
1 
 

 
 

Glacier change along West Antarctica’s Marie Byrd Land Sector and links to inter-decadal 
atmosphere-ocean variability: 
Author response to reviews 5 

 
Dear Dr. Wouters (Editor), 
 
We thank the two reviewers for their post-revision comments, and are glad to see they are satisfied with 
our implemented revisions. In accordance with your editor report and the comments of reviewer #2, we 10 
have incorporated the following amendments to the manuscript as detailed below. As before, we have 
compiled and numbered each of the reviewer’s comments (blue italics), and include our response (black 
text) and amendments to the original text (grey italics). Page/line numbers refer to the revised manuscript 
uploaded on 11th May 2018. We have retained our initial revisions to the manuscript in red bold font in 
the attached tracked-changed manuscript, and include our most recent revisions in green bold font.  15 
 
We hope that you will find our amendments to the manuscript satisfactory for publication in TC, and we 
look forward to hearing from you soon.  
 
Kind Regards, 20 
 
Frazer 
(on behalf of all co-authors) 
 

 25 

Reviewer #2 comments 
1. “A minor revision I would recommend is the inclusion of Fig 1 from the author response file 

(perhaps as a panel in Figure 4). Whilst I agree with the authors regarding the interpolation 
caveats and the uncertainties regarding the data product containing the latest observations, I still 
think it is a useful analysis from observational data which supports the arguments made from the 30 
ERA-Interim model analysis. As long as the caveats are discussed in the main text I don’t see a 
problem with its inclusion”.  
 
Accepted. We have reworded the discussion of the EN4 dataset in the author response file and 
converted this into a new methods section (Section 2.3.3), which details the dataset and its main 35 
caveats. To support our arguments, we have also added several references to the observed 
changes in EN4-derived ocean temperature to the discussion (Section 4.2.1). Other, minor 
references pertaining to the dataset’s inclusion have been added to Sections 2.3 and 5, and 
several associated citations have been added to the reference list. As the reviewer suggests, Fig. 
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1 has become a new panel in Fig. 4, and its figure caption has been updated to reflect this 
amendment.        
 
Section 2.3. now reads: “To investigate the role of atmospheric and oceanic forcing on 
glaciological change between 2003 and 2015, we examined mean zonal wind and Ekman vertical 5 
velocity anomalies on and near the MBLS’ continental shelf, using ECMWF ERA-Interim climate 
reanalysis data (cf. Dee et al., 2011). To supplement our analyses, we also compared these 
datasets to changes in sub-surface ocean temperature derived from Met Office EN4 objective 
analysis products (cf. Good et al., 2013)...”. 
 10 
Section 2.3.3 now reads: “Changes in subsurface potential temperature linked to temporal 
variability in atmospheric forcing were examined using monthly Met Office EN4 objective analysis 
solutions for 2000-2017 (Good et al., 2013). Unlike ocean models or reanalysis data, these 
products represent quality-controlled, monthly gridded interpolations of all available in-situ ocean 
observations assimilated from the World Ocean Database (WOD09/13), the Global Temperature 15 
and Salinity Profile Program (GTSPP), and global Argo float data; Good et al. (2013) provide a 
thorough discussion of these data sources and their interpolation methodologies. While subject 
to high uncertainty (see Good et al. 2013 for further discussion) and coarse (1°x1°) spatial 
resolution, these observations provide an independent first-order impression of changes in the 
Southern Ocean’s vertical hydrography (cf. Miles et al., 2016) to support our climate reanalysis 20 
records. We derived annually-averaged estimates of ocean potential temperature using EN4.2.1 
data for all months between January 2000 and December 2017 (inclusive), and used the time-
variable mechanical and expendable bathythermograph bias corrections of Gouretski and 
Reseghetti (2010) in our analyses”.  
 25 
Section 4.2.1 now reads: “Indeed, the changes in 10 m zonal wind, U (Fig. 4a), and Ekman 
vertical velocity, wE (Fig. 4b), suggest that the 2010-2015 era was characterised by a 
predominantly easterly wind anomaly over the MBLS CSB (Sect. 3.4), in conjunction with an 
implied regional-scale reduction in CDW upwelling and flooding onto the continental shelf. These 
findings are consistent with our EN4-derived observations of overall subsurface cooling near Getz 30 
Ice Shelf during 2010-2015 (Fig. 4c), and with similar, synchronous ocean-atmosphere trends 
observed over the wider Amundsen Sea Sector since 2009 which were responsible for a much 
deepened CDW layer across this region relative to the ICESat era (cf. Wåhlin et al., 2010; Jacobs 
et al., 2013; Dutrieux et al., 2014; Webber et al., 2017….  
 35 
Likely related to changes in the spatial extent of the Amundsen Sea Polynya since 2003-2008 
(cf. Nihashi & Ohshima, 2015; 2017; Kim et al., 2017), we hypothesise that the net reduced 
upwelling inferred to have occurred at this coastal location, consistent with a much deepened 
isopycnal depth over the trough’s tributaries, may have been responsible for an additional, locally-
forced reduction in central and eastern Getz-bound CDW inflow during 2010-2015. Echoed in our 40 
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EN4 observations of near-shore potential temperature change (Fig. 4c), such a reduction – 
together with observations of deeply reduced wE along much of the remaining Getz Ice Shelf and 
wider MBLS between 2010 and 2014 (Figs. 5c)- may explain the overall, central-western Getz-
wide reduction in GL retreat …”. 
 5 
Section 5 now reads: “We find a correspondence between the observed slowdown in Getz Ice 
Shelf’s grounding-line retreat and a reduction in external atmosphere-ocean forcing as inferred 
from climate reanalysis and ocean objective analysis datasets”.  

 
 10 

2. P1, L19 “Climate reanalysis data reveal” - I think the word “reveal” should be changed to 
something along the lines on “implies”. 

 
Accepted. Now reads “implies’. 
 15 

Editor Comments 
 

1. “I second R2's comment that it would be worthwhile to include one or both of the EN4 figures in 
the final manuscript… I understand your concerns about the data, and these data should only be 
used to support your arguments (rather than basing your arguments on the data), but as long as 20 
the limitations are clearly explained, this shouldn't be a problem”. 

 
Accepted as discussed above, with the exception of the inclusion of the second figure. Since the 
submission of our revised manuscript, a new journal article examining the role of the Ross Gyre 
and it’s links to Antarctic Circumpolar Current has been published (Dotto et al., 2018). Detailing 25 
the recent variability of the Ross Gyre as detected from satellite altimetry, this paper greatly 
supports our arguments and offers insight into the implications of its presence/extent to nearby 
ice-sheet melting rates beyond those presented in Fig. 2. Therefore, we have instead made 
explicit reference to this paper on Pg. 15 Ln 14.           
 30 

 

 

 

 
 35 
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Correspondence to: Frazer D.W. Christie (F.Christie@ed.ac.uk) 

Abstract. Over the past 20 years satellite remote sensing has captured significant downwasting of glaciers that drain the West 10 

Antarctic Ice Sheet into the ocean, particularly across the Amundsen Sea Sector. Along the neighbouring Marie Byrd Land 

Sector, situated west of Thwaites Glacier to Ross Ice Shelf, glaciological change has been only sparsely monitored. Here, we 

use optical satellite imagery to track grounding-line migration along the Marie Byrd Land Sector between 2003 and 2015, and 

compare observed changes with ICESat and CryoSat-2-derived surface elevation and thickness change records. During the 

observational period, 33% of the grounding line underwent retreat, with no significant advance recorded over the remainder 15 

of the ~2200 km long coastline. The greatest retreat rates were observed along the 650-km-long Getz Ice Shelf, further west 

of which only minor retreat occurred. The relative glaciological stability west of Getz Ice Shelf can be attributed to a divergence 

of the Antarctic Circumpolar Current from the continental-shelf break at 135° W, coincident with a transition in the 

morphology of the continental shelf. Along Getz Ice Shelf, grounding-line retreat reduced by 68% during the CryoSat-2 era 

relative to earlier observations. Climate reanalysis data imply that wind-driven upwelling of Circumpolar Deep Water 20 

would have been reduced during this later period, suggesting that the observed slowdown was a response to reduced 

oceanic forcing.  However, lack of comprehensive oceanographic and bathymetric information proximal to Getz Ice 

Shelf’s grounding zone make it difficult to assess the role of intrinsic glacier dynamics, or more complex ice-sheet-ocean 

interactions, in moderating this slowdown. Collectively, our findings underscore the importance of spatial and inter-decadal 

variability in atmosphere and ocean interactions in moderating glaciological change around Antarctica. 25 

1 Introduction 

Recent in situ and satellite remote sensing campaigns have played an important role in constraining the relative roles of ice, 

ocean and atmosphere interactions responsible for controlling the substantial ice losses observed in the Amundsen Sea Sector 

of West Antarctica over the last ~25 years (Rignot et al., 2008; Mouginot et al., 2014; Sutterley et al., 2014). Comprehending 

the drivers of these ice losses is imperative for accurately projecting the contribution of the West Antarctic Ice Sheet to 30 

global sea level rise in the coming decades (e.g., Vaughan et al., 2013). Observations of the ice streams and glaciers draining 

into this sector, in particular Pine Island and Thwaites Glaciers, have revealed rapid grounding-line retreat (cf. Park et al., 
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2013; Rignot et al. 2014; Scheuchl et al., 2016), pronounced ice-dynamic thinning (Pritchard et al., 2009; 2012; Konrad et al., 

2017), ice-flow-speedup (Mouginot et al., 2014; Gardner et al., 2018), and large ice-shelf melting rates (Depoorter et al., 2013; 

Rignot et al., 2013; Paolo et al., 2015; Gourmelen et al., 2017a). These phenomena have been attributed to oceanic and 

atmospheric forcing impinging on the West Antarctic margin (e.g., Jacobs et al., 2011; Dutrieux et al., 2014; Webber et al., 

2017). 5 

 

Whilst the processes driving ice-ocean-atmosphere interactions are being increasingly elucidated for the Amundsen Sea 

Sector (Jenkins et al., 2016; Asay-Davis et al., 2017; Turner et al., 2017), they remain poorly constrained elsewhere along 

coastal West Antarctica owing to a dearth of glaciological, oceanographical and climatological observations. Some recent 

studies have highlighted accelerated dynamic thinning along the Bellingshausen Sea margin (Helm et al., 2014; Paolo et al., 10 

2015; Wouters et al., 2015; Christie et al., 2016; Gardner et al., 2018) potentially linked to atmosphere-ocean forcing similar 

to that at work in the Amundsen Sea Sector (e.g. Holland et al., 2010; Zhang et al., 2016). Along the Marie Byrd Land coastline 

of West Antarctica between Thwaites Glacier and the Ross Ice Shelf, little published research exists on the pace and variability 

of glaciological change or its drivers. Nonetheless, parts of this region have also exhibited rapid downwasting and probable 

dynamic imbalance over at least the last two decades (e.g., Pritchard et al., 2012; Shepherd et al., 2012; McMillan et al., 2014), 15 

notably along the ~650 km-wide Getz Ice Shelf, which has been identified as one of the largest contributors of meltwater 

originating from sub-ice-shelf melting in Antarctica (Depoorter et al., 2013; Jacobs et al., 2013; Rignot et al., 2013).  

 

In this paper, we present changes in the position of the grounding line along the Marie Byrd Land coastline of West Antarctica, 

as identified from medium-resolution optical satellite imagery (Landsat and ASTER) between 2003 and 2015. We also recover 20 

contemporaneous ice-thinning rates from ICESat laser-altimetry and CryoSat-2 radar-altimetry records. We compare these 

glaciological observations with ERA-Interim climate reanalysis records of the offshore wind field, which acts as a proxy for 

the intrusion of warm circumpolar deep water (hereafter CDW) onto the continental shelf. 

2 Methodology 

We define our study domain as the coastline of West Antarctica from parallels 114° W to 157° W (Fig. 1). We term this region, 25 

which encompasses the western periphery of Getz Ice Shelf to the eastward limit of the Ross Ice Shelf front, the Marie Byrd 

Land Sector (hereafter MBLS).  

2.1 Grounding-line detection and change quantification 

To track changes in the position of the MBLS grounding line (hereafter GL), we follow the methodology detailed in Christie 

et al. (2016). For background, we briefly lay out the main principles of this technique.  30 
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We use medium-resolution optical satellite imagery to delineate the break-in-slope across the grounding zone, otherwise 

known as the “inflexion point”, Ib, defined as the most seaward continuous surface-slope break detectable in optical satellite 

imagery (Scambos et al., 2007; Fricker et al., 2009). Used as a proxy for the true GL, which cannot be recovered directly from 

satellite remote sensing, Ib appears as a clearly-defined shadow-like change in on-screen pixel intensity (cf. Bindschadler et 

al., 2011). Most commonly situated approximately 1-2 km downstream of the true GL, Ib typically represents the structural 5 

transition from undulating, subglacial-terrain-modulated grounded ice to smoother, floating ice where basal stresses tend 

towards zero seaward of the GL (see Christie et al., 2016; their Fig. S1).  

 

We used Landsat optical imagery as our primary data source owing to its unmatched, near complete spatial-temporal coverage 

of the MBLS compared to other freely available remote sensing datasets capable of detecting GL position (cf., Brunt et al., 10 

2011; Rignot et al., 2011). The data were acquired by Landsat’s Enhanced Thematic Mapper (hereafter ETM+) and Operational 

Land Imager (hereafter OLI) sensors, on-board the Landsat 7 and 8 platforms, respectively. In addition, for selected sites 

during 2003, where Landsat-based mapping was precluded due to persistent cloud cover or poor data quality, we utilised 

geometrically corrected Terra-ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) Level 1T optical 

data to supplement our analyses (Fig. S1; Table S1). We tracked the position of Ib along the MBLS at approximately 50-100 15 

m intervals for years 2003, 2008, 2010 and 2015, in order to calculate proxy-GL change over the ICESat (2003-2008) and 

CryoSat-2 (2010-2015) orbital campaign periods (cf. Pritchard et al., 2009; 2012; Helm et al., 2014). The majority of scenes 

utilised were acquired during austral summertime (January, February, March), and all scenes had a cloud coverage of <40%. 

For 2003 and 2008, additional Landsat scenes acquired in December 2002/2007 were utilised when 2003/2008 Landsat and 

ASTER spatial coverage was restricted by excessive summertime cloud cover. The final Ib products were smoothed using 20 

standard GIS tools (cf. Depoorter et al., 2013; Christie et al., 2018), and reflect the mean summertime GL position for each 

year as resolved from all available Landsat or ASTER imagery. 

 

There are certain conditions under which Ib from optical imagery acts as a poor proxy for the true GL. Such circumstances 

include the mapping of Ib over lightly grounded ice plains, where multiple or no continuous breaks-in-slope are detectable in 25 

optical imagery; instances where the location of Ib lies many kilometres landward or seaward of the true GL near ice-plains or 

ephemerally grounded pinning points (cf. Fricker & Padman, 2006; Fricker et al., 2009; Brunt et al., 2010; Brunt et al., 2011); 

and over fast-flowing ice streams, where shallow ice-surface slopes, pronounced ice-surface flowlines, and dense crevasse 

fields render the location of the break-in-slope ambiguous or impossible to delimit (cf. Bindschadler et al., 2011; Rignot et al., 

2011). Within the MBLS, such regions include the fast-flowing Berry and De Vicq Glaciers (> 1000 m yr-1; Rignot et al. 30 

(2011)), as well as a minor number of small-scale suspected ice plains and pinning points throughout the Getz and Nickerson 

Ice Shelves. We therefore excluded such sites, which account for <1% of the MBLS coastline, from our analysis. 
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Errors in delineating Ib from optical imagery are derived as a function of satellite orbital geometric error, sensor spatial 

resolution, and Ib pixel classification confidence, following the protocol outlined in Bindschadler et al. (2011) and Christie et 

al. (2016; their Text S1 and Table S2). For any given year, we estimate 1σ positional uncertainty to equal approximately ± 100 

m (Landsat data) or ± 47 m (ASTER data) along the majority of the MBLS coastline (Table S1). 

 5 

To propagate error between successive Landsat Ib observations, associated with combining ETM+/ETM+ (for mapped Ib years 

circa 2003, circa 2008) or ETM+/OLI (years 2010, 2015) sensor data, we additionally calculated the root-sum-square of the 

1α-positional uncertainty values calculated for each sensor. This yielded a mean standard error of ~±140 m for most of the 

main coastline and surrounding islands bounded by ice shelves (Table S2). To calculate uncertainty in 2003-2008 analyses, 

where 2003 ASTER L1T imagery was utilised in lieu of missing Landsat spatial coverage, the same calculation was applied. 10 

Whilst the propagated uncertainty associated with combining ASTER L1T and Landsat ETM+ data (±113m; Table S2) is less 

than that calculated for combined ETM+/ETM+ and ETM+/OLI sensor observations, for ease of comparability between multi-

sensor analyses (Figs. 1 and 2), error values were upscaled to match Landsat-based estimates (~±140 m).  

 

For most of the coastline, any overall imprecision in locating Ib (on the order of ~10-100 m) is outweighed by changes in its 15 

position over 5 years, i.e. GL advance or retreat on the order of ≥ 102-103 m. These uncertainties broadly match the positional 

errors reported in other satellite-based GL detection studies (cf. Brunt et al., 2010; 2011; Rignot et al., 2011; Joughin et al., 

2016; Scheuchl et al., 2016). Additional confounding variables such as diurnal tidal variability and atmospheric forcing - 

previously recognized as important controls on GL migration over much shorter temporal baselines (Anandakrishnan et al., 

2003; Fricker et al., 2009; Brunt et al., 2010) - are assumed to be negligible over the timescales we consider (cf. Milillo et al., 20 

2017). 

 

Upon completion of mapping, GL advance and retreat magnitudes were derived using the procedure detailed in Christie et al. 

(2016; their Sect. 2.3 and Text S2). Here, we defined our mapped 2015 Ib line as a baseline. This baseline was partitioned into 

30 km segments along the length of the MBLS coast, which permitted the derivation of normal polylines extending infinitely 25 

landward and seaward along the outer limits of each segment, intersecting the mapped Ib lines recovered for earlier years. This 

enabled the creation of GL change polygons representing Ib migration (advance, retreat) over (2015baseline – y), where y = earlier 

mapped year of interest, and permitted the calculation of Ib advance/retreat rates between 2003-2008 and 2010-2015 (Data Set 

S2). 

2.2 Surface elevation and floating ice thickness changes 30 

We compared GL migration along the MBLS with contemporaneous surface elevation change rates derived from ICESat laser- 

(2003-2008) and CryoSat-2 radar-altimetry records (2010-2016). We used the data of Pritchard et al. (2009; 2012) to ascertain 

ICESat era surface elevation change rates (Δh/Δt) over grounded and floating ice within our domain. Following Pritchard et 
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al. (2009; their Text S1) and Pritchard et al. (2012; their Text S1.1), these datasets were derived from the interpolation of 

successive near-repeat track median-filtered data acquired over the MBLS, and were converted into smoothed, 10 km grids of 

mean Δh/Δt calculated over a 30 km radius. Grids of Δh/Δt over grounded and floating ice were processed independently to 

avoid averaging over the grounding zone, and data acquired over other areas suspected to be not freely-floating were culled 

prior to the gridding. Following Pritchard et al. (2012; their Text S1.4 and Table S1), we estimate mean absolute uncertainty 5 

in ICESat area-averaged Δh/Δt to be ~ ± 0.04 m yr-1 and ± 0.08 m yr-1 over floating and grounded ice, respectively. Over 

floating ice, Δh/Δt was subsequently converted into ice-shelf-thickness change rates (ΔT/Δt) following a similar methodology 

to Pritchard et al. (2012), using an assumed ice density of 917 kg m-3 (cf. Shepherd et al., 2010; Paolo et al., 2015). Propagated 

uncertainties associated with this conversion equal ± 0.40 m yr-1.    

 10 

To obtain surface elevation changes over the CryoSat-2 era, we applied a novel, recently documented swath processing 

technique (Foresta et al., 2016; Gourmelen et al., 2017a) to CryoSat-2 Synthetic Aperture Radar Interferometric (hereafter 

SARIn) mode data acquired between 2010 and 2016 over the MBLS. Previously applied to other regions of Antarctica (Christie 

et al., 2016; Smith et al., 2017; Gourmelen et al., 2017a), this technique offers one to two orders of magnitude more elevation 

measurements than conventional point-of-closest-approach (hereafter POCA) altimetry techniques, thereby maximising spatial 15 

coverage and spatial-temporal resolution of ice-sheet marginal areas, including over floating ice (Gourmelen et al., 2017a). 

Numerous corrections were implemented to the L1b dataset during the production of the swath dataset, including, over floating 

ice, the negation of ocean loading/tidal effects using the CATS2008A tidal model (Padman et al., 2002; following Pritchard et 

al., 2012); Gourmelen et al. (2017a) provide a comprehensive discussion of these processes.  

    20 

We derived linear rates of surface elevation change from time-dependent swath elevation data acquired between 2010 

and 2016 using a plane fit approach on a 10 km grid posting (cf. Gourmelen et al., 2017b). This posting was chosen to 

match the spatial resolution of our gridded ICESat Δh/Δt dataset, in order to facilitate comparison of changes in Δh/Δt between 

the ICESat and CryoSat-2 eras. Over floating ice, we additionally employed a Lagrangian framework to derive elevation and 

rates of surface elevation change to avoid interference associated with the advection of ice-shelf topography through time 25 

(Dutrieux et al., 2013; Moholdt et al., 2014; Gourmelen et al., 2017a). To do this, we used the MEaSUREs (Making Earth 

System Data Records for Use in Research Environments) version 2 dataset (Rignot et al., 2017) and additional ice velocity 

fields generated from feature-tracking of Landsat 8 imagery for the period 2013-2016 (Dehecq et al., 2015) to calculate and 

assign the position that each CryoSat-2 swath measurement would have had at the beginning of the CryoSat-2 operational 

period (July 2010). Finally, we corrected for the effects of surface mass balance and firn compaction processes throughout 30 

MBLS using the RACMO2.3p2 (5.5 km) and IMAU-FDM (5.5 km) models (Ligtenberg et al., 2011; Lenaerts et al., 2012; 

Van Wessem et al., 2014; Van Wessem et al., 2016; Gourmelen et al., 2017a; Lenaerts et al., 2017). Final uncertainties 

associated with the swath processing technique were recovered following Gourmelen et al. (2017a; their Text S1), and average 

± 0.03 m yr-1 over both grounded and floating ice. 
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Over floating ice, CryoSat-2 era surface elevation change rates were transformed into thickness change rates using the same 

methodology as for ICESat data, with a propagated uncertainty of ± 0.30 m yr-1. Three-monthly shelf-averaged thickness 

change rates were also obtained as part of the swath processing technique, using the methodology of Foresta et al. (2016), prior 

to the Lagrangian correction detailed above. This permitted the comparison of mean shelf-ice thickness changes against the 5 

2003-2008 (ICESat era) and longer-term radar-altimetry-derived record (Paolo et al. (2015), see also Sect. 3).   

2.3 Ice-atmosphere-ocean proxies 

To investigate the role of atmospheric and oceanic forcing on glaciological change between 2003 and 2015, we examined 

mean zonal wind and Ekman vertical velocity anomalies on and near the MBLS’ continental shelf, using ECMWF ERA-

Interim climate reanalysis data (cf. Dee et al., 2011). To supplement our analyses, we also compared these datasets to 10 

changes in sub-surface ocean temperature derived from Met Office EN4 objective analysis products (cf. Good et al., 

2013).  These methods were utilised due to a dearth of high-resolution, spatially and temporally continuous in-situ 

oceanographical observations within the MBLS during the observational period, with the last comprehensive and 

publically-available surveys having been carried out in 2000 and 2007 (Jacobs et al., 2013).  

2.3.1 Zonal wind anomalies 15 

Previously established to be a reliable proxy for warm circumpolar deep water upwelling and intrusion onto West Antarctica’s 

continental shelf (Thoma et al., 2008; Steig et al., 2012; Dutrieux et al., 2014), 10 m zonal wind anomalies (hereafter U) along 

the MBLS continental-shelf slope and break (hereafter CSB) were calculated using ERA-Interim monthly mean of daily mean 

model outputs (Dee et al., 2011), for all months between January 1979 and December 2016 inclusive. Anomalies were derived 

by subtracting long-term monthly mean values from the monthly mean of daily mean dataset, beginning in January 1979. To 20 

examine inter-decadal variability in U, monthly anomalies were averaged over annual timescales to simplify comparison 

between successive years (see Sect. 3.3).  

2.3.2 Ekman vertical velocity 

A derivative of the wind stress field, Ekman vertical velocity, approximates the rate at which the wind stress curl raises 

subsurface isopycnals, and can be used as a first-order estimate for Ekman transport-induced upwelling of interior ocean 25 

water masses, including relatively warm upper CDW layers (Marshall & Plumb, 2008). Ekman vertical velocities (hereafter 

wE) were calculated by converting 10 m zonal and meridional wind anomalies into relative wind stresses in fixed grid 𝑥 (zonal) 

and 𝑦 (meridional) planes (𝜏$	and 𝜏&, respectively; Nm s-1), using the quadratic stress law detailed in Marshall & Plumb (2008, 

their Equation 10-1) with an assumed ocean-air neutral drag coefficient of 1.5 x 10-3 (dimensionless; cf. MacGregor et al., 

2012; Smith et al., 1988). wE was then obtained from:   30 



10 
 

 

 𝑤𝐸 = 𝛁×((𝜏$,	𝜏&) . -
./0

)	    (cf. Marshall & Plumb, 2008; their Equation 10-8)                                                                  (3)  

𝑓 = 2𝜔𝑆𝑖𝑛 𝜑                                                                                                                                                                          (4) 

 

where 𝑓 denotes the Coriolis parameter at latitude 𝜑; 𝜔 is the Earth’s angular velocity (7.292 × 10-5 rad s-1); and 𝑝; is the 5 

density of the Ekman layer ocean water (1027.5 kg m-3). wE anomalies were derived from the mean of all ERA-Interim grid 

cells located on the continental shelf, shelf break and slope of the MBLS. As for zonal wind calculations (Sect. 2.3.1), monthly 

anomalies were annually-averaged to examine inter-decadal variability in wE (see Sect. 3.3).  

 

2.3.3 Changes in subsurface ocean temperature 10 

 

Changes in subsurface potential temperature linked to temporal variability in atmospheric forcing were examined 

using monthly Met Office EN4 objective analysis solutions for 2000-2017 (Good et al., 2013). Unlike ocean models or 

reanalysis data, these products represent quality-controlled, monthly gridded interpolations of all available in-situ 

ocean observations assimilated from the World Ocean Database (WOD09/13), the Global Temperature and Salinity 15 

Profile Program (GTSPP), and global Argo float data; Good et al. (2013) provide a thorough discussion of these data 

sources and their interpolation methodologies. While subject to high uncertainty (see Good et al. 2013 for further 

discussion) and coarse (1°x1°) spatial resolution, these observations provide an independent first-order impression of 

changes in the Southern Ocean’s vertical hydrography (cf. Miles et al., 2016) to support our climate reanalysis records. 

We derived annually-averaged estimates of ocean potential temperature using EN4.2.1 data for all months between 20 

January 2000 and December 2017 (inclusive), and used the time-variable mechanical and expendable 

bathythermograph bias corrections of Gouretski and Reseghetti (2010) in our analyses.  

 

 [Fig. 1 here] 

 25 

3 Results 

3.1 Grounding-line change 2003-2015 

Figure 1 indicates that from 2003 to 2015 GL retreat occurred along ~33% of the MBLS coastline. This quantity incorporates 

the entire mainland coastline and Siple and Carney Islands. No net GL advance was observed from 2003 to 2015. The greatest 

retreat occurred along Getz Ice Shelf, particularly across its central sector between Wright and Dean Islands (‘Central’ region 30 

in Fig. 1, inset), and near the western edge of Getz Ice Shelf, adjacent to De Vicq and Berry Glaciers (‘West’, Fig. 1 inset). 

The greatest magnitude of GL retreat totalled 1.72 ± 0.14 km on Scott Peninsula (corresponding to Segment 9 in Data Set S2). 
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Locally-averaged GL retreat was ~0.60 ± 0.14 km along both the central sector (segments 9-24) and the western edge of the 

ice shelf (segments 27-31).  

 

In contrast to Getz Ice Shelf, the GL west of 135° W – which fringes Hull and Land Glaciers and the ice streams draining into 

Nickerson Ice Shelf – underwent more limited or negligible migration between 2003 and 2015, with maximum retreat 5 

occurring across Land Glacier (0.54 ± 0.14 km; Segment 45 in Data Set S2). Farther west, with the exception of minor retreat 

near Scambos Glacier (0.22 ± 0.14 km; Segment 83 in Data Set S2), no GL migration took place along the entire perimeter of 

Sulzberger Ice Shelf, nor throughout the neighbouring Swinbourne Ice Shelf or Bartlett Inlet regions (Fig. 1). 

 

Collectively, our observations highlight the tendency for GL retreat to be clustered around areas of deeply bedded ice (Fig. 1), 10 

which correspond to regions of recent moderate-to-fast ice flow inland of the GL (>500 m yr-1; cf. Rignot et al. (2011)). 

Furthermore, partitioning our GL observations into change over the ICESat versus CryoSat-2 campaign periods, we detect 

several notable patterns of GL migration with respect to ice-sheet altimetry observations. These findings are discussed next.          

3.2 Glaciological change 2003-2008 (ICESat era) 

Between 2003 and 2008, GL retreat along Getz Ice Shelf emulated the spatial pattern observed over the longer timeframe of 15 

2003-2015 (Fig. 1, Fig. 2a). The Getz Ice Shelf over the ICESat era also hosted the largest GL retreat rates observed over the 

observational period (Fig. 2). Retreat rates along the central and western sectors of Getz Ice Shelf ranged from 34 ± 30 m yr-1 

(Segment 16; Dataset S2) to 319 ± 30 m yr-1 and 192 ± 30 m yr-1 on Scott Peninsula and near Berry Glacier, respectively 

(Segments 9, 30). Over the same period, no GL migration occurred across the eastern sector of Getz Ice Shelf (‘East’, inset of 

Figs. 1 and 2).  20 

 

The GL retreat observed along the central-western Getz Ice Shelf was also associated with ice surface lowering of up to 120 

km inland of the 2008 grounding zone (Fig. 2a). Simultaneously, the ice shelf thinned at an average of 1.76 ± 0.40 m yr-1 (Fig. 

3a), where maximum thinning of 3.8 ± 0.40 m yr-1 was focussed across the central sector between Scott Peninsula and Carney 

Island (Fig. 3b), i.e. encompassing the locations at which some of the largest GL retreat rates had occurred. Nevertheless, not 25 

all instances of GL retreat over the ICESat era were associated with the locations of highest thinning along Getz Ice Shelf; for 

example, GL retreat of up to 110 ± 30 m yr-1 occurred near Dean Island (‘D’ on Fig. 3(b); Segments 21-23; Data Set S2) where 

ice-shelf thinning was relatively more limited in magnitude (~1-1.8 ± 0.40 m yr-1).  

 

West of 135°, almost no GL retreat was observed over the ICESat era outwith Landsat/ASTER 1s-error bounds (Fig. 2a). In 30 

conjunction, ice-surface lowering was less pronounced than along Getz Ice Shelf (Fig. 2a), with negligible overall change in 

corresponding ice-shelf thinning rates across Nickerson, Sulzberger and Swinbourne Ice Shelves (not shown).  
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[Fig. 2 here] 

3.3 Glaciological change 2010-2015 (CryoSat-2 era) 

During 2010-2015, GL retreat continued to occur along Getz Ice Shelf but on average 68% slower than in 2003-2008 (Fig. 

2b). This reduction in GL retreat was evident even in the central sector of Getz Ice Shelf, where we detect the most rapid GL 5 

retreat during this timeframe (Fig. 2b; max. 98 ± 30 m yr-1; Segment 19, Dataset S2). In addition, a minor segment of the 

central Getz Ice Shelf GL underwent limited advance (33 ± 30 m yr-1; Segment 15, Dataset S2), in conjunction with more 

minor or negligible GL retreat across both Scott Peninsula and throughout the western sector of the ice shelf (Fig. 2b). 

 

Inland, the ice surface continued to lower (Fig. 2b) as it had done over the previous (ICESat) era (Fig. 2a), with the greatest 10 

lowering of grounded ice having occurred upstream of the central and western sectors of the ice shelf. The most notable contrast 

in Δh/Δt between the two eras was an enhanced thinning signal up to ~50 km inland of the 2015 GL along the central Getz Ice 

Shelf between Scott Peninsula and Siple Island, and at and near De Vicq and Berry Glaciers, where thinning rates intensified 

and propagated up to 82 km inland (Fig. 2b; Fig. S2). Over the same period, with the exception of a slowdown in cumulative 

thickness change between 2011 and 2013, Getz Ice Shelf thinned at an average rate of 1.51 ± 0.30 m yr-1, not significantly 15 

different to the rate over the ICESat era (1.76 ± 0.40 m yr-1), nor the longer-term (1994-2012) radar altimetry-based record 

(~1.60 ± 0.30 m yr-1; Fig. 3a; Paolo et al. (2015, their Table S2)). At the local scale, along a large proportion of the central 

Getz Ice Shelf and west of Dean Island (western Getz Ice Shelf), there was a localised slowdown in ice-shelf thinning (≥ 4.00 

± 0.30  m yr-1) corresponding to the observed locations of slowdown in GL retreat rate (Fig. 3b and c; Fig. S3). A few locations 

experienced a localised increase in ice-shelf thinning, e.g. west of Berry Glacier, where we observe a reduction in GL retreat, 20 

and downstream of De Vicq Glacier, where no GL change information could be recovered from our optical mapping technique 

(cf. Sect. 2.1.1).  

 

Across the remainder of the MBLS, including the eastern Getz Ice Shelf and the region west of 135° W, we detect negligible 

GL change between 2010 and 2015, apart from localised retreat at Land Glacier (86 ± 30 m yr-1; Fig. 2b; Segment 45 in Dataset 25 

S2). With the exception of Hull and Land Glaciers and near Swinbourne Ice Shelf, where surface elevation change rates 

increased inland of the GL (Fig. 2a and b, Fig. S2), these areas exhibited no significant change in the pace of ice surface 

lowering (Fig. 2b; Fig. S2) or ice-shelf thinning (not shown) relative to the earlier ICESat era. 

 

[Fig. 3 here] 30 
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3.4 Ice-atmosphere-ocean interactions: Zonal wind and Ekman vertical velocity  

Figure 4 displays annually-averaged 10 m zonal wind (U) and Ekman vertical velocity (wE) anomalies offshore of the MBLS 

(114° W to 157° W). We detect a significant positive (westerly) anomaly in U along the CSB of the MBLS during most of the 

ICESat era (2003 to 2008, inclusive; Fig. 4a), the peak magnitude of which was unprecedented within the ERA-Interim data 

record (max. MBLS U = 1.15 m s-1; 2005). This phenomenon is echoed in the wE record (Fig. 4b), which reveals a predominant 5 

net upwelling during this epoch (max. wE = 2.94 myr-1; 2006). As for U, this wE anomaly was also exceptional in the ERA-

Interim record, although similar peaks were subsequently recorded in 2009 and 2015. Conversely, for most of the CryoSat-2 

era (2010 to 2013, inclusive), U was predominantly negative (easterly), with averaged zonal wind reaching record negative 

values during 2012 (min. U = -1.30 m s-1). This wind anomaly was associated with an overall marked reduction in the tendency 

for upwelling to occur across MBLS from circa. 2008/2009, with minimum upwelling (wE = -3.34 m yr-1) rates also recorded 10 

in 2012. Following 2013, U tended back towards zero, becoming positive (westerly) from 2014 onwards, and this was 

responsible for the significant upwelling event observed in 2015 (max. wE = 3.21 m yr-1).  

 

Differences in the spatial distribution of wE for January 2010 to December 2013 (inclusive) minus January 2003 to January 

2008 (inclusive) relative to the long-term ERA-Interim record are plotted in Fig. 5c. Comprising of persistently easterly U 15 

anomalies prior to 2014 (Fig. 4a), this epoch was characterised by a much reduced wE throughout the MBLS relative to 2003-

2008 (Fig. 5a, b). Predominantly centred at ~140-145° W, which ranges spatially between Sulzberger Ice Shelf and the western 

edge of Getz Ice Shelf, additional, strongly negative Ekman vertical velocities were also present along the eastern edge and 

much of the central Getz Ice Shelf during this epoch (Fig. 5c). Over the same period, a notable reduction in wE near ~115° W, 

70° S also occurred. 20 

 

In summary, the ERA-Interim observational record shows the predominance of Ekman upwelling during the ICESat era (2003-

2008), forced by the strongest westerly wind anomaly in the record, followed by a tendency for reduced Ekman upwelling 

associated with an easterly wind anomaly during most of the CryoSat-2 era (2010-2015).  

 25 

[Fig. 4 here] 

[Fig. 5 here] 

4 Discussion 

Our observations have highlighted that over a 12-year period there has been considerable spatial and temporal variability in 

the nature and pace of GL migration throughout the MBLS (Figs. 1 and 2). In the following sections, we examine the potential 30 
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drivers of these phenomena, with respect to regionally contrasting ice, ocean, atmosphere and other potential interactions at 

work across the MBLS. To support our discussion we make reference to a conceptual model presented in Fig. 6. 

 

[Fig. 6 here] 

4.1 Getz Ice Shelf grounding-line change 2003-2015 5 

The most prominent GL retreat throughout the MBLS occurred along the ~650 km Getz Ice Shelf (Fig. 1; Sect. 3.1), which 

neighbours the recent, rapidly downwasting ice-masses of the wider Amundsen Sea Sector. This was a likely consequence of 

the substantial thinning and basal melting witnessed over this region in recent decades, indicative of an on-going 

dynamically-driven glaciological imbalance through time (Figs. 2 and 3; see also Pritchard et al., 2009; 2012; Jacobs et al., 

2013; Paolo et al., 2015). Indeed, all GL retreat within the central and western sectors of Getz Ice Shelf occurred directly 10 

upstream of well-surveyed, deep (>400 m) bathymetric depressions north of the ice fronts (Fig. 1), which transect the 

continental shelf and route warm modified-CDW from the CSB to the sub-ice shelf cavity (Wåhlin et al., 2010; Arneborg et 

al., 2012; Jacobs et al., 2013; see also our Fig. 6a). Aping the offshore geological setting of the Bellingshausen and eastern 

Amundsen Sea Sectors, where recent glaciological change is believed to have been facilitated by CDW ingress along similar 

cross-continental-shelf conduits (Nitsche et al., 2007; Walker et al., 2007; Bingham et al., 2012; Pritchard et al., 2012; St-15 

Laurent et al., 2013; Zhang et al., 2016), these observations are strongly suggestive of ocean-forced glaciological change at 

work across the central-western Getz Ice Shelf and its inland basins between at least 2003 and 2015.    

 

Along the eastern sector of the ice shelf, where we detect almost no GL migration between 2003 and 2015 (See Sect 3.1. and 

3.2.; Fig. 1), ice-flow velocities (Rignot et al., 2011; Gardner et al., 2018) and ice-thinning rates (Figs. 2 and 3) were more 20 

limited relative to the remainder of the ice shelf. This is despite the proximity of the deep Getz-Dotson Trough to the eastern 

sector’s ice front (Fig. 1). Collectively, these observations imply that local-scale ice-ocean processes or geological 

configurations underneath the most easterly portion of Getz Ice Shelf may render the region relatively immune to ocean-forced 

dynamic thinning and subsequent GL retreat. These considerations are discussed in further detail next (Section 4.2).  

4.2 Controls on Getz Ice Shelf grounding-line dynamics 25 

4.2.1 Atmosphere-ocean forcing 

That GL retreat slowed down consistently along the length of the (~650 km long) central-western Getz Ice Shelf in the CryoSat-

2 era relative to the ICESat era (Fig. 2; Fig. S3; Sect. 3.3) is indicative of regional-scale external forcing, primarily with respect 

to the intensity of atmosphere-ocean forcing of Getz Ice Shelf through time. Indeed, the changes in 10 m zonal wind, U (Fig. 

4a), and Ekman vertical velocity, wE (Fig. 4b), suggest that the 2010-2015 era was characterised by a predominantly easterly 30 

wind anomaly over the MBLS CSB (Sect. 3.4), in conjunction with an implied regional-scale reduction in CDW upwelling 
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and flooding onto the continental shelf. These findings are consistent with our EN4-derived observations of overall 

subsurface cooling near Getz Ice Shelf during 2010-2015 (Fig. 4c), and with similar, synchronous ocean-atmosphere 

trends observed over the wider Amundsen Sea Sector since 2009 which were responsible for a much deepened CDW layer 

across this region relative to the ICESat era (cf. Wåhlin et al., 2010; Jacobs et al., 2013; Dutrieux et al., 2014; Webber et al., 

2017. Dutrieux et al. (2014; following Steig et al., 2012) attributed this behaviour to inter-decadal variability in tropical-pacific 5 

ENSO forcing and so, by extension, Getz Ice Shelf and the wider MBLS also appear responsive to inter-decadal variability in 

global-scale atmospheric forcing. This hypothesis concurs with the recent findings of Paolo et al. (2018) who examined 

the response of ENSO variability on all pacific-facing ice shelves over the radar altimetry record (1994-2017), as well 

as the earlier findings of Jacobs et al. (2013), who attributed a reduced thermocline and glaciological forcing along Getz 

Ice Shelf in the years preceding the ICESat era to a strong La Niña event circa. 2000.      10 

 

Locally, the significant negative difference in wE near the eastern Getz Ice Shelf is also notable (Fig. 5c). Widespread along 

the eastern and parts of the central Getz coast between 2010 and 2014, this anomaly was prevalent across the deeply-bedded 

coastal tributaries of the Getz-Dotson Trough (Fig. 1), which act as the primary CDW ingress pathways to the eastern and 

central sectors of the Getz Ice Shelf (Wåhlin et al., 2010; Arneborg et al., 2012; Jacobs et al., 2013). Likely related to changes 15 

in the spatial extent of the Amundsen Sea Polynya since 2003-2008 (cf. Nihashi & Ohshima, 2015; 2017; Kim et al., 2017), 

we hypothesise that the net reduced upwelling inferred to have occurred at this coastal location, consistent with a much 

deepened isopycnal depth over the trough’s tributaries, may have been responsible for an additional, locally-forced reduction 

in central and eastern Getz-bound CDW inflow during 2010-2015. Echoed in our EN4 observations of near-shore potential 

temperature change (Fig. 4c), such a reduction – together with observations of deeply reduced wE along much of the 20 

remaining Getz Ice Shelf and wider MBLS between 2010 and 2014 (Figs. 5c)- may explain the overall, central-western Getz-

wide reduction in GL retreat relative to the 2003-2008 (ICESat) era, and may have simultaneously bolstered the eastern ice 

shelf’s overall immunity to pervasive ocean-forced GL retreat (Figs. 1 and 2). Similar local-scale processes are believed to 

have governed the magnitude of change at Pine Island Glacier in recent years, where a dramatic reduction in basal melt rate 

and other glaciological change was observed between 2011 and 2013 (Dutrieux et al., 2014; Mouginot et al., 2014; St. Laurent 25 

et al., 2016; Webber et al., 2017). Over the same timeframe, where we detect minimum U and wE across the MBLS (Figs. 4a 

and b; Sect. 3.4), such processes may also have induced the temporary hiatus in shelf-averaged thickness change witnessed 

between 2011 and 2013, where mean Getz Ice Shelf thinning rates appear to have abated contrary to the longer-term CryoSat-

2 trend (Fig. 3a; also Sect. 3.3).      

 30 

Our findings underscore the potential importance of inter-decadal variability in both regional- and local-scale atmosphere 

and ocean interactions in moderating glaciological change along this sector of Antarctica (Fig. 6). Our observations also 

highlight the need for continuous in-situ ocean observations near and underneath Getz Ice Shelf in the future. Such 

observations would yield greater insight into the specific oceanographic mechanisms controlling the hydrography of 
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Getz Ice Shelf’s sub-shelf cavity (cf. Jacobs et al., 2013; Kim et al, 2017; Webber et al., 2017), beyond the 

approximations presented here and spatially and temporally-limited observations previously reported (e.g. Wåhlin et 

al., 2010; Jacobs et al., 2013). However, whilst an apparent correlation exists between Getz Ice Shelf GL retreat rate and 

inter-decadal variability in atmosphere-ocean forcing (cf. Sect. 3.4 and 4.2.1), observations of generally unabated CryoSat-2 

shelf-averaged thinning rates relative to earlier records (Fig. 3a; Pritchard et al. (2012); Paolo et al. (2015)) suggest that 5 

additional processes may have facilitated the observed slowdown in 2010-2015 GL retreat along parts of ice shelf. That is, 

such temporally sustained ice-shelf thinning (Fig. 3a) would be expected to augment progressive GL retreat over time (cf. 

Schoof, 2007), contrary to the observed GL-retreat slowdown. Possible confounding factors are surface mass balance 

processes, grounding zone bed geometry, and local-scale changes in ice dynamics.         

4.2.2 Surface mass balance processes 10 

Temporal changes in surface mass balance must be accounted for in order to resolve the relative influence of surface- and/or 

dynamically-induced (i.e. ocean-forced) processes controlling surface elevation change (see Pritchard et al., 2012; Helm et al., 

2014; Wouters et al., 2015 for further discussion).  For example, marked inter-annual variability in surface accumulation was 

believed to have played a leading role in driving the enhanced surface lowering witnessed over the Southern Antarctic 

Peninsula in recent years (cf. Helm et al., 2014; following Thomas et al., 2008). 15 

 

Near Getz Ice Shelf, where several studies have highlighted trends of increased ice mass loss in recent years (e.g., McMillan 

et al., 2014; Gardner et al., 2018), negative trends in surface mass balance have recently been documented inland of the GL 

(up to 0.80 m yr-1 between 2006 and 2015; Chuter et al. (2017); see also their Fig. S4). However, whilst negative surface mass 

balance is believed to have controlled a large proportion of ice loss over grounded ice in the MBLS (Chuter et al., 2017), we 20 

note that that such decreases are insufficient to explain the pronounced ice-shelf thinning and basal melting rates observed 

seaward of the GL over the ICESat (Fig. 3a; Depoorter et al., 2013; Jacobs et al., 2013) and CryoSat-2 (Sect. 3.3 and Fig. 3a) 

eras. Moreover, recent modelled estimates over Getz Ice Shelf reveal only minor temporal changes in surface mass balance 

trend (Lenaerts et al., 2016), with 2010-2015 annual mean rates of surface mass balance (0.8 m w.e. yr-1; Figure S4) not 

significantly different to the long term (1979-2015) average (~ 0.8-1.0 m w.e. yr-1; cf. Lenaerts et al., 2017; their Figure 7). By 25 

implication, surface mass balance changes are therefore unlikely to have played a significant role in controlling the progressive 

thinning of Getz Ice Shelf over the CryoSat-2 era (Fig. 3a), or the observed slowdown in GL retreat rate (Figs. 2a and b; Fig. 

S3).  

4.2.3 Grounding zone bed geometry 

Bed conditions at the grounding zone of Getz Ice Shelf are poorly constrained, and are predominantly interpolated from a 30 

limited number of Operation IceBridge radar depth-sounding data and other lower-resolution geophysical datasets (Fretwell 

et al., 2013). Nonetheless, we note that upstream of the 2008 GL position, the inclination of surface and bed slopes along a 
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large proportion of the Getz Ice Shelf, as inferred from Bedmap2 (Fretwell et al., 2013) and optical satellite imagery (Data Set 

S1), become increasingly prograde and undulating, which may act to inhibit GL retreat. That is, the potentially rough and 

shoaling topography upstream of the 2008 GL may require prolonged, continuously high, or increased rates of thinning to 

permit GL retreat – a process that has been modelled across both idealised and physically-constrained grounding zone 

geometries over other parts of West Antarctica (cf. Schoof et al., 2007; Durand et al., 2011; Parizek et al., 2013; Nias et al., 5 

2016). Until more comprehensive knowledge of Getz Ice Shelf’s grounding zone bed structure exists, glacier/ice-stream-

specific internal variability, moderated by bed conditions at the 2010-2015 grounding zone, cannot be reliably dismissed as an 

additional control on the slowdown of GL retreat rate during the CryoSat-2 era. Increased geophysical survey of the entire 

grounding zone is therefore an important scientific objective towards more accurately assessing the future evolution of Getz 

Ice Shelf GL migration and glaciological (in)stability in the coming decades. 10 

4.2.4 Changes in ice dynamics 

Changes in ice dynamics, potentially correlated to differences in subglacial bed conditions (cf. Section 4.2.3), may also have 

played an important role in influencing GL retreat slowdown along Getz Ice Shelf during the observational period. Gardner et 

al. (2018) have presented changes to ice surface velocities across this region between circa. 2007/2008 and 2015. There is 

strong correspondence along the Getz Ice Shelf margin between the locations where we have observed GL slowdown or 15 

speedup (Fig. 2; Fig. S3) with those where Gardner et al. (2018) documented ice velocity slowdown or speedup over the same 

time interval. Locations of ice-velocity speedup are localised along the coastline but represent the major contributors to a 

recorded 6% increase in ice-mass discharge across the MBLS (Gardner et al., 2018). These locations, including the fast-flowing 

Berry and De Vicq Glaciers (Figs. 1 and 2), are likely outlets of thick ice (cf. Jacobs et al., 2013) characterised by a transition 

towards dynamically-unstable glaciological change that is now divorced from atmosphere-ocean forcing. Everywhere else 20 

along the central-western Getz Ice Shelf GL, the ice flow remained constant or decelerated (Gardner et al., 2018; their Fig. 8, 

panel 20), which is consistent with the ice-shelf-wide reduction in atmosphere-ocean forcing noted in Sect. 4.2.1. 

4.3 Grounding-line change and its controls west of Getz Ice Shelf 

Along the coastline between Getz and Ross Ice Shelves, encompassing the GL along Nickerson and Sulzberger Ice Shelves, 

GL migration was negligible or exhibited lower retreat than along Getz Ice Shelf between 2003 and 2015 (Fig. 1; Sect. 3.1). 25 

In addition, ice-surface lowering along the majority of this coastline was negligible over the observation window (Fig. 2). 

 

One explanation for the muted GL response west of Getz Ice Shelf may be provided by the region’s underlying geology. Along 

this coastline prominent mountains, likely to be of volcanic origin (Fretwell et al., 2013; Van Wyk de Vries et al., 2017), rise 

steeply immediately inland of the grounding zone, providing a possible regional topographic barrier to pervasive GL retreat 30 

and dynamic thinning. The few locations of notable GL retreat west of Getz Ice Shelf, for example at Land and Scambos 

Glaciers (Fig. 1), may be attributed to breaches of this coastal topographic barrier. These locations reside immediately upstream 
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of deep (> 500 m), well-surveyed subglacial depressions which extend to within close proximity of the continental-shelf margin 

(Fig. 1; S5; Arndt et al., 2013), and which likely represent the routeways of warm-based, fast-flowing ice-streams during 

glacial maximum conditions (Ó Cofaigh et al., 2005; Nitsche et al., 2016). 

	

Another inhibitor of GL change west of 135° W may derive from regional contrasts in the structure of the continental shelf 5 

seaward of Getz Ice Shelf versus farther west. In neighbouring regions of West Antarctica, continental shelves fronted by 

shallower shelf slopes and bisected by multiple troughs are critical for permitting sustained upwelling, ingress and shoreward 

transportation of CDW towards the GL (e.g., Bellingshausen Sea Sector (Ó Cofaigh et al., 2005; Bingham et al., 2012), 

Amundsen Sea Sector including Getz-Dotson Trough (Walker et al., 2007; Wåhlin et al. 2010)). By contrast, the continental 

shelf west of 135° W is characterised by a shallower seafloor fronted by a steeper continental shelf slope, and the general 10 

absence of significant, shelf-bisecting troughs that breach the CSB (Fig. 1; Fig. S5). Indeed, from in-situ measurements Jacobs 

et al. (2013) recovered only intermittent CDW presence along the length of the CSB west of 135° W, while Schmidtko et al. 

(2014) showed that rates of long-term CDW shoaling across the same region were more restricted compared with the 

Amundsen and Bellingshausen Sea Sectors. Recent work utilising an ocean eddy-resolving model, parameterised to account 

for the effects of variable continental-shelf geometry on CDW ingress, has also underscored that reduced CDW transport onto 15 

the continental shelf can be attributed to steep continental slope bathymetry in conjunction with a more pronounced Antarctic 

Slope Front over the CSB (Stewart & Thomson, 2015; their Fig. 2d). The Antarctic Slope Front acts to separate fresh 

continental-shelf surface waters from offshore CDW sources (Jacobs, 1991; Baines, 2009; Stewart & Thomson, 2015, their 

Figs. 1b and 2d). Together, these findings suggest that the strength of the Antarctic Slope Front may be critical to the 

vulnerability of the MBLS to CDW-induced GL retreat and dynamic instability (Fig. 6). Notably, Whitworth et al. (1998) 20 

traced the beginnings of a steeper Antarctic Slope Front extending westward from 120° W, while Lee & Coward (2003; cf. 

Thompson, 2008) independently inferred a transition to a steeper Antarctic Slope Front from modelled ocean surface current 

velocities at ~125-135° W. These longitudinal limits correspond broadly with the contrasting GL behaviours we have observed 

along and west of Getz Ice Shelf (Figs. 1 and 2).   

 25 

It is important to note that the strength of the Antarctic Slope Front co-exists with, and is speculated to be influenced by, the 

positioning of the Antarctic Circumpolar Current (hereafter ACC) (Walker et al., 2013). The ACC drives circumpolar westerly 

ocean circulation and ultimately influences the upwelling and delivery of CDW from the deep ocean towards the continental 

shelf (Orsi et al., 1995). Across the MBLS, we note that the steepening of the Antarctic Slope Front at ~135° W strongly aligns 

with a marked northward deflection of the ACC from the continental-shelf slope limits at ~130-135° W. Influenced by the 30 

position of the Ross Gyre (Assmann & Timmerman, 2005; Dotto et al., 2018), this ACC behaviour persists from here to 

the western limits of the Ross Sea at ~150° E (Fig. S6; cf. Orsi et al. (1995)), and likely partly explains the limited presence of 

CDW west of 135° W (cf. Jacobs et al., 2013; see also our Fig. 6b). In contrast, east of 135°W, the ACC more closely follows 

the shallower continental-shelf slope margins adjacent to the Getz Ice Shelf and Amundsen and Bellingshausen Sectors (Fig. 
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S6), contributing to the previously documented presence of on-shelf CDW across these regions (Holland et al., 2010; Jacobs 

et al., 2013; Zhang et al., 2016) and, most likely, the observed patterns of ocean-driven GL retreat and sustained thinning 

throughout the Getz Ice Shelf between 2003 and 2015 (Fig. 6a).  

 

Finally, we acknowledge that the large meltwater fluxes originating from the Amundsen Sea Sector (Jacobs et al., 2013; Rignot 5 

et al., 2013; Depoorter et al., 2013) may also play an important role in moderating ice-ocean interactions west of 135° W. A 

recent modelling study suggests that up to one third of the total meltwater derived from the Amundsen Sea Sector is transported 

towards the Ross Sea (Nakayama et al., 2014). Within this trend, up to 50% of the total meltwater content delivered to the 

Ross Sea originates from Getz Ice Shelf via a pronounced easterly coastal current, and Ross-Sea-bound meltwater-

transportation pathways flood the entire width of the continental shelf west of 135° W (Nakayama et al., 2014; their Figs. 2b 10 

and 3c). This implies that the high volumes of meltwater originating from Getz Ice Shelf in recent years (Rignot et al., 2013), 

even during steady-state conditions, may be sufficient to result in the enhanced modification of on-shelf CDW across this 

region of the MBLS. Hypothesised to become exacerbated by future increases in dynamic basal melting of Amundsen Sea ice 

shelves (Nakayama et al., 2014), this process may continue to limit CDW access to the sub-shelf cavity in the coming decades, 

and partly explain our observations of near-negligible GL retreat and thinning rates between 2003 and 2015.   15 

5 Conclusions 

Medium-resolution optical satellite imagery shows that ~33% of the Marie Byrd Land coastline, feeding the western Amundsen 

Sea and eastern Ross Sea, West Antarctica, experienced grounding line retreat between 2003 and 2015. Since 2003, the 

grounding line has retreated pervasively along Getz Ice Shelf, but farther west has remained predominantly stable. Between 

2003 and 2008 (ICESat era), the grounding line retreated more rapidly along the Getz Ice Shelf margin than between 2010 and 20 

2015 (CryoSat-2 era), consistent with contemporaneous trends of reduced ice-shelf thinning rates through time as inferred 

from ICESat and CryoSat-2 altimetry data.  

 

We find a correspondence between the observed slowdown in Getz Ice Shelf’s grounding-line retreat and a reduction 

in external atmosphere-ocean forcing as inferred from climate reanalysis and ocean objective analysis datasets. During 25 

the CryoSat-2 era, weaker offshore winds relative to the ICESat era reduced Ekman upwelling on and around the 

continental shelf, resulting in a likely decline in Circumpolar Deep Water intrusion to the sub-Getz ice-shelf cavity. 

This is analogous to observed changes elsewhere in the Amundsen Sea Sector since 2009 (Dutrieux et al., 2014, following 

Steig et al., 2012; Turner et al., 2017), and is supported by empirically-constrained trends of oceanographic change 

observed near Getz Ice Shelf’s calving fronts in the years immediately preceding the ICESat era (Jacobs et al., 2013). 30 

However, at the local scale, grounding zone bed geometry, which is poorly constrained along much of Getz Ice Shelf, 

may have also played a role in modulating retreat rates. Additional near-shore ocean processes, such as eddy-mediated 
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transport of CDW across the shelf break (Stewart & Thompson, 2015), seasonal variations in on-shelf heat transport 

linked to local-scale atmospheric forcing (Webber et al., 2017) and the influence of sea ice on Ekman vertical velocities 

(Kim et al., 2017), may also have contributed to the observed reduction in GL retreat.  

 

We ascribe the relative glaciological stability of the Marie Byrd Land margin west of Getz Ice Shelf, encompassing Nickerson 5 

and Sulzberger Ice Shelves, to a divergence of the Antarctic Circumpolar Current from the continental-shelf break at ~130-

135°W. At this longitude, the Antarctic Slope Front also intensifies in conjunction with a steepening of the continental-shelf 

slope and a shallowing of the continental-shelf floor. In consequence, much of the Antarctic margin between Getz and Ross 

Ice Shelves is buffered from the atmosphere-ocean-driven forcing that has been observed farther west. Ocean modelling 

experiments suggest that this phenomenon may be further supplemented by on-shelf flooding of basal meltwater 10 

originating from the neighbouring Amundsen Sea Sector, including Getz Ice Shelf.    

 

Collectively, our findings from the Marie Byrd Land Sector underscore the importance of both spatial and inter-decadal 

variability in ocean and atmosphere interactions for moderating glaciological change around Antarctica. To assess the 

importance of these interactions, increased spatial-temporal oceanographical observations and high-resolution 15 

geophysical measurements of the MBLS’ geological setting are required.   
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Figure 1. 2003-2015 net grounding line (GL) change along the Marie Byrd Land Sector of West Antarctica. Circle radii denote 

the magnitude of GL change per 30 km segment along the MBL grounding line. Small black circles denote negligible GL 

change detected within satellite error bounds. Note the non-linear scaling of change. Change symbols are overlaid upon 5 

MOA2009 grounded and floating ice shelf boundary masks (Haran et al., 2014); as well as IBCSO v.1 circum-Antarctic 

bathymetry data (Arndt et al., 2013) with 500 m (light grey) and 1000 m (dark grey) depth contours. Dots, Getz, Nick, Sulz 

and Sw denote the Dotson, Getz, Nickerson, Sulzberger and Swinbourne Ice Shelves (respectively); GDT, Getz-Dotson 

Trough; M, Martin Peninsula; B, Bear Island; W, Wright Island; SP, Scott Peninsula; DI, Duncan Island; C, Carney Island; S, 

Siple Island; D, Dean Island; DV, De Vicq Glacier; G, Grant Island; B, Berry Glacier; H, Hall Glacier; L, Land Glacier; Sc, 10 
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Scambos Glacier and Ba, Bartlett Inlet (Swithinbank et al., 2003a; 2003b).   Note the presence of steep continental slope break 

gradients situated to the west of the 135° W. North of Dotson and Getz Ice Shelves, also note the deep glacially scoured troughs 

that transect the continental shelf and connect present day ice fronts to the shelf break (see main text for further discussion). 

Inset map (top left) = location of the MBLS. Inset (top right) = eastern, central and western sectors of Getz Ice Shelf, as referred 

to in the main text.  5 
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Figure 2. Rate of change in GL position throughout the Marie Byrd Land Sector over the periods (a) 2003-2008 and (b) 2010-5 

2015. Circle radii denote the magnitude and direction of grounding line migration (red, retreat; blue, advance) per 30 km 

segment across the domain. As for Fig. 1, black circles denote negligible change detected within satellite error bounds. Note 

the non-linear scaling of change. GL migration data are superimposed over gridded surface elevation change rates (Δh/Δt; m 

yr-1), as derived from (a) ICESat (Pritchard et al., 2009; 2012) and (b) swath processed Cryosat-2 data (this study). Bathymetric 

contours, site labels and Getz Ice Shelf inset same as Fig. 1.   10 
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Figure 3. (a) Time-series of cumulative thickness change for Getz Ice Shelf, 1994-2016. Grey squares correspond to shelf-

wide, 3-month-average thickness changes relative to the series mean, derived from ERS-1/2, ENVISAT (light grey squares; 5 

cf. Paolo et al. (2015)), and CryoSat-2 data (dark grey squares; this study). Black curve denotes the polynomial trend for the 

entire observational period (1994-2016), superimposed over the 1994-2012 trend (green line) reported in Paolo et al. (2015; 

their Fig. S1).  Blue and red lines denote linear trends over the ICESat and CryoSat-2 eras, respectively. Average rates of 
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thickness change (m yr-1) were approximated from the derivative of the polynomial fit with respect to time. Whilst thinning 

rates during the CryoSat-2 era have not differed significantly from the ICESat and Paolo long-term trend, note the apparent 

hiatus in thickness change between 2011 and 2013, as discussed in Sect. 3.3 and 4.2.1. (b) and (c) Spatial distribution of Getz 

Ice Shelf thickness change rates (ΔTΔt; m yr-1) over the ICESat and CryoSat-2 eras, respectively. For reference, GL change 

data from Fig. 2 are also shown. SI denotes Shepherd Island; all other site labels and bathymetric contours same as Figs. 1 and 5 

2.  
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Figure 4. Annually-averaged (a) 1979-2016 10 m zonal wind (U) and (b) Ekman vertical velocity (wE) anomalies over the 

Marie Byrd Land Sector, derived from ERA-Interim climate reanalysis data. (c) corresponding Met Office EN4 objective 

analyses (potential temperature; °C) of the Getz Ice Shelf near-shore region. In all plots, the blue and red patches denote 

the ICESat (2003 to 2008, inclusive) and CryoSat-2 (2010 to 2015, inclusive) eras where we have recovered grounding lines 

(Figs. 2a and b). wE anomalies and potential temperature observations were derived from the mean of all ERA-Interim and 10 

EN4 grid cells located on the continental shelf, shelf break and shelf slope of the MBLS (b) and Getz Ice Shelf (c) regions, 

respectively. U anomalies were averaged along the length of the MBLS continental shelf break and slope only (see also Fig. 

6).  In (a), positive values denote anomalous westerly 10 m surface winds; negative, easterly. In (b), positive values denote 

anomalous upwelling associated with Ekman Suction, and negative values denote reduced upwelling by Ekman Pumping. In 
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(a) and (b), note the unprecedented MBLS U and positive wE over the ICESat era, compared with the strong negative anomalies 

during most of the CryoSat-2 era. In (c), the black contour denotes the +1°C isotherm ≈ the CDW layer. Dashed black 

line signifies the -300 m depth contour for reference. Note the dramatic lowering from 2013 and the overall reduction 

during 2010-2015 of the +1°C isotherm relative to 2003-2008, which is broadly consistent with (a) and (b).  
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Figure 5. Ekman vertical velocities (wE) for the period January 2003 to January 2008, inclusive (a), January 2010 to 

December 2013, inclusive (b) and their difference (c) relative to all preceding years within the ERA-Interim record. Negative 15 

values denote downwelling (a and b) or reduced Ekman upwelling (c). In all plots, the thick black line denotes the 

approximate location of the continental shelf break at 1000 m depth (Arndt et al., 2013). The red dashed boxes denote the 

region used to derive the mean MBLS 10 m zonal wind anomalies observed in Fig. 4a, and demarcates the northern-most limits 

of the grid used to derive the MBLS shelf-averaged wE anomalies shown in Fig. 4b. In (c), note the presence of deeply reduced 

upwelling near the ice-fronts of Dotson and Getz Ice Shelves at ~115° W, in addition to a similar phenomenon west of ~129° 20 
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W which extends from the coastline to at least ~70° S. Opposite Getz Ice Shelf, also note the reduced wE near ~115° W, 70° 

S.   

 

 

 5 

 
 

Figure 6. Schematic summary of the oceanic, atmospheric and geologic controls influencing glaciological change along (a) 

Getz Ice Shelf and (b) the region west of 135° W. In (a), the deep troughs bisecting the continental shelf break allow 
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circumpolar deep water (CDW) to intrude onto the continental shelf and reach sub-ice-shelf cavities as modified CDW, 

enabling ocean-driven melting of ice and grounding line retreat. CDW is sourced from the Antarctic Circumpolar Current 

(ACC), located within close proximity to the shelf slope, and is transported upslope via surface wind-driven Ekman Suction, 

induced by anomalous westerly winds over the shelf break (see main text for further discussion). In (b), the steep continental 

shelf slope and shallow shelf break result in negligible or only minor access of CDW onto the continental shelf, associated 5 

with reduced eddy-mediated transport of CDW over the CSB, in conjunction with a stronger Antarctic Slope Front (ASF) than 

in (a) (Stewart & Thompson, 2015). The northward deflection of the ACC, influenced by the easternmost limits of the 

Ross Gyre, also minimises the presence of CDW near the shelf slope. Relative to (a), the strong easterly coastal current, 

comprising fresh Antarctic surface water (including Ross Sea-bound melt waters from Getz Ice Shelf and the wider Amundsen 

Sea Sector), acts to freshen the continental shelf water column (cf. Nakayama et al. 2014), resulting in buffered modified CDW 10 

access to the sub-ice shelf cavity. G and Ib refer to the true grounding line and the ice-sheet-shelf margin inflexion point, 

respectively.  
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