
any explanation in the text. If not, I suggest that the authors streamline the column labels. Also, the 
authors should expand in the caption what RMSE stands for. 
 
The dome error is calculated in the same way as the margin and interior, but since there is only a single 
dome observation, RMSE, which stands for root mean squared error, is just the absolute difference 
between the actual and predicted. Nonetheless, to remain consistent we have changed dome error to be 
RMSE. Thank you for pointing out that we ought to include what RMSE stands for, which we have 
revised in the manuscript. 
 
Changes in revision: 

● Header of Table 3. 
● Caption of Table 3. 

 
 -Table 4: The authors should remind in the caption what the different symbols refer to. 
 
 ​We certainly agree and have revised the manuscript accordingly.  
 
Changes in revision: 

● Caption of Table 4. 
 
 I hope the authors will find this useful. 
 
These comments have been extremely valuable for improving the manuscript; the referee’s time and 
effort are appreciated. 
 
Response to referee 2: 
 
I believe this is an interesting, useful contribution and publishable with some revisions. Essentially, your 
computations assess the errors in using the numerical approximations for “f” using analytical solutions 
as a base line. That is, you generate “Y’s” with analytical solutions but then forget about that and use 
numerical approximations in the BHM. “error” is then viewed as differences between Bayesian results 
and the analytical “truth”. This is valuable work, though as you make clear, it doesn’t make any 
assurances when the analytical model is “replaced by nature” in producing data. You also considered 
several cases, but I do think that your paper would be strengthened if you also studied the impact 
sampling plans and sample sizes (ie. What if “every other observation (in time) was removed? This is also 
critical in judging the impacts of your approximations used in computations (see the next paragraph). 
 



In order to consider the impact of sampling plans, we have conducted an additional set of simulation 
studies where the period of observations varies: once every 10 years, once every 5 years, once every year, 
and twice a year (as originally conducted); however, please note that we chose two measurements per 
year to model how the data set from the University of Iceland was collected -- namely, a set of 
measurements for winter and summer mass balance. 
 
Changes in revision: 

● Paragraph starting on line 8, page 13. 
● Addition of Figure 9. 

 
My first concern is correctness of all contributions. Errors can occur when manipulating equations rather 
than probability distributions. I think yours turned out right, but all conditioning assumptions are not 
clear. Consider Appendix B1 beginning at the bottom of p. 20. The “overall model” as written at the top 
of p. 21 is quite brief and does not include probability assumptions. I sense that you understand the key 
issues based on the sentence in lines 16-17, p. 21. Namely, equations like Y = m(variables) + error are 
code for “the conditional distribution of Y given “variables” and the mean of “error” = 0 and some 
variance of “error” has conditional mean m and conditional variance equal to the variance of “error”.  
 
Thank you for pointing out some places where the probabilistic assumptions of the BHM can be made 
clearer. The probabilistic assumptions are specified in Section 2.2 and in the first paragraph of Appendix 
B. In particular, please note that in the first paragraph of Appendix B line 21 it is stated: “let epsilon_j be 
an independent and identically distributed MVN(0,Σ) noise term at time j”, and also in Appendix B line 
21 it is stated: “the corresponding observation error Zk,Z2k,...ZNk is i.i.d MV N(0,σ2 I)”. The use of 
acronyms may make these lines unwieldy to parse, so we have revised them (that is, i.i.d is independent 
and identically distributed, and MVN(0,Σ) is multivariate normal with mean 0 and covariance Σ). 
 
Additionally, we have stressed in the revision that we are conditioning on theta when computing the 
likelihood.  
 
Changes in revision: 

● Lines 21-23, page 24 
● Lines 28-30, page 24. 
● Lines 5-8, page 25. 

 
The assertion that all “errors” in you models have mean zero seems to be missing, but more importantly, 
when you do the manipulation leading to line 14, you must have assumed both models for Yck and Y(c-1)k 
are conditioned on the same quantities so you can simply subtract their conditional means, etc. Further, 
simply taking differences of Yck and Y(c-1)k is based on their joint distribution, so cavalierly moving 
Y(c-1)k to the left hand side and claiming you’re now looking as the distribution of Yck given Y(c-1)k and 
the other variables. That requires a probability computation (moving from joint to a conditional 
distribution) in general. Fortunately, it is common that the algebraic versions can actually be proven to 
be correct probabilistically for “linear manipulations”, but in complicated settings, this needs to be 
checked (based on my quick check, I think you’re OK but think you should check as well). This all relates 



to my suggestion that your model isn’t simply lines 2-4, p. 21. What are the conditional distributions 
assumption (the Z’s are independent etc.)?  
 
Thank you for the call to clarify the arguments made in this section. Regarding errors having mean zero, 
please note that this is stated in the first paragraph of Appendix B. Regarding the remaining comments, 
we have taken a number of actions.  
 
First, we have included a derivation of the complete likelihood without using any approximations before 
going into the approximation. 
 
Second, we have clarified an important point you have raised, which is that the expression on line 14 page 
21 cannot be used to claim that the distribution of p(Y_ck|Y_(c-1)k) is *exactly* a MVN distribution with 
mean Y(c-1)k + ​A[f (θ, ck)− f(θ,(c−1)k)] and covariance matrix A(kΣ)A ​ ​+2σ​2​I; this is because Y_(c-1)k and 
Z_(c-1)k are not independent. This expression, rather, motivates approximating ​p(Y_ck|Y_(c-1)k) with said 
MVN distribution. We have rewritten the text in this portion to be more clear about this point.  
 
Third, we have included a simple example illustrating why this approximation is reasonable under the 
assumption that the output of the numerical solver is much larger in magnitude compared to the 
measurement error. 
 
Changes in revision: 

● Subsection B1.1 on page 25. 
● Paragraph starting on line 4 on page 26. 
● Supplementary note with an illustrative example regarding the approximation used. 

 
One more related issue involves discussion of inference for X’s. In a sense, you should be careful in 
posterior inferences about both S and X simultaneously, given q. (they are simply linear functions of each 
other). Again, I think you’re OK but it merits your attention. 
 
Indeed, as per the equations on the top of p. 21 (of the original submission, but page 25 of the revision), 
*conditioning on theta*, S is just X shifted by the output of the numerical solver. It is very important to 
stress that this is conditional on theta (the output of the numerical solver is fixed conditioning on theta). 
 
I think the approximations you used on p. 21 are reasonable, but a bit more defense would be good.  
 
Please see the aforementioned simple example in the supplemental materials regarding this issue. 
 
Further, I’m not comfortable with the way you needed all the approximations so that you could use grid 
sampling to claim genuine posterior inference. I think that you could skip the approximations and did a 
full MCMC approach, it wouldn’t be as easy as what you did but it’s not that much harder. I think you 
should at least try some MCMC to confirm your computations and approximations.  
 



It should be made clear that the approximation for the likelihood was not needed to compute the posterior 
on a grid. Many (though not all)  MCMC algorithms require (log) likelihood evaluations as well, and a 
computationally inefficient (log) likelihood will mitigate their performance. Since we are working with 
only 1 to 2 physical parameters in test cases (B for the first three test cases, and B,mu_max in the last test 
case), computing the posterior on a grid ought to perform just as good as an MCMC approach, provided a 
sufficiently fine grid is chosen. Moreover, it is important to point out that the output of MCMC samples 
can be flawed (e.g., only one mode of a complex posterior is explored) and the samples thus may not 
actually reflect the posterior distribution. 
 
This being said, we admit that we could have done a better job of checking the sensitivity of the grid 
sampling approach to the particular grid we had used. To check that the posterior for physical parameters 
is not sensitive to using a grid, we have computed the posterior on various grid widths for comparison, 
and have quoted summary statistics for posterior samples for comparison. The summary statistics are very 
close, indicating that the choice of grid width we had used did not distort or severely misrepresent the 
posterior distribution. 
 
Changes in revision: 

● Section B2 from line 14 onwards. 
 
Further, what is the dependence of the value of your approximations on f. Surely you need to answer this 
if you plan to suggest operational use of you programs as you suggest you will do in the future. 
 
We appreciate here the call to clarify the requirement for applying the likelihood approximation. The 
requirement for applying the likelihood approximation is that the values of S, and consequently of f, are 
much greater than the measurement error -- this holds in the scenario of this paper because the values of f 
are on the order of one kilometer, whereas the measurement error is one meter. Please see the 
aforementioned simple illustrative example in the supplemental figure for justification on this point. 
However, the point raised about applying the code to future scenarios is certainly valid, since these 
conditions aren’t always going to hold. We are currently in development of a way to efficiently calculate 
the log-likelihood in regimes where this does not hold (such as in other cryosphere problems with a 
poorer signal to noise ratio) and will include this functionality in the package mentioned. 
 
Changes in revision: 

● Supplementary note with an illustrative example regarding the approximation used. 
 
 
Other Notes: 
 
 (1) The model for X is an explosive autoregression and hence you have built-in a limitation. A 
non-explosive model could be Xj = r Xj-1 + error where 0 < r < 1. If you make r a parameter and let the 
data tell you about r, you may be able to predict further in the future if the data suggests r can be much 
smaller than 1. 
 



We agree that for more general models, it would be good to learn the parameter r directly from the data. 
However, for the time scales for the analysis used in this work, and based on the evidence from Figure 10, 
using r = 1 seemed to work out adequately. Another complication to consider is that learning an additional 
parameter along with the physical parameters can increase computational difficulties of posterior 
computation, though this is something we ought to more thoroughly investigate for future extensions of 
this model. 
 
2) I think you missed emphasizing a crucial (and related) contribution of Berliner et al (2008). Namely 
they also treat model error through their “corrector process” and this should be mentioned.  
 
We appreciate the call to highlight this important contribution of Berliner et al. (2008) and have 
accordingly updated the text. Please note that the error correcting process in that work accounts for setting 
basal shear stress to driving stress, a simplification. Somewhat orthogonally, the error correcting process 
in this paper solely accounts for numerical errors due to an imperfect numerical solver, though it is still 
important to consider the fact that stress terms are not physically perfect as well. 
 
Changes in revision: 

● Lines 7 and 8 on page 4. 
 
(3) As a minor point, you should include at least one reference to Berliner, L.M. 1996. Hierarchical 
Bayesian time series models. In Hanson, K. and R. Silver, eds. Maximum entropy and Bayesian methods. 
Dordrecht, etc., Kluwer Academic Publishers, 15–22. The references by Wikle and Cressie both reference 
it but you should too since it urges the “data model, process model, parameter model” view.  
 
Thank you for pointing out this additional reference, which we have added to the manuscript. 
 
Changes in revision: 

● Line 3 on page 3. 
 
Also, since that paradigm is so key in your paper, I think you should break out the formula in line 22, p. 2 
as a separate line for emphasis. 
 
Though there is no formula on line 22, page 2, we have broken out the formula on line 20, page 2 as 
suggested. 
 
To reiterate, the comments from the reviewers are greatly appreciated, and we believe they have helped us 
significantly improve the quality of this work. 
 
Additional materials: We have shared R scripts written for this paper in the supplemental materials, in 
case that they may be helpful for the community. As such, we have included scripts to: compute the 
analytical solutions in test cases B-E, run the finite difference method for test cases B-E, generate the 
simulations based on analytical solutions in test cases B-E.  
 



Sincerely, 
Giri Gopalan and co-authors 
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Abstract. Bayesian hierarchical modeling can assist the study of glacial dynamics and ice flow properties. This approach

will allow glaciologists to make fully probabilistic predictions for the thickness of a glacier at unobserved spatio-temporal

coordinates, and it will also allow for the derivation of posterior probability distributions for key physical parameters such

as ice viscosity and basal sliding. The goal of this paper is to develop a proof of concept for a Bayesian hierarchical model

constructed, which uses exact analytical solutions for the shallow ice approximation (SIA) introduced by Bueler et al. (2005).5

A suite of test simulations utilizing these exact solutions suggests that this approach is able to adequately model numerical

errors and produce useful physical parameter posterior distributions and predictions. A byproduct of the development of the

Bayesian hierarchical model is the derivation of a novel finite difference method for solving the SIA partial differential equation

(PDE). An additional novelty of this work is the correction of numerical errors induced through a numerical solution using a

statistical model. This error correcting process models numerical errors that accumulate forward in time and spatial variation10

of numerical errors between the dome, interior, and margin of a glacier.

1 Introduction

The shallow ice approximation (SIA) is a nonlinear partial differential equation (PDE) that describes ice flow when glacier

thickness is relatively small compared to the horizontal dimensions. Derived from the principle of mass conservation, the

SIA PDE depends on two key physical parameters: ice viscosity and basal sliding (sometimes described as basal friction or15

drag). The primary objective of this paper is to develop a Bayesian hierarchical model (BHM) for glacier flow utilizing the

framework espoused by Wikle (2016) and Cressie and Wikle (2015), which allows one to: 1) infer ice viscosity and basal

sliding parameters and 2) make probabilistic predictions for glacial thickness at unobserved spatio-temporal coordinates. This

BHM relies upon a finite difference scheme for solving the SIA that is inspired by the Lax-Wendroff method (Hudson). To

validate this BHM, we utilize exact analytical solutions from Bueler et al. (2005). Hence, in addition to the development of a20

BHM for shallow glaciers, this paper serves as a case-study for the strategy of using exact analytical solutions to validate or

tune BHMs governed by physical dynamics. Moreover, the BHM developed can be applied to the general “physical-statistical"

1



problem (Berliner, 2003). This BHM is verified and diagnosed through a combination of assessments of posterior probability

intervals, checks of predictive accuracy for glacial thickness prediction, and a comparison between observed and expected

errors due to the numerical solution of the SIA.

1.1 An Overview of Bayesian Modeling and BHMs

Before describing how BHMs are used in physical-statistical models, particularly for geophysical problems, a very terse5

overview of Bayesian modeling and Bayesian hierarchical modeling is given for the uninitiated reader. A main component

of Bayesian statistics is the use of probability distributions to model parameters thought to be fixed quantities (i.e., scientific

constants); this assumption allows one to use rules of conditional probability (i.e., Bayes’ theorem) to derive probability dis-

tributions for scientific quantities of interest, such as physical constants or predictions of future quantities of a system being

studied. Typically, the major assumptions required as input to the analysis are prior distributions for parameters as well as a10

probabilistic model for the data. The output is a probability distribution for parameters or predictions conditional on data that

has been collected or observed; canonically, this is referred to as the posterior distribution.

A BHM is a Bayesian model in which the probabilistic model for data is specified in a hierarchy. Working with such a

hierarchy has a number of advantages – it is usually easier to conceptualize the probabilistic model for the data, and it is

also easier to model various parts of a system of interest modularly instead of all at once. Such an approach is conducive to15

the construction of a probabilistic model that tightly corresponds to a scientific system of interest, which is naturally thought

of in separate components or modules. In a BHM, the rules of conditional probability can be used to specify the relevant

distributions. For example, let us consider a mock system that has parameter vector ✓, an intermediate unobserved vector S,

and observations Y . ✓ might be statistical or physical parameters, S could be a quantity of scientific interest, and Y could be

noisy observations of S. A schematic for such a model is given in Figure 1, and the joint probability distribution is20

p(Y,S,✓) = p(✓)p(S|✓)p(Y |S,✓).

The distribution p(✓) represents prior beliefs about parameters before data is collected, while p(S|✓) represents prior knowl-

edge or assumptions for how S is generated given parameters. For instance, this prior knowledge could entail clustering or

some dependence between the elements of S. The process that models Y conditional on S and ✓ is p(Y |S,✓). The poste-

rior distribution of scientific quantities of interest, p(✓,S|Y ), is proportional to p(Y,S,✓) by Bayes’ theorem. Estimates and25

assessments of uncertainty of scientific parameters and quantities can be extracted from the posterior distribution.

1.2 An Overview of Physical-Statistical Modeling with BHMs

The case for applying Bayesian hierarchical modeling and methodology in geophysics is strongly made by Berliner (2003),

which he describes as “physical-statistical modeling". Particularly, employing the Bayesian hierarchical approach has the pri-

mary advantage of incorporating all relevant sources of uncertainty and randomness into one coherent probabilistic framework.30

The sources typically modeled together are: 1) measurement errors in the data collection process, 2) lack of full knowledge of

the precise functional form of the underlying physical equations describing the physical phenomenon being modeled, or else
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θ S Y

Parameters Latent (unobserved) 
scientific quantities

Observed data

Figure 1. Schematic of a simple Bayesian hierarchical model; here, ✓ represents physical parameters, S represents unobserved scientific

quantities of interest, and. Y represents the observed data.

simplification of the physical system description 3) numerical errors induced while approximating the solution to a system

of partial differential equation PDEs, and 4) lack of precise knowledge of fundamental parameters (constants) in the underly-

ing PDEs describing said phenomenon. In the Bayesian hierarchical framework (Berliner, 1996; Wikle, 2016; Cressie and
Wikle, 2015) each of these sources of uncertainty is modeled by conditioning on the appropriate quantities, and inference is

performed by sampling from or approximating the posterior distribution (the distribution of the unknown quantities of interest5

conditional on the observed data).

At the highest level of a BHM, prior probability distributions are laid out for the physical parameters of interest. At the

intermediary level, a probability distribution for the physical process of interest is laid out conditional on the parameters,

which is typically motivated by a numerical scheme for solving PDEs. In particular, this level may be modeled as the sum of

the output from a numerical solver and an error correcting process. Finally, at the observed level, a probability distribution is set10

forth for the observed data conditional on the latent physical process and other relevant measurement parameters, which include

variances of measuring procedures or devices. The product of these probability distributions specifies the joint distribution of

all relevant quantities, which is proportional to the posterior distribution by the definition of conditional probability. While a

traditional analysis may handle each of these disparate sources of uncertainty in an ad-hoc and disjointed fashion, the Bayesian

hierarchical approach leverages probability measures to cohesively model major sources of uncertainty and undertake inference15

in a principled manner. Figure 2 diagrams what a prototypical physical-statistical Bayesian hierarchical model might look like.

While the BHM approach to physical-statistical problems offers many advantages, it is not an infallible approach.
In particular, while constructing a BHM may be straightforward, actually fitting a BHM to data can be computation-
ally difficult. In the analysis that follows, there are only one to two physical parameters and the likelihood function is
tractable, so posterior computation is not difficult. In more complex scenarios with many physical parameters (e.g., a20

basal sliding field with a parameter for each grid point), it becomes more difficult to compute the posterior or draw
samples from it. There are now many new tools, however, for Bayesian inference of complicated and high dimensional
posterior distributions, such as Stan (Stan Development Team, 2018) and INLA (Rue et al., 2017). Another potential dif-
ficulty in using BHMs for physical-statistical problems is that solving for a set of dynamical equations with a numerical
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Physical parameters 

Initial conditions + boundary conditions

Numerical PDE solver

Error correcting statistical model

Observations

Figure 2. Schematic of a prototypical physical-statistical Bayesian hierarchical model. At the top layer, physical parameters, initial

conditions, and boundary conditions are fed into a numerical solver, and the output of this is corrected with an error correcting

process; finally the actual observations are dependent on the actual physical process values.

method can be computationally onerous, generally speaking; while this is not a detriment in the work that follows, this
can be a problem for posterior computation. One way to circumvent this issue is to emulate a numerical solver, using
techniques as in Hooten et al. (2011). Another methodology that can be used to efficiently solve PDEs using Bayesian
numerical analysis comes from Owhadi and Scovel (2017). Finally, Calderhead et al. (2008) suggests methodology to
avoid explicitly solving ordinary differential equations by using Gaussian processes.5

To put the contributions of this work into context, we briefly review glaciology papers that have employed Bayesian model-

ing. In Berliner et al. (2008), a Bayesian hierarchical approach is used to model ice streams in one spatial dimension, and an
error correcting process is utilized to account for a simplification in the physical model. A combination of Markov chain

Monte Carlo (MCMC) and empirical Bayes methodology is used to fit the model, and basal shear stress and resistive stresses

are included. Furthermore, wavelets are used for dimensionality reduction purposes so as to make the computations more fea-10

sible. In Pralong and Gudmundsson (2011), a Bayesian model is constructed for an ice stream where the likelihood and prior

are Gaussian. The observed data are surface topography, horizontal and vertical surface velocities, and the latent system state

is basal topography and slipperiness. The goal is to infer the system state given the observed data, and ultimately a maximum

a posteriori (MAP) point estimate is used for inference in conjunction with an iterative method for posterior maximization.
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Physics is incorporated by solving for the steady state solution with a finite element method (FEM) solver, given the system

state. In Brinkerhoff et al. (2016) a flowline model of the SIA is considered with vertically integrated velocities. Gaussian

process priors are used for all unknowns, and the Metropolis–Hastings algorithm is used to fit the model. The approach yields

convincing results in simulations and a real data set. In Isaac et al. (2015), numerical methods are presented for solving a

nonlinear Stokes equation boundary value problem for an ice sheet in Antarctica. The method ultimately uses a low rank ap-5

proximation to a covariance matrix for the posterior distribution of a basal parameter field. Finally, and perhaps most directly

related to this research, in Minchew et al. (2015) interferometric synthetic aperture radar (InSAR) is used to determine velocity

fields at Langjökull and Hofsjökull in early June 2012. The velocity directions match the surface gradient, but magnitudes

do not appear to coincide with the theoretical predictions of other authors (likely due to the inappropriate modeling of basal

sliding).10

The same approach within this work can be used for non-SIA problems in cryosphere science, and the Bayesian
hierarchical model does not necessitate analytical solutions; the analytical solutions are used for the evaluation of the
particular BHM in the paper based upon the SIA. However, in general, the biggest difficulty will be in developing
a statistical error correcting process that appropriately models numerical errors for an arbitrary scenario, where a
numerical solver for a different set of dynamical equations is used. In the SIA context, we can rely on prior studies15

of Bueler et al. (2005) to tell us something about how the numerical errors will look like in the SIA case – i.e., spatial
variation in the scale of numerical errors between the dome, interior, and margin. This error pattern will not hold
in general for other geometries and systems, and so either different prior studies must be utilized, or if these don’t
exist, the hierarchical model must be extended to include a more general model for the error correcting process (e.g., a
spatially varying field for the log of the scale of numerical errors with a Gaussian process prior).20

The main differentiating contribution of this paper is to utilize the exact analytical solutions from Bueler et al. (2005) to

evaluate the BHM employed. An additional novelty is the derivation and utilization of a novel finite difference method for

solving the SIA PDE that operates in two spatial dimensions; consequently, the Bayesian model employed also operates in two

spatial dimensions, in addition to time. Finally, we explicitly model the errors due to a numerical solver with a spatio-temporal

statistical process, which accounts for different scales of spatial variability within the dome, within the interior, and within the25

margin of the glacier, as well as accumulation of numerical errors forward in time.

2 Description of Models

2.1 Shallow ice approximation

The physics of glaciers is an extensive topic; hence, only the portions which are most relevant to this paper are described. The

reader is pointed to the comprehensive works by Cuffey and Paterson (2010) and van der Veen (2017) for further reading on30

the subject. PDEs for glaciers are derived from the following considerations. First, glaciers are modeled as very slowly moving

and viscous fluids. By applying the principle of mass conservation, the net ice flux moving in or out of an infinitesimal column

of the glacier located at some spatial coordinate, plus the net mass change due to precipitation or melting, yields the change in

5



the height of the column over an infinitesimal time interval. Such a heuristic argument provides a PDE in two dimensions for a

glacier, with averaged velocities in two spatial dimensions. The PDE relates the time derivative of the thickness of the glacier

to the flux and net mass change (i.e., mass balance). The main assumptions are that ice is isotropic and homogeneous, and also

that longitudinal and transverse stress terms can be ignored, which is reasonable when the overall thickness of the glacier is

small in comparison to its width. Under these assumptions, the velocity of the ice is made up of two additive components. The5

first component of the velocity is based upon deformation due to gravity, which acts in the direction of steepest descent of the

surface and is a function of the ice viscosity parameter. The second component of velocity also acts along the gradient of the

glacier surface and is a function of the basal sliding parameter field. The formulations stem from Glen’s flow law (Glen, 1955,

1958) and Weertman’s sliding relation (Weertman, 1964).

Written in terms of glacial thickness, H(x,y, t), the SIA PDE is:10

Ht = �[ūH]x � [v̄H]y + ḃ.

�[ūH]x = �[�C0�(�⇢gH[H +R]x)H +
2B

n+2
(⇢g↵)n�1

H
n+1(�⇢gH[H +R]x)]x

�[v̄H]y = �[�C0�(�⇢gH[H +R]y)H +
2B

n+2
(⇢g↵)n�1

H
n+1(�⇢gH[H +R]y)]y

↵ =
q
[H +R]2x + [H +R]2y

Here H(x,y, t) is the thickness of the glacier at spatial coordinate (x,y) and time t, ū is the average velocity in the x direction15

and v̄ is the average velocity in the y direction. This model is vertically integrated, and hence only two spatial dimensions are

modeled. R(x,y, t) is the bedrock elevation which is assumed to be constant in time, so it can be written as R(x,y); ḃ(x,y, t)

is the mass balance field, B and C0� are physical parameters governing the viscosity and basal sliding; ⇢ governs the mass

density of the ice; and finally n is Glen’s flow law constant, typically set to 3. Initial conditions (i.e., H(x,y,0)) are assumed

to be given, and the boundary condition H � 0 is assumed, just as in Table 2 of Bueler et al. (2005). Additional derivations and20

details on the SIA are covered in a variety of sources, including Fowler and Larson (1978), Hutter (1982), Hutter (1983), and

Flowers et al. (2005).

It is important to make explicit that there are some limitations of this PDE. Besides ignoring longitudinal and transverse

stress terms, the PDE does not model subglacial hydrology, tunneling systems, jökulhlaups, or surges, the dynamics of which

are believed to contribute to dynamics of glaciers as a whole. Nonetheless, one hopes these equations may serve as a first25

approximation for shallow glacier dynamics. In addition to dynamics, another important physical consideration of glaciers

is the relationship between temperature and viscosity, which follows an Arrhenius relationship (Cuffey and Paterson, 2010).

However, in the context of Icelandic glaciers like Langjökull, this is not consequential since they are temperate (i.e., their

temperature is at melting point).

2.2 Bayesian hierarchical model30

In this section, we provide an overview and set–up of the BHM employed in addition to notation for the key parameters,

both statistical and physical. The reader is referred, however, to Table 1 for a summary of the model parameters utilized and a
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schematic illustrating the BHM in Figure 3. We use index i to refer to spatial coordinates (for this model space is assumed to be

discretized into squares) and index j to refer to time coordinates. Furthermore, the notation S.,j refers to the surface elevation

at all spatial coordinates for a particular time index j. Keeping in line with the Bayesian hierarchical modeling framework

from Wikle (2016) and Cressie and Wikle (2015), we delineate the models used for the data level, process level, and parameter

level. The primary inferential goals are to infer physical process parameters (i.e., ice viscosity and basal sliding) and to predict5

the height of the glacier at various time points and spatial locations besides those that have been observed (aligned to a grid

for which we have bedrock and initial surface height conditions). Within the Bayesian framework, all inferential goals may

be achieved by determining the posterior distribution of these quantities (i.e., their probability distributions conditioned on

observed data).

At the data level, the observed height for each grid point is modeled with a normal distribution (denoted with the notation10

N(µ,⌧2), where µ is the mean and ⌧
2 is the variance), where the mean is the physical process value, and the variance is assumed

to be known. In particular it is assumed that Yij ⇠ N(Sij ,�
2), where Yij is the observed surface elevation of the glacier

at location i and time index j, Sij is the latent (i.e., unobserved) surface elevation at location i and time index j (equivalent

to sum of the glacier thickness and bedrock level), and �
2 is the variance of the measurement errors for the surface height

observations, a fixed a and known quantity. The number of observed spatial indices is assumed to be much smaller than the15

number of total spatial indices modeled at the latent level.

At the process level, S.,j = f(S0,B, ḃ,C0�, j)+Xj , where f is a numerical solution to the SIA at time index j, and Xj is an

error-correcting process at time index j. A finite difference version of the SIA PDE is described in full detail in Appendix A. In

principle, however, the function f may be derived from other numerical solvers. Additionally, it should be made clear that f is

the output of a numerical solver for the underlying dynamics Also, S0 denotes the glacier surface elevation values at the initial20

time point, which are assumed to be known; e.g., with high precision light detection and ranging (LIDAR) initial conditions

provided by the Institute of Earth Sciences at the University of Iceland. ḃ.,j is the mass balance field for time index j at all the

grid points, which is assumed to be fixed and known for the purpose of this analysis. B is the ice viscosity parameter and C0�

is the basal sliding field, which itself is parametrized with µmax as in equation (16) of Bueler et al. (2005) and, furthermore, is

static in time. For compact notation, ✓ is used to refer to B in test cases B-D and (B,µmax) jointly in test case E.25

Since we believe numerical errors will accumulate over time (Bueler et al., 2005), we define the error correcting process

as follows: Xj+1 =Xj + ✏j+1, where ✏j+1 is MVN(0,⌃). (MVN stands for multivariate normal, and the first argument is

the mean and the second is the covariance.) ⌃ is block diagonal, with three blocks for indices corresponding to the margin,

interior, and dome of the glacier (the margin is defined as the last grid squares before the glacier drops to 0 thickness, and

the dome is the origin grid square), respectively. Each block is defined from a square-exponential kernel with the same length30

scale, denoted by �, but distinct marginal variances, �2
interior, �

2
margin and �

2
dome. The motivation for using different marginal

variance parameters is to account for the widely different errors exhibited at the dome, interior, and margin, as is demonstrated

by Bueler et al. (2005) and Jarosch et al. (2013). This error correcting process leads to a tractable likelihood function, as is

shown in Appendix B.
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Finally, at the parameter level, B and µmax are endowed with truncated normal distributions as priors. B has a normal

prior with mean 3.5⇥ 10�24, standard deviation 3⇥ 10�24, truncated to have support [1,70]⇥ 10�24. µmax has a normal prior

with mean 3⇥ 10�11 and standard deviation 1⇥ 10�11, truncated to have support [1,70]⇥ 10�12. (Units are s
�1

Pa
�3 for ice

viscosity and Pa
�1

ms
�1 for basal sliding.) The prior supports for B and µmax provide plausible values for temperate ice

caps.5

It is prudent to discuss the motivations and justifications of the various modeling choices employed in the model previously

delineated. The data level is assumed to have independent normal errors with fixed variance; this is justified because of the

uniformity of the measuring technology used from site to site (e.g., digital GPS) and symmetry of errors. On the other hand, the

precise functional form of the data level is chosen somewhat arbitrarily as a Gaussian, which affords one analytical convenience.

Similarly, the error correcting process at the process level uses a zero mean Gaussian process with a parameterized covariance10

kernel (e.g., square exponential), mostly as an analytically manageable way to induce spatial correlation in the error correcting

process. Spatial correlation in numerical errors has been demonstrated, for example, in Bueler et al. (2005).

Moreover, it is appropriate to consider potential variations of this model for slightly different scenarios; naturally, these could

fall into: alternate choices of covariance kernel at the process level (e.g., Matérn, to allow for a less smooth error correcting

process) and varying errors at the data level, for example to account for compaction or densification that occurs between15

seasons. For the latter, a suggestion is to use conjugate inverse-gamma distributions for the variances, so that sampling can be

accomplished with a Gibbs sampler. Additionally, as aforementioned, one can conceivably use any numerical solver for a PDE

at the process level. Future variations may consider utilizing non-zero mean Gaussian processes for the error correction process,

which may be more computationally costly yet perhaps more realistic. Generally, this model can be adapted to any science

or engineering system that is driven by physically meaningful parameters, whose dynamics are solved by noisy numerical20

methods, and for which noisy and continuous data is collected with well probed errors.

The mathematical details for how to do posterior computation within this model are given in Appendix B, which includes

a derivation of an approximation to the log-likelihood that allows for computational efficiency. In summary, we compute the

posterior of physical parameters directly on a grid since there are at most two physical parameters, and we use samples from

the posterior distribution of physical parameters to generate predictions for glacier thickness in the future.25

3 Experiments to assess the Bayesian hierarchical model

3.1 Analytical solutions

In Bueler et al. (2005), analytical solutions to the SIA are presented as benchmarks for numerical solvers of the SIA. As opposed

to using other benchmarks such as the EISMINT experiment (Payne et al., 2000), which itself is based on numerical modeling30

and hence subject to numerical errors, the benchmark solutions provided in this work can be treated as ground truth to compare

to. (This is in the sense that these are exact solutions of the SIA, but it must be stressed that the SIA is an approximation of

the true physical dynamics governing a glacier.) These analytical solutions serve as a basis for simulating data sets to validate
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Parameter Name Symbol Description

Time index j A subscript which refers to discrete time points

Spatial index i A subscript which refers to discrete spatial points

All spatial points for a time index ., j Refers to entire spatial field at time j

ice viscosity B Key physical parameter driving the SIA

Basal sliding C0� Basal sliding field and key parameter driving the SIA

Max basal sliding µmax Parameter for the basal sliding field of test case E in Bueler et al. (2005)

Physical parameters ✓ Refers to physical parameters

Measurement error � Measurement error of surface elevation measurements

Error correcting covariance matrix ⌃ Covariance matrix used for the error correcting process

Error correcting parameters (�dome,�interior,�margin,�) Parameters corresponding to ⌃

Mass balance field ḃ.,j Mass balance field at time index j

Initial surface elevation S0 Initial surface height of the glacier

Table 1. A summary of main parameters and notation utilized.

the Bayesian hierarchical approaches developed in this paper. In other words, the exact analytical solutions provide the latent

process in the BHM, conditioning on given initial conditions and mass balance functions. Hence to simulate data from the

BHM, one can bypass the need to numerically solve the PDE and introduce errors.

We make use of four analytical solutions from Bueler et al. (2005) that are summarized here, but the reader is referred to the

original paper for the exact mathematical formulation and derivation of these analytical solutions. All of the analytical solutions5

assume a flat bedrock. Test case B includes no mass balance or basal sliding, and, consequently, the motion of the glacier is

only attributable to deformation due to gravity. Test case C makes use of a mass balance field that is inversely proportional to

time and directly proportional to thickness, but there is no basal sliding field modeled. Similarly, test case D utilizes a mass

balance field with no basal sliding field modeled. In distinction from test case C, however, the mass balance field of test case

D is such that the overall solution for glacial thickness is periodic in time. Finally, in contrast to the other tests, test case E has10

a spatially varying basal sliding field, yet the overall solution is static in time. Note that test A was not utilized in this study

because it is a steady state solution without a varying mass balance or basal sliding field.

3.2 Simulation study test details

Conditions of the simulation study have been chosen as to closely emulate the data collected at Langjökull ice cap by the

Institute of Earth Sciences at the University of Iceland (IES-UI). In particular, 20 years of data are assumed, which is compa-15

rable to data provided by the IES. 25 fixed measurement sites are used for bi-annual surface elevation measurements, which

are geographically distributed on the glacier in a manner that is comparable to the real data provided by the IES-UI. Figure 4
illustrates the locations of these measurement sites on the glacier. Surface elevation measurements for these sites are taken
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 θ Parameter Level: Ice viscosity and basal sliding.

f(θ,j,S_0,b) Numerical solver for the SIA PDE.

        t_0           t_0+△t   t_0+2△t       t_0+3△t   t_0+4△t   t_0+5△t   ……         t_0+T△t

        t_0           t_0+△t   t_0+2△t       t_0+3△t   t_0+4△t   t_0+5△t   ……         t_0+T△t

X_j, Σ Error correcting statistical model.

Time

Time

S_j Physical Process Level: Glacier thickness values at discrete time points.

        Y_0                                                                                   Y_5         …..            Y_T

Y, σ Data Level: Glacier thickness at regularly spaced time intervals and sparsely sampled and fixed spatial locations.

Figure 3. Schematic of the physical-statistical BHM that has been constructed based on the SIA PDE. The main parameters and variables

for each module of the physical-statistical model are highlighted in red. The main levels of a physical-statistical model shown in Figure 2

are displayed here, along with the parameters and variables describing each level.

twice a year (i.e., for summer and winter mass balance measurements). The surface elevation measurements are generated by

adding Gaussian noise (zero mean, unit variance) to the analytical solutions at the spatio-temporal coordinates of the fixed

measurement sites. The choice of unit variance is larger than the errors produced by digital-GPS measurements. Remaining
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physical parameters were chosen using the values from Bueler et al. (2005) Table 2 to allow for comparisons to this work and

the EISMINT I experiment (Payne et al., 2000).

Figure 4. An illustration marking the 25 measurement sites on the glacier. This is a top level view of the glacier, where the blue points

indicate the glacier, the red points indicate the measurement locations, and the black points indicate locations surrounding the glacier with

no glacial thickness.

4 Results

Validation and diagnostics of the BHM were achieved through a combination of an assessment of posterior probability intervals,

a test of the predictive error of thickness values 100 years from the initial time point t0, and a comparison between observed5

and expected values for numerical errors based on the error correcting process utilized. As is discussed in more detail below,

these assessments suggest that the BHM is useful for inference of posterior probability distributions for physical parameters,
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prediction of future glacial thickness values on the order of 100 years, and the modeling of numerical errors at the margin,

interior, and dome of the glacier.

Table 2 contains posterior credibility intervals for ice viscosity in test cases B-D. A 3-sd credibility interval was computed
with mean +/- 3 standard deviations of the posterior samples. In all of these test cases, the 3-sd credibility interval covers
the actual ice viscosity. Furthermore, as is apparent in Table 3, the predictive error, relative to thickness values on the order of5

a kilometer, appears be small overall, particularly at the interior; predictive error is the root mean squared difference between

predictions and the exact analytical values for each of the test cases. Note that test E was not included with the predictive

checks since it is static in time. Consistent with Bueler et al. (2005) and Jarosch et al. (2013), however, errors are greatest at

the margin and dome of the glacier (evident in Figure 6). Nonetheless, the predictive distributions cover the actual thicknesses

even at these extremes. This illustrates the utility of the BHM for accounting for errors induced by the numerical solution of10

the SIA. Additionally, an illustration comparing the posterior and prior distributions for test case D is shown in Figure 7.

To investigate the frequentist properties of the posterior probability distribution for ice viscosity (i.e., its performance under

repeated sampling of data), 500 simulations were completed under repeated sampling of the surface elevation data at the 25

fixed measurement sites for test cases B-D. The coverage of ice viscosity for a 3-sd interval was computed for each of the

simulations, where coverage for a given interval is binary; either the actual parameter value is in the interval or it is not. For15

test case B, in 499 of 500 simulations the 3-sd credibility interval covered the actual value of ice viscosity. In test cases C
and D, the 3-sd credibility interval covered the actual value of ice viscosity in all of the simulations. This suggests that
the frequentist coverage probability of the credibility interval is at least 99 percent.

For test case E, one assumes that the field is described by parameterized equation (16) of Bueler et al. (2005). That is, in

polar coordinates with radius r and angle ⇥:20

C0�(r,⇥) =
µmax4(r� r1)(r2 � r)4(⇥� ✓1)(✓2 �⇥)

(r2 � r1)2(✓2 � ✓1)2

for ✓1 <⇥< ✓2 and r1 < r < r2, and C0� = 0 otherwise. In addition to ice viscosity, the inferential object of interest is the

scale parameter µmax. The 3-sd posterior credibility interval for B is [1,43] in units of 10�25
s
�1

Pa
�3, and for µmax it is

[1,50] in units of 10�12
Pa

�1
ms

�1. The actual values for B and µmax are 32⇥10�25
s
�1

Pa
�3 and 25⇥10�12

s
�1

Pa
�1

ms
�1,

respectively. Hence, the credibility intervals cover both parameters. A figure illustrating the posterior distribution of µmax is25

given in the supplemental materials.

While the credibility intervals achieved coverage of the actual values of the parameters, it was noticed that the pos-
terior distribution for physical parameters and predictions are biased. Brynjarsdóttir and O’Hagan (2014) exhibit the
same phenomenon in a simple physical system with a single physical parameter, and they demonstrate that the bias
of a physical parameter posterior distribution reduces as better prior information is encoded to model the difference30

between the output of a computer simulator of a physical system and the actual physical process values (i.e., what we
have termed as an error correcting process). To demonstrate that this also holds in the BHM presented in this paper,
we consider the following comparison. To assign prior information to the error correcting process, we consider a dis-
crete parameter set for �

2
interior, �

2
margin and �

2
dome: {.1,1,10,100} in units of m2, which corresponds to different orders of
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magnitude for variability. In one case, we ignore prior information from Bueler et al. (2005) and put equal probability
mass on the parameter space for these parameters. In the second case, we encode more realistic prior information into
the scales of errors at the three regions: equal mass on 10 and 100 at the margin, equal mass on .1 and 1 at the interior,
and equal mass at 1 and 10 at the dome (all units are m

2). In both cases, the parameter � is fixed at 70 km to place
emphasis on the scales of error. The results of inferring the posterior distribution for ice viscosity B are shown in Figure5

8. Consistent with Brynjarsdóttir and O’Hagan (2014), the posterior distribution of the physical parameter B is much
less biased when prior information is encoded into the error correcting process.

To assess how the posterior distribution for ice viscosity evolves under different sampling plans of the data, we con-
ducted a series of simulations in test case D under varying sampling periods. In particular, we considered data samples
once every 10 years, once every 5 years, once a year, and twice a year; the resulting posteriors for ice viscosity are in10

Figure 9. The general pattern is that the bias of the posterior distributions reduces as the period gets shorter, although
the posterior becomes more diffuse. The result that some posterior uncertainty does not go away with more collected
data is also consistent with the results in Brynjarsdóttir and O’Hagan (2014). The particular period we chose in this
analysis (data collected twice a year) was meant to model how the UI-IES Glaciology Team collects data, that is, twice
a year due to summer and winter mass balance measurements.15

To assess the accumulating error-correcting process model, we estimated the marginal variances of the error correcting

process for each of the time points with observed data in test case B, by examining the residuals formed by the difference

between the numerical solver and the observed data. According to the model, the standard deviation of these residuals at the

interior of the glacier should grow as
p
�2 + t�

2
interior, where t is the number of time steps (and likewise at the dome and

margin). Figure 10 shows a match between observed and expected in this regard, and, in particular, the 99 percent confidence20

bands appear to cover the expected variability as time progresses. Also apparent from this figure is that, as time progresses,

the errors at the margin, dome, and interior contribute more error than measurement error, which is on the order of 1 meter.

Moreover, this is also evident in Table 4, since after 200 time steps from t0 (i.e., 20 years), the marginal variances will be

200�2
interior, 200�

2
margin, and 200�2

dome based on the accumulating errors model; all of these values exceed 1, the measurement

variance.25

13



Figure 5. Grid map used to interpret the following box-plots in Figure 6. Eight randomly chosen grid points are selected for testing pre-

dictions; these are not the same as the measurement locations. Only one quadrant of the glacier is shown due to symmetry as is done in

Figures 9,10, and 12 of Bueler et al. (2005), and the width of each cell is 105m. Additionally, the red squares indicate locations at or close to

the margin, the blue squares indicate locations that are between the dome and margin of the glacier, and the black squares indicate locations

at or close to the dome of the glacier. Moreover, glacier grid squares with non-zero thickness are shaded in grey, as to indicate the glacier

location.
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Figure 6. Thickness prediction samples 100 years from t0 for test case B (i.e., no mass balance field or basal sliding). Triangles indicate

the actual thickness values from the analytical solution. The first set of plots are close to the margin (red squares of Figure 5), the second

set of plots are between the dome and margin of the glacier (blue squares of Figure 5), and the final set of plots are towards the dome of the

glacier (black squares of Figure 5). Refer to Figure 5 for a grid map to spatially reference each of the boxplots. As can be expected according

to Bueler et al. (2005), largest errors occur at the dome and the margin. Note on interpretation: the middle of each box is the median, the

interquartile range is denoted by the box, and 1.5 of the interquartile range beyond the first and third quartile is illustrated with the

whiskers. Those points that are more than 1.5 of the interquartile range beyond the first and third quartiles are outliers, and they

are denoted with circles.
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Figure 7. Comparison of posterior and prior distributions of ice viscosity for test case D (i.e., mass balance field producing a periodic SIA

solution).

16



Figure 8. A comparison of posteriors under strong and weak prior information for the error correcting process in test case D (i.e., mass

balance field producing a periodic SIA solution); prior information for the error correcting process leads to a less biased posterior, though

with slightly more posterior uncertainty.
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Figure 9. A comparison of posteriors in test case D (i.e., mass balance field producing a periodic SIA solution) under different sampling

periods: data sampled once every 10 years, every 5 years, once a year, and twice a year. The general trend is that the posterior tends to become

less biased as the period of sampling decreases, although the posterior becomes more diffuse. The University of Iceland Institute of Earth

Sciences Glaciology Team takes measurements twice a year for summer and winter mass balance measurements.
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Figure 10. An illustration comparing the expected variability of the error correcting process (as per the Bayesian hierarchical model) to

the observed variability of residuals at the interior, margin, and dome for test case B (i.e., no mass balance field or basal sliding). These

residuals are the differences between the observed data and the numerical solution.
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Test Case Actual Viscosity 3-sd Credibility Interval

Bueler B 32 [7,34]

Bueler C 32 [5,33]

Bueler D 32 [11,42]

Units 10�25 s�1Pa�3 10�25 s�1Pa�3

Table 2. Ice viscosity posterior intervals.

Test Case Dome RMSE Interior RMSE Margin RMSE

Bueler B 66 20 75

Bueler C 76 22 82

Bueler D 1.4 17 49

Units m m m
Table 3. Results of prediction at t0 +100 years. RMSE stands for root mean squared error. This is calculated by taking the average of

the squared difference between the actual glacial thickness values and predicted glacial thickness values, and then taking the square

root.

Test Case �2
dome �2

interior �2
margin �

Bueler B 1 .1 15 71

Bueler C 1 .15 15 64

Bueler D .1 .1 10 62

Bueler E .1 .1 10 60

Units sq. m sq. m sq. m km
Table 4. Error correcting process hyper-parameters; �2

dome is the error correcting process variance at the dome, �2
interior is the error

correcting process variance at the interior, �2
margin is the error correcting process variance at the margin, and � is the length scale

parameter.
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5 Summary, discussion, and future work

The primary contribution of this work has been to construct a BHM for glacier flow based on the SIA that operates in two spatial

dimensions and time, which successfully models numerical errors induced by a numerical solver that accumulate with time and

vary spatially. This BHM leads to full posterior probability distributions for physical parameters as well as a principled method

for making predictions that takes into account both numerical errors and uncertainty in key physical parameters. Furthermore,5

the BHM operates in two spatial dimensions and time, which, to our knowledge, is new to the field of glaciology. An additional

contribution is the derivation of a novel finite difference method for solving the SIA. When tested using simulated data sets

based on analytical solutions to the SIA from Bueler et al. (2005), the results herein indicate that our approach is able to infer

meaningful probability distributions for glacial parameters, and, furthermore, this approach makes probabilistic predictions

for glacial thickness that adequately account for the error induced by using a numerical solver of the SIA. A future goal is to10

create an R package for fitting a generalized version of the model used within this work, where the function f(.) is provided

by the user. This will allow glaciologists to extend the modeling approach we have developed to other similar scenarios in

which the physical dynamics are more complex than the SIA. An additional scenario for which this package can be useful

is when the numerical method is not a finite difference method; e.g., a FEM. To this end, we will attempt to utilize emulator

inference (Hooten et al., 2011); this will be crucial to ensure that the methodology scales well computationally, since each15

posterior sample requires a forward PDE solve. Finally, and perhaps most importantly, future work will involve the application

of the modeling and methodologies developed within this paper to real data collected by the IES-UI, which includes bedrock

elevation and mass balance measurements.

Author contributions. All of the glaciologists contributed equally to this work.

Acknowledgements. The Icelandic Research Fund (RANNIS) is thanked for funding this research.20

Appendix A: Finite difference method for the shallow ice approximation

Here a finite difference scheme is derived for the SIA PDE. The overarching strategy in developing this finite discretization

scheme is to take a second order Taylor expansion for H(x,y, t) with x,y fixed, and then equate the resultant time derivatives,

Ht and Htt, to functions of spatial derivatives by using the original SIA PDE. That is, one starts with the approximation

H(x,y, t+�t)⇡H(x,y, t)+Ht(x,y, t)�t+Htt(x,y, t)�t
2
/2 and uses the first equation of section two to write Ht and25

Htt in terms of spatial derivatives. Finally, central differences in space are substituted for the spatial derivatives. This finite

difference scheme is motivated by the Lax-Wendroff (Hudson) method, which is generally better than finite difference methods

that use only a single order Taylor expansion (indeed, in the advection-diffusion equation such methods may be unconditionally

unstable).
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In the following derivations note that the subscripts mean ‘derivative with respect to’ (e.g., Ht means derivative of H with

respect to t).

Ht = �[ūH]x � [v̄H]y + ḃ

Htt = �[ūH]xt � [v̄H]yt + b̈.

Now we solve for these derivatives in terms of spatial derivatives in H(x,y, t), the glacier thickness, and R(x,y), the bedrock5

level. The derivation makes repeated use of the differentiation rule for products, the chain rule for differentiation, and equality

of mixed partials (e.g., Hxt =Htx).

�[ūH]x = �C0�⇢gT1 +
2B

n+2
(⇢g)nT2

T1 = [2HHx(Hx +Rx)+H
2(Hxx +Rxx)]

T2 = [[↵n�1]x[H
n+2

Hx +H
n+2

Rx] +↵
n�1[(n+2)Hn+1

H
2
x +(n+2)Hn+1

HxRx +H
n+2

Hxx +H
n+2

Rxx]]10

By symmetry in x and y, �[v̄H]y can be analogously derived:

�[v̄H]y = �C0�⇢gT3 +
2B

n+2
(⇢g)nT4

T3 = [2HHy(Hy +Ry)+H
2(Hyy +Ryy)]

T4 = [[↵n�1]y[H
n+2

Hy +H
n+2

Ry] +↵
n�1[(n+2)Hn+1

H
2
y +(n+2)Hn+1

HyRy +H
n+2

Hyy +H
n+2

Ryy]]

Derivatives [↵n�1]x and [↵n�1]y:15

[↵n�1]x =
n� 1

2
(S2

x +S
2
y)

n�3
2 (2SxSxx +2SySyx)

[↵n�1]y =
n� 1

2
(S2

x +S
2
y)

n�3
2 (2SySyy +2SxSxy)
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Now we derive �[ūH]xt

�[ūH]xt = �C0�⇢gT1t +
2B

n+2
(⇢g)nT2

t

T1t = [2HtH
2
x +4HHxHxt +2HHxtRx +2HHxRxt +2HtHxRx +2HHtHxx +H

2
Hxxt +2HHtRxx +H

2
Rxxt]

T2t = [T5 +T6 +T7 +T8]

T5 = [↵n�1]xtH
n+2

Hx5

T6 = [↵n�1]xtH
n+2

Rx

T7 = [↵n�1]x[(n+2)Hn+1
HtHx +H

n+2
Hxt +(n+2)Hn+1

HtRx +H
n+2

Rxt]

T8 = [↵n�1]xtH
n+2

Hx +↵
n�1
x (n+2)Hn+1

HtHx +↵
n�1
x H

n+2
Hxt

+ [↵n�1]xtH
n+2

Rx +↵
n�1
x (n+2)Hn+1

HtRx +↵
n�1
x H

n+2
Rxt

+ [↵n�1]t(n+2)H(n+1)
H

2
x +↵

n�1(n+2)(n+1)Hn
HtH

2
x10

+ ↵
n�1(n+2)Hn+12HxHxt

+ [↵n�1]t(n+2)Hn+1
HxRx

+ ↵
n�1(n+2)(n+1)Hn

HtHxRx

+ ↵
n�1(n+2)Hn+1

HxtRx

+ ↵
n�1(n+2)Hn+1

HxRxt15

+ [↵n�1]tH
n+2

Hxx

+ ↵
n�1(n+2)Hn+1

HtHxx

+ ↵
n�1

H
n+2

Hxxt

+ [↵n�1]tH
n+2

Rxx

+ ↵
n�1(n+2)Hn+1

HtRxx20

+ ↵
n�1

H
n+2

Rxxt

Note that terms with a time derivative of bedrock such as Rxt can be set to 0 since R is assumed to be static in time. However,

we keep the time derivatives for R in the above equation for full generality in case a scenario is revisited where this does not

hold. Next we derive [↵n�1]t:

[↵n�1]t =
n� 1

2
(S2

x +S
2
y)

n�3
2 (2SxSxt +2SySyt)25

Next we derive [↵n�1]tx:

[↵n�1]tx =
n� 1

2
[
n� 3

2
(S2

x +S
2
y)

n�5
2 (2SxSxx +2SySyx)(2SxSxt +2SySyt)

+ (S2
x +S

2
y)

n�3
2 (2SyxSyt +2SySytx +2SxxSxt +2SxSxtx)]
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Next we derive [↵n�1]ty:

[↵n�1]ty =
n� 1

2
[
n� 3

2
(S2

x +S
2
y)

n�5
2 (2SxSxy +2SySyy)(2SxSxt +2SySyt)

+ (S2
x +S

2
y)

n�3
2 (2SxySxt +2SxSxty +2SyySyt +2SySyty)]

Note that Stx =Rtx +Htx =Htx since R is assumed to be fixed as a function of t. Note that the same argument holds for

other derivatives of S with respect to t. Next we derive Htx,Htxx,Hty,Htyy,Htyx:5

Htx = �[ūH]xx � [v̄H]yx + ḃtx

Htxx = �[ūH]xxx � [v̄H]yxx + ḃtxx

Hty = �[ūH]xy � [v̄H]yy + ḃty

Htyy = �[ūH]xyy � [v̄H]yyy + ḃtyy

Htyx = �[ūH]xxy � [v̄H]yyx + ḃtyx10

Hence, these partial derivatives allow us to substitute purely spatial derivatives into the forward in time approximation for H .

Without loss of generality, we use a central difference approximation for all spatial derivatives. Furthermore, we used �t = .1

years and �x =�y = 105 m for the analysis in this paper. In total, 441 grid squares were modeled (i.e., 21 by 21) with the

dome grid square at the origin. While a coarse grid was chosen for computational convenience, it is expected that numerical15

errors will go to zero as the grid width goes to zero, as is demonstrated both by Bueler et al. (2005) and Jarosch et al. (2013).

Appendix B: Model fitting

In the following subsections, we go through the key details regarding Bayesian computation for the model used in this work.

Assume n total grid points are modeled, of which m<< n are observed. Let Xj 2 Rn be the error correcting process at time

j, Sj 2 Rn be the latent glacier surface values at time j, f(✓, j) 2 Rn be shorthand for the output of the numerical solver20

at time point j, and ✏j be an independent and identically distributed (i.i.d) multivariate normal noise term at time j with

mean 0 and covariance matrix ⌃. (MVN stands for multivariate normal, and the first argument is the mean and the
second is the covariance.) Furthermore, assume that data is collected regularly at every kth time point, such that one observes

Yk,Y2k, ...,YNk 2 Rm, and the corresponding observation error Zk,Z2k, ...ZNk is i.i.d MVN(0,�2
I). For convenience, we

denote Nk as T . Finally, let A 2 Rm⇥n be a matrix which selects the grid squares of the latent process S that are observed;25

that is, its rows are unit basis vectors corresponding to those indices that are observed.

B1 Calculating the likelihood p(Yk, ...,YT |✓)

In this subsection, we derive both the likelihood of the observed data: p(Yk, ...,YT |✓) and an approximation to the likelihood.

Though section 2.2 specifies the BHM in greater detail, the process and data levels of the BHM (i.e., conditioning on
✓) are concisely written as follows.30
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Xj = Xj�1 + ✏j

Sj = f(✓, j)+Xj

Yck = ASck +Zck

Assume j 2 1,2, ...T and c 2 1,2, ..N ; hence there are N total spatial vectors observed with a period of length k. Further-5

more, X1 is marginally MVN(0,⌃). That is, the process level vectors, Sj , are modeled conditional on the parameter
level and the error correcting process. The data level vectors, Yck, are generated conditional on the process level Sck.
Throughout the following, we condition on ✓ being fixed.

B1.1 The exact likelihood

Conditional on ✓, the distribution of (Yk, ...,YT ), viewed as one long random vector, is multivariate normal. Also,10

conditional on ✓, the mean of (Yk, ...,YT ) is (Af(✓,k), ..Af(✓,T )) because both (Xk, ...,XT ) and (Zk, ...,ZT ) have
mean 0. It suffices to thus derive the covariance matrix for (Yk, ...,YT ) conditional on ✓. To do this, we note that
V ar(Yck) = V ar(ASck +Zck) = V ar(ASck)+V ar(Zck) = [A(ck⌃)A|] +�

2
I . Additionally, for a < b:

Cov(Ya,Yb) = Cov(ASa +Za,ASb +Zb)

= Cov(ASa,ASb)15

= Cov(A[f(✓,a)+Xa],A[f(✓, b)+Xb])

= Cov(AXa,AXb)

= V ar(AXa)

= [A(a⌃)A|]

Therefore, the covariance matrix for the observed data can be written as M ⌦⌃+�
2
I , where Mij = kmin(i, j) and20

M 2 RN⇥N . This is a useful matrix representation because the inverse of M is band-limited and sparse, for which there
exist efficient computationally efficient linear algebraic routines (Rue, 2001).

B1.2 An approximation to the likelihood

The joint distribution p(Yk, ...,YT |✓) can be written as p(Yk|✓)p(Y2k|Yk,✓)...p(YT |Yk, ..,Y(N�1)k,✓). Since we expect that the

data level errors are quite small (on the order of 1m) in comparison to the overall surface elevation measurements (on the order25

of 1 km), we can approximate p(S(c�1)k|Yk, ..,Y(c�1)k,✓) with p(S(c�1)k|Y(c�1)k,✓). Consequently, p(Yck|Yk, ..,Y(c�1)k,✓)
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will be close to p(Yck|Y(c�1)k,✓). From the above recursive relationship, we can write:

Yck = Y(c�1)k +A[f(✓, ck)� f(✓,(c� 1)k)] +Zck �Z(c�1)k +
ckX

j=(c�1)k+1

A✏j

This expression motivates approximating p(Yck|Yk, ..,Y(c�1)k,✓) as MVN distribution with mean Y(c�1)k+A[f(✓, ck)�
f(✓,(c� 1)k)] and covariance matrix A(k⌃)A| +2�2

I . A similar expression shows that p(Yk) is multivariate normal5

with mean Af(✓,k) and covariance matrix A(k⌃)A| +�
2
I . Nonetheless, we must be clear: p(Yck|Y(c�1)k,✓) does not

exactly follow a MVN with mean Y(c�1)k +A[f(✓, ck)� f(✓,(c� 1)k)] and covariance matrix A(k⌃)A| +2�2
I; this

is because Z(c�1)k and Y(c�1)k are dependent. A simple example illustrating this approximation is presented in the
supplemental materials.

B2 Posterior computation10

Posterior inference is accomplished with grid sampling (Gelman et al., 2013); this approach directly computes the posterior

distribution, p(✓|Yk, ...,YT ) of the parameter, proportional to p(Yk, ...,YT |✓)p(✓), on a grid of plausible values. The likelihood

is derived in the previous subsection. Parameters for the error correcting process are selected using knowledge elicited from

the studies of Bueler et al. (2005). To verify the sensitivity of grid sampling to the grid width, three grid widths for B are
considered: .25, .50, and 1, and the grid’s range is from [1,70] (all in units of 10�25

s
�1

Pa
�3). The summary statistics15

for generating 106 posterior samples from more to less fine (.25, .50,1) are given below:

– Min: (5.25,5.00,6.00)

– 1st Quartile: (23.8,23.5,24.0)

– Median: (27.0,26.5, 27.0)

– Mean: (27.1,26.7,27.1)20

– 3rd Quartile: (30.5,30.0,30.0)

– Max: (51.50,49.0,51.0)

The similarity of summary statistics across grid widths indicates that the posterior samples are not very sensitive to
grid width; a grid width of .50 was used for the analyses within. Moreover, the posterior samples in this check were
generated for test case D (i.e., mass balance field producing a periodic solution to the SIA).25

B3 Making spatio-temporal predictions of glacial surface elevation

In this section, we give details for how to make predictions under the proposed Bayesian model. Denote STend 2 Rn for

future glacier elevation values we want to make a prediction for at time point Tend. Our goal is to approximate the posterior
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predictive distribution p(STend |Yk, ...YT ). To make this computationally simple, our first assumption (as in the computation

of the likelihood) is to suggest that p(ST |Yk, ...YT ,✓) is approximately equivalent to p(ST |YT ,✓). This is because relative to

the overall glacier surface elevation values (an average of about 2000 m), the measurement errors are small, on the order of

1 m. Moreover, based on the model specified above, we know that STend =XT +
PTend

j=T+1 ✏j+f(✓,Tend). This suggests the

following iterative procedure to generate a posterior sample for the prediction of STend : for each independent sample ✓l from5

p(✓|Yk, ...,YT ), generate a sample from a multivariate normal whose mean is 0 and covariance given by (Tend �T )⌃, add the

sample to f(✓l,Tend), and then add this sum to a sample from p(XT |✓ = ✓l,YT ).

We must then determine how to sample from the distribution of p(XT |✓ = ✓l,YT ). Let XTobs 2 Rm be a subvector of

XT corresponding to the indices that are observed at the data level, and XTpred 2 Rn�m be a subvector of XT correspond-

ing to unobserved indices. The distribution for p(XTobs|✓,YT ) is multivariate normal due to conjugacy. The precision, de-10

noted by Qobs, is ��2
I+[A(T⌃)A|]�1. The mean, denoted by µobs, is Q�1

obs(�
�2

IYT +[A(T⌃)A|]�1
Af(✓,T ))�Af(✓,T ).

p(XTpred|XTobs,✓,YT ) is multivariate normal, whose mean and variance can be derived with the well-known conditional mul-

tivariate normal formula, as in Theorem 2.44 of Wasserman (2013). That is, the mean is T⌃pred,obsQobs and the variance is

T⌃pred,pred �T⌃pred,obsQobsT⌃obs,pred. Here, ⌃pred,obs is the submatrix of ⌃ that contains the rows of ⌃ that correspond to the

indices that are to be predicted, and the columns correspond to the indices which are observed. ⌃obs,pred is analogously defined.15
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Supplementary note: an example illustrating the approximation
used for the likelihood

An example motivating this approximation

To motivate the approximation in the likelihood (section B1.2), we consider a simple, univariate example
where the output of the numerical solver is 1000 for three consecutive time steps, and both the measurement
error variance and numerical error variances are 1 – note that the magnitude of the numerical solver is a few
orders of magnitude larger than the measurement error. That is, we have:

Y1 = 1000 +X1 + Z1

Y2 = 1000 +X1 + ✏1 + Z2

Y3 = 1000 +X1 + ✏1 + ✏2 + Z3

Where Z1, Z2, Z3, X1, ✏1 ,and ✏2 are all identically and independently distributed N(0, 1) (normal with 0
mean and unit variance) random variables. Analytically, the conditional distribution of p(Y3|Y2, Y1) follows a
normal distribution with mean 1000+ .2(Y1�1000)+ .6(Y2�1000) and variance 13/5. In our approximation,
we substitute this distribution with a N(Y2, 3); to show that these distributions are indeed quite close to each
other, we conduct 25 simulations and illustrate P (Y3|Y2, Y1) in Figure 1. These results motivate the use of
the approximations in section B1.2.
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Figure 1: 25 simulations from the above model with P (Y3|Y2, Y1) in blue and N(Y2, 3) in orange. Visual
inspection of these densities in all of the simulations shows that they are close to each other, lending evidence
that it is appropriate to use our approximation in the regime where the output of the numerical solver is
much larger than measurement errors.
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