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rate at which grounded ice is discharged into the ocean. Energy and mass balance models are needed to understand |

how climatic change and atmospheric circulation variability drive current and future melting, In this study, we evaluate

the regional climate model MAR over the AP at a 10 km gspatial resolution between 1999 and 2009, a period when

active microwave data from the QuikSCAT mission is available. This model has been validated extensively over

Greenland, has js applied here to the AP at a high resolution and for a relatively long time period (full outputs are |
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available to 2014). We find that melting in the northeastern, AP, the focus area of this study, can be initiated both by :

sporadic westerly fohn flow over the AP mountains and by northerly winds advecting warm air from lower latitudes.

A comparison of MAR with satellite and automatic weather station (AWS) data reveals hat satellite, estimates show - d

greater melt frequency, a larger melt extent, and a quicker expansion to peak melt extent than MAR in the center and ‘

east of the Larsen C ice shelf. These differences are reduced in the north and west of the ice shelf, where the

comparison with satellite data suggests that MAR is accurately capturing melt produced by warm westerly winds.
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winds than reported by AWS stations_located on the eastern edge of the Larsen C ice shelf, suggesting that

underestimation of melt in this region may be the product of limited eastward flow. At higher resolutions (5km), MAR

shows a further increase in wind biases and a decrease in jneltwater production. We conclude that non-hydrostatic

models at spatial resolutions better than Skm are needed to better-resolve the effects of fohn winds on the eastern

edges of the Larsen C ice shelf.

J Introduction

Increased meltwater production over the Antarctic Peninsula (AP) in the latter half of the 20" century has been linked
to a warming atmosphere, with potential implications for future sea-level rise (Barrand et al., 2013; Turner et al., 2005;
Vaughan, 2006). Surface melting has been implicated in the weakening and eventual collapse of ice shelves as well

as the subsequent acceleration of contributing glaciers, with the Larsen A (1995) and Larsen B (2002) on the gastern

AP as the most notable examples (Vaughan et al, 1996; Rott et al, 1998; Scambos, 2004). In July 2017, a rift on the
Larsen C Ice Shelf, which had been expanding for several years, yesulted in the calving of the 5800 km® iceberg A68
(Hogg and Godmundsson, 2017).,

Surface melting influences ice shelf stability through the stress produced by meltwater ponding as well as
meltwater percolation through firn. One proposed mechanism for the disintegration of ice shelves hypothesizes that

surface meltwater infills and deepens pre-existing, crevasses, through a process called hydrofracture (Scambos et al.,

2000; Weertman, 1973; van der Veen et al., 1997). In addition, a complementary mechanism proposes that when
supraglacial lakes drain (becoming dolines), an upward flexure is induced which can weaken an ice shelf, both at the
surface and at the base (MacAyeal and Sergienko, 2013). Large open-rift systems were observed over the Larsen B
ice shelf in the summer of 2002 which are consistent with substantial melt initiating both mechanisms and leading to
ice shelf disintegration (Glasser et al.,2008; MacAyeal and Sergienko, 2013). Alternatively, meltwater can affect ice

shelf dynamics by percolating into firn and increasing its density until no pore space remains. In the absence of pore

space, meltwater moves through the underlying ice sheet or collects on the surface in melt ponds. This process,

operating over decades, can pre-condition the ice shelf for both hydrofracture and post-drainage flexure stress during

high-melt seasons (Kuipers Munneke et al., 2014). Meltwater can also form pelow the surface in blue ice areas, due
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to the smaller extinction coefficients and lowered albedo of ice (Brandt and Warren, 1993), as well as under low- |

density snow on clear days, when temperatures are slightly below freezing (Koh and Jordan, 1995). Modeling studies

suggest, that the different sensitivities of subsurface blue-ice vs subsurface snow melt is a product of the radiative and

heat transfer interactions, resulting from their differing albedo, grain size and density (Liston et al,, 1999a; Liston et

al.1999b). Meltwater forming over blue ice and flowing downstream to collect in subsurface layers (the ice-albedo

feedback) has recently been shown to be substantial in parts of East Antarctica (Lenaerts et al., 2016). Recent work

has also shown the lateral flow of meltwater (supraglacial runoff) on the Larsen A Ice Shelf in 1979 (Kingslake et al.,

2017), which imply prolonged periods of lowered albedo. These surface rivers could become much more prevalent

across Antarctica in future warming scenarios than previously expected, and may provide a means of stabilizing ice

shelves by routing meltwater away (Bell et al., 2017).
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Since the collapse of Larsen A and Larsen B ice shelves, ice velocities of several of their feeding glaciers
have increased, and seasonal variations in flow have suggested that both summer meltwater percolation (Zwally, 2002)
and the removal of backstress played a role in the acceleration (Scambos, 2004; Rott et al., 2002). The remaining
Larsen C ice shelf to the south could prove to be similarly vulnerable to collapse due to atmospheric warming (Morris

and Vaughan, 2013). Radar analysis over a 15-year period has shown that the surface of Larsen C has been lowering

from both firn air depletion (due to either limited accumulation or high surface melt) and basal ice loss, although the

latter term is thought to be more substantial (Holland, 2015). While most, regional climate models (RCMs) do not 7

account for englacial flow or surface rivers, accurate modelling of surface meltwater production js a crucial step in ; /
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assessing the potential effects on the ice sheet, especially in the case of the Larsen C ice shelf.

The eastern, AP, where the Larsen C ige shelf is located, is on average 3-5°C cooler than the western AP at<
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the same latitude (Morris and Vaughan, 2013). When strong westerly winds force air across the bisecting mountain

range of the AP (Fig. 1), the resulting féhn winds can produce pulses of warming on the eastern AP ice shelves

(Marshall, 2007). Fohn is a warm, dry air flow on the lee slopes of a mountain range (Beran 1967) that can contribute

to melt and sublimation. Multiple studies have focused on the use of high-resolution non-hydrostatic models over the ;

eastern AP to determine the frequency of f6hn occurrence over relatively short periods (Elvidge et al., 2015; Grosvenor

et al., 2014; Elvidge et al., 2016; King et al., 2017). King et al. (2017) found that over a single season, fohn flow

occurred 20% of the time. This study showed substantial melt occurrence observed by satellites without fohn flow.

suggesting that surface melt was influenced by other factors as well. A recent study by Turton et al., (2017), using a

non-hydrostatic model, compared modelled flow characteristics during two fohn events and found that a 1.5 km

version of the model was able to capture the eastward propagation of melt-inducing winds, whereas a Skm version

could not, according to a comparison with AWS stations. However, Bozkurt et al. (2018) demonstrate that a 2km -

version of the same model was still unable to resolve high temperatures associated with the initiation of f6hn flow

during a short period. We note that because these modelling studies use a non-hydrostatic model, they are limited to

short periods due to the prohibitive computational cost. .
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the formation of subsurface ice (Hubbard et al., 2016). These last
studies taken together discuss both the atmospheric drivers for melt
as well as the effects on the ice shelf within our region of interest,
but are necessarily limited to a small region where observations are
available. By contrast, spaceborne satellites allow us to estimate
surface melt occurrence and meltwater production over the entire
AP, complementing in-situ data. The combination of satellite-based
and in situ data provide an excellent toolset for model validation.
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Deleted: This is primarily caused by more exposure to open water
in combination with prevailing westerly winds on the west AP and
southerly winds on the east AP. Moreover, when strong westerly
winds cross the bisecting mountain range of the AP (Fig. 1), the
resulting fohn winds can produce pulses of warming on the East
Antarctic Peninsula’s ice shelves (Marshall, 2007). Féhn winds are a
warm, dry air flow on the lee slopes of a mountain range (Beran
1967). This resultant warming can be produced by four main

1 Elvidge (2016) uses a modeling approach to trace four

Models are limited by the parameterization of physics and our incomplete understanding of the physical

processes driving the observed changes. Regional climate models (RCMs) such as the Modéle Atmosphérique

Régionale (MAR), evaluated here, can be used for simulating the coupled atmosphere/surface system at a continental

and decadal scale (Gallée and Schayes, 1994). The trade-off, in this case, is that RCMs might not be able to capture

physical processes with the required accuracy and must be thoroughly evaluated with in-sifu and remotely sensed

observations.

2009), reporting an increase of surface melting over the AP _over the 1980-1999 period (Torinesi et al., 2003). ‘

However, other studies have suggested that the findings may have been impacted by a change in the acquisition hours

of the satellite and that changes in melt over the 1979-2010 period were insignificant (Kuipers Munneke et al., 2012).

Several studies have used passive microwave estimates for melt occurrence alongside in- situ

physical processes that occur during f6hn flow in the East AP,
namely isentropic drawdown (sourcing of fohn air from higher
altitudes), latent heating and precipitation (where cooling during
uplift on the windward side promotes precipitation), mechanical
mixing (turbulent sensible heating and drying of low-level flow) and
radiative heating (where cloudless conditions on the lee side
increase the availability of shortwave radiation for heating). The
relative importance of each of these mechanisms for surface melt has
been shown to be related to the source of féhn flow in the East AP
(Elvidge et al., 2015; Grosvenor et al., 2014). For example,

southwesterly fohn jets descending from gap flow (from lowq 2]
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been used to estimates melt flux over the AP (Trusel et al., 2013; Trusel et al., 2012). A recent study using 5.5km

horizontal resolution run of RACMO 2.3 over the AP, suggested that a further increase in resolution would be required - [ Deleted: and focusing on overall surface mass balance (SMB
to properly resolve fohn wind propagation, which would imply the removal of the hydrostatic assumption (Van [Deleted:)
[ Deleted: s

Wessem etal., 2015a; Van Wessem et al., 2015b). However, Wiesenekker et al. (2018) show that f6hn events observed

by an AWS close to the AP mountain range were well captured by a later version of the same RCM, enabling a

reconstruction back to 1979. Where the hydrostatic assumption is preserved (such as with MAR), higher resolutions

may inhibit flow in the model, resulting in limited eastward fohn flow in the gastern AP (Hubert Gallée, personal
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communication). Despite these drawbacks, the current class of hydrostatic RCMs which include relatively complete

representations of the snow physics are useful tools to simulate the effect of surface melt on the snowpack over long

timescales. Additionally, these high-resolution runs can easily be compared to, and potentially nested into, continental-

scale runs of the same model,,

Here, we assess the MAR model at a 10 km horizontal spatial resolution over the AP, where outputs are

available over a relatively long time period (1999-2014, i.e. 15 years), using both satellite and in-situ data, aggregating

meltwater production to drainage systems (basins) as described by Zwally (2002). While previous studies have

evaluated how surface melt is modelled using satellite data, or evaluated the representation of the near-surface

ability to simulate specific physical processes, i.e. to assess melt and temperature biases by wind direction. We first

report total meltwater production from MAR at the basin scale and compare mean annual meltwater production with

outputs from RACMO2.3p2 (Van Wessem et al.m 2018), another hydrostatic RCM run at a 5.5km resolution (Sect.

3.1). We evaluate surface melt occurrence from MAR at the sub-basin scale using satellite estimates and link melt

occurrence biases to temperature and wind biases at a point scale using AWS data. We compare meltwater occurrence

derived from two satellite sources, passive microwave,“PMW” and QuikSCAT active microwave, with MAR outputs
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over the AP (Section 3.2). We focus primarily on the NE basin in the East AP as it contains the former Larsen A, :

Larsen B and current Larsen C Ice Shelf, where we define sub-regions based on high and low melt occurrence

estimated by PMW algorithms (Tedesco, 2009). We then compare climatologies of melt extent, as well as inter-annual

trends, from both passive and active microwave data with those computed from MAR outputs (Section 3.3). Because

melt on the Larsen C Ice Shelf can potentially be initiated by northwesterly féhn flow sourced from over the AP or i

southwesterly flow through gaps in the mountain range (even at sub-zero temperatures), we compare melt occurrence .

reported by satellite estimates vs MAR (coinciding with the 2000-2009 QuikSCAT period) partitioned by temperature

differences and wind direction_at the location of the Larsen Ice Shelf AWS. Two additional stations (AWS14 and

AWSI15 are used to examine the persistence and spatial distribution of wind biases from 2009 to 2014. (Section 4).

Because all three stations are located on the eastern side of the Larsen C Ice Shelf, this comparison can assess the

impact of limited eastward flow on temperature and melt occurrence. In light of the model biases found in this analysis

and the potential to correct them with an enhanced resolution model in the future, the discussion (Section 5) includes

a sensitivity test with MAR at multiple resolutions. This is performed to specifically assess the effects of increased

resolution on eastward flow and resultant surface melt. Table 1 lists abbreviations used throughout the text along with

sections in which the terms are introduced.,
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2. Data and Methods

This study takes a combined observational and modelling approach, The primary tool used to understand the coupled

atmosphere and snowpack is the MAR RCM. We employ in-situ data collected from 3 AWS stations to evaluate the

near-surface atmosphere biases in MAR as well as to assess inter-annual trends. While in-situ observations of 2m air
temperature are frequently treated as a proxy for melt (Braithwaite 1981), this method is most effective when the
energy budget is dominated by the turbulent sensible heat flux and incoming longwave radiation and does not capture
melt which can occur due to shortwave radiative forcing when air temperatures are below 0°C (Hock, 2005; Kuipers

Munneke et al., 2012). We also use observations from the QuikSCAT (QS) and SMMR (Scanning Microwave

Multichannel Radiometer, 1978-1987) / SSM/I (Special Sensior Microwave/Imager, 1987 - to date) satellites to

evaluate both melt occurrence and intensity in MAR.

2.1 Regional climate model outputs

The MAR RCM, is a modular atmospheric model coupled to the Soil Ice Snow Vegetation Atmosphere Transfer

scheme (SISVAT) surface model (De Ridder and Gallée, 1998), which includes the multi-layer snow model Crocus

(Brun et al., 1999). MAR was originally implemented to simulate energy and mass balance processes over Terra Nova

Bay. Antarctica (Gallée and Schayes, 1994). Within SISVAT, meltwater is calculated at the surface when the surface

reaches the melting point in combination with a surplus of energy (a deficit results in refreezing). The presence of

P [ Deleted: , using both model results and observations
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meltwater alters the snow characteristics (for example, the type and size of snowgrains) and percolation through the

snowpack is determined through a tipping bucket method based on snow density. A diagram and description of the

sequence of these specific processes in MAR is provided in Figure S1.

The model configuration primarily used in this study is MAR version 3.5.2, with 23 sigma layers_from 200

hPa to the surface. This version has been used in multiple studies over Greenland; the specific updates to the physics

from the original version of MAR as well as multiple uses of this model are described in detail in Fettweis et al. (2016).

The fresh snow density scheme used here is a new MAR implementation specific to Antarctica which has been tested

with jn-situ observations (Agosta et al., 2018, in review) and discussed further in that study. Here, fresh snow density

p) 1s computed as a function o m wind spee: m s ) and surface temperature (Ts. such that:
(p)i d fi i f10 ind d (WS ") and surf: (Ts, K) such th:

p=149.2+6.84 WS +0.48 Ts 1)

with a lower boundary of 200 kg m™ and an upper boundary of 400 kg m”. This parameterization was tuned such that

the density of the first 50cm of snow fits observations collected over the Antarctic ice sheet, although we note that no

reliable measurements were available over the AP. The subsequent compaction of snow layers uses the formulation

from Brun (1989).There are,30 snow/ice layers of variable thickness from the surface to a 20 m depth (below which

ice is assumed present), Topography is interpolated from 1 km Bedmap?2 (Fretwell et al., 2013 ; Green et al., 2016) to

the MAR grid. The snowpack is initialized at 300 kg/m3 at the surface and 600 km/m” at depth. Following 2 years of

spinup, MAR results are independent of the initial conditions ; for these results, 5 years of spinup were run,
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MAR outputs are generated at a horizontal spatial resolution of 10 km for the years between 1999 and 2014.
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boundary conditions are specified from the European Centre for Medium-Range Weather Forecasts (ECMWEF), using

i [ Deleted: For the purposes of this study,




[ R N B Y R S

—_

11

the ERA-Interim reanalysis (Dee et al., 2011), which is also used for a direct comparison with AWS wind

speed/direction. This is a single model domain with no nesting, We note that the ice (vs sea) mask used does not [ Deleted: .

include the Larsen A or Larsen B Ice Shelf in order to preserve consistency for comparison between years (most of

which post-date the collapse of these ice shelves). For the analysis of the effects of resolution on surface melt estimates

presented in Section 5, we use three version of MAR v. 3.9. Relative to version 3.5.2, which is primarily used in this

study as well as in Fettweis et al. (2017), the computational efficiency of MAR v3.9 has been improved such that

increased resolution runs are potentially viable. The improvements in the physics include an increase in the lifetime

of clouds, partly correcting for the underestimation of downward longwave radiation and the overestimation of inland

precipitation found in Fettweis et al. (2017). MAR v3.9 sctups include a version at a 10km horizontal resolution similar

to the model used for the main analysis, one where the horizontal resolution is reduced to 5km and one where the

vertical discretization is increased to 32 sigma layers (at a 10km resolution).
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2.2 Microwave satellite estimates of melt extent, duration

Spaceborne microwave sensors can detect the presence of Jiquid water in snow over those regions where poor or no

observations and unlike sensors in the visible range, microwave sensors are only weakly affected by the presence of *

clouds, In the case of active measurements (e.g., radar, scatterometer), the presence of wet snow is associated with a

sharp decline in backscatter (") (Ashcraft and Long, 2000), whereas in the case of passive microwave data the |

detection is associated with an increase in brightness temperature (Ty) (Mote et al., 1993; Tedesco et al., 2007). In
either passive or active microwave estimates, even the presence of a relatively small amount of liquid water (i.e. a few
percent) triggers a substantial increase in the imaginary part of the dielectric constant (Ashcraft and Long, 2006; Ulaby
and Stiles, 1980).

2.2.1 Active Microwave Data: QuikSCAT

We employ a wet snow high-resolution product (~2.225km) described in Steiner and Tedesco (2014) to derive melt
occurrence from active microwave data. Both melt occurrence and raw backscatter values used in this analysis use
normalized backscattering values as measured by the Seawinds sensor onboard the QuikSCAT satellite at Ku band
(13.4 GHz), with the enhanced resolution provided by the application of the Scatterometer Image Reconstruction

(SIR) algorithm, (Long and Hicks, 2010). Both Ku- and C-band scatterometers have been used extensively to detect

melt onset and freeze-up in Antarctica and Greenland (Drinkwater and Liu, 2000; Steiner and Tedesco, 2014; Ashcraft

and Long, 2006; Kunz and Long, 2006).

Threshold-based approaches with active microwave data, as used in this study, identify the point of melt
onset based on the departure in o from values in dry-snow with various thresholds (Ashcraft and Long, 2000; Ashcraft
and Long, 2006; Trusel et al., 2012). The approach used here derives melt occurrence from a threshold-based method
(ft3), which identifies melt when backscatter falls 3 dB below the preceding winter mean (Steiner and Tedesco, 2014;
Ashcraft and Long, 2006). This method, along with a wavelet approach have been evaluated over the AP with AWS

data at 5 locations; melt was assumed to occur,at the AWS location,when 2m air temperature exceeded 0°C for more

than 6 hours (Steiner and Tedesco, 2014).

In addition to the binary detection of melt, several methods have been proposed which relate seasonally-
integrated backscatter reduction to measures for melt intensity (Wismann, 2000;Smith, 2003; Trusel et al., 2013). As
these methods provide seasonally-cummulative values, we do not employ them in this study, although we do examine

raw backscatter values as a proxy for melt flux.

2.2.2 Passive Microwave Data

We complement the assessment of MAR with estimates of melt extent and duration obtained from passive microwave
observations which have been used in the past to assess melt occurrence in Antarctica and Greenland using brightness

temperature at 19.35 GHz with a horizontal polarization (Tedesco, 2007). One of the major disadvantages of passive

microwave is the relatively coarse horizontal spatial resolution (25 km) with respect to the fine-scale topography
characterizing the AP. However, the historical record for passive microwave data extends as far back as 1972.

Threshold-based methods for melt detection from passive microwave data range from a combination of multiple
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frequencies and polarizations (Abdalati and Steffen, 1995) to using a single frequency, single polarization (e.g., Mote
et al. 1993, Tedesco 2009), as is used in this study. Three algorithms are used here which are described in detail in
(Tedesco, 2009). These include the 240-algorithm where the threshold was determined as the value above which an
increase in liquid water content above 1% no longer produces an increase in Ty, based on output of an electromagnetic
model. The original threshold of 245K was found to be insufficiently sensitive and reduced to 240K for this study
(Tedesco, 2007) (M. Tedesco, personal communication). The second algorithm uses the winter mean threshold-based

method ALA:

Te = Twinter * @ + Ty, *(1-a)

etsnow | SR

where snowmelt is assumed to occur when the brightness temperature (Ty) exceeds a threshold brightness temperature

[Deleted: . ]
[ Deleted: 1 J

(T,) based on the mean winter (JJA) T, the wet snow Ty, (Tyer snow. €qual to 273K) and a mixing coefficient (a., equal
t0 0.47). For the ALA algorithm, Ashcraft and Long (2006) presume a wet layer of 4.7 cm and a Liquid Water Content

of 1%. Finally, the third algorithm (zwa), determines melt occurrence when T, exceeds a threshold value T, which is

based on the on the winter mean threshold (Tyiner) and a threshold value (AT), in this case 30K (Zwally and Fiegles

1994), Deleted: where T,y is mean winter (JJA) brightness temperature
(Tb), Tuwet snow is Wet snow brightness temperature (equal to 273K)
Te = Twinter + AT v 3 and o is the mixing coefficient (equal to 0.47). Ashcraft and Long
(2006) here presume a wet layer of 4.7 cm and a Liquid Water
Content of 1%. Finally, the third algorithm (zwa) is based on the
2.3 AWS rements winter mean threshold.

We gvaluate the MAR simulation of the near-surface atmosphere using pressure, temperature and wind speed data

collected by three automatic weather stations (AWS) on the AP (Fig 1). The comparison between MAR outputs and

AWS data for surface pressure are provided in supplementary data. Data from the Larsen Ice Shelf AWS is obtained

from the University of Wisconsin Madison (AMRC, SSEC, UW-Madison) at a 3-hourly temporal resolution. AWS
data from two additional sites on the Larsen Ice Shelf (AWS14 and AWS15) are obtained from the Institute for Marine
and Atmospheric Research at Utrecht University (IMAU) at an hourly resolution, (Kuipers Munneke et al., 2012). We
note that the Larsen Ice Shelf AWS (-67.00 °S, -61.60°W) and AWS14 (-67.00°S, -61.5°W) fall within the same MAR
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grid cell.

AWS values are temporally averaged to obtain mean daily values for the comparison with MAR outputs.

Metrics are computed for December-January-February (DJF, summer). We did not compute a seasonal average when
more than 5 consecutive days of data were missing. The five-day period was chosen as an upper limit for the length
of a synoptic event, corresponding spatially to approximately 145 MAR grid cells (or half the model domain) of

continuous flow in a single direction for an average windspeed of 3.4 m/s, which is the expected value (i.e. the

predicted mean based on the Weibull distribution), for Larsen Ice Shelf AWS in DJF from 1999-2014 (Fig. 7¢). Near- &

surface (2m) air temperature values are corrected for a difference between AWS station elevation and the elevation
averaged by the corresponding MAR gridcell by calculating the elevation gradient from surrounding MAR gridcells
and interpolating the final value for the AWS location’s recorded elevation using the Bedmap2 DEM (Fretwell et al.,

2013). Differences in elevation values between MAR at 1 0km resolution and those recorded at AWS stations were as

capture sporadic melt gvents. MaxT2m yalues are extracted from available 3-hourly values and are used only when .~ :
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no more than one 3-hour measurement is missing during the day. Pressure values from AWS stations are also pbserved

at approximately 2m above the surface, and compared to MAR values at the first atmospheric layer in MAR. Because

the height of this layer is generally between 2 and 3 m above the surface, this is treated as an acceptable proxy for 2m
pressure values. Pressure values from MAR are corrected for elevation using the hypsometric equation (Wallace and
Hobbs, 1977),

2.4 Statistical Methods

To evaluate and quantify the differences between MAR outputs and AWS data for temperature and wind speed we

use a mean bias. Additional statistical measures shown in supplemental data include the coefficient of determination

(R?), root mean squared error (RMSE) and mean error (ME) (Wilks, 1995). We assess the extent to which each station
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is representative of larger scale climate variability by constructing correlation (R*) maps between MAR values co-

located with AWS stations vs all other gridpoints in the full MAR domain (Fig. S7), We ignore all R? statistics where )

the p-value gxceeds 0.05.

To capture wind speed frequency distributions, we fit available data for each season for MAR (for the full
2000-2009 period), AWS (when AWS data are available) and MAR-R (MAR values collected only when AWS data

is available) with a Weibull distribution (Wilks, 1995). The shape () parameter roughly captures the degree of skew,

with higher values being closer to a normal distribution. The scale (1) parameter approximates the peak frequency

(we note that this is not equivalent to the arithmetic mean). We report expected values (i.e. first moment or mean) for

each windspeed distribution using the best Weibull fit.

3. Results: Melt Occurrence and Meltwater Production

In this section, we show results concerning total meltwater production in the AP and compare melt occurrence

estimated by MAR with estimates from three passive microwave algorithms as well as QuikSCAT ft3. The relative

sensitivity of each melt occurrence criteria, as well as their associated temperature biases, are first compared at the

location of the Larsen Ice Shelf AWS. We then jdentify spatial biases for melt occurrence at the domain scale, finding

substantial differences in the center of the Larsen C Ice Shelf as well as to the north and west of the NE basin, a region
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which includes the former Larsen A and B ice shelves as well as the northernmost portions of the Larsen C ice shelf, .-

(Seggion. 3.2). These differences could result from either weaknesses in the MAR representation of wind dynamics

(discussed in Section,4) or from limitations of the satellite sensor or algorithm. Finally, we compare the climatology

and inter-annual variability of melt extent (calculated by multiple algorithms) over the CL and NL region (Section.

3.3).
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3.1 Meltwater production over the AP -

We show MAR meltwater production over the 1999-2009 period (Fig. 2). The total annual meltwater production

estimated by MAR shows substantial inter-annual variation with the NE basin accounting for the highest meltwater

production, closely followed by the SW basin (in green). The NE basin is divided into three regions: the NL and CL

{ Deleted: .

Deleted: 2
‘| Formatted: Heading 2

(

[

{ Deleted: t
Nl

(

[

(

(

Deleted: Additionally




O 2 9N kAW =

SN ST ST S R SR S EE ST S R e e et e e e e
= e Y e S =N -T- RN ) S T S R )

30

31
32
33
34
35
36

masks (discussed in Section 3.2) and the remainder of the basin. We note that the SW basin does not covary with the

NE basin and the subregions of the NE basin do not consistently covary with one another. The meltwater production

shown here does not account for refreezing and we note that the effects of refrozen melt on the snowpack will vary

regionally depending on local properties. The NL region dominates meltwater production in the NE basin in most
years except for 1999-2000, 2002-2003 and 2003-2004. The 2001-2002 melt season shows the second lowest overall

melt production during the study period (only the preceding year is lower). Declining aggregate meltwater production

across the AP does not necessarily correspond to declining meltwater production in the most vulnerable regions of the

northeastern AP (including the Larsen C Ice Shelf). Because melt in the NL region is particularly sensitive to fohn-

induced melt, we note that changes in circulation patterns may affect the northwest regions differently than the

southern regions. The strong relationship between wind direction and temperature bias points to the need for isolating

dominant inter-annual patterns of melt in the Northern Larsen C Ice Shelf and associating them with large-scale

atmospheric drivers.

A comparison between mean annual meltwater production from 2000-2009 calculated using RACMO2.3p2«——

(5.5 km) vs MAR (10km) is shown in Fig. 3. MAR shows higher meltwater production overall (Fig. 3b vs 3a), with a

difference of over 150 mm w.e. on the Larsen C ice shelf north of 67°S latitude. Over the NE basin, MAR meltwater

shows enhanced meltwater production near the AP mountains, including towards the southern edges, and declines

eastward and southward. By comparison, meltwater production from RACMO2.3p2 melt declines southward, but no

similar west-to-east gradient is apparent. Although inter-annual standard deviations over the northern Larsen C ice

shelf are generally above 100 mm w.e. in both models, there are major differences in other regions, with MAR

meltwater production exceeding RACMO2.3p2 values by 30 mm w.e.on the southern Larsen C ice shelf as well as

the George VI ice shelf (Fig. 3d vs 3¢). Van Wessem et al. (2015a) suggest that even at 5.5 km resolution, the

underestimation of the height and slope of the orographic barrier may result in an underestimation of féhn winds as

well as precipitation in RACMO2.3p2. We note that in addition to the difference in horizontal model resolution

RACMO2.3p2 contains 40 atmospheric layers while MAR implements 23 layers. While the differences in total

meltwater production from RACMO2.3p2 and MAR could be a product of dissimilar physics, the potential effect of

model resolution on meltwater production in MAR is specifically discussed in Section 5. While melt occurrence and

meltwater production are not related in any linear fashion, we note that the spatial pattern produced by MAR, i.c. the

castward gradient from the edge of the AP, is also shown in observed melt occurrence estimates, most notably from

the PMW zwa and QS algorithms (Fig. 5f,g). as discussed in greater detail in the next section.

3.2,Melt occurrence over the AP

satellite-based algorithms QuikSCAT ft3 (Section 2.2.1), three passive microwave algorithms (Section 2.2.2)

temperature-based griteria from the AWS station (MaxT2m > 0°C and AvgT2m > 0°C), and the MF, , metric derived .-

-
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from MAR (Section 2.1). At this location, we find that QuickSCAT ft3 and PMW ZWA show the greatest sensitivity

to melt occurrence. Of the AWS-based metrics, M (MaxT2m > 0°C) shows a sensitivity to melt occurrence comparable

to PMW ALA while the T metric (AvgT2m > 0°C) compares poorly to satellite-based measures (Fig. 4a). We find
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that at colder temperatures (when MAXT2m < 0°C), AvgT2m values reported by MAR are substantially higher than

those reported by the AWS when only MAR reports melt (Fig. 4b). However, at higher temperatures (where MaxT2m

>= (0°C), the AWS reports higher MaxT2m temperatures than MAR and biases are even stronger when only

observation-based metrics report melt (Fig. 4e). We note that the Larsen Ice Shelf AWS is located on the eastern edge

of the Larsen C ice shelf and the major discrepancies in melt occurrence at this location will be explored further in

Section 4, where we further expand the analysis of melt occurrence and temperature biases to include wind direction

biases as well.

In Fig. 5, we show melt occurrence over the full domain derived from satellite sources, both metrics derived

from MAR (Section 2.1) as well as the MF), criteria applied to RACMO2.3p2. QuikSCAT ft3 generally estimates

higher average yearly melt occurrence than either of the MAR melt metrics over the full domain. In the NE basin, the

difference is on the order of 25 more days than the MAR MF,, melt metric (Fig. 5¢). Differences between QuikSCAT i

ft3 and MF,, also show a strong latitudinal dependence in the NE basin, shifting from near agreement in the northern ‘

regions of the Larsen C Ice Shelf to QuikSCAT ft3 reporting over 500% of the melt days reported by MAR towards
the southern edge. Melt onset is on the order of 22 days earlier in QuikSCAT ft3 than in MF, in the NE basin, except

at the northern edge of the Larsen C ice shelf, where MF,, reports average yearly melt onset as much as 25 days

|
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earlier than QuikSCAT fi3 (Fig. S3). A comparison between the two MAR melt metrics shows that MF , reports as

much as 40 more days of melt than LWC 4 at the northern tip of the Larsen C Ice Shelf (Fig 5p vs Fig 5a). The portion T

of the Larsen C ice shelf which experiences an average of 25 days of melt or more extends as far south as 80.0°S on

the eastern side of the Larsen C ice shelf according to the MF,,,metric but extends only to 70.5°S according to LWC,.

Deleted: Fig. 2 shows average annual melt occurrence (in days)
over the model domain, estimated from the satellite-based
algorithms QuikSCAT ft3 (Sect. 2.2.1) and three passive microwave
algorithms (Sect. 2.2.2) as well as two metrics for melt derived from
MAR outputs (Sect. 2.1). Because the MAR MF);, melt metric
shows more sensitivity to melt occurrence than the LWC, , metric, it
is used for comparison to QuikSCAT ft3 and PMW zwa (the most
sensitive satellite-based algorithms). We use the term “PMWAII” to
define the condition when all PMW algorithms report melt
occurrence. Our primary focus is on the NE basin in the AP (shown
in Fig. 1)
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Towards the very south of the Larsen C Ice Shelf, the two MAR metrics show similar values, although LWC, , reports

melt onset as late as early January (Fig. S3a) while MF) , reports melt onset in December (Fig S3b). The formulation
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for the MF,, metric, which considers melt at any time of the day for the full depth of the snowpack,suggests that the

early season melt observed only by MF,, is either sporadic (i.e. can refreeze) and/or percolates below 1m in the

snowpack in the south of the Larsen C Ice Shelf, i.e. below the depth range at which LWC,is calculated. Whereas b

QuikSCAT ft3 and MAR melt metrics report maximum melt occurrence in the north and west of the Larsen C Ice

Shelf (MF, 4 reporting > 60 days, Fig. 5b), PMW algorithms report maximum melt occurrence in the center-east of

the Larsen C Ice Shelf, specifically 43 days (240, Fig. 5¢), 57 days (ALA, Fig. 5d) and 69 days (ZWA, Fig. 5¢).

RACMO2.3p2 reports substantially higher melt occurrence than MAR at the center of the Larsen C ice shelf as well

as a comparatively limited west to east gradient. Because, overall average annual meltwater production in MAR was
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shown to be substantially higher, with a stronger west-to-east gradient away from the AP (Fig. 3), we conclude that

in comparison to RACMO2.3p2. MAR produces melt less frequently, but with greater intensity.,

In summary, a comparison between observed and modeled data sources show two distinct spatial patterns for
maximum melt occurrence. QuikSCAT ft3 as well as both MAR melt metrics show the highest range of melt days in
the northern and western edges of the Larsen C Ice Shelf (including both high and low elevation regions) while PMW
algorithms show the highest number of melt days in the center of the Larsen C Ice Shelf, where elevations are lower

and topography is less complex. We hypothesize that the major difference in spatial patterns between algorithms/melt

metrics js yelated to the different resolutions of the data sources (~2.2225 km for QuikSCAT, 10km for MAR and
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25km for PMW), such that QuikSCAT is better able to resolve melt where topography is complex , such as near the

spine of the AP. Secondarily, the differences are a product of the depths presumed for the calculation of meltwater [ Deleted: ad s

content. This is true for both the MAR metrics and for the three PMW algorithms; the “ALA” algorithm, for example, [ Deleted: to

presumes a 4.7cm depth and a 1% liquid water content. (see Section,2). To confirm this, we find the maximum depth [ Deleted: .

to which meltwater percolates (according to MAR) associated with the number of days when melt occurs (according

to PMW algorithms). Histograms for total PMW melt days in Fig. S4 show three peaks (two major inflection points) i [ Deleted: Supplemental
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algorithms report melt at higher elevations (above approximately 1300m and 1900m, respectively) than the 240

algorithm, which neither reports any melt occurrence above 1100m in the NE basin nor at lower elevations to the north

and south. (Table S1, rows 1,4,7 and Fig. S6). Where melt occurrence is low, the 240 and ALA algorithms generally Deleted: Supplemental Material

detect melt only where MAR reports a maximum meltwater percolation depth below 0.4 m, (Fig S6a,b), whereas the Deleted: 5
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PMWAII reports melt occurrence js 96 mm w.e./100km? (vs 143 mm w.e./100km® when MF,, reports melt)(Table

S1, row 11,12).
The “NL” (Northern Larsen) mask is defined by finding the mean latitude of the CL region and including all
portions of the NE basin above this latitude, but excluding the CL region (Fig. 2, inset). In the NL region, elevation is

highly-variable, with a mean value ~600m and MAR and QS detect melt both earlier and more often than for PMW

algorithms. The NL region includes the eastern spine of the AP and most inlets (including Cabinet Inlet and SCAR

Inlet), a small portion of the northern Larsen C ice shelf and all regions surrounding the former Larsen A and Larsen

B ice shelves,,

3.3 Climatology and inter-annual trends for melt extent at the sub-basin scale

We compare the seasonal cycle and interannual variability of melt as modeled by MAR vs observations for both the

CL and NL regions by computing regional melt extent over the 2000-2009 period (total melt extent area for each day

in NDJF), for cach year as well as the climatological average. The PMWALI algorithm is typically treated as the most

restrictive condition while the PMW zwa and QuikSCAT f{t3 are the most sensitive. Melt extent is defined as the total
area reporting melt daily between Nov 1% and February 28™ (austral summer, including November to show early

melt)(Fig. 6).

occurring around December 15™ with melt extent peaking in January, followed by a series of increasingly smaller melt

pulses ending with refreezing, at the end of February. While MAR shows peak melt extent at the same point in the

season, the progression from melt onset is more gradual, average peak melt extent is generally smaller and interannual

variability (indicated by the grey envelope) during peak melt extentys larger (Fig. 6¢ vs Fig. 6a). In the CL region, the .-~
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PMWAII metric is generally restricted by the low sensitivity of the 240 algorithm. Interannual variability for melt
extent is substantial, with PMWAII reporting a larger melt extent than MAR towards the middle of the melt season in

most years (Fig. 6b,d), but not necessarily during melt onset or its ending. In the CL region, PMWAII reports a larger

melt extent throughout the melt season during 2000-2001 and 2001-2002 (Fig. 6d). During three periods, MAR reports
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melt extent in the middle of the season (with peak melt extent in January), but larger melt extent at the beginning and

Deleted:

Deleted:

end of the melt season. As compared with the CL region, the MAR climatological melt extent shows less inter-annual ‘

variability (grey envelope, Fig. 7a). During the 2000-2001 and 2001-2002 melt seasons, MAR shows a larger melt

extent than PMWAII (Fig. 7d), but less than the PMW ZWA (Fig. 7f) or QuikSCAT ft3 (Fig. 7h) algorithms. We find

that during the 2005-2006 season, MAR shows greater melt extent than PMWALL, consistently less than QuikSCAT

ft3, but reports a greater melt extent than ZWA only towards the end of the season. We consider the condition where

only QuikSCAT ft3 or PMW ZWA show a greater melt extent than MAR to be potentially indicative of sporadic ™

surface melt.

PMWAII (which is highly-restrictive), but a smaller melt extent than either the PMW ZWA or QuikSCAT ft3

| Deleted:

| Deleted:

| Deleted:

Deleted:

Deleted:

| Deleted:

| Deleted:

R Deleted:
| Deleted:

zwa

| Deleted:

zwa

| Deleted

: likely

algorithms, which are more sensitive. Notably, MAR melt occurrence is comparatively low during the peak melt
period. By contrast, in the NL region, MAR reports greater melt occurrence than the most restrictive measure
(PMWALII) during peak melt, but far less than the highly-sensitive QuikSCAT ft3 algorithm. The interannual
comparison suggests that MAR shows substantially less melt occurrence than observations during the 2000-2001 and

2001-2002 seasons in the CL region, but not the NL region.

4. Results: Wind and Temperature Biases at the Larsen Ice Shelf station

The gastern AP is generally substantially colder than the western AP, and temperature-driven melt primarily results

from either Jarge-scale advection from lower latitudes or from westerly fohn flow over the spine of the AP (Marshall
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etal., 2006). Here, we assess the bias in temperature and melt occurrence associated with wind direction at three AWS

Jocations on the Larsen C Ice Shelf (shown in Fig. 1). We first discuss wind direction and wind speed biases during

the summer season at all three locations (without regard to melt occurrence) (Section, 4.1). For prominent wind

direction biases, we quantify the associated temperature and melt occurrence biases jn order to capture atmospheric .-

conditions where MAR reports less melt occurrence than observations (Section 4.2), All MAR and satellite data used

are co-located to the grid cell associated with the AWS (Fig. 1), and we remind the reader that all three stations, at the

eastern edge of the CL region (Fig. 2 inset), are located where MAR reported substantially less melt occurrence than

PMW algorithms, QuikSCAT ft3 or AWS temperature-based criteria,,

4.1 Aggregate wind direction biases

Fig. 8 shows wind frequency distributions during the summer season, color-coded for wind direction as represented ..

by the pie graph at the right. We note that AWS data are 3-hourly averages and ERA-Interim are 6-hourly averages

for wind speed and direction, while MAR produces daily-averaged outputs. For this reason, a direct comparison
between Weibull parameters derived from MAR vs AWS data is not fully justified. The Larsen Ice Shelf AWS has
full temporal coverage during the QuikSCAT period while AWS14 and AWS15 were installed after termination of

the QuikSCAT mission. These last two stations are used in this study to demonstrate that (a) similar wind biases
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persisted after the QuikSCAT period at multiple locations, as AWS 14 the Larsen Ice Shelf AWSs are co-located to

the same MAR grid cell and that (b) wind biases vary slightly by latitude, AWS15 being located slightly to the south.

Both MAR and AWSs at all stations, show a larger proportion of northerly winds at lower windspeeds (Fig. 8,in

yellow and blue), although AWSs report a greater frequency of southwesterly and northwesterly flow (Table 2 col.
4,5 rows 4-9). At the Larsen Ice Shelf AWS location, both AWS and MAR report dominant northeasterly flow (Table

Formatted: Font color: Text 1

Deleted: data at all stations show

Deleted: winds as well as more

2, rows 4,8, col2). However, the Larsen Ice Shelf AWS reports slightly more flow which is either southwesterly

(28.9% for AWS vs. 23.2% in MAR) or northwesterly (19.3% for AWS vs. 14.1% in MAR) while MAR reports more

southeasterly flow overall (23.5% in MAR vs. 17.4% in AWS). These biases are more pronounced at the southern

AWSI15, where modelled temperature correlates with a larger portion of the southern Larsen C Ice Shelf than for .-

AWS14 (Fig. S7, Fig. 8i.j). ERA-Interim reports substantially more northwesterly flow than either AWS or MAR and

a smaller proportion of southwesterly flow in the 180°- 225° range (especially at the southernmost AWS15 location)

although easterly flow is equivalent to AWS-reported estimates, We note that although ERA-Interim has been shown

to reproduce the basic structure of fohn flow (Grosvenor et al., 2014), the horizontal spatial resolution may be too

coarse to adequately capture southwesterly gap flow here. As discussed further in Section 5, westerly flow towards

the stations used in this study may be strongly affected by the fine-scale representation of topography (which is coarse

in ERA-Interim) and the lowered orographic barrier due to the smoothing of topography in the northwest in ERA-

Interim may contribute to the enhanced northwesterly flow reported by ERA-Interim,

4.2 Wind and temperature biases concurrent with observed melt occurrence

When daily-averaged temperature (AvgT2m) values are high, it is more likely that melt is sustained, while high

maximum daily temperatures (MaxT2m) can also occur during sporadic melt. Melt occurrence is strongly influenced

by the temperature of the snow column as well as at the surface; internal melting can occur even when the surface is

frozen due to net outgoing longwave radiation (Holmgren, 1971; Hock, 2005). It is therefore possible for melt to occur

despite a cold bias. In general, we find a small, but consistent warm MAR bias for AvgT2m, and a consistent cold

MaxT2m bias (Table 2, rows 12,13). However, when we restrict the dataset to days when AWS-recorded gemperatures

£xceed 0°C, a condition where melt is most likely, MAR indicates a cold bias for AvgT2m and an enhanced cold bias '

for MaxT2m (Table 2, rows 15,16). This implies that MAR is colder than observations at the temperature ranges
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AWSIS5 were installed after termination of the QuikSCAT mission.
These last two stations are used in this study to demonstrate the
consi y of wind biases at multiple locations, as well as how

where melt is Jikely, although melt is still possible due to other components of the energy balance.

The cold MaxT2m temperature bias is strongest during northerly flow in general (Table 2, row 13,16, col 2.5)

but strongest during easterly flow on the days when MAR reports melt (Table 2, row 23,26, col 2,3). Satellite-based

melt is detected primarily when AWS-recorded flow is northeasterly (0°-90°) or southwesterly (180°-270°), with
PMW(QS) reporting 42%(36%) northeasterly flow and 29%(26%) southwesterly flow. On days when MAR reports

melt (Table 2, rows 19,20), southeasterly flow in MAR is more prominent (while AWS values decline) while the

proportion of northwesterly flow declines (but increases at the AWS). We find that the major flow biases account for

a relatively small proportion of melt which is captured by observations but not by MAR. The easterly flow bias
accounts for 8%(9%) of days where PMWAII(QS) melt occurrence is not also captured by MAR (Table S9) while the
southerly flow bias accounts for 6%(6%) of days when PMW(QS) melt occurrence is not also reported by MAR (Table
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wind biases vary by latitude (AWS15 being located slightly to the
south). Whereas MAR is dominated northerly winds at it’s lower
range of windspeeds (in yellow and blue), AWS data shows a greater
frequency of southwesterly winds at the higher range of windspeeds
(> 8 m/s). In general, even at lower wind speeds (2-5 m/s), AWS
data shows more southwesterly winds than either MAR-R or MAR.
This is especially relevant at the southern AWS15 station, where
modeled temperature correlates with a larger region of the Larsen IS
than temperatures modeled by MAR for the AWS14 station
(Supplemental Fig. 6). Observed wind direction (without
consideration for wind speed) at AWS15 shows more southwesterly
flow (Fig. 5g) than either MAR-R or MAR (Fig. 5 h,i), which show
a substantially higher percentage of southeasterly and northerly flow
instead. -
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mean and biases for AvgT2m, AvgT2m>0°C (excluding days when AvgT2m values from AWS are below 0°C)
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as easterly (Fig. 9 ¢,d), modelled temperature values are clustered around 0°C, whereas AWS-observed temperatures { Formatted: Font color: Text 1

cluster near 0°C, with a small overall warm bias (Tables S8.,S9, row 4, col 8). Under omission conditions (PMWEx

and QSEx), AvgT2m values are lower, and the MAR bias is slightly negative, although the standard deviation is high

(Tables S8, S9, row 5.6, col 7). With all flow cases, only QuikSCAT ft3 shows melt at very low observed AvgT2m [ Formatted: Font color: Text 1 ]
values. By contrast, AWS MaxT2m values are substantially higher than MAR values (the latter clustering around 0°C) [ Formatted: Font color: Text 1 ]

(Fig. 9b,d). Temperature biases associated with southwesterly flow are similar to those shown by the overall bias { Formatted: Font color: Text 1 }

towards easterly flow in MAR, and are shown in Table S10,S11.

Northwesterly winds are most likely to produce fohn-induced melt and we find that on days when MAR

reports melt, only 13.2% of winds are northwesterly while AWS reports 25.2% of flow as northwesterly (Table 2

rows 9,10, col 5). Northwesterly winds show the highest expected windspeeds as well as the highest standard deviation

for both MAR and AWS (Table 2, rows 19,20, col 5). While the temperature bias when wind directions are in

agreement is relatively minimal, the temperature bias when northwesterly winds are misrepresented is substantial.

When MAR reports melt but misrepresents northwesterly winds (this condition accounts for 3% of all MAR melt
days), the cool bias for MaxT2m > 0°C is above 4°C (Table S12, row 4, col 10). For the PMWEX condition (when
PMW reports melt but MAR does not), AWS MaxT2m values exceed MAR values by more than 5°C (Table S12, row

5, col 10). Despite the strength of the temperature bias, this wind direction bias accounts for only 3% of melt in MAR

and only 3%(4%) of melt occurrence reported by PMWEX(QSEx). By contrast, when westerly flow is modelled

accurately, MAR captures higher AvgT2m values, which frequently exceed 0°C, with a slight cool MAR bias when

AvgT2m > 0°C (Fig. 9¢). The PMWEX and QSEx conditions still report melt at lower temperature values, and the { Formatted: Font color: Text 1 }

MAR bias remains positive. Although a cold MAR bias persists, MaxT2m values are generally in better agreement at

the Larsen IS AWS location during this condition (Fig 9f, Table S12).
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MAR shows lower melt occurrence than satellite estimates in the center and east of the Larsen C Ice Shelf (i.e. the

CL region, where castward flow is likely limited in MAR ), while in the north and west of the NE basin (i.e. the NL

region which is most immediately affected by westerly flow), MAR reports melt occurrence largely concurrent with

satellite estimates. The NL region fits a spatial pattern of fohn-induced melt just lee of the AP and extending eastward

from inlets which has been shown in previous studies (Grosvenor et al., 2014) and particularly in the northernmost

portion of the NE basin surrounding the Larsen B ice shelf, where the correlation between fohn winds and satellite-
based melt occurrence has been shown to be as high as 0.5 between 1999-2002 (Cape et al., 2015, Fig. 12). For

example, within the CL region, there are periods during the 2001-2002 season when MAR reports no meltwater

production, but raw QuikSCAT backscatter values report periods where over 300 km? of surface area show backscatter

values dipping below -15 dB (Fig. S9e).

MAR reports warmer temperature compared to AWS observations recorded on the east of the Larsen C ice shelf

at temperatures below 0°C, when melt is less likely to occur, but which may still impact the refreezing process.

However, when maximum daily temperatures (MaxT2m) and average daily temperatures (AvgT2m) exceed 0°C

MAR shows a substantial cold bias. This is particularly evident when MAR misrepresents westerly winds or northerly

winds, and the temperature bias is most extreme when northwesterly flow is misrepresented, i.e. the condition when

the most intense fohn flow would be likely. However, this represents only a small proportion of the melt occurrence

bias, i.e. melt occurrence reported by satellite estimates, but not by MAR.

We demonstrate the impact of westerly winds on melt during a single season, specifically during both mid-

December and the beginning of January of the 2001-2002 season. During both of these periods, satellite-based melt

extent in the CL region increases substantially, while MAR melt extent declines after an initial pulse (Fig. S9a). In

December, MAR shows an increase in northwesterly flow, both at the station and throughout the region while AWS

reports northwesterly winds at slightly higher speeds. Beginning approximately on January 1%, the NL region reports

substantial northwesterly flow, followed by southwesterly flow, although neither is reported at the Larsen Ice Shelf

AWS station east of the NL region. Over January, while both AWS and MAR report northeasterly flow, the AWS

station also reports substantial high-speed southwesterly flow not captured by MAR. After this period (beginning on
approximately Jan. 1*), AWS AvgT2m temperatures consistently exceed MAR AvegT2m values until the end of the

season (Fig. S11), suggesting that because MAR did not accurately model the initial intrusion of westerly winds

subsequent temperature-induced melt was limited over the castern Larsen C ice shelf, where this AWS is located.

Presuming that the flow characteristics are largely similar in this relatively flat region, we conclude that the

underestimation of melt in the CL region is partially due to the absence of westerly flow, but that this flow is adequately

captured directly east of the AP (comprising the NL region).

Previous work has suggested that southwesterly fohn winds can result from gap flow (Elvidge et al. 2015),

although we note that the southwesterly jets studied in this single campaign were typically cooler and moister than

surrounding air, i.e. fohn flow produced from isentropic drawdown. While a version with a higher spatial resolution

may potentially resolve topography sufficiently to include the initial intrusion of southwesterly gap flow, as well as

northwesterly fohn flow, it may also further inhibit subsequent eastward flow when the hydrostatic assumption is

retained. While a higher resolution of MAR v3.5.2 (used throughout this study) was not run due to computational
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constraints, the enhanced computational efficiency of a newer version of the MAR model (MAR v3.9, Section 2.1)

could enable higher resolution runs over extended periods in the future.

To assess both the potential future application of MAR v3.9 over the AP as well as the effects of both vertical

and horizontal resolution on modelled melt estimates, we compare melt occurrence and flow characteristics from Nov

1,2004 to March 31, 2005 between multiple versions of the MAR model. This included three versions of v3.9 (Section

2.1), with two 5km and 10km resolution versions run with 24 vertical layers as well as an additional 10km resolution

version with 32 vertical layers (10km V). The effect of the enhanced horizontal resolution on topography is substantial;

the maximum height of the AP in the Skm version of the model is 2567m, but only 2340m in the 10km version. We

find that the effect of increasing horizontal resolution to 5km is to limit the consistent strong melt production just

leeward of the AP and that an increase in either horizontal resolution or vertical discretization limits eastward flow

(Fig. S12). As compared to AWS data at the Larsen IS AWS, all MAR configurations largely replicated the dominant

southwesterly and northeasterly flow, although we found an enhanced bias for southeasterly flow with the enhanced-

resolution versions of the model (Fig. S13)..The effects of local topography on wind speed should be relatively limited

as the region surrounding the Larsen ice shelf AWS station is relatively flat. Bedmap2 (Fretwell et al., 2013) reports

mean (standard deviation) elevation values of 37.38m (0.53m) in the 5km surrounding the station and 37.37m (0.78m)

in_the 10km surrounding the station. The mean (standard deviation) values for slope are 0.015°(0.018°) at both

resolutions. We conclude that a further increase in vertical discretization or horizontal resolution may potentially

reduce flow towards the eastern edge of the Larsen C ice shelf, although the effect of better-resolved topography may

allow ygnore westerly flow in MAR to cross the AP.

As has been suggested by previous studies (Van Wessem et al., 2015a), the implementation of a non-hydrostatic

model may improve the representation of westerly fohn flow over the eastern Larsen Ice Shelf (Hubert Gallée, personal

communication). We note that previous work has suggested that a Skm non-hydrostatic model was still unable to

capture fohn flow on the eastern portion of the Larsen C ice shelf (according to the AWS records), partially due to the

inability to simulate southwesterly fohn jets, and that resolutions as high as 1.5km are required to simulate fo6hn flow

accurately (Turton et al., 2017). However, recent work found that spatial resolutions as high as 2km in the non-

hydrostatic WRF model were still unable to fully-resolve the steep surface temperature increases associated with the

beginning of fohn flow (Bozkurt et al., 2018), suggesting that neither increased spatial resolution nor a non-hydrostatic

model may be sufficient to fully capture the effects of fohn flow. We conclude from the main analysis that reduced

eastward propagation of westerly winds may contribute to a lack of MAR melt in the CL region as compared to

satellite estimates but that melt just east of the AP (the NL) region is represented with relative accuracy. This is further

confirmed by the similarity between the spatial trends for melt occurrence as compared to QuikSCAT estimates. We

remind the reader that previous work has suggested that féhn flow occurred only 20% of the time during a single melt

season, and that substantial melt occurred in conditions where fohn winds are not present (King et al., 2017),

suggesting that other factors contributing to surface melt energy may be equally, if not more, important for developing

accurate melt estimates in RCMs. Because the current class of RCMs which employ the hydrostatic assumption, such

as MAR, can be run for relatively long periods and contain relatively realistic representations of the snowpack, they

can provide additional insights into the cumulative effects of surface melt over multiple seasons, with the
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understanding that the surface melt produced by fohn flow will likely be under-represented in the eastern regions of

the Larsen C ice shelf.

Previous literature has pointed to several limitations in the remote sensing data sources used here which are either

intrinsic to the satellite data itself or a product of the algorithm selected for melt detection (Ashcraft and Long, 2006).

Products derived from QuikSCAT are limited in temporal resolution because the satellite passes daily, and may

therefore ignore sporadic melt occurring at other times of the day. However, previous studies have compared total

melt days from the QuikSCAT ft3 algorithm with a measure derived from surface temperature at seven automatic

weather stations and shown a positive QuikSCAT {t3 bias compared to AWS (Steiner and Tedesco, 2014). Similarly,

all PMW algorithms are limited by a relatively low resolution (25km) and twice-daily passes. Periods of melt

~| Formatted: Font color: Text 1
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occurrence have also been shown to be sensitive to the choice of algorithm (Tedesco 2009), ,
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In future work, we will extend this model run to the 1982-2017 period as well as explore a higher-resolution run

[ Formatted: Font color: Text 1
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of a newer version of MAR, producing hourly outputs for the near-surface atmosphere. These runs will allow us to

examine the frequency of fohn winds, the concurrent meltwater production and the effects of fohn-induced melt on

the snowpack. We will use this multi-decadal record to examine interannual trends of fohn winds in all seasons as

well as the cumulative effect of a changing regional climate on the snowpack of the NE basin.
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where over 300 km” of surface area show backscatter values dipping
below -15 dB (Supplemental Fig. 8¢).We remind the reader that raw
backscatter values from QuikSCAT have previously been used to
estimates melt flux over the AP (Trusel et al., 2013; Trusel et al.,
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1

Abbreviation

Definition

MAR model : criteria for melt occurrence (Section 2.1)

LWCo.

liquid water content in the first meter is greater than 0.4 mm we (water equivalent)

MF4

total meltwater production over the day exceeds 0.4 mmwe

Passive microwave : cri

teria for melt occurrence (Section 2.2.2)

zwa threshold based on winter mean temperature brightness, Zwally and Fiegles, 1994
ALA threshold based on winter mean temperature brightness, Ashcroft and Long, 2006
240 fixed threshold method (Tedesco, 2007)

PMWALIL Condition when zwa, ALA, 240 all report melt occurrence

Active microwave (QuikSCAT) : criteria for melt occurrence (Section 2.2.1)

QuikSCAT ft3

threshold based on winter mean backscatter (Steiner and Tedesco, 2014)

Observation-based regi

ons of high melt occurrence (Section 3.2)

CL region high melt at the center-east of the Larsen C ice shelf, melt days exceeding 1 std dev of
PMWAII mean melt occurrence
NL region high melt in the north and west of the NE basin, consisting of the NE basin above the

mean latitude of CL region which excludes the CL region

Conditions for melt occ

urrence (Section 4.2)

PMWEx PMWALII reports melt occurrence but MAR does not
SEx QuikSCAT ft3 reports melt occurrence but MAR does not
MAR-R criteria when MAR data is used only when AWS data is available

Table 1: Abbreviations used throughout text
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Tl ablbibats

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Figure 2 Annual meltwater production from MAR [Gt/yr] shown for masks shown in inset (2001’ corresponds to meltwater production from July 2000- June 2001. NW,
SW, SE basins are shown as in Fig. 1. NE basin is divided into the NL mask, the CL mask and the remaining portion of the NE basin (NE — (CL+NL)). The CL and NL
masks are described in text.
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Figure 3 Meltwater production (2000-2009). RACMO2.3p2 at 5.5 km resolution, mean annual meltwater production (a)
and standard deviation (¢) and MAR v. 3.5.2 at a 10km resolution, mean annual meltwater production (b) and standard

deviation (d)
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Figure 4 Melt Occurrence and Temperature Biases at the Larsen Ice Shelf AWS Station. Percentage of total days (DJF,«—
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Figure 5 Average number of melt days (2000-2009) from multiple sources (a) MAR, Liquid Water Content > 0.4% for three<-

consecutive days. (b) MAR Total Melt Flux >0. 4 mm w.e. for 1 day or more (¢c) RACMO2.3p2, Melt Flux > 0.4 mm w.e.

Satellite-based metrics include (d) PMW 240 algorithm (e¢) PMW ALA (f) PMW Zwa (g) QuikSCAT. All satellite-based

estimates include a melt day only when part of a sustained three-day period of melt.
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Figure 8 Probability distribution (y-axis) of summer (DJF) wind speeds (x-axis) and direction proportions inset. Wind directions corresponding to colors in 45°
increments shown right of (g). Curve shows Weibull curve shape and scale (A ,m/s). Datasets for AWS (col 1), MAR-R (col 2), MAR from 1999-2014 period (col 3)
and ERA-Interim for the AWS-restricted period (col 4). Shown for station Larsen IS ( rowl, a,b,c,d), AWS 14 (row 2, e,f,g), AWS 15 (row 3, h,i,j,k) Values below figures
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The underestimation of fohn flow in the east of the Larsen C may potentially be resolved by removing the hydrostatic
assumption in MAR or increasing spatial resolution. The underestimation of southwesterly flow in particular may be

reduced by using higher-resolution topography.
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This is primarily caused by more exposure to open water in combination with prevailing westerly winds on the west AP and
southerly winds on the east AP. Moreover, when strong westerly winds cross the bisecting mountain range of the AP (Fig.
1), the resulting fohn winds can produce pulses of warming on the East Antarctic Peninsula’s ice shelves (Marshall,
2007). Fohn winds are a warm, dry air flow on the lee slopes of a mountain range (Beran 1967). This resultant warming
can be produced by four main mechanisms. Elvidge (2016) uses a modeling approach to trace four physical processes
that occur during fohn flow in the East AP, namely isentropic drawdown (sourcing of fohn air from higher altitudes),
latent heating and precipitation (where cooling during uplift on the windward side promotes precipitation),
mechanical mixing (turbulent sensible heating and drying of low-level flow) and radiative heating (where cloudless
conditions on the lee side increase the availability of shortwave radiation for heating). The relative importance of each
of these mechanisms for surface melt has been shown to be related to the source of fohn flow in the East AP (Elvidge
et al., 2015; Grosvenor et al., 2014). For example, southwesterly fohn jets descending from gap flow (from lower-
elevation passages in the mountain range) have been shown to be cooler and moister than surrounding fohn flow
descending from higher elevations (Elvidge et al., 2015). Recent warming in the East AP has been linked to an increase
in f6hn winds during recent warming (Cape et al., 2015), which were possibly related to an increase in the speed of
warm northwesterly winds which have been associated with positive phases of the Southern Annular Mode (SAM),
(Van den Broeke and Van Lipzig, 2003). Because melt in the East AP is as vulnerable to wind dynamics as it is to
regional temperature changes, an accurate depiction of fohn flow is crucial for accurate estimates of meltwater

production.
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Fig. 8 shows wind frequency distributions during the summer season, color-coded for wind direction as
represented by the pie graph at the right. We note that AWS data are 3-hourly averages and ERA-Interim are 6-hourly
averages for wind speed and direction, while MAR produced daily-averaged outputs. For this reason, a direct
comparison between Weibull parameters derived from MAR vs AWS data is not fully justified. The Larsen Ice Shelf
AWS has full temporal coverage during the QuikSCAT period while AWS14 and AWSI15 were installed after
termination of the QuikSCAT mission. These last two stations are used in this study to demonstrate that (a) similar
wind biases persisted after the QuikSCAT period at multiple locations, as AWS 14 the Larsen Ice Shelf AWSs are co-
located to the same MAR grid cell and that (b) wind biases vary slightly by latitude, AWS15 being located slightly to
the south.

Both MAR and AWS are dominated by northerly winds at lower windspeeds (in yellow and blue) although AWS
data shows a greater frequency of southwesterly winds when windspeeds are higher (> 8 m/s). This is especially

relevant at the southern AWS15, where modeled temperature correlates with a larger portion of the southern Larsen
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C Ice Shelf than for AWS14 (Supplemental Fig. S7). All AWSs show more southwesterly flow and slightly more
northwesterly flow than either MAR-R or MAR, which show a substantially higher percentage of easterly flow instead,
a trend which is more pronounced at the southernmost AWS15 (Fig. 7i,j). ERA-Interim reports substantially more
northwesterly flow than either AWS or MAR and a smaller proportion of southwesterly flow in the 180°- 225° range
(especially at the southernmost AWS15 location), although the proportion of easterly flow is similar to that reported
by AWSs. We note that although ERA-Interim has been shown to reproduce the basic structure of féhn flow
(Grosvenor et al., 2014), the resolution may be too coarse to adequately capture southwesterly gap flow here. As
discussed further in Sect. 5, westerly flow towards the stations used in this study may be strongly affected by the fine-
scale representation of topography (which is coarse in ERA-Interim) and the lowered orographic barrier in the
northwest in ERA-Interim may contribute to the enhanced northwesterly flow shown here.

Specifically, at the Larsen Ice Shelf AWS location, both AWS and MAR reports dominant northeasterly flow
(Table 2, rows 4,8, col2). However, the AWS reports slightly more flow which is either southwesterly (28.9% vs.
23.2% in MAR) or northwesterly (19.3% vs. 14.1% in MAR) while MAR reports more southeasterly flow overall
(23.5% vs. 17.4% in AWS). Melt occurrence (from PMW and QS) is observed primarily when AW S-observed flow
is northeasterly (0°-90°) or southwesterly (180°-270°), with QS(PMW) reporting that 36%(42%) northeasterly flow
and 29%(26%) southwesterly flow. On days when MAR reports melt (Table 2, rows 19,20), southeasterly flow in
MAR is even more dominant (but declines at the AWS) while northwesterly flow decreases (while it increases at the
AWS). The bias towards easterly flow affects 26% of all days and 10% of melt days in MAR, 21%(18%) of all days
where QS(PMW) report melt occurrence, but only 8%(9%) of days where PMW(QS) melt occurrence is not also
captured by MAR. Similarly, the bias towards southerly flow captures 26% of all days and 8% of melt days in MAR,
13%(15%) of days where QS(PMW) report melt occurrence, but only 6%(6%) of days when PMW(QS) melt
occurrence is not also reported by MAR. Most notably, for 4% of all melt days in MAR, AWS reports southwesterly
winds while MAR reports southeasterly winds and this bias accounts for 3%(4%) of days when PMW(QS) report melt
but MAR does not. In summary, despite biases in wind directions reported by MAR, the overall impact on melt
occurrence is fairly limited according to comparisons with satellite estimates. Within the next section we prominent

wind direction biases in greater detail.
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Fig. 5 shows wind frequency distributions during the summer season (AWS, MAR-R, MAR from left to right columns,
Larsen IS station, AWS 14 and AWS 15 from top to bottom), color-coded for wind direction as represented by the pie
graph at the top. We note that AWS data uses 3-hourly data for wind speed and direction without daily-averaging,
while MAR produced daily-averaged outputs, For this reason, a direct comparison between Weibull parameters
derived from MAR vs AWS data is not meaningful, although we show comparisons between different stations (for
the same data source) .The Larsen IS station has full temporal coverage during the QuikSCAT period while AWS14
and AWSI15 were installed after termination of the QuikSCAT mission. These last two stations are used in this study
to demonstrate the consistency of wind biases at multiple locations, as well as how wind biases vary by latitude
(AWSI15 being located slightly to the south). Whereas MAR is dominated northerly winds at it’s lower range of

windspeeds (in yellow and blue), AWS data shows a greater frequency of southwesterly winds at the higher range of
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windspeeds (> 8 m/s). In general, even at lower wind speeds (2-5 m/s), AWS data shows more southwesterly winds
than either MAR-R or MAR. This is especially relevant at the southern AWS15 station, where modeled temperature
correlates with a larger region of the Larsen IS than temperatures modeled by MAR for the AWS14 station
(Supplemental Fig. 6). Observed wind direction (without consideration for wind speed) at AWS15 shows more
southwesterly flow (Fig. 5g) than either MAR-R or MAR (Fig. 5 h,i), which show a substantially higher percentage
of southeasterly and northerly flow instead.

Specifically, while both MAR and AWS show a higher proportion of northerly (vs southerly) winds, the
proportion of northerly winds in MAR is slightly higher (Table 1). While both MAR and AWS report a larger
proportion of easterly (vs westerly) flow, MAR reports 64% of flow to be easterly where AWS reports only 55%
easterly flow. We show that MAR melt occurrence at the Larsen Ice Shelf station is concurrent with both increased
northerly and westerly flows. On days when MAR reports melt (compared to days with no melt), northerly winds are
more frequent (according to both MAR and AWS estimates), and the proportion of westerly winds increases slightly
in MAR but decreases slightly in AWS data (Table 1).

When daily-averaged temperature (AvgT2m) values are high, it is more likely that melt is sustained, while high
maximum daily temperatures (MaxT2m) can also occur during sporadic melt. Melt occurrence is strongly influenced
by the temperature of the snow column as well as at the surface; internal melting can occur even when the surface is
frozen due to net outgoing longwave radiation (Holmgren 1971)(Hock 2005) In general, we find a small, but consistent
warm MAR bias for AvgT2m, and a consistent cold MaxT2m bias. However, when we restrict the dataset to days
when AWS 2m-temperature estimates exceed 0°C, (a condition where melt is most likely), MAR indicates a cold bias
for AvgT2m and an enhanced cold bias for MaxT2m, i.e. while MAR shows an overall warm bias, this bias is reversed
at the temperature ranges where melt is likely (although melt is still possible due to other elements in the energy
balance). On days when MAR meltwater production meets the MF , criteria, we find that the magnitude of all biases
is greatly reduced. In particular, we note that the MaxT2m bias for westerly winds (for the ALL condition) is
substantial, showing a -2.42°C cool bias in MAR for all available data and  -3.04°C when data is restricted to days
when MaxT2m > 0°C.
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Three wind direction biases are dominant on days when observed sources (either PMW All or QuikSCAT {t3) report
melt, but MAR does not. We refer to the condition where PMWALII reports melt (but MAR does not) as “PMWEx”
(i.e. PMW exclusive-or), with the equivalent condition for QuikSCAT ft3 called “QSEx”. We focus on these specific
wind biases and find the associated temperature biases. Supplemental tables 2-7 include R*, RMSE and mean bias

values for both surface pressure and daily AvgT2m at all three stations.

4.2.1 Observed northeasterly flow

The largest proportion of melt occurrence for either MAR, PMWEX or QSEXx is reported when northeasterly winds
are dominant, specifically when winds are recorded by the Larsen Ice Shelf AWS station as northeasterly (0°- 90°).

Northeasterly AWS flow accounts for a large proportion of general flow and an even larger proportion of flow when
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either MAR or PMWEX report melt, i.e. 36% of general flow, 39% of days where MAR reports melt, 42% of days
where PMWEX reports melt and 36% of days where QSEx reports melt. On days when AWS reports northeasterly
winds, MAR primarily reports northeasterly flow (0°- 90°, case 1), but also reports a substantial bias for northwesterly
flow (270°-360°, case 2). In case 2, associated temperature biases may be influenced by the inclusion of warmer
westerly winds in MAR. We add that the majority of northeasterly AWS flow is actually captured in a narrower
northeasterly band in MAR from 0-45°, accounting for 13.4% of ALL days. We examine these two cases separately
to quantify how a modeled westerly wind bias affects temperature and melt (in comparison to the case when wind
direction matches observed estimates). Supplemental tables 8-10 contain relative proportions of each case (flow bias)
divided by the general melt restriction (i.e. MAR, QSEx or PMWEX), as well as the timeseries mean and biases for
AvgT2m, AvgT2m>0°C (excluding days when AvgT2m values from AWS are below 0°C), MaxT2m and MaxT2m
>0°C.

In the instance where northeasterly flow is modeled accurately (case 1, Fig. 6a), modeled temperature values
are clustered around 0°C, whereas AWS-observed temperatures (especially when only satellite-observed melt occurs)
are higher. When MAR reports melt, MAR AvgT2m values cluster near 0°C, with a small overall warm bias (0.69°C).
Under omission conditions (PMWEx and QSEx), AvgT2m values are lower, and MAR bias is slightly cold, although
standard deviation is high. As with all flow cases, only QuikSCAT ft3 shows melt at very low observed AvgT2m
values. By contrast, AWS MaxT2m values are substantially higher than MAR values (the latter clustering around 0°C)
(Fig. 6b). We find that where QuikSCAT ft3 uniquely reports melt (QSEx), AvgT2m values at the lower range of
temperatures report a stronger cool MAR bias for MaxT2m .

In case 2, AvgT2m values show a small warm MAR bias in all melt conditions, i.e. for ALL data points
(0.79°C), for when MAR shows melt (0.82°C), and finally for both the PMWEx (0.44°C) and QSEx(0.65°C)
conditions (Supplemental Table 8). However, when MAR reports melt and AWS AvgT2m values exceed 0°C, there
is a substantial cold bias (-1.13°C)(Fig 6¢), which may lead to reduced meltwater production. In contrast to case 1,
modeled MaxT2m values in case 2 do not cluster around 0°C (Fig. 6b,d) and MAR melt days report larger MaxT2m
values.

In summary, when MAR reports westerly flow, Avg T, values are higher (as is melt occurrence). As with
the comparison with case 1 and case 2, we find that in all instances when MAR reports northeasterly flow (with all
AWS-observed wind directions considered), AvgT2m and MaxT2m temperatures cluster near 0°C (Fig. 6e,f), whereas
when MAR reports northwesterly flow (with all AWS wind directions taken into consideration), MaxT2m values are,
on average, higher, and the temperature bias is narrowed (Fig. 6 g,h). Expected values for windspeeds for each
condition based on a Weibull fit show comparable expected values, but larger standard deviations for AWS-estimated

windspeeds when MAR reports northwesterly flow (Fig. 6 c,d g,h).

4.2.2 Observed southwesterly flow

For all days in the summer season (“ALL”, i.e. without regard for melt occurrence), we find that MAR reports 15%
of winds to be southwesterly at the Larsen Ice Shelf station location while AWS reports ~ 30% southwesterly flow.

We note that the relative proportions of southwesterly/southeasterly flow in AWS is approximately reversed in MAR,
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with AWS reporting 18.3% of flow to be southwesterly and MAR reporting 29.2% southwesterly flow. We focus
specifically on the condition where both MAR and AWS report southwesterly flow (between 180° and 270°), which
accounts for 5.7% of total flow and only 4.9% of MAR melt days, but a larger proportion of days where only observed
sources report melt, i.e. 5.6% for the PMWEX condition and 8% for the QSEx condition.

As with case 2 for northwesterly winds in section 4.2.1, MAR captures higher AvgT2m values which
frequently exceed 0°C, with a slight cool MAR bias when AvgT2m > 0°C (Fig 7a). The PMWEx and QSEx conditions
report melt at lower temperature values, where the MAR bias is slightly warmer. Although a cold MAR bias persists,
MaxT2m values are, in general, higher with AWS and MAR values showing greater agreement (Fig 7b). Expected
windspeeds for southwesterly winds are substantially higher (with a greater standard deviation) than the base condition
when wind direction is not considered, with AWS reporting an even higher standard deviation (i.e. high-speed sporadic

winds).
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In the aggregate, we conclude that MAR shows lower melt occurrence than satellite estimates in the center and east
of the Larsen C ice shelf (i.e. the CL region, where eastward fohn flow is likely limited in MAR ), while in the north
and west of the NE basin (i.e. the NL region which is most immediately affected by fohn flow), MAR reports melt
occurrence largely concurrent with satellite estimates. For example, within the CL region, there are periods during the
2001-2002 season when MAR reports no meltwater production, but raw QuikSCAT backscatter values report periods
where over 300 km? of surface area show backscatter values dipping below -15 dB (Supplemental Fig. 8¢).We remind
the reader that raw backscatter values from QuikSCAT have previously been used to estimates melt flux over the AP
(Trusel et al., 2013; Trusel et al., 2012).

In comparison to AWS estimates, MAR displays a general warm bias in the East AP at lower temperatures where
melt is less likely to occur, but which may still impact the refreeze process. However, when maximum daily
temperatures (MaxT2m) and average daily temperatures (AvgT2m) exceed 0°C, MAR shows a substantial cold bias
which may limit melting. We note a smaller proportion of westerly winds in MAR compared to observed values at
the Larsen Ice Shelf AWS station, especially an absence of southwesterly flow, which tends to have higher observed
windspeeds. The general cold bias in MAR is partially closed when observed northeasterly winds are reported by
MAR as northwesterly, i.e. MAR reports both higher AvgT2m and MaxT2m values as well as greater melt occurrence.
Similar biases are shown for southwesterly flow, which accounts for a disproportionate amount of satellite-observed
melt which is not captured by MAR. The importance of westerly winds is demonstrated during mid-December in the
2001-2002 season, at which point satellite-based melt extent in the CL region increases substantially, while MAR melt
extent declines (Supplemental Fig. 8a). This period is concurrent with an increase in westerly winds at the Larsen IS
AWS station which are not modeled MAR (Supplemental Fig 9b vs f). Additionally, we note that shortly after this
point, AWS AvgT2m temperatures consistently exceed MAR AvgT2m values until the end of the season
(Supplementary Fig. 10).

Previous work has suggested that southwesterly fohn winds can result from gap flow (Elvidge et al. 2015),
although we note that the southwesterly jets studied in this single campaign were typically cooler and moister than

surrounding air (i.e. fohn flow produced from isentropic drawdown). We note that the low windspeed bias in MAR
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may have a minor impact overall, but could strongly impact melt in the East AP if southwesterly flow is more
accurately captured in future versions of MAR. We hypothesize that the underestimation of westerly flow at the eastern
reaches of the Larsen C ice shelf is likely due to the hydrostatic assumption (allowing for no vertical acceleration of
air mass) preventing eastward, downward flow in the near-surface atmosphere. The implementation of a non-
hydrostatic model will likely be required to fully capture fohn flow in the East AP (Hubert Gallée, personal
communication). We conclude that the relative absence of fast, warm westerly and southwesterly winds contributes
to a lack of MAR melt in the CL region as compared to satellite estimates.

Previous literature has pointed to several limitations in the remote sensing data sources used here which are either
intrinsic to the satellite data itself or a product of the algorithm selected for melt detection. Products derived from
QuikSCAT are limited in temporal resolution because the satellite passes at a twice-daily scale, and may therefore
ignore sporadic melt occurring at other times of day. However, previous studies have compared total melt days from
the QuikSCAT ft3 algorithm with a measure derived from surface temperature at seven automatic weather stations
and shown a positive QuikSCAT ft3 bias compared to AWS (Steiner and Tedesco, 2014). Similarly, all PMW
algorithms are limited by a relatively low resolution (25km) and twice-daily passes. Periods of melt occurrence have
also been shown to be highly sensitive to the choice of algorithm (Tedesco 2009). Because of the high topographic
variability of the NL region (especially near the spine of the AP), it is possible that PMW algorithms are under-
reporting melt occurrence due to low horizontal spatial resolution. A higher-resolution passive microwave product
may better resolve this issue.

In the northernmost portions of the NL region, sporadic MAR-modeled meltwater percolates deeply into the
snowpack in November (as deep as 10m early in the season in some years), which is consistent with MAR MF,,
PMW zwa and QuikSCAT ft3 reporting melt occurrence at this point while other algorithms/melt metrics do not. The
deep percolation of meltwater is potentially enabled by low density snow early in the season. This early-season melt
is frequently followed by a near-complete refreeze. Future work will focus on the interannual variability of early-
season melt as this may have a substantial impact on the density of the firn layer in the Larsen C ice shelf.

In light of the biases reviewed here, we report MAR meltwater production over the 1999-2009 period (Fig.
8) and consider the potential implications of the wind/temperature biases found in this analysis on regional meltwater
production. Over the full study domain, the total annual meltwater production estimated by MAR shows substantial
inter-annual variation with the NE basin accounting for the highest aggregate meltwater production, closely followed
by the SW basin (in green). The NE basin is divided into three regions: the NL and CL masks and the remainder of
the basin. We note that the SW basin does not covary with the NE basin (with all subregions taken together) and the
subregions of the NE basin do not consistently covary with one another. The meltwater production shown here does
not account for refreeze and we note that the effects of refrozen melt on the snowpack will vary regionally depending
on local properties. The NL region dominates meltwater production in the NE basin in most years except for 1999-
2000, 2002-2003 and 2003-2004. The 2001-2002 melt season shows the second lowest overall melt production during
the study period (only the preceding year is lower). Declining aggregate meltwater production across the AP does not
necessarily correspond to declining meltwater production in the most vulnerable regions of the northeastern AP

(including the Larsen C ice shelf). Because melt in the NL region is particularly sensitive to fohn-induced melt, we



O 0 3 O W AW N =

LW W W W W W W W W NN NN NN NN NN = s e e s s s
0 N9 N L A WLWND = O VO NN R WD, DO O NN R WL~ O

note that changes in circulation patterns may affect the northwest regions differently than the southern regions. The
strong relationship between wind direction and temperature bias points to the need for isolating dominant inter-annual

patterns of melt in the Northern Larsen C Ice Shelf and associating them with large-scale atmospheric drivers.
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Figure 1: Full MAR domain showing topographic relief, former ice shelves with dates of collapse, locations of automatic weather stations and basins

corresponding to SW (basin 24) NW (basin 25) NE (basin 26), SE (basin 27) from Zwally,et. al. 2012
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Northerly Southerly Easterly Westerly
DJF All Days
Where MAR shows wind direction
MAR wind direction percentage 55.6% 44.4% 63.9% 36.3%
MAR expected wind speed [m/s] 3.49(£3.12) 4.21(+4.83) 3.75(x3.09) 4.04(£5.69)
AWS expected wind speed [m/s] 3.82(£5.23) 5.10(x9.14) 4.41(x6.87) 4.44(£8.73)
Where AWS shows wind direction
AWS wind direction percentage 51.2% 48.8% 54.5% 45.5%
MAR expected wind speed [m/s] 4.04(£5.31) 3.72(x3.07) 3.48(x2.37) 4.43(£6.206)
AWS expected wind speed [m/s] 4.52(£8.33) 4.39(£6.98) 3.90(x4.77) 5.22(x11.03)
Temperature biases
Avg T2m Bias (MAR - AWS) 0.58°C 0.77°C 0.43°C 0.76°C
Max T2m Bias (MAR - AWS) -2.21°C -1.11°C -1.75°C -2.42°C
Temperature bias where Ts > 0°C
Avg T2m Bias (MAR - AWS) -1.25°C -1.42°C -1.32°C -1.29°C
Max T2m Bias (MAR - AWS) -2.80°C -2.40°C -2.84°C -3.04°C
DJF, MAR reports melt
MAR wind direction 59.5% 40.5% 62.8% 37.2%
AWS wind direction 55% 45% 56.7% 43.3%
Temperature biases
Avg T2m Bias (MAR - AWS) 0.28°C 0.18°C 0.25°C 0.24°C
Max T2m Bias (MAR - AWS) -0.78°C -0.41°C -0.73°C -0.43°C
Temperature bias where Ts > 0°C
Avg T2m Bias (MAR - AWS) -0.69°C -0.76°C -0.47°C -0.63°C
Max T2m Bias (MAR - AWS) -1.06°C -0.92°C -1.31°C -0.64°C
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Table 1: Proportions for wind direction and associated temperature biases at the Larsen Ice Shelf AWS station from 2000-2009 restricted to the summer season (DJF)
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11 Figure 6: MAR vs AWS temperatures at the Larsen Ice Shelf AWS station for DJF from 2001-2009 for wind biases AWS -> MAR shown by pie charts
12 (when AWS data is available). Red shows days where MAR shows melt. Blue shows “QSEx” days, i.e. when QuikSCAT reports melt (and MAR does
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not), Cyan indicates “PMWEx” when PMWALII shows melt and MAR does not. Green indicates when PMWEx an QSEx both report melt (and MAR
does not). Yellow (only shown for g,h) indicates all other days for completeness. Northeasterly agreement (case 1) (a) AvgTs (b) MaxTs, Northeasterly
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Figure 7: MAR vs AWS temperatures at the Larsen Ice Shelf AWS station for DJF from 2001-2009 for wind biases AWS -> MAR shown by pie charts

(when AWS data is available). Red shows days where MAR shows melt. Blue shows “QSEx” days, i.e. when QuikSCAT reports melt (and MAR does

not), Cyan indicates “PMWEx” when PMWALII shows melt and MAR does not. Green indicates when PMWEx an QSEx both report melt (and MAR
does not). Yellow (only shown for g,h) indicates all other days for completeness. Southwesterly wind direction agreement (a) AvgTs (b) MaxTs, All wind

directions in AWS which are reported as southwesterly in MAR (c) AvgTs (d)MaxTs,
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Figure 8: Annual meltwater production from MAR [Gt/yr] shown for masks shown in inset (‘2001° corresponds to the meltwater from July,2000-

June,2001). NW, SW, SE basins are kept intact as in Fig. 1. NE basin is divided into the NL mask, the CL mask and the remaining portion of the NE

basin (NE — (CL+NL)). The CL and NL masks are described in text
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