Response to Reviewer comments to manuscript “Arctic Mission
Benefit Analysis: Impact of Sea Ice Thickness, Freeboard, and
Snow Depth Products on Sea Ice Forecast Performance”

May 9, 2018

We thank the reviewers for their careful inspection of the manuscript. In the following we address
their comments point-by-point. We use text in italics to repeat the reviewer comments, normal text for
our response, and bold faced text for quotations from the manuscript, with changes marked in colour.
Where we use line or Figure numbers these refer to the manuscript version published in TCD.

We provide the revised manuscript (with and without changes highlighted) in the supplement.

1 comments by Anonymous Referee #1

This is a well written and detailed paper in which CryoSat-2-derived ice freeboard, sea ice thickness and
snow depth products are used to assess a coupled ice-ocean models forecast performance for a region that
includes the East Siberian Sea, Outer New Siberian islands and the West Laptev Sea. A comprehensive
list of control variables ranging from atmospheric forcing, initialization fields and physical processes (e.g.,
density of sea ice) are used. The paper presents a very thorough description of the Quantitative Network
Design (QND) and how it is used to assess the observational impact of remotely sensed ice freeboard on
the uncertainty reduction on sea ice volume and snow volume. The substance of the study is highlighted
in Figure 16 which shows the uncertainty reduction in the three areas for sea ice volume and snow volume
when evaluating quantities such as sea ice thickness, radar freeboard, and lidar freeboard.

General Comments:
There is a wealth of information provided to the reader in terms of detailed tables and figures. The
paper title is somewhat misleading as only the last day of the model forecast (May 28, 2015) is used
in the evaluation. I expected a much longer period of analysis (e.g., weeks to months). Figures
14 and 15 (see comments below) are too difficult to read in their present format. The manuscript
appears to include all relevant references.

We'll respond in detail below, where we address the specific comments, which take up all the above
points again.

Specific Comments:

The paper title implies that the use of sea ice thickness, freeboard, and snow depth products will be
used to assess sea ice forecast performance. However, I only see an evaluation of the model
forecast on May 28, 2015. Could an extended period (entire month of May 2015) be evaluated?
The Northern Sea Route is mentioned many times in the text. The maritime transport industry
should have interest in how ArcMBA and the QND approach could be used to predict the ice
conditions for June, July and possibly August as well. Could this work be extended in this
manner for a future study?

Yes, the QND approach is flexible in that respect, but, of course, this requires that the corre-
sponding target Jacobians for June, July and August be computed and the QND analysis be
performed (which we consider beyond the scope of the present study).

Page 6 (line 9-10): The paper states “We perform these predictions for May 28, 2015, a point where
there is still sufficient snow cover for our prediction to be relevant”. How- ever, on page 12
(lines 23-24) the paper states ”"Note that on May 28 parts of the target regions are almost snow
free already”. How does this impact the first statement about ”sufficient snow cover”?

Snow is already reduced strongly on May 28 especially in target region ESS (reduced by about
90%) but it still shows enough sensitivity to perturbations in the control vector. To clarify, we
have changed the sentence on page 12 to read:



Note that on May 28 parts-ef-over the target regions are-almest-snew free-already
a large fraction of snow cover of has already melted. The misfit to the modified

Warren climatology in the target area East Siberian Sea is on the order of about
10em (50% relative error) but much less for the other target areas.

Also in this paragraph, to make sure I understand; the model was spun up for a period beginning
January 1, 1979. A restart file from March 31, 2015 was used to initialize MPIOM and the
modeling system was run with data assimilation through April 30, 2015. The j-week model
forecasts begin May 1, 2015 and I assume are forced with the ERA-Interim reanalysis, but
without any ocean/ice data assimilation? Is this correct?

We confirm that, in the spin-up, the model is driven by ERAinterim and no data assimilation
is performed. We added a clarification:

Next we address Arctic MPIOM performance over our assimilation and forecastin
period (see Figure 4). We show the April mean and the May 28 mean of the mod-

elled SIT and the misfit of the April mean thickness to that retrieved from CryoSat-

2 (Figure 8). For a comparison of CryoSat-2 thickness to in situ observations we
refer to Haas et al. (2017).

Please provide a more detailed caption for Figure 2 and provide some additional text about the
trajectories (notional) depicted in this figure.

We added detail to the caption:
Schematic Presentation—presentation of the QND procedure: Each coloured line

illustrates a model trajectory that simulates from a given value of the control
vector (z) counterparts of the observations (d, and dy) and a target quantity (y).
Through the model, the observations act as constraints on the control vector,
which reduces its uncertainty from C(zg) to C(z). This uncertainty reduction on

the control vector translates into an uncertainty reduction in the target quantity
from o to g(y).

Page 12 (lines 17-18): Fig. 8c depicts the mean April 2015 misfit of the modeled SIT to AWI
CryoSat-2 ice thickness. How does the April 2015 AWI CryoSat-2 data compare to NASA OIB
for this period? Please provide an additional plot showing the NASA OIB data overlaid on the
2015 mean CryoSat-2 SIT. How does OIB compare with the AWI data?

The validation of the CryoSat-2 product is beyond the scope of this study, and to our knowledge
no such comparison exists with CryoSat-2 from AWI. That is mainly due to the fact that OIB
observations are remotely sensed as well (no direct observations); OIB uses Laser altimetry
to measure the Laser freeboard and utilises, as the CryosSat-2 algorithm, assumptions on the
sea ice and snow densities to calculate the sea ice thickness. In contrast to the CryosSat-2
algorithm, no snow depth climatology is taken into account but snow depth measurements
from a snow radar. But these snow depth observations are uncertain as well. The estimation
of the uncertainty of OIB snow depth observations taken by OIB is an active research area.

Better suited for a validation of the CryoSat-2 thickness are more direct measurements as, for
instance, electro-magnetic (EM) in-situ measurements because these are (largely) independent
of sea ice and snow densities. EM-thickness measurements deliver the thickness of sea ice and
snow. We added to the manuscript a reference to Haas et al. (2017) who show in-situ EM-
thickness observations compared to CryoSat-2 sea ice and snow thickness in the Lincoln Sea
(see revised part of manuscript in response to above comment starting Also in this paragraph
...). The unpublished Figure 1 below (only shown in this response) depicts a scatter plot
of areal EM-thickness observations and Cryosat-2 thickness observation taken in April 2017
during the PAMARCMIP2017 campaign on the Chukchi Shelf, Northwind Ridge and in the
Lincoln Sea and Fram Strait.

Page 12 (line 22): There is mention of "modified Warren climatology”, but no explanation on how
the modified snowcover was used in the CryoSat-2 ice freeboard retrievals. Please explain and
provide specific details.

The main challenge for sea-ice thickness retrieval with satellite altimeters is the parameter-
isation of snow depth on sea ice, which is not measured routinely. The current processors
use a snow climatology instead of remotely-sensed data. Warren et al. (1999) established this
climatology with results from drifting stations mainly on multi-year sea ice collected over the
past decades. However, since the Arctic Ocean shows a significant higher fraction of first-year
sea ice in recent years, the approach proposed by Kurtz and Farrell (2011) is followed and the
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Figure 1: Scatter plot of CryoSat-2 total thickness (sea ice + snow thickness) and areal EM (AEM) total
thickness in April 2017. Mean total thickness CryoSat-2: 2.71m, mean total thickness AEM: 2.62m,
R=0.72, RMSE = 0.81.

climatological snow depth values are multiplied over first year ice with a factor of 0.5. We
revised the manuscript accordingly:

Figure 9 depicts the April mean and the May 28 mean of the modelled snow
depth and the misfit to the modified Warren climatology (Warren et al., 1999)

that is used in the CryoSat-2 retrieval (see Section 2.5). The main challenge for
depth on sea ice, which is still not measured routinely. The current CryoSat-2
retrieval uses a modified snow climatology that addresses shortcomings of the
Warren et al. (1999) climatolo that was based largely on data from driftin
stations mainly on multi-year sea ice collected over the past decades, and hence
is_not reflective of a much younger, more seasonal Arctic ice cover. Given the
increased fraction of first-year ice in the Arctic Ocean, the approach proposed by
Kurtz and Farrell (2011) is used and the climatological snow depth values used in
the retrieval are multiplied over first-year ice by a factor of 0.5.

Table 8 shows significant reduction in the uncertainties for SIV and SNV. I am surprised there is
very little mention of these results in the text. Please expand on this in the text.
In fact we describe these uncertainty reductions in depth on the two pages following the pre-
sentation of Table 3, together with Figure 16.

Page 28: Graphs in Figure 14 are very difficult to read (too small). Perhaps graphs for Reg 1, 2, 3,
4, 5,7, 8, 9 can be removed and the remaining graphs could be enlarged.
We think it is instructive to show sensitivities to the full control vector, so the reader under-
stands “where the action is”. And then we followed the suggestion to show enlarged plots of
the Jacobian rows for Region 6 and the model parameters in a new Figure.

Page 29: Figure 15 is a little easier to read than Fig 14, but still a challenge to read the individual
plots.
Similarly, also here we show the full control vector first and then add a new Figure with
Jacobian rows for Regions 5 and 6 and the model parameters.

Although mentioned briefly in the Summary and Conclusions, it would be of value to assess the
impact from this study on the ice drift. Are there ice drift observations available in May 2015
to perform an analysis?



The system could indeed be extended by including either an ice drift product into the set of
products to be evaluated or by using ice drift as an additional target quantity to be predicted
by the model. The former would require an extension of the observational Jacobian and the
latter an extension of the target Jacobian. Both could be topics for a follow-up study. An
example of an ice drift product to be evaluated could be that of OSI SAF (Lavergne et al.,
2010). We have extended the suggestions of possible ArcMBA extensions in the conclusions
section.

Technical Corrections:

e Page 2 (line 1): Spell out EO as this is first time referenced.
Done.

e Page 2 (line 12): Dont spell out EO here.
Done.

o Page 2 (line 14): Is there a better term for “rawer”? Also “rawer” is used in several instances
through page 9.
Yes, “rawer” may not be ideal, now we also use “lower-level” to clarify (and in the following
use either according to context):

The constraint—{frem rawer5O-—preduets—that—constraints from lower-level EO
roducts (i.e. rawer products that more directly related to the actual measurement

that are used to derive SIT products may be even stronger, because these-rawer
proeduetssuch products that conform more closely to the raw EO data are typically

more accurate.
e Page 2 (line 21): I suggest deleting phrase “products of further”.
Done.
e Page 2 (lines 22-23). Add comma after approach, and delete QND on line 23 to make 1
sentence.
Done.
e Page 3 (line 3): LFB has already been defined.
Only in the abstract, and we think the journal policy is to repeat the definition in the main
text, to be checked by the copy editor anyhow ...
e Page 4: Figure 1 caption should read “Oval boxes”, not “Ovals bozes”.
Done.
e Page 6: Figure 2 caption should read “presentation” (lower case p).
Done.
e Page 7: Fig. 3 blue background is too dark. Please modify for better clarity?
We modified the plot.
e Page 8 (line 10): Can a reference be given for ”Gent and McWilliams style”?
Reference is given.
o Page 9 (line 15): Replace “will be” to “are”.
Done.
e Page 9 (line 21): How do you come up with 34 years? Jan 1 1979 to March 31, 2015 should
be 36 years.
Oh, an embarrassing error. Many thanks for helping us with the basic algebral
e Page 9 (line 24): Spell out OSI SAF.
Done.
e Page 9 (line 28): delete “by” and put Lindsay and Schweiger (2015) in parenthesis.
Done.
e Page 10 (line 5): typo xzx should be “regions”.
Done.
e Page 13 (line 4) remove “could”.
Page 12. Done.
o Page 21 (line 5): spell out EASE.
Done.
e Page 22 (line 5): should be “For later use "it’ also lists”.
Done.



2 comments by Anonymous Referee #2

General comment:

The authors present a formalism to assess possible benefits of different Earth Observation (EO) products
for reanalysis Arctic sea ice data. The authors consider seven satellite products: sea ice thickness and
free board, radar free board (derived from satellite data), and the hypothetical data laser freeboard and
snow depth, the latter both in higher and lower accuracy. The question focused on in the assessment is
how uncertainties of EO products are reflected in (user) defined variables, so called target quantities. An
outcome of this study could be to identify those kind of EO products, which lead to the fewest uncertainties
in the target quantities. The authors consider snow volume and and sea ice volume as target quantities.
Sources of uncertainties are not only found in the EO products, but also in the model and experimental
setup, such as initial and boundary conditions, parameterization and a formulation of the physics. To
identify the impact of these onto the uncertainty propagation towards the target quantities, a so called
control vector finds application in the formalism, containing representations of these sources.

Their findings are different for the target quantities:

Discussing the satellite EO products:

In an attempt to forecast sea ice volume with the MPI-OM, it appears most beneficial to use either SIT
or RFB as FEO product, compared to SIFB.

If one attempts to forecast snow volume, the results are different: it is most beneficial to use RFB, while
SIT lead to highest uncertainties. SIFB appeared to be in the middle.

Second, using the hypothetical products:

The authors conclude, that using a hypothetical LFB product with low accuracy is better (for both SIV
and SNV) than using SIT but could not reach the performance of RFB. Improving the accuracy of the
LFB product improves the performance. Using an approach where any of the above EO products is used
in combination with snow depth products leads to improved performance. Again, EO products with higher
accuracy lead to improved performance.

As such, I consider the work the authors introduced to be a novel and valuable contribution in the
process of optimizing the use of EO products in reanalysis and thus in prediction frameworks. However, I
consider the presentation of the work poor, which strongly hinders an easy approach.

The manuscript lacks conciseness and does not follow basic rules of scientific writing. For instance,
notions are either wrongly introduced (such as the Jacobian), or not explained , such as M and N or
the Jacobians” or the perturbations, which appear to be crucial in the QND formalism. The explanation
of the basic equations are erroneous and in the introduction of the sea ice-ocean model MPI-OM it is
explained, that this model consists of the equation of the ocean while neglecting the sea ice. It is added
later in the text. A reader not familiar with the set of equations will be confused. There are partly wrong
explanations widely extended of topics irrelevant for the understanding of the proposed algorithms of the
manuscript while relevant explanations are missing. Moreover, the captions of Figures do not (sufficiently)
explain the graphs, graphs are lacking labeling of the axes, units are lacking, captions do not fit with the
graphs/tables; Figures are neither properly explained in the text. The discussion of results (most likely
shown in the graphs) lack references to the graphs at all, and if they refer to a graph (which might be quite
complez), they do not explain, which bar and which of the many boxes in the graph they are referring to.
This makes the argumentation very hard to follow.

There is a lot of jumping within the graphs, which are spread over the entire manuscript, such that the
reader often finds himself in searching the graphs/tables, than in following the argumentation. I suggest
to move them all to the end of the manuscript.

Moreover, the authors introduce the QND formalism, but in the development of the text it is not clear,
what is precisely done. There are some indications on the procedure, for instance on how sensitivities are
derived. It is not clear (for instance), how and when the EO products or the information on uncertainties
are incorporated into the QND formalism.

Due to the poor/sloppy form and logic of the paper, I may have missed some principal issues that will
appear better in a reviewed version of the paper.

We are glad that the reviewer recognises the novelty and value of the manuscript and appreciate the
effort he/she put into further improving our manuscript. An iteration with the editorial office revealed
that the reviewer inspected an earlier version of the manuscript, rather than the version published in TCD.
As a consequence some of the reviewer comments were already addressed in the TCD manuscript. For a



few comments we failed to identify the location in (either version of) the manuscript they refer to, and we
agreed with the editorial office to ignore those. Furthermore the reviewer criticises presentation aspects
that are out of the authors’ control, because we need to follow the journal’s guidelines. For example, the
editorial office had confirmed that the Figures must not be moved to the end of the manuscript. We’ll
list more examples below. We hope that without these complications the reviewer would have come to
a better rating of the presentation quality and, hence, the manuscript overall (given that the non-public
part of the report in the journal’s web interface explicitly states “Please note that this rating only refers
to this version of the manuscript!”). These complications also render part of the reviewer’s very long list
of comments difficult to address. Having said this, we would like to stress that many of the reviewer’s
comments are very helpful and have led to significant improvements of the manuscript’s readability (see
detailed response below). We also note that sometimes different comments address similar questions. In
such cases, in order to be concise and avoid redundancy, we tried to refer to responses already provided
instead of repeating responses. Often this resulted in forward references, as, in writing the response, we
moved backwards from the specific comments to the general comments.

Specific comments:

Comments on the arrangement of the manuscript
The current sectioning of the article is:

1. Introduction

2. Methods

2.1 QND

2.2 Target Quantities

2.3 Model

2.4 Control Vector

2.5 Data Sets and Observation Operators

3. Target and Observation Jacobians

4. Sea ice and snow volume uncertainty (Rename: Uncertainties in the target values”)
5. Discussion

6. Summary and conclusions

This is unfortunate. For instance, in the methods subsections the authors use terms (such as the
model”, the control vector, ...) before introducing them. I suggest to first introduce the QND formalism,
then to introduce the model, followed by the Data Sets and Observation Operators, Control Vector and
Target Quantities. Beside, the model section (as also mentioned below) contains topics, that should be
shifted into a separate section that contains a concise description of the experimental setup. This is miss-
ing so far. Yet, it is not clear to me, why hindcast experiments are discussed in this section. This is
definitely not part of a model description and should be moved into a section, where results are presented
and discussed.

The order of subsections of section 2 was deliberately selected. We first present the QND formalism
in an abstract way (with all relevant terms: target quantity, model, control vector, Jacobians, mappings
M and N). Then in 2.2. we specify the target quantities for our study, i.e. we start from our objective.
When this is formulated, we can present in section 2.3 the numerical model we are going to use and can
refer to the target quantities, to judge whether the model in appropriate. Based on the description of the
model, we can describe the control vector (which depends on the model). Our goal is to minimise the
uncertainty in the control vector through observations, so 2.5 follows naturally.

A set of clarifications (also in response to the detailed comments below) are inserted to support this
logic. For example, to clarify that 2.1 takes an abstract point we included the following clarification
(revised text shown below with response to content comment 4c).

And we have changed the section title of section 2.3 to “Sea ice-ocean model” to stress the distinction
from the abstract model (introduced in section 2.1).

Section 3 belongs also into a section regarding the experimental setup. In such, it should also stated
clearly (among a concise explanation of what and how the authors perform in the QND formalism), that
and how hindcast experiments are performed and assessed. The authors should also consider to properly
introduce M and N and what they call Jacobian, as these appear to be crucial part of the algorithm.

I suppose, that section 4 is meant to be a discussion on results of the QND scheme. If so, then it should
be named along that line.

The authors mention that the mean state is of little importance although it obviously impacts the deriva-
tives: the model bias is not accounted as model uncertainty and should lead to even more optimistic benefit
analysis, even with larger control vectors.

This issue should be flagged upfront and in the discussions of the results.



For the experimental setup we have introduced a dedicated section (by splitting off the start of the re-
sults section) In the context of our manuscript, with focus on evaluation of EO data sets, the experimental
setup consists in the description of the cases we investigate.

Section 3 takes an intermediate role: The Jacobians are a component of the QND system so they
could have been presented under the method section. On the other hand they are interesting objects of
study on their own. This is why we dedicated a separate section to their presentation. As mentioned
above, all relevant terms (including M, N and their Jacobians) are introduced in 2.1. along with their
symbols. Even if we later justify, why we have not merged our estimates of the model error contribution
into the uncertainty of the target variables, but prefer to report it separately, we need to have the complete
equation in section 2.1, so the reader knows where and how model uncertainty contributes.

Content

1. Referring to abstract, 1.7 and throughout the paper: It is not clear, what you exactly did in your
experiments.

We hope the responses to the comments clarify this. Part of the problem may also be attributed to
the fact that the reviewer did not read the TCD version of the manuscript (see above).

2. Introduction p.3 1.15f: Do not refer to results in this paper in the introductory part! This section
s dedicated to the documentation of already existing work and for motivating the content of the
manuscript at hand. Instead of referring to your own (unpublished) work of this manuscript, cite
(published) articles supporting your suggestions. If there arent any, I suggest you to reformulate
your statements as hypothesis and provide reasons/indications for its validity.

The introduction of the TCD manuscript does exactly what you suggest: ...for doumentation of
already existing work and for motivating the content of the manuscript at hand.. No unpublished
own work is referred to, and the problem is formulated.

3. p.4 112 ff: T would slightly restructure the enumeration to something like (which you could refer to
these by naming or referring to the numbering):
1. Structural uncertainty: caused by the representation of individual processes and their numerical
implementation.
2. Parametric uncertainty: of the constants in the parameterization of these processes
8. Boundary value and forcing uncertainty: of relevant processes, e.g. uncertainties in the forcings
such as surface winds or precipitation.
4. Initial state uncertainty.
In the following I would also rename “factor” as “uncertainty type”. E.g. in 1.19: it could be
rephrased along the line: “The choice of the control vector is subjective. A good choice should take
into account all input uncertainty categories (2. to 4. in the upper list)”

To clarify we have revised the wording and use “category” for the above uncertainty types 1-4 but
“Input quantity” for the components of the control vector (of which more than one typically fall into
any given category). We prefer to first describe the category and then (where applicable) define a
name for it.

As mentioned, the QND formalism performs a rigorous uncertainty propagation from
the observatlons Vla—t—he—eeiit—Pe—l—VGeﬁeFtO a target quantlty of 1nterest threugh—a

whielﬁkpfee}ue&rel ing on the 1nd1rect link from the observatlons to the tar et varlables

established by a numerical model. We distinguish between four sources of uncertainty
in a model simulation:

(a) Uncertainty caused by the formulation of individual process representations and
their numerical implementation (structural uncertainty).

(b) Uncertainty in constants (process parameters) in the formulation of these processes
(parametric uncertainty).

(c¢) Uncertainty in external forcing/boundary values (such as surface winds or precip-
itation) driving the relevant processes.

(d) Uncertainty in the state of the system at the beginning of the simulation (initial
state uncertainty).

The first faeter-category reflects the implementation of the relevant processes into the
model (code) while the others can be understood—asrepresented by a set of input



quantities controlling the behaviour of a simulation using the given model implemen-
tation. The QND procedure formalises the selection of these input quantities through
the definition of a control vector, z. The choice of the control vector is a subjective
element in the QND procedure. A good choice covers all input facters—quantities with
high uncertainty and high impact on simulated observations d,,,q or target quantities
y (Kaminski et al., 2012; Rayner et al., 2016).

. Be more concise and introduce the notions and used quantities and mechanisms thoroughly:

a) p.4 1.26: Clarify what the “observational information” is. Is this the uncertainties in the obser-
vations?
We think at this point the general phrasing is fine, later in that section we’ll be more formal.
Also note response to phrasing comment 37.

b) p.4 L.28ff: A motivation for the use of the PDF covariance matrices, the assumption of their
Gaussianity is lacking. Where is it used? Explicitly in the backpropagation step? As well, you
have constants in the control vector, dont you (see Table 1, rows 1-31 out of 45)¢ How are
they transformed into the required structure?

Indicate, how the PDF covariances are constructed . In this section it could be referred to Sec-
tion 2.4 Control Vector. In that section (2.4), it should be mentioned, how the PDF covariance
matriz is build for each type of entry. Currently, in this section it is explained, that a pertur-
bation is added to the fields themselves and all the discussion is about the fields, but not about
the control vector itself. This is confusing. Beside, it is lacking, which law the perturbations
follow the N(0,sigma) would be a natural choice, but it is not mentioned, neither the size of
sigma. Motivate the necessity of the perturbations.

We hope that our above explanation of the logic behind the order of the sections (first general
then specific) answers most of the difficulties. Also the (slightly revised) section 2.4 on the
control vector (see response to phrasing comment 33) should (now) be sufficiently clear.

c) p.5 13: “For the first QND step we use the model M as a mapping from control variables onto
equivalents of the observations.” - It is unfortunate to say “the model M” without introducing
it before. If M is just the mapping from control variables to the observational space, then it
might be better to write: “In the inverse step we use a mapping from the control vars onto the
observational space. In the upcoming we refer to this operator as the model M.”

Manuscript revised as follows:

For the first QND step we use the-medel-a mapping M as-a-mapping-from control
variables onto equivalents of the observations. In our notation the observation
operators that map the model state onto the individual data streams (see Kaminski
and Mathieu (2017) and Section 2.5) are abserbed-incorporated in M. Here we
refer to M as model.

d) In Section 2.1 QND explain concisely the role of the control vector, what the outcome for the
target vector is dependent on the observation products and their (which?) additional informa-
tion. Moreover, you list the sources of uncertainties for the model, but not for the EO products.
Elaborate on these as well!

After the explanation of the terms in equation (8) on page 5: It is not clear, how the fore-
cast/assimilation is involved. It is not clarified throughout the manuscript.

It might be beneficial to introduce N more properly. It is not really clear to me, which role the
control vector plays at this stage, not how it is involved in the QND structure.

While M is a mapping from the EO product to the model equivalent, I guess, that the ocean ice
model is already somehow involved here and some of the parameterizations etc (see uncertainty
types) are involved (explanation, how this is done, is missing).

In step one you thus estimate the sensitivities of this mapping (how?). In the second step,
you basically aim to assess the propagation of the uncertainties within the sea ice ocean model
(how?), if I understood you right. As an outcome of this step 2 you also get an estimate of the
uncertainty quality of the model parameterization on the uncertainty of the target quantities.
It is not clear to me, how/if the EO products are incorporated into the process.

Particularly, it is not clear, how the scheme as sketched in Fig.1 is related to the procedure as
sketched in Fig. 12, which comes into play without any motivation.

These questions should be clarified.

Most of these questions are clarified in the responses to other comments. Role of control vector:
phrasing comment 33. Incorporation of EO products: phrasing comment 37.

An elaboration of the sources of observational uncertainty is beyond the scope of this study, as
long as it does not come in in the section of the retrieval chain between the rawer and higher



level products we evaluate. Such sources of observational uncertainty are discussed in section
2.5.

The forecast of target quantities depends on the problem at hand, for the present problem it
is explained in section 2.2.

MPIOM (including parametrisations) is presented in section 2.3, observation operators (includ-
ing parametrisations) in section 2.5.

In step 1 we do not estimate the sensitivity of M, i.e. M’ but we use it. The approximation of
M’ is presented in section 3.

e) p.6 1.5: In the QND it is mentioned that there are two models involved: represented by the oper-
ators N and M. Moreover, in Section 2.3, a sea ice-ocean model is being introduced, that seems
to be not incorporated into the QND (see the definition of M and N). This is confusing. A
clarifying explanation on this is strongly desired.

Moreover, the authors mention, that it is crucial to have a realistic propagation of the sensi-
tivities of the uncertainties to the target quantities (via both, N and M, I guess), instead of
a realistic representation of the simulation of the target quantities. I do mot understand, how
these two are disconnected. In particular, the authors compare model output with EO products,
(see e.g. Fig.6-9) which contradicts their own argumentation. This needs to be clarified.

How do the authors access that the sensitivities are represented realistically?

4f) Figure 2: caption: Ezplain what it is seen, what are the shaded lines, what the darker?
What do the z-axis and the y-axis represent? What are the units? Why are there two d; in-
volved and how and why at different time steps? This is explained neither in the caption nor
at any point in the manuscript! What is contained in C(d;), what in sigma(y;)?

These are basics. The graph is not self-explaining and does not help the reader to understand
the graph nor the algorithm.

This confusion also occurs in p.7 1.7, where it has not been clarified beforehand, how the obser-
vations are incorporated into the “model” (whichever model). In the abstract you also talk about
forecasting. How does this agree with a scenario which appears to be a reanalysis scenario? How
18 this Figure 2 connected to Figure 1 and how to Figure 127

Link between MPIOM and equations of section 2.1 explained in revised first sentence of section
2.3:

Therequirement-onthe-dynamieal To simulate observation equivalents (M in Equa-
tion (1)) and target quantities (IV in Equation (3)) we employ a coupled model of
the eoupled-sea ice-ocean systemis-that-it-simulates—in—arealistie-manner-. The

model is required to provide realistic simulations of the sensitivity of the-observa-
tion equivalents and the-target quantities to changes in the control variables.
Need for realistic model sensitivities: See response to comment 9. For clarification we also
added an example:

To conduct a valuable QND assessment, the requirement on the model is not that
it simulates the target quantities and observations under investigation realistically,
but the requirement is that it provides a realistic sensitivity of the target quanti-
ties and observations under investigation with respect to a change in the control

vector. H-these-sensitivitiess—(As a hypothetical example we can think of a perfect
regional tracer model that is run with an offset in the initial or boundary conditions
for a passive tracer. The simulated tracer concentration will carry this offset, but

all sensitivities will be perfect.) If the sensitivities of the target quantities and
observations (i.e. the Jacobians;-) are realistic, but the simulation of target quan-
tities and observations incorrect, we can always make a valuable QND assessment
with appropriate model uncertainty.

More detailed caption for Figure 2 was provided above (with changes to the manuscript pasted
in) in response to a comment by reviewer 1. See also response to phrasing comments 20 and
25 (on change of symbols).

See response to phrasing comment 37 on inclusion of the observations and observation opera-
tors.

The forecasting scenario is described in section 2.2.

5. Deducing from (5), where you define the uncertainty reduction as (sigma(y0)—sigma(y))/sigma(y0),
the posterior target uncertainty in equ. (4) is not sigma? but sigma! Moreover, it is confusing, that
in the text above you mentioned, that you do not consider sigma(ymod), and come up with it here.

There is no role for o(ymoeq) in the formalism before equation 3. We added (before the equations



that provide the squares of o(y) and o(yp)) a “via” to clarify that the square root has to be taken.
For o(y) the resulting text change is shown with response to “Phrasing comment” 22.

. p.71.26: Here it is said that predictions are performed, but from the preceding it appears that (in
some way) the incorporation of the EO products into the model appears in a reanalysis framework
(see e.g. Fig. 2). It is not clear, how the QND procedure fits with the argumentation. What I make
up from the preceding is that in some way you will use different types of observations and will get
different SNV and SIV . If so, it is not clear how uncertainties/sensitivities are then derived. The
entire procedure needs clarification!

We hope the clarifications we added in response to the other comments (on inclusion of observations,
forecasting, etc...) have resolved these difficulties.

. Section 2.8 Model: The detailed explanation is not of relevance for the purpose of the manuscript. It
18 not relevant to explain, what an ocean-sea ice model is, and what the particularities for MPI-OM
are. Just refer to Jungclaus et al. (2013); Niederdrenk (2013). Beside, the description has parts
which are seriously wrong:

e p.8 1.7 ff: A short explanation: Due to the complexity of the 3D Nawvier-Stokes equations, it is
common practice to apply a couple of approximations, such as the the hydrostatic approximation
or the Boussinesq approximation. You can skip that information, this is nothing special. What
follows is incorrect and should be skipped due to the already mentioned non-explicitness of
the MPI-OM with respect to the primitive equations and an equation for the balance of the
thermodynamics.

o Particularly, you introduce the MPI-OM by saying, that is consisting of the three balance equa-
tions which are solely related to the ocean (without mentioning) while skipping the second set
of equations for the sea-ice component.

If you really want to make a distinction, then cite the articles related to the ocean models and those
related to the ice models. You can discuss the relevant parts (like snow loading treatment in the
discussion section, as you already do) when it is needed (and refer then in the discussion to the
literature). Also, the discussion of the mesh is unnecessary. If it is really necessary (which I do
not see) I recommend to mention the structure in short and provide a source. If there is anything
particular you implemented due to the necessity of the algorithm, then mention it along the line “In
addition to the standard MPI-OM we implemented... in order to ... based on [literature]”.

The part starting from p.7 1.30 to p.8 1.5 is OK. If I understand the authors correctly, then they use
the last sentence in there to justify/indicate that the MPI-OM gives realistic dependencies. If this
is the case, then I would formulate exactly this e.g. by “Thus, we consider the model results to be
reasonably realistic.” The remainder of the model description should be removed.

Not all readers of the article are familiar with the MPIOM (and its development status), hence
we consider a short presentation of the model relevant. Nevertheless, this model description has
been shortened (even though it is unclear which parts the reviewer considered “incorrect”). We
skipped the very general part about the MPIOM description but maintain the part about the recent
development of MPIOM and the brief description of the ocean model because we think that it is
essential for the readers to have some idea about the implemented processes.:

(—UNESGQ—}Q%Q—Reeeﬂt—deve}epfneﬂFeﬁ%he—medekRecent develo ment of the ocean
art of the model includes the treatment of horizontal discretisation which has under-

gone a transition from a staggered E-grid to an orthogonal curvilinear C-grid. The
treatment of subgridscale mixing has been improved by-through the inclusion of a
new formulation of bottom boundary layer slope convection, an isopycnal diffusion
scheme, and a Gent and McWilliams style eddy-induced mixing parameterisation -
Aleng-isepyenie-(Gent and McWilliams, 1990). Along-isopycnal diffusion is formulated
following Redi (1982) and Griffies (1998). Isopycnal tracer mixing by unresolved eddies
is parameterised following Gent et al. (1995). For the vertical eddy viscosity and dif-
fusion the Richardson numberdependent scheme of Pacanowski and Philander (1981)
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10.

11.

12.

is used. An additional wind mixing proportional to the cube of the 10-m wind speed
(decaying exponentially with depth) compensates for too low turbulent mixing close
to the surface. Static instabilities are removed through enhanced vertical diffusion.

A viscousplastic rheology (Hibler, 1979) is used for the sea ice dynamics. The-thermodynamies

is-Sea ice thermodynamics are formulated using a Semtner (1976) zero-layer model re-
lating changes in sea ice thickness to a balance of radiant, turbulent, and oceanic heat
fluxes. In the zero-layer model the conductive heat flux within the sea ice/snow layer
is assumed to be directly proportional to the temperature gradient across the sea
ice/snow layer and inversely proportional to the thickness of that layer, i.e. the sea ice
does not store heat. The effect of snow accumulation on sea ice is included, along with
snowice transformation when the snow/ice interface sinks below the sea level because
of snow loading (flooding). The effect of ice formation and melting is accounted for
within the model assuming a sea ice salinity of 5 psu.

Regarding the resolution, we have included in the text why this is important:

This setup achieves a spatial resolution as high as that of the EO products we analyse (in
fact over the target regions the model resolution is higher) without major computational
constraints, which allows an evaluation of the full spatial information content provided

by the respective EO products. Here, we will refer to this particular model configuration
as Arctic MPIOM.

Remark on Section 2.3 Model: I understand that in this section the authors introduce the model
and refer to related literature, introduce the forcing (though it should be indicated in the Section
title as well). Starting from p.10 1.11, the authors describe the initialization of the MPI-OM. This
belongs to the presentation of the experimental design. I suggest to separate the experimental setup
from the description of the model. I suggest to dedicate a separate section with a clear description
of the experimental setup, starting from initialisation, perturbation strategies of the control vector
variables, etc.

As mentioned above we agree on an extra section for the experimental setup, but it addresses the
observational cases we investigate. The ocean model, including its setup is regarded as a component
of the system, the components of which we describe in section 2.

p.10 1.20ff- until the end of the section: A motivation of the upcoming paragraphs is missing and I
do not see the point why it is placed in the model description section. Place it into a different section
with an appropriate title. Moreover, if you aim to present an assessment of the MPI-OM hindcasts
due to observations and a discussion on their uncertainties, then indicate this in the abstract and
motivate this in the beginning of a possible new section, where you perform this discussion.

We added a motivation for the validation part:

For a successful QIND assessment it is essential that MPIOM provides realistic sensitivities

of the observation equivalent and the target quantities to the changes in the control
vector (Equation (1) and Equation (3)). However, observations are not available
to validate these sensitivities. The only validation of MPIOM possible is against
observations of the state of the sea ice and ocean. In the following we present comparisons
with selected observation based products first for the hindcasting period, and then for
assimilation window and forecasting period.

Alternatively, the authors could shortly indicate, that they consider the MPI-OM to represent the
physics well, and present a summary. At this point this is not clear, how this discussion is related
to the QND.

See response to item 9.
p.10 1.26 and the discussion related: In earlier passages, the authors stated, that they are not inter-

ested in the realm of the model results, but rather in the sensitivities. This is not reflected/discussed
in the comparison of concrete values against observations.

See response to item 9.
p.10 1.28: “only small misfits”: you should exclude the marginal ice zones out of this, as I consider
a misfit of about 50% as noticeable. And it could be explained by stronger transport and errors in the

advection schemes. As well, it is possible that in those regions there are different (weaker) tolerances
in the accuracies of the observations.

We revised:
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13.

14.

15.

16.

17.

18.

19.

In March (panel d) and June (panel e) only small-relatively small scale misfits to the

OSI SAF ice concentration are found but they can reach up to 50% (here and in the

following we use the term “misfit” for the model-observation difference

We don’t want to speculate about the reasons but just want to describe the performance of MPIOM.

p.11 1.3: it is not clear to me that you look at hindcasts. Clarify this beforehand, for instance in a
separate section explaining the experimental setup.

We introduced the hindcast in the paragraph about the model initialisation. We rephrased the
beginning of the following paragraph:

The hindcast with Arctic MPIOM has been validated against remotely sensed ice
concentration from the reprocessed OSF-SAF-Ocean and Sea Ice Satellite Application
Facility (OSI SAF) sea ice concentration product ...

p.13 3f: How much sense does it make to compare multi-annual means in a period of sea ice decline?
Is the interdecadal trend insignificant?

Indeed the value of a comparison of the mean state is limited in a strongly changing climate but
we think that a more detailed validation is beyond the scope of this paper. For the QND approach
only the state in April and May 2015 is of relevance which we discuss in Figure 8 with respect to
SIT and in Figure 9 with respect to SND.

p.15 1.2: Describe where the uncertainties are derived from and how.

This is exactly what the section does, it describes the PDF of the control vector, i.e. mean and
uncertainty:

For process parameters this standard deviation is estimated from the range of values
typically used within the modelling community. The standard deviation for the com-
ponents of the initial state is based on a model simulation over the past 37 years and
computed for the 37 member ensemble corresponding to all states on the same day
of the year. Likewise the standard deviation of the surface boundary conditions is
computed for the 37 member ensemble corresponding to the April-October means of
the respective year.

p.15 1.5: If you want to be indepth: you could explain, why it is numerically cheaper to divide big
vectors into several smaller ones. Or is it rather due to the fact, that it is beneficial to get to know
where the uncertainties stem from? At least this was the impression in the extensive argumentation
that comes later in the manuscript.

We added a bit of detail:

The largest possible control vector in our modelling system is the superset of initial and
surface boundary conditions as well as all parameters in the process formulations, in-
cluding the observation operators. As described in section 3, the Jacobian computation
requires an extra run for each additional component of the control vector. To keep our
ArcMBA system numerically efficient, two and three-dimensional fields are partitioned
into regions.

p.15 1.12ff: How can uncertainties have diagonal form? It looks like what you mean by uncertainties
also contains information about cross-correlations between the different control variables. Elaborate
more on that, or repeat it here in a concise way. Otherwise it does not make sense. Uncertainties
themselves will form no matriz but a vector.

Response to phrasing comment 20 should have clarified this.
p.20 1.1 : What is the retrieval chain and how can this (as well as Fig. 12) be brought into agree-

ment with the QND formalism introduced in Fig. 1. This section lacks explanation on how this
incorporates into the QND formalism.

See response to phrasing comment 37.
p.20 1.5: the Jacobian is a matrix which contains derivatives. This I do not see reflected in the right
hand side of Fig. 12. What I see is that the observational equivalents of the left hand side products

are being derived and so it seems compared. Maybe, sensitivities is a better word. Anyhow, I do
not see this reflected in the graph. If it is a Jacobian, it could be useful to give a formula.

Revised formulation to:
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20.

21.

22.

23.

The right-hand side of the graph illustrates how this—Jacebian—is—derived—{from—the
Jaecobians—ofthe-the equivalents of the respective products are simulated from the

relevant model variables, which are denoted in violet colour.

-p.20 1.7f: I do not see where you derive variables that describe the changes in the variable (due
to changes in the control vector) this is why you have the control vector, right? Moreover, the
comparison regarding the complezity is not clear and should be explained.

The observational Jacobian M’ (sensitivity of observation equivalent with respect to control vector)
is described in section 3. For incorporation of EO products into M see phrasing comment 37. The
complexity refers to extra computations that require extra input, as described in the next sentence.

p.20 1.12f: “SIT refers to the grid cell average, i.e. for the Jacobian...”: grid cell average vs dividing
by SIC is not coherent to me. Please correct.

Is is common practise that observers define sea ice variables on a grid as the mean over the ice-
covered grid cell while modellers define the mean as the average over the grid cell. The model
analogue of the former quantity can be calculated by dividing the latter quantity by the sea ice
concentration in the grid cell, i.e. by SIC. No need for any correction of the text, we think.

p.238 1.14: relating to the Beaufort Gyre: If this is the case, shouldnt there be then a negative
correlation seen in those regions, 7 or 8%

We added:

WIX is positive for eastward wind stress. A positive perturbation on WIX is most
distinct in region 6 (but also evident in regions 7 and 8) and slows down the Beaufort

Gyre which advects less sea ice into the target region (sea ice behaves, at least in April
and May, to a large extent like a rigid body, i.e. the impact in regions 7 and 8 acts

almost instantaneously on the target regions) resulting in a negative sensitivity.

p.31 19: it is not clear how your assessment is linked to this forecast. When did you apply your
QND framework? In which period? How did you treat the nonstationarity?

We did it for one specific period as described in section 2.2.

The language could be improved throughout the manuscript. Here, I give suggestions to some of the
parts, which I considered most worthy to be improved. The author should consider to use short and flat
structured sentences.:

- abstract 1.10: remove the institutes name, it appears awkward, just all derived from CryoSat-2”.

See response to technical comment 20.

PhrasingéStructuring

Abstract 1.7 “observation impact (added value)”: replace by “added value of observations” or “We
assess the added value of different EO data products in terms of ...”

“observation impact” is a standard term in the data assimilation community (see, e.g., Todling
(2013)). One occurrence had been removed already in the TCD manuscript (see below).

. Abstract 1.9: “the assessments cover” replace by “We assess seven...”

Done as suggested.
Abstract 1.11f: concerning the phrases in brackets: I suggest to replace both by “(low and high
accuracy)” each.

Done as suggested.

Abstract 1.20: “Providing” instead of “the provision of”.

Done.

p.2 1.7: Mention that this forecast is done with one particular model, namely MPIOM.

Done.

p.3 1.7: Write instead “Forecasts of the ice and the ocean state are ...”, as the sea ice-ocean models
not only contain equations describing the dynamics of the system, as you also introduce later in the
manuscript.

Done as suggested.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

p.3 1.8: A minor suggestion: formulate in a positive way: “In order to derive reliable forecasts,
uncertainties in the model initial state, of the atmospheric b.c.s and in the parameterizations of
physical processes should be minimized.”

Done as suggested.
p.3 1.9: remove “only”. For instance, observations of bad quality are of no advantage. And improve-
ments in modeling, parameterization etc. also contribute to improved model output.

Done.

p.3 1.21: “observation impact” : change to “the impact of observations”

Was already changed in the TCD manuscript.

p.3 1.23: optimized for what?
Sentence extended:

The technique originates from seismology (Hardt and Scherbaum, 1994) and was first
applied to the climate system by Rayner et al. (1996), who optimised the spatial
distribution of in situ observations of atmospheric carbon dioxide to achieve minimum

uncertainty in inferred surface fluxes.

p.3 L.27f: “successfully demonstrated” sounds weird.

Replaced by “successfully applied for”.

p-4 1.9: Do not use control vector at this stage, it is confusing, when it is not introduced yet and
does not lead to a further understanding. I would just skip it. Furthermore, maybe it is better to
formulate, that with the QND formalism you are able to assess how the uncertainty propagates from

the observations (raw data?) to a certain target quantity. To my mind it is not of interest at this
point to add information on the modeling chain. It is just confusing.

Done, resulting text was shown above in response to comment 3 related to content.
p-4 L10f: T would remove “hence”; as this is the 4 factors you identify. (“We distinguish 4 types

of ...7). Remove “influence” at end of line 10, as it is redundant and confusing. Instead you could
consider to use the phrase “sources of uncertainties”.

Done, resulting text was shown above in response to comment 3 related to content.

p-4 1.17: remove “(code)”; this is redundant.
Yes, a deliberate redundancy to be really clear.
p-4 1.22: Keep the message as short as possible to maintain comprehensibility. For instance remove

“any potential model output” and replace “ for example a process parameter such as the albedo of
the snow” by “(such as the albedo of snow)”. The phrase “process parameter” only adds confusion.

First suggestion followed, second not, as we think it is useful for a better understanding of the
generality of the concept to mention the “class” of quantities the albedo of snow belongs to.

p.4 1.26f: A suggestion to rephrase: “In a first step, we reduce the uncertainty in the control vector
by making use of a given inverse model and information (to be specified by the authors) on the
observations.” Then start a new sentence for the second step.

We split in two sentences, but prefer our wording.
p-4 1.28ff: You could shorten it to “Within the QND formalism, we present all involved vari-

ables/quantities by probability density functions (PDF).” The explanation does not add new in-
formation.

Done, but “variables/” deleted.

p-4 1.8: “based on algebra” sounds weird. I would just phrase it as “and is partly based on...”

Done.

p.5 1.5: T would replace “absorbed” by “incorporated”.

Done.
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20.

21.

22.

23.

p.5 1.7 “with covariance C(x), i.e. the uncertainty is given by”: There is an inconsistency. Why is
C(x)~1 the uncertainty, and why are the data uncertainties C(..) and not C(..)"12 I would rather
replace that by: “with covariance C(x), which is given by/defined as”.

We have clarified our use of the term uncertainty where we introduce the PDF notation through
the following additional text:

In the context of these PDFs we will use the term uncertainty to refer to its full
covariance matrix in the case of a vector quantity, and in the case of a scalar quantity
or a given vector component it refers to the square root of the entry on the diagonal
of the full covariance matrix corresponding to that particular vector component. In
the latter case the uncertainty refers to one standard deviation of the marginal PDF
corresponding to that component, and we use the notation o(d;) to denote, for example,
the standard deviation of the second component of d.

p.51.12: Is “observational constraint” the correct word? Shouldnt it rather be the given uncertainty of
the observations? Furthermore, to improve readability, use C(dmod) instead of “the second term”.
Also mention here, that this is a subjective choice, instead of coming back to that 10 lines later
when discussing different equations. For a better understanding, I suggest a reformulation from line
9: “where the data uncertainty C(d) is a combination of two factors: [formula]. The term C(dobs)
expresses the uncertainty in the observations and C(dmod) the uncertainty in the projection operator
M . Its/Their (both?) formulation is a subjective choice.”. For the formula (2) you could also shortly
explanation/indication, why you used the quadratic form. I guess, the reason is smoothness and
higher reqularity due to the inversion step. Or do you aim to account more for larger uncertainties
than for smaller? (Which is what the L2 norm does compared to the L1 norm).

Squares unintended (in fact left overs from an earlier version of eq 2 that was formulated in terms
of the o). We think it is 0.k. to be general here and discuss the role of model uncertainty together
for eqs 2 and 3. We included phrasing suggestions as follows:

where the data uncertainty C(d) eombines-is the combination of two contributions:

C(d) =C(daps) +C(dmoa) 1)

A~

The term C(dobs) with-the—uneertainty—expresses the uncertainty in the observations
and C(dmoa) the uncertainty in the simulated equivalents of the observations M (z):—

g(d)Z :g(dobs)2+g(dmod)2

. _The first term in Equation 1 expresses the observational-eenstraint-impact of the
Wand the second term the prier—information—eontentimpact of the prior

information.

p.5 1.14: replace “in the second step” by “in the propagation step” ... you already introduced that
notion. As well it is now confusing, which model you consider. Better to first introduce the model and
then what is done in this propagation step. A proposition: “The model N involved in the second, the
propagation step, is the mapping from the control vector onto the target quantities. The Jacobian of
N, (N) is used to estimate how the posterior uncertainties in C(x) propagate to the” - I am confused
here: before equation (1) you say, that C(x) is the covariance of the Gaussian PDF of the posterior
control vector. And here you say, that that C(x) is the control vector. Use unique formulation.

Use of uncertainty clarified in response to comment 20.

Revised phrasing according to suggestion:

""" ; i w-used-as-a-The mapping
%‘Wmmwgmawmg from the
control vector onto target-quantities-and-denoted-by-a target quantity, y. The Jacobian
matrix N’ of the mapping N }-is employed to prepagate-approximate the propagation

of the posterior uncertainty in the control vector C(z) forward to the uncertainty in a
target quantity, o(y) via...

p.5 1.18: For improved readability, I would proceed chronologically in the order of occurrence of
the terms (start from the beginning of the equations), introduce the meaning of the single terms and
indicate subject choices then. My suggestion for p.51.18-p.6 1.4: “The first term, NC(x)NT, reflects
the propagation of the posterior uncertainty C(x) to the target uncertainties via the model N, while
sigma(ymod) reflects the remaining uncertainties (see types 2-4 in the list above), that are not yet
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24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

represented in the control vector. Like C(dmod), this quantity is set due to subjective choice. In our
work, we skip this term in order to sharpen the contrast between the EO products, and only mention
two plausible estimates.”

After the revision in response to comment 23, we think the presentation of Eq 3 reads well, no need
for further modification. We do not skip o(ymeq) but report it separately.

p.71.13: “does not require real observations”: This phrase is unnecessary. Instead you could just
say, that the QND formalism can be used to assess/evaluate hypothetical...

Done as suggested.

p.71.15: here you use d as the set of observations, and in I.7 you use d1 and d2. Introduce the defini-
tion of d (using vector notation) before you use it (or components of the vector without mentioning).
For instance, Fig. 2 could be introduced after such a definition. A suggestion: First say, that it is
possible to evaluate a network of observations, that do not need to have the same structure, nor be

available on the same grid. In particular, this enables the study of the benefit of using hypothetical
data networks. As is done in this work.

See response to comment 20. Figure revised from “C'(d;)” to o(d;)

p.10 1.11: from a restart file a dd.mm.yyyy generated ...”, remove (start time of ERA- Interim).

Done.

p.10 1.15: The initial ocean state is assumed to be at rest, the initial sea ice...

We added in the manuscript that the sea ice is at rest as well.

p.12 Fig 6: Explain what blue and what red colors mean! How is misfit defined? How do you assess
with this comparison the sensitivities instead of real values?

Explanation of colours added to caption. For the rest see response to comments 9 and 12 related to
“content”.

p.12 1.7: “is linear in time plus a quadratic time-dependent component, i.e. it does not contain
year-to-year variability.” this correlation is not clear to me. Ezplain or remove!

We think that the information is important to understand the assessment and refer to the Lindsay
and Schweiger (2015) paper for a detailed explanation, see also response to next comment.

p.12 14: explain the ice thickness regression procedure.

A detailed description of the procedure would be outside the scope of the paper. We refer to the
Lindsay and Schweiger (2015) paper.

p.14 caption Fig. 8: Needs to be improved along the line already mentioned (Think of self- explain-
ing!, colors, notions, etc.)

Done.

p. 15 Add to the title of the control vector: “and Uncertainty specification”.

The control vector is represented by a PDF, which implies that the section addresses both mean
and uncertainty.

Section 2.4: Give a little introduction into the purpose of the control vector. Do you gain information
by using that one? What is the difference in the outcome when using a large or a small control
vector? Somewhat trivial: Add, why you do not modify the control vector, while you do so with the
observations.

We have revised the text as follows:
TMM%MMOf the control vector aﬁd%h&speetﬁe&t}ei%enﬁﬂef

WSectlon 2.1. The s ec1ﬁcat10n of rior, both mean (zg and uncertalnt
C(xg)), follow Kaminski et al. (2015), and is listed in Table 1.

Exploring the sensitivity of the results with respect to the specification of the control vector could
be the topic of a follow up study, as is mentioned in the conclusions (variations from year to year).

p.15 1.2: Consider to add “ C(z0),” after “uncertainties”. Moreover, I would shorten: “(2015),
and are listed in Table 1.”

Done.
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35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

p.15 L7ff: In order to avoid confusion, the part in the brackets where it is said that perturbation is
added to the entire part of the simulation, should be put out of the brackets.

Done.

p.15 1.11: FEither use present tense (“results”), or reformulate: “Thus, the control vector contains
in total 157 control variables.”

We use present tense (“results”).

Section 2.5: This section is not understandable at all. As introduction of this section clarify where
you apply the data sets and where the observation operators in the QND framework!

We added a sentence to the first paragraph:

Recall that the (combination of) data set(s) enters the QND algorithm through its
uncertainty C(d) and that the observation operator is incorporated in the model M
(see Section 2.1)

p.16 1.8: when you use the word “link”, you should say between what. Right now you only use from
models state variables, but lack the to-part.

We added “to the respective data sets”.

p.17 check table caption against the table: column one lists the indices/place of occurrence of the
quantities in the control vector, while column 2 the abbreviation.

To enable easier reading you could section the table in 3 parts, the first being process parameters, the
second initial fields and the third forcing fields. You could remove the third column and section by
horizontal lines and note the type by writing “process parameters” etc in vertical style left beside the
index. Alternatively, insert additional rows that only contain “process parameters” etc as sectioning
of the table.

The last column can be removed and instead it should be explained in the caption, that the parameters
are unique values, while initial and forcing are given in the control vector individually for each of
the 9 regions (and refer to the figure 10 where they are introduced). Column 5 lacks units in most
of the entries. Caption and head of table disagree.

Units added where missing. Typos corrected. The last column is useful to identify the location of
individual components in the Jacobian plots. But we have followed the suggestion to add horizontal
lines to section the table into the three compartments.

Fig. 12: What effect do the assessment boxes have? Which role do they have in the upcoming of the
manuscript? Explain abbreviations in the graph, that have not been introduced yet, such as MSS.
The assessment boxes indicate where the model and the retrievals “shake hand”. Definition of MSS
added.

The first time the notion “Archimedes principle” shows up, it could be shortly explained, if the author
want to be self-explanatory.

We thought that Archimedes’ principle needs no explanation in a scientific paper, but have now
added a reference (to Guerrier and Horley (1970)).

p.20 1.20: for consistency in notation, use formula for snow depth or write the following formulas
in words, i.e. “densities of snow, ice and water”.

Symbol for snow depth was not used to avoid confusion with modelled snow depth.

p.20 1.21: add names of f;, f» and f;. It has so far only once been mentioned in Fig. 11.

The names are introduced on p.16 1.10.

p.20 1.28: motivate —0.22hs/c: what is this and where do you take the formulas from.

A motivation is given in 1.28 but we rephrased the sentence.

p.21, 15: remove “provided by AWI”, and use: the CryoSat-2 product files used in this work.

Done.

p.21 Caption of Fig. 13: time is missing (April 2015). 1.6f: How do the uncertainties in the other
times look like? I do not see how you incorporate the uncertainties into your algorithm. And: 1.8:

you introduced before the diagonal structure of the “uncertainties”. So I would refer to that by
“Recall, that we assume uncertainties to be uncorrelated in space”.

We added the time in the caption. Observational uncertainty enters via equation (1) and (2)).
Rephrased as suggested.
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47.

48.

49.

50.

ol.

92.

93.

54.

95.

96.

57.

98.

59.

60.

p.21 1.10: give a justification/reason, why you use the threshold 0.7 for SIC.

All altimeter retrievals have problems for large open water fraction. We selected the threshold in
analogy to the CryoSat retrieval. We added that in the manuscript.

p.22 1.10: Does M refer to model MPI-OM? With respect to what is the derivative?

M’ is the derivative of the simulated EO product with respect to the control vector and was defined
in section 2.1.

p.22 1.17: where do you derive sigma; from particularly for process parameters?

We had explained it at the end of section 2.4 and provided the extra text with our response to
content comment 15.

p.22 1.20: what is a 1-sigma change?

We rephrased the sentence (change by one standard deviation).

p.23 1.2: It is easier if you explain, that this plot shows the sensitivities of the XXX due to changes
in SIFB, LFB,...

What does that mean: “the Jacobian for April means of SIT over a point”? One entry in the
Jacobian is: 0f;/0x;. Explain, what f;, what z; is?.

We had defined the Jacobian in 2.1 and had interpreted it as sensitivity in the preceding paragraph.
We extended to read a point in space.

In the caption of fig 14 clarify that each bars in the plot corresponds to the uncertainty/sensitivity
(?) of one entry in the control vector due to the changes in the values XXX in the black dot! Then
explain that for instance for SIT there are 4 bars for each region one for each EO product. It is
very hard to read this figure without any further explanation.

Done.
p.23 1.4: add information where you are referring your discussion to, for instance “SIT sensitivity

(indicated as the XXX bars in the graph)” otherwise it is simply confusing. End of that sentence
in 1.6: add “in that region”.

Done.

p.23 1.9: this has not been indicated in your model description. Just give a reference here.
The dependence of the sea ice growth on the open water fraction is independent on the model
formulation. We rephrased the sentence.

p.23 1.17: “the various...” where do we see this in Fig.14? Do you still refer to this figure? Indicate
which bars you are talking about! This applies for the entire section! Any statement you make refer
to the corresponding bars!

We added:

The various freeboard products exhibit high sensitivity to initial SIT and SND (orange,
red, and green bars in Figure 14).

.23 1.28: what is the model N? Are you still in Fig.14%

N’ is defined in section 2.1 and we write that we are on Fig 15.

p.24 1.11: put “region 6”7 out of the brackets, as this is a particular feature of region 6!

Done.

p.25 1.3: Is “derive” the right word? If so, say how you do this. Else, use “use”/”introduce”. In
any case, motivate your choice.

Yes, exactly: We explain immediately how we do it.

p.25 1.4 remove: “and listed in the last but one row”.

Done.

p.25 U4: “model that perfectly simulates”...: where do you use this result and how?

Exactly here, to translate a thickness into a volume.
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61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

p.25 1.6 “and listed in the last row”: remove.

Done.

caption of table 3: 4-6 are 3 columns, whereas prior and posterior are 2 values, confusing! Moreover,
you could refer to the figure where they are depicted.

Is low or high accuracy used? FExplain where you find “without additional product”, “with product
with low accuracy” and “product with high accuracy in the table”.

Caption explains clearly that uncertainty is given per region and target quantity, i.e. we have 2x3
values. Accuracy (or absence) of snow product in column 3 as described.

p.26 1.8: better phrasing (and indicating what you are referring to): “the performance of SIFB (bars
with magenta color in Fig. 16) is similar for “

Was already revised in the TCD manuscript.

p.26 1.11: Figure 14: ...green bars in (?). explain what you are exactly comparing! This applies for
the entire manuscript and I will not further mention any further occurrences.

We added to the caption:

The sensitivities of the respective EO product to the control vector (“observational
Jacobianrews—") for a—April means of SIT—SIHFBLFB (orange bars), RFB (red bars),
SIFB (green bars), SIT (black bars) and EFB-SND (cyan bars) over a single point
indicated by the black dot (and by yeHew-black cross on Figure 3). The observational

Jacobians with respect to the process parameters are shown in the left middle panel.
The other panels show the observational Jacobians with respect to the initial and
forcing fields (see Table 1 for an explanation of the abbreviations).

p.26 1.17: “has so good performance already”: and [.20 “the first thing to note”, .22 “with uncertain
assumption primarily”: improve phrasing.

We rephrased: Fhe-This imbalance is lower for the high accuracy LFB producthas—se

good-performanee-on-SIV-already;, because this product already performs excellentl
on SIV such that there is not much scope for yet-betterfurther increases in performance

on SNV.

and

The-first-thing tenete-isthat-thestep-First, we note that switching from SIT to SIFB

drastically reduces the performance for SIV.

.26 1.20: which step? In which procedure? Refer to figure.

We replaced “the step” by “switching” to prevent confusion with the two-step procedure of QND
formalism.

p.26 1.23: (right hand side of Fig. 12) instead of on the modeling side of Fig....

Done.

p.27 1.20 Remove “We need to” and “here”. And put “(Equation (2))” at the end of the sentence!
Done

caption fig 14 and 15: write instead the dependencies/sensitivities of xxx to zzx. For instance it
looks like in Fig. 14 you depict the outcome of step 1 (inverse step, see your Fig. 1) meaning the

sensitivities of the control vector to the EO products, while in Fig.15 you depict the sensitivities of
the target variables to the control vector. (forward step 2 in your Fig.1) could that make sense?

Yes. Caption adapted.

caption Fig.16: Uncertainty reduction due to what? Ezxplain the different bars, the different color
codes.

Done.

p.31 -5 which setup do you mean? Regarding the spatial resolution: It is clear, that it is finer than
the target regions... why do you mention that here?

The setup of MPIOM (we added “of MPIOM” in the manuscript). By mentioning the size of the
target regions we want to make clear that the sensitivity of the target regions is aggregated over
many model grid boxes, and small-scale effects are averaged out.
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72.

p.31 1.12: what does that mean that you are not resolving changes in the initial conditions? Does
that mean that in the considered period of integration, the model state does not develop that much
away from the initialization? Furthermore you emphasized several times in the manuscript that you
are not interested in the real state but in the realistic representation of sensitivities. How does that
fit here?

We are talking about the control vector. The initial and boundary condition have the full temporal
and spatial scales included. The perturbations to the initial and surface boundary condition are per
region, though. The model state can develop freely away from the initial state in response to the
surface boundary conditions. We have not stated that we are not interested in the “real” state (we
discussed the “real” state of the model in section 2.3) but we stated that the “real” state does not
enter the QND formalism directly but only via the model sensitivities (which have some dependence
on the “real” state, of course).

Technical corrections - compact listing of purely technical corrections, typing errors etc.

1.

10.

11.

Articles are lacking in many places, such as in (p.3 1.81), (p.4 1.28), (p.15 1.13), (caption in p.19),
(p.23 1.4), (p.231.14), (caption of table 3), (p.25 1.21 and 1.35), (p.26 1.2 and 1.6), (p.33 1.14).

Difficult to follow as line references do not refer to TCD manuscript, some spots we could not
identify (e.g. p.25 1.21 and 1.35). Among those spots we could identify in the TCD manuscript,
often articles were already present, in some cases we found that inserting an article not useful (p.3
1.31, p.4 1.28, p.15 1.13, (caption of table 3)), and in other cases we have inserted articles, we’ll see
with the copy-editor ...

. Check for doubling of words such as in p.32 1.14 (than than) and in p.13 1.6 (the the), p.24 1.8:

“compared”.

In all cases except for “compared compared’ the TCD manuscript was already correct.

Check commas, they are missing in several places, such as in: (p.4 1 9: as mentioned, ...”), (p.5
1.5: In this case, ...”), (p.14 1.9), (p.16 1.8: after In the following”), (p.20 1.12: after SIC in the
brackets), (p.20, 1.2 after “assessment”).

Done.

Fullstops are missing: end of eq (6) , (7), and eq. (10), and p.20 1.29.

Done.

Put the Tables and Figures all at the end of the manuscript. The authors jump a lot back and
forth between their Figures and Tables, some of them are placed in sections that are unrelated to the
Figures/Tables. Having them all in one place would make it easier to follow the argumentation.

This would be incompliant with the journal style.

Addresses of authors should be consistent in their structure. For instance, (1) has street name, while
others only list the town and the country. Address (8): Danish writing of Copenhagen, which should
be changed to English.

Done.

Abstract 1.21: clarify the abbreviation EO when used the first time.

Done.

p.3 1.9: typo: parametrisation: correct to parameterization (or to parameterization if BE is used).

Parametrisation was no typo, see here for BE (https://dict.leo.org/englisch-deutsch/parametrisation).
We have changed to parameterisation but will check with the copy-editor.

p.91.10: “Recent EO products”.

We think this refers to p 2. Switching to “recent” would change the meaning.

p.3 1.12: “The constraints” (plural).

Done.

p-4 1.19 and in other parts: use vector notation for vectors, such as the control vector.

We'll see with the copy editor.
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12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

p.5 1.16: insert comma before sigma (y). otherwise sigma could be understood as target quantity.

. is employed to prepagate-approximate the propagation of the posterior uncertainty

in the control vector C(z) forward to the uncertainty in a target quantity, o(y) +via

p.10 1.34: no new paragraph.

Done.

p.10 1.34: “underestimates” instead of “is underestimating”.

Done.

p.10 1.35: “target regions”.

Done.

p.11 figh: The figure does not add relevant information to the paper.

We think it is useful for the reader to get an impression of the spatial variation in the resolution of
the model. On the relevance of the resolution we have commented above. But we have removed the
“arctic zoom” panel.

p.13 fig 7 (a-b) the color map is unfortunate. The reader does not see a lot of differences.

Maybe a problem with the printer? We had included isolines with a distance of 0.5 m to support
readability, so we think they should be o.k. and will also cross-check with the copy editor.

p.131 2 and p.23 1.11: no new paragraph.

Done.

p.151 2: “prior uncertainties”.

Added symbol to clarify.

p.16 1.6: remove “by the AWI”, this is not relevant here and does not follow common rules. Instead
move “(Rickers et al. 2014)” after “Cryosat2 mission”. Also remove “by AWI” in 1.10.

To our knowledge there exist three different CryoSat-2 products (respectively derived by AWI, UCL,
and NSIDC) and we would like to make clear which product we used.

p.19: Grey coloring not explained in the caption.

We added the word “emphasise” for the other colours to make clear that grey has no special meaning.
p.22 1.5: “For later use it...” and “and the three...”.

Done.

p.23 1.2: “a April means” - correct.

Done

p.24 1.14: the prior row is the first row and not the third.

It is the third row if you take the two header rows into account.

p.24 1.15: “uncertainties” - It is not only 1 uncertainty.

No longer present, dropped with introduction of extra section.

p.24 1.17-25: I do not see why you list them here.

With the new section title “experimental design” this gets probably obvious. We have also changed
to enumeration.

p.25 12: rows 3-18: say to which table you refrer to.
Table reference added.

p.26 17: regions 5 and 6.

Done.

p.26 1.9: “In contrast to” instead of “By contrast to”.

Done.
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30. p.27 l1: remove brackets.

Brackets make sense because for WLS this is only one.

31. p.271.6: comma after technically. This sentence is way to long. Split it!

Done.

32. p.321.4: “of a grid cell to a grid-cell average”: use uniform writing.

Thanks, we’ll see with the copy-editor ...

33. p32, 1.12: comma after assessment.
We put it after SIFB:

In the assessment of SIFBArehimides, Archimedes’ principle is applied in the obser-
vation operator, where the input quantities including snow depth are taken from the
model.
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Abstract. Assimilation of remote sensing products of sea ice thickness (SIT) into sea ice-ocean models has been shown

to improve the quality of sea ice forecasts. Open-Key open questions are whether the-assimilation-of rawer-assimilation of

lower-level data products such as radar freeboard (RFB) can achieve—yet-a—betterfurther improve model performance and

what performance gain-gains can be achieved by-the—joint-assimilation-through joint assimilation of such data products in
combination with a snow depth product. The Arctic Mission Benefit Analysis (AreMBA)-system was developed to address

this type of question. Using the quantitative network design (QND) approach, the system can evaluate, in a mathematically
rigorous fashion, the observational constraints imposed by individual and groups of data products.

We present assessments of the observation impact (added value) of different Earth Observation (EO) products in terms of
the uncertainty reduction in a four-week forecast of sea ice volume (SIV) and snow volume (SNV) for three regions along
the Northern Sea Route by-using a coupled model of the sea ice-ocean system-—The-assessments-cover-, specifically the Max
Planck Institute Ocean Model. We assess seven satellite products;-; three real products and four hypothetical products. The real

products are monthly SIT, sea ice freeboard (SIFB), and RFB, all derived from CryoSat-2 by the Alfred Wegener Institute.

These are complemented by two hypothetical monthly laser freeboard (LFB) products (ene-with-tow-aceuracy-and-one-with
high-aeeuraey)with low and high accuracy, as well as two hypothetical monthly snow depth products (again-ene—withtow

aceuracy-and-one-with-high-aceuraey)with low and high accuracy.
On the basis of the per-pixel uncertainty ranges that-are-provided with the CryoSat-2 SIT, SIFB, and RFB products, the SIT

achieves-and RFB achieve a much better performance for SIV than the SIFB product;-while-the-performanee-of RFEB-is-mere
stmitar-to-that-of-SIT. For SNV, the performance of SIT is only low, the performance of SIFB higher and the performance of
RFB yet higher. A hypothetical LFB product with low accuracy (20 cm uncertainty) ties-in-performaneefalls between SIFB
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and RFB in performance for both SIV and SNV. A reduction in the uncertainty of the LFB product to 2 cm yields a significant
increase in performance.

Combining either of the SIT/freeboard products with a hypothetical snow depth product achieves a significant performance
increase. The uncertainty in the snow product matters: A higher accuracy product achieves an extra performance gain. The
provision-of-Providing spatial and temporal uncertainty correlations with the EO products would be beneficial not only for

QND assessments, but also for assimilation of the products.

1 Introduction

Over the last few decades the state of the Arctic climate system has undergone a-rapid change. Most pronounced are decreases
of-the-major decreases in summer sea ice extent and ef-the-year-round-sea ice volume throughout the year. This transformation
is affecting marine ecosystems and coastal communities in an unprecedented way. Economic activities such as resource ex-
traction, maritime transportation, and tourism may benefit from these changes provided that risks, e.g. of sea ice hazards, can
be managed. In this context, the performance of short-term to seasonal forecasts of sea ice conditions is of crucial importance

Eicken, 2013).
Forecasts of the sea iee-ocean—dynamies-ice and the ocean state are routinely performed by coupled sea ice-ocean mod-

els that are driven by prescribed atmospheric conditions. Such—forecastssufferfrom—uneertainty—In order to derive reliable

forecasts, uncertainties in the model “s-initial state, of the atmospheric boundary conditions, and the-parametrisation-in the
parameterisations of physical processes —Onty-observations-can-help-te-need to be minimised. Observations can help reduce
such uncertainties and, thus, improve the forecast quality. Recently Earth observation (EO) products of sea ice thickness (SIT)
have been shown to provide particularly valuable constraints (Lisaeter et al., 2007; Yang et al., 2014; Day et al., 2014; Kauker
et al., 2015; Xie et al., 2016). The eonstraintfromrawerEO-products-that-constraints from lower-level EO products (i.e. rawer

roducts that more directly related to the actual measurement) that are used to derive SIT products may be even stronger, be-

cause theserawer-produets-such products that conform more closely to the raw EO data are typically more accurate. Ia-For the
example of the CryoSat-2 SIT product (Ricker et al., 2014) retrieved at-by the Alfred Wegener Institute (AWI) the uncertainty

in the radar freeboard (RFB) product underlying their SIT retrieval is smaller by about two orders of magnitude compared to
the derived ice thickness product (Figure 13). This difference is a consequence of uneertainty-in-assumptions-in-particular-on
the uncertainty associated in particular with snow and ice density and snow depth, which are used to retrieve SIT from RFB.
For direct assimilation of RFB these variables can be taken-extracted from the model into which the data are assimilated, but
sti-they-are-uneertaineven in this approach significant uncertainty remains. Hence, the trade-off between assimilation of SIT
or RFB requires a rigorous quantitative assessment. This is even more important, when the products are assimilated jointly
with preduets-of-further-variables such as snow depth (SND) that bring-in-introduce complementary information.

Such rigorous assessments can be performed in an efficient manner by the quantitative network design (QND) approach-

QND-alows:, allowing for an objective evaluation of ebservationimpacton-the added value of observations for a given aspect of

a model simulation or forecast. The technique originates from seismology (Hardt and Scherbaum, 1994) and was first applied to
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the climate system by Rayner et al. (1996), who optimised the spatial distribution of in situ observations of atmospheric carbon
dioxide to achieve minimum uncertainty in inferred surface fluxes. After an initial QND study that demonstrated the feasibility
of the approach for remote sensing of the column-integrated atmospheric carbon dioxide concentration (Rayner and O’Brien,
2001) QND is now routinely applied in the design of CO2 space missions (e.g., Patra et al., 2003; Houweling et al., 2004;
Crisp et al., 2004; Feng et al., 2009; Kadygrov et al., 2009; Kaminski et al., 2010; Hungershoefer et al., 2010; Rayner et al.,

2014; Bovensmann et al., 2015) For the western Arctic domain, the QND approach was-sueeessfully-demonstrated-through-the

torrs-has been successfully applied to evaluate

the impact of (hypothetical) airborne measurements of SIT/SND in improving sea ice predictions (Kaminski et al., 2015). The
study evaluated two idealised flight transects derived from NASA’s Operation IceBridge airborne altimeter ice surveys in terms

of their potential to improve ten-day to five-month forecasts of sea ice conditions, including for operational purposes.

The present study describes the implementation of the QND methodology into a system for Arctic mission benefit analysis
(ArcMBA) and then applies the system to investigate the impact of a series of EO products ente-on forecasts of snow and
ice volume over three regions along the Northern Sea Route (INSR). It addresses products of SIT, SIFB, RFB, laser freeboard
(LFB), and SND. The layout of the remainder of this article is as follows: Section 2 will describe the methodological aspects,
including the QND approach, the coupled sea ice-ocean model, and the EO products. Section 3 will present the simulated sen-
sitivities of target quantities and observation equivalents to the model’s control vector that is composed of process parameters,
initial and boundary conditions. Section 5 will present the QND assessments, followed by their-diseussion-a discussion of these

findings in Section 6. Finally, Section 7 provides a summary and conclusions.

2 Methods

2.1 Quantitative Network Designnetwork design

The QND methodology is presented by Kaminski and Rayner (2017), partly based on algebra-by-Tarantola (2005) and Rayner
et al. (2016). For the sake of self-containedness we provide a shortened form of the presentation by Kaminski and Rayner
(2017). As mentioned, the QND formalism performs a rigorous uncertalnty propagatlon from the observations via-the-controt
veetorto a target quantity of interest th i

which-produeerelying on the indirect link from the observations to the target variables established by a numerical model. We
distinguish between four sources of uncertainty in a model simulation:

1. Uncertainty caused by the formulation of individual process representations and their numerical implementation (struc-

tural uncertainty).
2. Uncertainty in constants (process parameters) in the formulation of these processes (parametric uncertainty).
3. Uncertainty in external forcing/boundary values (such as surface winds or precipitation) driving the relevant processes.

4. Uncertainty in the state of the system at the beginning of the simulation (initial state uncertainty).
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The first factor-category reflects the implementation of the relevant processes into the model (code) while the others can
be understood-as-represented by a set of input quantities controlling the behaviour of a simulation using the given model
implementation. The QND procedure formalises the selection of these input quantities through the definition of a control
vector, x. The choice of the control vector is a subjective element in the QND procedure. A good choice covers all input facters
quantities with high uncertainty and high impact on simulated observations d,,q or target quantities y (Kaminski et al., 2012;
Rayner et al., 2016).

Uncertainty

Posterior Uncertainty

0 SEEremins g Backpropagation in Control S
and Model : - iy Forward . .
P with — P i Posterior Uncertainty
Inverse ropagation in Target 4
with Model _

Uncertainty
in Model

Prior Uncertainty ; Model
in Control .

Figure 1. Data flow through two-step procedure of QND formalism. Ovats-Oval boxes denote data, rectangular boxes denote processing.

Figure taken from Kaminski and Rayner (2017).

The target quantity may be any quantity that can be extracted from a simulation with the underlying model -i-e-any-petential
medel-eutput-(in the current study regional integrals of predicted sea ice and snow volumes, see Section 2.2), but also any
component of the control vector, for example a process parameter such as the albedo-of-the-snow-snow albedo. In the general
case, where the target quantity is not part of the control vector, the QND procedure operates in two steps (Figure 1). The first
step (inversion step) uses the observational information to reduce the uncertainty in the control vector, i.e. from a prior to a

posterior state of information;-and-the-. The second step (prognostic step) propagates the posterior uncertainty forward to the

simulated target quantity.

v-Within the QND
formalism, we present all involved quantities by probability density functions (PDFs). We typically assume a Gaussian form

for the prior control vector and the observations, if necessary after a suitable transformation. The Gaussian PDFs’ covariance
matrices express the uncertainty in the respective quantities, i.e. C(xo) and C(dubs) for the prior control vector and the ob-
servations. In the context of these PDFs we will use the term uncertainty to refer to its full covariance matrix in the case of a
diagonal of the full covariance matrix corresponding to that particular vector component. In the latter case the uncertainty refers
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to one standard deviation of the marginal PDF corresponding to that component, and we use the notation o(ds) to denote, for
example, the standard deviation of the second component of d.

For the first QND step we use the-model-a mapping M as-a-mapping-from control variables onto equivalents of the obser-
vations. In our notation the observation operators that map the model state onto the individual data streams (see Kaminski and
Mathieu (2017) and Section 2.5) are abserbed-incorporated in M. Here we refer to M as model. Let us first consider the case
of a linear model, for which we denote by M’ the Jacobian matrix of M, i.e. the derivative of M with respect to x. In this
case, the posterior control vector is described by a Gaussian PDF with eevarianee-uncertainty C(x), i-e-the-uneertainty-which

is given by
C(z) ' =M'"C(d) "M’ + C(zo) " (1)
where the data uncertainty C(d) eombines-is the combination of two contributions:

C(d) =C(dobs) +C (dmoa) @)

A A~ T A~

The term C(dops) Wwith-the-uneertainty-expresses the uncertainty in the observations and C(dmoq) the uncertainty in the simu-

lated equivalents of the observations M (z)+

C (d)z :Q(dobs)2+g(dn1od)2

. The first term in Equation (1) expresses the ebservational-constraint-impact of the observations and the second term the prior
informationecontentimpact of the prior information. In the non-linear case we use Equation (1) as an approximation of C(z).

!

- : : sed-as-a-The mapping /N involved in the second, the uncertaint
ropagation step, is the mapping from the control vector onto target-quantities-and-denoted-by-a target quantity, y. The Jacobian
matrix N’ of the mapping N )-is employed to prepagate-the-approximate the propagation of the posterior uncertainty in the

control vector C(x) forward to the uncertainty in a target quantity, o(y) +-via
T
o(y)* =N'C@)N" +0(ymoa)* 3)

If the model was-were perfect, o(ymod) Would be zero. In contrast, if the control variables were perfectly known, the first term
on the right-hand-right-hand side would be zero. The terms C(dmoq) in Equation (2) and o (ymed) in Equation (3) capture the
structural uncertainty as well as the uncertainty in those process parameters, boundary and initial values that are not included
in the control vector. These two terms typically rely on subjective estimates. When comparing the effect of different data sets
in the same setup, o (ymod) acts as an offset (for the respective variance) in Equation (3)}. To sharpen the contrast between the
products we remove it from the assessment and report two plausible estimates separately.

To conduct a valuable QND assessment, the requirement on the model is not that it simulates the target quantities and
observations under investigation realistically, but the-requirement-is-rather that it provides a realistic sensitivity of the target
quantities and observations under investigation with respect to a change in the control vector. H-these-sensitivities——(As a

hypothetical example we can think of a perfect regional tracer model that is run with an offset in the initial or boundar



10

this offset, but all sensitivities will be perfect.) If

conditions for a passive tracer. The simulated tracer concentration will car

the sensitivities of the target quantities and observations (i.e. the Jacobians;-) are realistic, but the simulation of target quantities
and observations incorrect, we can always make-obtain a valuable QND assessment with appropriate model uncertainty. The
result of the assessment may then be that a particular data stream is not useful in constraining a particular target quantity
given current modelling capabilities. In-this-sitaation-we-ecould-operate-Under such circumstances, the QND system could be
operated with reduced model uncertainty to explore which-aceuraey-the level of accuracy required of the model is-required-for
a data stream to be-serve as a useful constraint on a given target quantity. In particular when it comes to rew-newly available,
unvalidated data streams and target quantities the accuracy of both, the simulation and the sensitivities, are-is hard to assess.
In the case of a model that misses-does not capture relevant processes we may expect errors in both the simulation and the

sensitivities, and consequently also in the QND assessment.

Figure 2. Schematic Presentation-presentation of the QND procedure: Each coloured line illustrates a model trajectory that simulates for

a given value of the control vector (x) counterparts of the observations (d; and ds) and a target quantit . Through the model, the

observations act as constraints on the control vector, which reduces its uncertainty from C'(xzo) to C'(x). This uncertainty reduction on the

control vector translates into an uncertainty reduction in the target quantity from o too
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Our performance metric is the (relative) reduction in posterior target uncertainty o(y)? with respect to a reference. To

compare against the case without any observations we usecompute, as the reference, the prior target uncertainty, o (), via_

o(y0)2 = N'C(20)N'" + 0 (tfmod)? . )

The uncertainty reduction with respect to the prior,
o(yo) —oly) _, o)

o(yo) o(yo)’
quantifies the impact of the entire network. A schematic illustration of the approach with the prior and posterior uncertainty

®)

ranges is shown in Figure 2. The observations d; and d, render a range of trajectories unlikely, which in the first step leads
to a reduction of uncertainty in the control vector (from C(x) to C(x)) and in the second step to a reduction in the target
uncertainty (from o (yp) to o(y)).

We note that (through Equation (1) and Equation (3)) the posterior target uncertainty solely depends on the prior and data
uncertainties, the contribution of the model error to the uncertainty in the simulated target variable, o (Ymoa), as well as the
observation and target Jacobians (quantifying the linearised model responses of the simulated observation equivalent and of
Hence, the QND formalism can be
employed to evaluate hypothetical candidate networks. Candidate networks are defined-by-a-set-of-observations—characterised
by observational data type, location, sampling frequency and time, and data uncertainty but not the observational value. Here,

the target quantities).

we define a network as the complete set of the characterisation of observations, d, used to constrain the model. The term
network is not meant to imply that the observations are of the same type or that their sampling is coordinated. For example, a
network can combine different types of in situ and satellite observations.

In practice, for pre-defined target quantities and observations, model responses can be pre-computed and stored. A network
composed of these pre-defined observations can then be evaluated in terms of the pre-defined target quantities without any fur-
ther model runs. Only matrix algebra is required to combine the pre-computed sensitivities with the data uneertaintiesuncertainty.
This aspect is exploited in our ArcMBA system.

2.2 Target Quantitiesquantities

For this study we selected target quantities that are particularly relevant for maritime transport, namely predicted sea ice volume
(SIV) and snow volume (SNV) over three regions along the Nerthera-Sea-Route(NSR)NSR. These three regions are displayed
in Figure 3 and respectively denoted as “West Laptev Sea” (WLS), “Outer New Siberian Islands” (ONSI), and “East Siberian
Sea” (ESS). We perform these predictions for May 28, 2015, a point in time at which there is still sufficient snow cover for our

prediction to be relevant. These predictions are started on April 1 and are constrained by observational information until April

30, i.e. we-perform-the assimilation window in April is followed by a four-week prediction period (Figure 4).

2.3 MedelSea ice-ocean model
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Figure 3. Target regions along the Nerthern-Sea-ReuteNSR. Black cross indicates a location for further use in Figure 14.

The-requirement-on—the-dynamical-To simulate observation equivalents () in Equation (1)) and target guantities (/V_in
Equation (3)) we employ a coupled model of the eoupled-sea ice-ocean systemis-that-it-simulates—in-a-realistie-manner—,

The model is required to provide realistic simulations of the sensitivity of the-observation equivalents and the-target quan-
tities to changes in the control variables. In the present study we use the Max-Planck-Institute Ocean Model (MPIOM)
Jungelaus-etal; 20422013 Haak-etal52003)(MPIOM, Jungclaus et al., 2012, 2013; Haak et al., 2003), i.e. the sea ice-ocean
component of the Max-Planck-Institute Earth System Model (MPI-ESM)(Giorgetta-et-als-2043)(MPI-ESM, Giorgetta et al., 2013).

MPI-ESM regularly provides climate projections for the Intergovernmental Panel on Climate Change (IPCC) in particular to

the IPCC’s 5th assessment report (Stocker et al., 2013) and the upcoming 6th assessment report (AR6) and within the seasonal
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Figure 4. Time line of experimentat-assimilation and forecast setup.

to decadal prediction system (Miiller et al., 2012). In the following we provide a brief description of the medelcurrent model
development status, largely following Jungclaus et al. (2006) and Niederdrenk (2013).

NMPIOM ad - on-the—-prim e—aq R at af nanlina d Aaran ac O

a a

d O atd d TN - O
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Recent-development-of-the-medel-Recent development of the ocean part of the model includes the treatment of horizontal
discretisation which has undergone a transition from a staggered E-grid to an orthogonal curvilinear C-grid. The treatment of

subgridscale mixing has been improved by-through the inclusion of a new formulation of bottom boundary layer slope convec-
tion, an isopycnal diffusion scheme, and a Gent and McWilliams style eddy-induced mixing parameterisation —Aleng-isepyenie
(Gent and McWilliams, 1990). Along-isopycnal diffusion is formulated following Redi (1982) and Griffies (1998). Isopycnal
tracer mixing by unresolved eddies is parameterised following Gent et al. (1995). For the vertical eddy viscosity and diffusion
the Richardson number—dependent scheme of Pacanowski and Philander (1981) is used. An additional wind mixing propor-
tional to the cube of the 10-m wind speed (decaying exponentially with depth) compensates for too low turbulent mixing close
to the surface. Static instabilities are removed through enhanced vertical diffusion.

A viscous—plastic theology (Hibler, 1979) is used for the sea ice dynamics. Fhe-thermodynamiesis-Sea ice thermodynamics
are formulated using a Semtner (1976) zero-layer model relating changes in sea ice thickness to a balance of radiant, turbulent,
and oceanic heat fluxes. In the zero-layer model the conductive heat flux within the sea ice/snow layer is assumed to be directly
proportional to the temperature gradient across the sea ice/snow layer and inversely proportional to the thickness of that layer,
i.e. the sea ice does not store heat. The effect of snow accumulation on sea ice is included, along with snow—ice transformation
when the snow/ice interface sinks below the sea level because of snow loading (flooding). The effect of ice formation and

melting is accounted for within the model assuming a sea ice salinity of 5 psu.
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MPIOM allows for an arbitrary placement of the model’s poles on an orthogonal curvilinear grid. In the setup used here
(taken from Niederdrenk (2013); Mikolajewicz et al. (2015); Niederdrenk et al. (2016)) the poles are located over Russia and
North America (as-ean-be-seen-in-Figure 5). Placement over land avoids numerical singularities that for poles over the ocean

would be caused by the convergence of the meridians, and the non-diametric placement allows to reach high resolution (average

of about 15 km) ef-in the Arctic. In-the-folowing-we-will-call-the-medel-in-that-configuration-This setup achieves a spatial
resolution as high as that of the EQ products we analyse (in fact over the target regions the model resolution is higher) without
major computational constraints, which allows an evaluation of the full spatial information content provided by the respective
EQ products. Here, we will refer to this particular model configuration as Arctic MPIOM.

As forcing data at the ocean’s surface, the model needs heat, freshwater, and momentum. These data are taken from
ECMWF’s ERA-Interim reanalysis (Dee et al., 2011). ERA-Interim is a global atmospheric reanalysis (of the period from
1979 to present) that is produced by a 2006 release of the Integrated Forecasting System (IFS — version Cy31r2) and applies
a 4-dimensional variational analysis with a 12-hour analysis window. The spatial resolution of the data set is approximately
80 km (T255 spectral) on 60 vertical levels from the surface up to 0.1 hPa. ERA-interim surface variables te-that force Arc-
tic MPIOM are 2-meter temperature, 2-meter dew point temperature (surrogate of 2-meter specific humidity — not delivered
provided by ECMWF), 10-meter zonal and meridional wind velocity (to calculate the wind speed), total cloud cover and the
following fluxes (delivered-provided in accumulated form over the 12-hourly forecast window): surface downward solar radi-
ation, surface downward thermal radiation, total precipitation, zonal and meridional wind stress. Land runoff into the ocean is

taken from the German Ocean Model Intercomparison Project (OMIP, Roske, 2001).

Ia-this-study;all-model-experiments-will-be-started_For the computation of the jacobians M’ and N’ (introduced in Sec-
tion 2.1) that is described in Section 3 we run Arctic MPIOM from a restart file for April 1, 2015. This restart file is in turn
generated from a hindcast run of Arctic MPIOM which-that is initialised on +-+1979(start-time-of ERA-Interim)—January 1,
1979. This initialisation is based on a set of observations that consists of a topography data set {EFOPOS-5-minute-gridded
elevation—data(INOAA; 1988 H(ETOPOS 5-minute gridded elevation data, NOAA, 1988), and a hydrographic climatological
data set (Polar science center Hydrographic Climatology, PHC3; Steele et al., 2001) containing potential temperature and
salinity. The ocean is assumed to be at rest. Sea ice is assumed to be present if the sea surface temperature falls below the freez-
ing temperature of sea water. 100% ice cover and a sea ice thickness of 2m is assumed where sea ice is present and sea ice is
assumed to be at rest. From this initial state the model is integrated with the ERA-Interim surface forcing until 3+-3:204+5March
31, 2015 (the beginning of our assimilation window). While a 34-36 year integration is certainly too short to spin up the deep
ocean, it is sufficient for the purpose of this study, because the spinup time of sea ice and the upper ocean (depth above about

500m) is generally assumed to be only a few decades.

For a successful QND assessment it is essential that MPIOM provides realistic sensitivities of the observation equivalent
and the target quantities to the changes in the control vector (Equation (1) and Equation (3)). However, observations are not
available to validate these sensitivities. The only validation of MPTIOM possible is against observations of the state of the sea ice
and ocean. In the following we present comparisons with selected observation based products first for the hindcasting period,
and then for the assimilation window and the forecasting period._

10
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The hindcast with Arctic MPIOM has been validated against remotely sensed ice concentration from the reprocessed OSt
SAF-Ocean and Sea Ice Satellite Application Facility (OSI SAF) sea ice concentration product (Eastwood et al., 2015) and
against a combination of in-situ-in situ and remotely sensed ice thickness observations. Ia-situ-In situ observations of sea
ice thickness still have a high uncertainty and each data source has its own strengths and weaknesses. As of today the most

reliable information-aboutpan-Arctic sea ice thickness stems-data set is derived from a combination of various sources of in-sit

ebservation-in situ observations and remotely sensed satellite sea ice thickness products by-Lindsay-and-Sehweiger(2045)(Lindsay and Sch

The reprocessed OSI SAF sea ice concentration product is available daily on a 10 km spatial grid and includes spatially and
temporally varying uncertainty estimates. For an assessment of the performance of the Arctic MPIOM, the sea ice concentration
has been compared to the long-term means of the March, June, and September monthly means for the period 1990 to 2008
(Figure 6). In March (panel d) and June (panel e) only smatt-relatively small scale misfits to the OSI SAF ice concentration are
found but they can reach up to 50% (here and in the following we use the term “misfit” for the model-observation difference).
The sea ice margin in the Nordic Seas and Barents Sea is captured well. The anomalies apparent in March correspond to the
results of a study performed with the MPIOM version of the Max-Planck-Institute’s Earth System model MPI-ESM-LR (Notz
et al., 2013), for which the MPIOM was forced with the same atmospheric forcing data set as used in our study (ERAinterim)
(see panel f of their Figure 3).

In September large misfits to the OSI SAF sea ice concentration are obtained (Figure 6 panel f). Especially over the
Eurasian basin the model’s sea ice margin is located too far north but also over the central Arctic the model is-underestimating
underestimates the sea ice concentration. In our target reions-regions the misfit remains relatively small. The aforementioned
analysis by Notz et al. (2013) shows similar misfits (see panel f of their Figure 4) to a different sea ice concentration data set,
namely NSIDC-CDR (National Snow and Ice Data Center Climate Data Record).

An evaluation of the hindcast simulation with Arctic MPIOM with respect to the modelled SIT is much more difficult,
because the observation-based products exhibit large uncertainties reflecting the corrections imposed by the respective mea-

surement principle. For example, Eleetro-magnetie-electro-magnetic Air-EM measurements detect the air-snow interface, and

11
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Figure 6. The long-term mean sea ice concentration [%] of the Arctic MPIOM for 1990 to 2008 for March, June and September (panel a to

¢) and the misfit to the OSI SAF sea ice concentration (panel d to f). In panels d to f, red colours indicate underestimation and blue colours

not the interface between snow and sea ice, introducing significant errors in the SIT estimates that are corrected by assumptions
or measurements of snow depth. Moored and submarine ULS measurements have to be corrected for the first return echo. Dif-
ferences in the observed and measured spatial scales further complicate the comparison. The aforementioned study of Lindsay
and Schweiger (2015) synthesises all available in-situ-in situ and remotely sensed satellite SIT products in an ice thickness
regression procedure (ITRP) for the time period 2000 to 2012. Low order spatial and temporal polynomials are fitted to the
available sea ice thickness measurements. The resulting sea ice thickness regression product describes the evolution in the
central Arctic and is linear in time plus a quadratic time-dependent component, i.e. it does not contain year-to-year variability.
Uncertainty ranges are deduced from the uncertainty of the individual regression coefficients. The year-to-year variability is

reflected in this uncertainty. Lindsay and Schweiger (2015) eeuld-show for example that the ICESat ice thickness product from

12
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the Jet Propulsion Laboratory (ICESat-JPL, Kwok and Cunningham (2008)), which is widely used for model validation, had a
large positive bias.

Here we compare the modelled long-term mean (2000 to 2012) sea ice thickness of the Arctic MPIOM medel-experiment
hindcast to the ITRP sea ice thickness for the two-months periods February/March and October/November. We selected these
two-month periods, because the availability of the ICESat satellite product ensures a high data coverage in the ITRP. The
long-term mean sea ice thickness of the the-Arctic MPIOM hindcast simulation for February/March and October/November is
depicted in Figure 7 (panel a and panel b) together with the misfit to the ITRP ice thickness (panel ¢ and panel d). A prominent
feature is a strong underestimation of the Arctic MPIOM sea ice thickness north and west of Fram Strait and in the strait itself.
In the regions of interest of-for our QND study -in-(the areas around the Nerthera-Sea-Route;INSR) the misfit is moderate in
February/March (overestimation of about 25%) with the exception around the EastNew Siberian Islands where the misfit can
reach more then-than 1 meter (overestimation of about 50%). In October/November the misfit is very moderate in these areas

except for Bering Strait where Arctic MPIOM underestimates the sea ice thickness by more thea-than 50cm.

ve-Next we address Arctic MPIOM performance
over our assimilation and forecasting period (see Figure 4). We show the April mean and the May 28 mean of the modelled SIT

and the misfit of the April mean thickness to that retrieved from CryoSat-2 (Figure 8). For a comparison of CryoSat-2 thickness
to in situ observations we refer to Haas et al. (2017). The misfit to the CryoSat-2 ice thickness in April 2015 is similar to the
misfit to the ITRP shown in Figure 7: a strong underestimation north of the Canadian Archipelago and Nerth-and-West-north
and west of Fram Strait and a moderate overestimation in the area of the target quantities of about or less then-than 50cm
(about 25% relative error). Figure 9 depicts the April mean and the May 28 mean of the modelled snow depth and the misfit
to the modified Warren climatology (Warren et al., 1999) that is used in the CryoSat-2 retrieval (see Section 2.5). The main

challenge for sea ice thickness retrieval with satellite altimeters is the parameterisation of snow depth on sea ice, which is still
not measured routinely. The current CryoSat-2 retrieval uses a modified snow climatology that addresses shortcomings of the
Warren et al. (1999) climatology that was based largely on data from drifting stations mainly on multi-year sea ice collected
over the past decades, and hence is not reflective of a much younger, more seasonal Arctic ice cover. Given the increased
fraction of first-year ice in the Arctic Ocean, the approach proposed by Kurtz and Farrell (2011) is used and the climatological
snow depth values used in the retrieval are multiplied over first-year ice by a factor of 0.5. Note that on May 28 parts-of-over

the target regions are-almostsnewfree-already-a large fraction of snow cover has already melted. The misfit to the modified
Warren climatology in the target area East Siberian Sea is on the order of about 10cm (50% relative error) but much less for

the other target areas.
Overall, the misfits of the Arctic MPIOM are acceptable in particular for our target regions along the Nerthern-SeaRoute
NSR (Figure 3) and are comparable to misfits found in sea ice-ocean model intercomparison projects (e.g, Chevallier et al.

(2017)).

2.4 Control Veetorvector

13
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Figure 7.
The long-term mean (2000 to 2012) of the simulated sea ice thickness [m] for the two-month periods February and March and October and
November (panel a and b) and the misfit (model — ebservationobservations) to the ITRP —(panel ¢ and d). In panels ¢ and d, red colours

The-definition-Criteria for the choice of the control vector and-thespecification-on-prioruncertainty folow Kaminski-et-al(2015):
The-components-and-their- prior uneertainty-are-are presented in Section 2.1, The specification of prior, both mean (zo) and
uncertainty (C'(zg)), follows Kaminski et al. (2015), and is listed in Table 1. The largest possible control vector in our mod-
elling system is the superset of initial and surface boundary conditions as well as all parameters in the process formulations, in-
cluding the observation operators. As described in Section 3, the Jacobian computation requires an extra run for each additional
component of the control vector. To keep our ArcMBA system numerically efficient, two and three-dimensional fields are par-
titioned into regions. More precisely, we divide the Arctic domain into nine regions (shown in Figure 10). In each of these
regions we add a scalar perturbation to each of the forcing fields (indicated in Fable-+Table 1 by “f” in the type column—); the
perturbation is applied for the entire simulation time). Likewise we add a scalar perturbation to six initial fields indicated-in
indicated in Table 1 by “i”" in the type column). For the ocean temperature and salinity the size of the perturbation is reduced

with increasing depth (and zero below 506#°500 m). Finally we have selected 29 process parameters from the sea ice—ocean
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Figure 8. The a) modelled mean April 2015 sea ice thickness [m], b) the modelled sea ice thickness on May 28 2015, and c) the mean April
2015 misfit of the modelled sea ice thickness relative to the CryoSat-2 sea ice thickness. In panel ¢, red colours indicate underestimation and

model plus two parameters from the observation operators for freeboard products (see Section 2.5 for details). This procedure
restittedresults in a total of 157 control variables. We assume the prior uncertainty to have diagonal form, i.e. there are no cor-
relations among the prior uneertainty-uncertainties relating to different components of the control vector. The diagonal entries
are the square of the prior standard deviation. For process parameters this standard deviation is estimated from the range of
values typically used within the modelling community. The standard deviation for the components of the initial state is based
on a model simulation over the past 37 years and computed for the 37 member ensemble corresponding to all states on the same
day of the year. Likewise the standard deviation of the surface boundary conditions is computed for the 37 member ensemble

corresponding to the April-October means of the respective year.

2.5 Data Sets-sets and Observation-Operatorsobservation operators

The study evaluates three data sets retrieved by the AWI (Ricker et al., 2014) from observations provided by the CryoSat-2

mission, two data sets characterising hypothetical LFB products, and two data sets characterising hypothetical SND products.
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Table 1. Control variables. Column 1 lists the quantities in the control vector; column 2 gives the abbreviation for each quantity; column 3
indicates whether the quantity is an atmospheric boundary field (forcing, i.e. f), an initial field (i), or a process parameter (p); column 4 gives
the name of each quantity; column 5 indicates (the standard deviation of) the prior uncertainty and the corresponding units (unless unitless)
and provides the magnitude of the parameter value in parenthesis, where applicable; and column 6 identifies the position of the quantity

in the control vector — for initial and boundary values (which are differentiated by region) this position refers to the first region, while the

following components of the control vector then cover regions 2 to 9.

Index#  Name Type  Meaning Prior uncertainty (value) Start
1 hiccp P (alias pstar) ice strength (devided by density) 15(20) [Nm =2 kg™ 1] 1
2 hibce p (alias cstar) ice strength depend. on ice conc. 5.0(20.0) 2
3 hicce p (alias eccen) squared yield curve axis ratio 0.5(2.0) 3
4 rleadclosel  p extra lead closing (Notz et al., 2013) 0.2(0.25) 4
5 rleadclose2  p extra lead closing (Notz et al., 2013) 1.0(3.0) 5
6 rleadclose3  p extra lead closing (Notz et al., 2013) 1.0(2.0) 6
7 ho p lead closing 1.0(0.5) [m] 7
8 hmin p mimimal ice thickness 0.04(0.05) [m] 8
9 armin p minimal ice compactness 0.15(0.15) 9
10 hsntoice p limit on flooding 0.45(0.45) 10
11 sice p salinity in sea ice 2.0(5.0)[psu] 11
12 albi p freezing ice albedo 0.1(0.75) 12
13 albm P melting ice albedo 0.1(0.70) 13
14 albsn p freezing snow albedo 0.1(0.85) 14
15 albsnm p melting snow albedo 0.1(0.70) 15
16 rhoice p density of sea ice 20(910)[kg/m?] 16
17 rhosn p density of snow 20(330)[kg/m?] 17
18 cw P ocean drag coeff. 2.0x 1073(4.5 x 1073) 18
19 av0 P coeff vertical viscosity Fe0=H230=41. x 1074 (2. x 107*)[m?/s] 19
20 dvo P coeff vertical diffasitiv-diffusitivity Fe0=H230=41. x 1074 (2. x 107 ) [m?/s] 20
21 aback P background coeff vertical viscosity %WWW 21
22 dback P background coeff vertical diffusivity-diffusitivity M@%MM 22
23 cwt P vertical wind mixing parameter tracers %Mﬁwwm 23
24 cwa P vertical wind mixing parameter momentum W{WM@ 24
25 cstabeps p vertical wind mixing stability parameter 0.03(0.06) 25
26 cdvocon p coefficient for enhanced vertical diffusivity 0.1(0.15) 26
27 bofric P linear bottom friction M%MWM 27
28 rayfric p quadratic bottom friction 05 % H0=2H3—x40=5-0.5 x 10_3(1. x 10" [m? /5] 28
29 jerlov, P jerlov atten - ocean-water types 0.04(0.08) 29
30 jerlovy p jerlov bluefrac - ocean-water types 0.20(0.36) 30
31 albw p open water albedo 0.05(0.1) 31
32 sit i initial ice thickness 0.5[m] 32
33 siconc i initial ice concentration 0.1 41
34 sicsno i initial snow thickness 0.2[m] 50
35 thetao i initial ocean temperature 0.5 [K] (vertically decreasing) 59
36 S0 i initial salinity 0.5 [psu] (vertically decreasing) 68
37 708 i sea level elevation 0.08[m] 77
38 cloud f cloud cover 0.07 86
39 prec f total precipitation 0.4x 1078 [ms"1 95
40 swrad f solar downward radiation 6.[Wm™?) 104
41 tdew f dew peinte-point temperature 1.1[K] 113
42 tem f 2m air temperature 1.2[K] 122
43 wind10 f 10m scalar wind speed 0.6[ms™?] 131
44 wix f zonal wind stress = component 0.02[N m? 140
45 wiy f meridional wind stress y component 0.02 [N m?] 149
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Figure 9. The a) modelled mean April 2015 snow depth [m], b) the modelled snow depth on May 28 2015, and c) the mean April 2015

misfit of the modelled snow depth relative to the modified Warren climatology used in the CryoSat-2 sea ice thickness retrieval. In panel ¢,

red colours indicate underestimation and blue colours overestimation of snow depth in the model.

In-the-foltowing Below, we describe these data sets and the simulation of their model equivalents, i.e. the respective observation

operators that provide the Hrklinks from the model’s state variables (Kaminski-ane-Mathiew; 2647 —to the respective data sets
Kaminski and Mathieu, 2017) . Recall that the (combination of) data set(s) enters the QND algorithm through its uncertaint
C(d) and that the observation operator is incorporated in the model )M (see Section 2.1).

The three products derived by AWI from CryoSat-2 are SIT (h;), SIFB (f;), and RFB (f;-). Their definition is illustrated in
Figure 11 together with that of LFB (f;).
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Figure 10. Sub-regions for spatial differentiation of initial and boundary values in the control vector. 1 (light plum): central Arctic; 2 (dark
blue): North Atlantic; 3 (blue) Barents Sea; 4 (light blue) Kara Sea; 5 (green) Laptev Sea, 6 (light green) East Siberian Sea; 7 (yellow):
Bering Strait/Chukchi Sea; 8 (orange): Beaufort Sea; 9 (red): Baffin Bay.
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Figure 11. Schematic illustration of sea ice thickness and different freeboard variables.

19



Backscatter
altimeter waveforms

aux fields (SIC, MSS) Retrieval (retracking)
! H+Filtering+Averaging

Radar Freeboard
a“' Radar Freeboard

i Correction for Correction for
clim snow depth signal propagation signal propagation
through snow through snow
Sealce Fre_eboard Sea-Ice Freeboard snhow depth + SIC
Uncertainty
T A

clim snow depth > l

) _ Archimedes Archimedes
clim snow density" snow+sea ice+water
sea ice+water densities densities
sea ice type
} )
ective)

1
+

AWI CS product Transformation
grid + coverage P | to CS product grid
with CS coverage

Model run
temporal averaging of output

Model control vector

Figure 12. Overview on the processing chain for CryoSat-2 product retrievals (feft-hand-left-hand side) and the chain for modelling product

equivalents (right-hand-right-hand side). Oval boxes denote data and rectangular boxes processing steps. Green colour indicates-emphasises

remote sensing products and violet colour model variables. Yellow diamonds mark the assessment of the EO products with the QND

algorithm. MSS: mean sea surface height. 20




10

15

20

25

30

The retrieval chain is described in detail by Ricker et al. (2014) and Hendricks et al. (2016). Recall that for each product,
in order to run an assessment, we need the spatio-temporal coverage as well as the uncertainty ranges. The left-hand side
of Figure 12 summarises the main steps in the retrieval chain, starting with the rawest (lowest-level) product (RFB) on top.
When descending from RFB via SIFB to SIT each step adds further assumptions, which contribute to the product uncertainty.
The other element required to evaluate a given product is the observational Jacobian, i.e. the sensitivity of the model sim-
ulation to a change in the control vector. The right-hand side of the graph illustrates how thisJacobian-is-derivedfrom-the
Jacobtans-of-the-the equivalents of the respective products are simulated from the relevant model variables, which are denoted
in violet colour. On this side of the graph, the complexity increases from bottom to top, i.e. from SIT via SIFB to RFB. For
example, in the assessment of the SIT product, the uncertainty in quantities needed to apply the Archimedes’ principle (in-
cluding that of snow depth derived from climatology) is contained in the retrieval product, whereas the observation operator
that extracts the product equivalent from the model is relatively simple (Archimedes’ principle is described, for example, by
Guerrier and Horley (1970)). We note that, while retrieved SIT is the effective SIT (h; cfy), i.e. refers to the average over the
ice-covered area of a grid cell, simulated SIT refers to the grid-cell average, i.e. for the Jacobian calculation it has to be divided

by the simulated sea ice concentration (SIC, denoted by ¢):

hiepr=hi/c. (6)
Likewise for snow depth:

hs’efths/C. (7)

At the level of RFB, by contrast, it is the observation operator that includes inter alias, on the modelling sidebranch, the
application of Archimedes’ principle ;for which it requires simulated snow depth and the densities of snow (py), sea ice
(pi), and water (p,,), while the retrieval product is relatively raw. In particular the-this retrieval product is not affected by

uncertainties eatused-by-assumptions-en-due to assumptions concerning the snow depth, ps, p;, and p,,.

The observation operators for f;, for f,., and for f; are:

fi = hife—(pihi/c+ pshs/c)/pw

= (I=pi/pw)hi/c—(ps/pw)hs/c ®)
fr = [fi—0.22h4/c

= (L=pi/pw)hi/c—(0.22+ ps/puw)hs/c ®)
fi = fiths/c

= (1= pi/pu)hifet (1= po/pu)hs/e. (10)
The term —0.22h, /c in Equation (9) adds to the simulated f; the correction for the signal-propagation-threugh-snew-different

ropagation speed of the radar signal in snow compared to air, which is eentained-in—f—affectin (Hendricks et al., 2016).
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This is the reason wh is located below f; in Figure 11. We note that, in these three observation operators, f;, f., and f;

have the same sensitivity to h;, but sensitivities to hs and c¢ differ. The sea ice component of the MPIOM uses constant densities
of snow, sea ice, and water. As simulated freeboard is relatively sensitive to densities of snow and sea ice, we have, however,
included these quantities as parameters of the observation operator in the control vector (see Section 2.4). For py=910.0 kg/m?,

5 ps=330.0 kg/m?, p,,=1025.0 kg/m>, the sensitivity of fi, f,, and f; to a change in h;/c is a =0.112, and the respective
sensitivities to a change in hy/c are b= —0.322, b = —0.542, and b = 0.678.

sea-ice thickness uncertainty sea-ice freeboard uncertainty

sea-ice thickness uncertainty (m) sea-ice freeboard uncertainty (m)
« > < I >
0.0 08 16 2.4 32 4.0 0.0 0.1 0.2 03 0.4

DataMin = 1.0, Max = 48.5 DataMin=01, Max=15

thickness random error freeboard random error

thickness random error (m) freeboard random error (m)

<« _5’ <

0.0 0.1 0.2 0.3 0.4 0 0.00 0.01 0.02 0.03 0.04 0.05

DataMin= 0.0, Max = 4.2 Daata Min = 0,00, Max = 052

Figure 13. Uncertainty ranges of CryoSat-2 products: SIT (left), SIFB (right), total uncertainty (top), random component (bottom) —for April
2015.

The CryoSat-2 product files provided-by-AWHused in this study directly contain monthly SIT and SIFB on the EASE
Equal-Area Scalable Earth Grid (EASE) 2.0 grid, respectively with random (based on standard uncertainty propagation) and

total (random plus systematic) per-pixel uncertainty ranges (for details see Hendricks et al., 2016, and references therein). Fig-

10 ure 13 shows product uncertainties for April 2015. In our assessments we use the total uncertainties for the SIT and SIFB
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products, and for the RFB product the random uncertainty component of the SIFB product. We-assameuncertainties—are

Recall, that we assume uncertainties to be uncorrelated in space.

For our hypothetical monthly LFB products, we assume a coverage of the northern hemisphere with a retrieved value over

each cell of the EASE 2.0 grid with SIC above 0.7, in analogy to the threshold used in the CryoSat-2 retrieval (Hendricks et al., 2016).

We explore two assumptions en-with respect to the uncertainty of the products, a mission with a high accuracy (uniform uncer-
tainty of 0.02 m) and a mission with low accuracy (uniform uncertainty of 0.20 m). In both cases uncertainties are uncorrelated
in space.

For our hypothetical monthly mean snow-depth-(SINDB--SND products, we also assume a coverage of the northern hemisphere
with a retrieved value over each cell of the EASE 2.0 grid with SIC above 0.7. As for LFB we explore two assumptions on the
uncertainty of the products, a mission with a high accuracy (uniform uncertainty of 0.02 m) and a mission with low accuracy
(uniform uncertainty of 0.15 m). In both cases uncertainties are uncorrelated in space.

Table 2 provides an overview on the products we assess. For later useis—alse-tists——, it also lists for each product and
three-seleeted-the three control regions the number of sampled EASE 2.0 grid cells and the corresponding regional average

uncertainties. Finally, it also shows the uncertainties on the spatial average of the sampled variable over all sampled EASE 2.0

grid cells based on the assumption of uncorrelated observational uncertainty.

Table 2. Overview on data sets, the # of sampled EASE 2.0 grids in control regions 5-7 (columns 2-4), the respective average uncertainties

(columns 5-7), the uncertainty of the product aggregated over all sampled EASE 2.0 grid cells.

n average uncertainty aggregated uncertainty
Product 5 6 7 5 6 7 [m]
SIT 937 1425 1377 1.86 1.95 1.94 0.0181
SIFB 937 1425 1377 0.21 020 0.21 0.00188
RFB 937 1425 1377 | 0.029 0.024 0.027 0.000364
LFB low accuracy 1104 1500 1429 020 020 020 0.00145
LFB high accuracy | 1104 1500 1429 002 0.02 0.02 0.000145
SND low accuracy | 1104 1500 1429 0.15 0.15 0.15 0.00108
SND high accuracy | 1104 1500 1429 002 0.02 0.02 0.000145

3 Target and Observation-observational Jacobians

We compute an observational Jacobian M’ for each of the observational products we assess. For a given product, the obser-
vational Jacobian is computed in two steps. The first step performs the following actions: a reference run is performed using
the prior control vector z, the input variables to the observation operator are stored over the observational period, aggregated
to the model grid and the observation operator is applied to derive the observation equivalent M (x) on the space-time grid of

the observational product. In the second step, for each component of the control vector the following procedure is applied: A
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sensitivity run is performed with a control vector x 4 p; that is identical to the prior control vector but with the % component

changed by a perturbation €¢;, and an observation equivalent M (x + p;) is computed in the same way as for the reference run.

0 (M (x4 p;) —M(x))/€e; where o; is the prior uncer-

tainty of z;. As a consequence of the normalisation by the prior uncertainty, each row in the Jacobian has the same unit as the

The Jacobian column is then computed as

respective observation. For a given product, column ¢ of the corresponding observational Jacobian quantifies the sensitivity of
the model-simulated equivalent to that product with respect to a +-sigma-change of the ¢« component of the control vector x; by
one standard deviation (see Table 1 for the value).

For any given product the dimension of the observational Jacobian is the product of the dimension of the control space and
the grid size of the observational product. As an example, Figure 14 displays the row of the Jacobians for a-April means of
SIT, SIFB, RFB, LFB, and snew-depth-(SND--SND over a single point in space indicated by the black dot (and by the yeHow
black cross on Figure 3)).

The SIT sensitivity is dominated by the model’s initial SIT in control region 6 (black bars in Figure 14 and enlarged in
Figure 15) but shows also considerable sensitivities to the initial SIC, the initial SND, the initial ocean temperature (TEMP) and
the zonal wind stress (WIX). The negative sensitivity to SIC in that region is caused by two mechanisms. The first mechanism
is expressed by Equation (6): The observation h; . ¢ is the effective SIT (thickness averaged over the ice-covered grid cell)
and is reduced if the initial SIC is increased (and vice versa) because the model conserves the total sea ice volume. The second

mechanism is related to thefermulation-of-sea ice growth in-the-model—which-ean—grew-which depends on the open water
fraction, i.e. more (less) sea ice can grow if the SIC is reduced (increased). The small negative sensitivity of SIT to SND is

RARRIRANRARART
caused by the strong inselatten-insulation effect of snow, which hampers the growth of sea ice (or fosters the growth if SND is
reduced).

The physical process behind the small negative sensitivities on the initial ocean temperature needs no further explanation;
we recall, however, that, in the presence of sea ice, the control variable relates to a temperature change below the second model

layer (in-at 17m depth). The negative sensitivity en-with respect to the zonal wind stress (WIX) mirrors less advection of thick

sea ice stemming-originating from the Beaufort Gyre. WIX is positive for eastward wind stress. A positive perturbation on
WIX is most distinct in region 6 (but also evident in regions 7 and 8) and slows down the Beaufort Gyre which advects less

sea ice into the target region (sea ice behaves, at least in April and May, to a large extent like a rigid body, i.e. the impact in

regions 7 and 8 acts almost instantaneously on the target regions) resulting in a negative sensitivity. The SIT sensitivities on
model parameters (Figure 14 and enlarged in Figure 15) are very small compared to the sensitivities on the initial state or the
atmospheric boundary conditions, as the short integration time (we sample the April mean of a model simulation starting on
April 1) restricts the impact of the parameters.

The various freeboard products exhibit high sensitivity to initial SIT and SND (orange, red, and green bars in Figure 14). As
SIT enters all freeboard observation operators in the same way (Section 2.5), the freeboard sensitivity en-to April mean SIT is
equal for all products, which also renders their sensitivity to initial SIT almost equal. The LFB sensitivity on the initial SND
is positive (LFB is the freeboard at the top of the snow layer) while the sensitivity of the RFB and SIFB is negative because
an increased SND will reduce the radar-RFB and SIFB through the increased weight on the ice floe —(see Figure 11). Due to
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the definition of the observation operator for RFB (Equation (9)) its sensitivity to initial SND is larger than that of the SIFB
(Section 2.5). The sensitivity of the freeboard products with respect to the parameters of the sea ice and ocean model is low.
The impact of the sea ice density on the respective observation operators (Equation (8) to Equation (10)) is high, though, while
the-sensitivity-on-sensitivity with respect to the snow density is much lower (because the sea ice thickness is much larger than
the SND at the observational point). The SND shows only considerable sensitivity to the initial SND in control region 6 and
some minor positive sensitivity en-with respect to the precipitation in the same region.

Likewise we computed target Jacobians N for each of the six target quantities (SIV and SNV each over 3 regions) described
in Section 2.2. Each target quantity is a scalar and thus the Jacobian has one entry for each component of the control vector.
As an example Figure 16 displays the Jacobians for SIV and SNV over the Outer New Siberian Islands (ONSI) region. The
first point to note is that sensitivities of regional SIV and SNV to the control vector differ, so an observation must constrain
different components of the control vector to perform well for one or the other.

SIV over the ONSI region is highly sensitive to initial SIT over control regions 5 and 6 (Figure 17) which at least partly
overlap with the target area. As the SIT observation and due to the same mechanisms discussed above, the SIV target quantity
also exhibits a negative sensitivity to the initial SIC, SND, and zonal wind stress. It is interesting to note that SIV is also
sensitive to initial and boundary conditions over more remote control regions. For example, it exhibits a positive sensitivity
to the initial SIT in the control regions 1 and 7 from which thick sea ice is advected into the target region during the period
from April 1 to May 28. This also explains the negative sensitivity to the zonal wind stress in region 7 and the meridional wind
stress in region 1: For high enough concentration the sea ice almost behaves as an incompressible fluid allowing even for a
sensitivity to wind stress changes in very remote control regions, e.g. the negative sensitivity to the zonal wind stress in region
8. The positive sensitivity to the zonal wind stress in region 1 (with thick ice) may be less obvious, as it follows the deflection
of ice drift by about 20° to the right. The largest SIV sensitivity to model parameters (Figure 17) is found for the snow albedo
of freezing conditions (albsn), but still that sensitivity is low compared eempared-to the sensitivity with respect to the initial
state and atmospheric boundary conditions.

SNV shows particularly high sensitivity to the initial SND but also considerable sensitivity with respect to the precipitation
and air temperature {region-6)—in region 6. The largest model parameter sensitivity is found for the snow albedo for melting

conditions: Increasing the snow albedo will reduce the melting.

4 Seaiee-and-snow-velume-uneertaintylExperimental setu

Based on the products shown in Table 2, we conducted assessments for the 15 cases listed in rows 4-18 of Table 3. Rew-three

- These 15 cases cover all combinations of the five SIT/freeboard

products described in Section 2.5:

1. SIT,

2. SIFB,
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3. RFB,_
4. hypothetical low accuracy LFB, and

5. hypothetical high accuracy LFB

and the following three assessments variants:

1. product evaluated individually,
2. product evaluated together with a hypothetical low accuracy SND product, and
3. product evaluated together with a hypothetical high accuracy SND product,

The reference for these assessments is a case without observations. Row three (“prior’’) shows the uncertainties in the target

uantities that result from the prior uncertainty in the control vector.

5 Seaice and snow volume uncertaint

As explained in Section 2.1 the uncertainty component from the model error o (ymoq) in Equation (3) covers the residual
uncertainty that remains with an optimal control vector, i.e. it reflects uncertainty from uncertain aspects not included in the
model error and structural uncertainty reflecting wrong or missing process formulations. o (ymoda) is model-dependent and is
probably the most subjective component in the prior and posterior uncertainties. o (ymoq) acts as an offset (for the respective
variance) for all cases, and reduces the contrast between the cases. As the-foetsin-otrassessmentsties-our assessments focus
on the differences between the cases, we exclude it from the target uncertainties in rows 3-18 of Table 3 and provide estimates
in separate rows. To illustrate the subjective nature of this estimate and possible ranges, we derive two crude estimates (last
two rows). The first estimate (denoted by 004, absolute @nd listed in the last but one row) assumes a model that perfectly
simulates the same ice-covered area of all three regions as our model and that, over this area, achieves an uncertainty of 0.2
m for SIT and of 0.1 m for SND. The second estimate (denoted by 04, relative@ftéHHisted-in-the-tastrow) assumes a model
that simulates the same SIV and SNV as our model with an uncertainty of 10% for SIV and 30% for SNV. We use a higher
uncertainty for SNV because it has a stronger dependence on the surface forcing (mainly precipitation), for which the temporal
and small-scale spatial structures are not resolved in the control vector.

Figure 18 shows the uncertainty reduction with respect to the prior case as defined in Equation (5) for both SIV and SNV
and all three target regions. A value of 100% means that the product has resolved all uncertainty in the respective target
quantity, while a value of 0% means that the product was not useful to improve the forecast of the target quantity. We first
discuss the single product assessments, i.e. without additional use of a hypothetical snow product. For all three regions, the SIT
has considerably better performance for SIV than for SNV. Between SIV and SNV the only difference consists in the target
Jacobians, N’. For example for target region ONSI, Figure 16 shows particularly high sensitivity of SIV to initial SIT and of
SNV to initial SND in control regions é-an¢-5-5 and 6. Hence, to constrain SIV (SNV) over that target region a product has
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Table 3. Prior and posterior uncertainties of sea ice volume (SIV, columns 4-6) and snow volume (SNV, columns 7-9) respectively for three
regions in km®. Column 1 indicates observation, column 2 indicates uncertainty range (“product” refers to uncertainty specification provided

w9

with product), column 3 indicates uncertainty range of additional hypothetical snow product (“~" means no snow product is used). In each
of columns 4-9 the lowest uncertainty range is highlighted in bold face font. The two bottom rows give estimates for the uncertainty due to

model error, i.e. the residual uncertainty with optimal control vector.

SIV SNV
Observation o[m] o(hs)m] | WLS ONSI ESS | WLS ONSI ESS
Prior - - | 1365 131.6 289.6 | 623 63.3 110.1
SIT product - 28.7 343 94.4 | 59.5 61.3 1079
SIT product 0.15 19.8 224 62.6 11.0 11.8 214
SIT product 0.02 12.4 104 241 24 2.5 4.5
Sea Ice Freeboard  product - 86.4 84.1 2034 | 404 39.8 75.2
Sea Ice Freeboard  product 0.15 21.5 25.0 67.7 11.0 11.8 214
Sea Ice Freeboard  product 0.02 12.6 11.0 253 24 25 4.5
Radar Freeboard product - 51.3 39.2 93.8 16.4 14.2 26.0
Radar Freeboard product 0.15 8.8 10.9 34.7 8.0 8.3 16.6
Radar Freeboard product 0.02 3.0 3.8 12.4 2.2 2.3 4.4
Laser Freeboard 0.20 - 81.0 67.0 143.9 17.7 17.1 30.8
Laser Freeboard 0.20 0.15 204 22.1 57.8 9.0 9.6 17.7
Laser Freeboard 0.20 0.02 12.2 10.7 24.8 23 24 4.5
Laser Freeboard 0.02 - 11.5 9.0 20.0 2.5 2.3 4.2
Laser Freeboard 0.02 0.15 6.6 6.0 14.6 1.9 2.0 3.7
Laser Freeboard 0.02 0.02 24 2.7 8.3 1.3 14 2.6
mod, absolute - - 30.3 362 735 15.1 18.1 36.8
Tmod, relative - - 48.7 70.8 1659 10.2 114 53

to constrain primarily initial SIT (SND) over these two control regions. Figure 14 shows that, indeed, SIT provides a much
stronger constraint on initial SIT than on initial SND. By-In contrast to SIT, SIFB has similar performance for SIV and SNV,
over all target regions (Figure 18). Compared to SIT, SIFB shows a much lower sensitivity to initial SIT but a higher sensitivity
to initial SND (Figure 14 - the sign of the sensitivity is irrelevant in this consideration), and thus a more balanced performance
for SIV and SNV than the SIT product. RFB and the two hypothetical LFB products achieve a better performance for SNV
than for SIV. The only difference between the RFB and SIFB Jacobians is the larger impact of h/c for RFB, as a consequence
of the correction for the signal propagation through snow (see Section 2.5). This-is-the-reasonHence, why RFB shows a better
performance for SNV than for SIV, while SIFB had about equal performance for SIV and SNV. LFB has the same sensitivity to

initial SIT as RFB but an even larger sensitivity to initial SND. Consequently, for the low accuracy LFB product, the imbalance
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between the performance for SIV and SNV is even higher than for the RFB product. The-This imbalance is lower for the high
accuracy LFB producthas-se-geed-performance-on-SH-already;-, because this product already performs excellently on SIV
such that there is not much scope for yet-better-further increases in performance on SNV.

So far we have discussed for-a-given-product-the-differences in performance for SIV and SNV for a given product. Next we
address performance differences between products. The-firstthing-to-note-is-thatthe-step-First, we note that switching from SIT
to SIFB drastically reduces the performance for SIV. As explained in Section 2.5, on the retrieval-left-hand side of Figure 12
the-step(retrieval branch) switching from SIFB to SIT applies Archimedes’ principle, with uncertain assumptions primarily
on the input variables snow and ice density and snow depth, which yield an increase in product uncertainty by about an order
of magnitude (Figure 13 and Table 2). On the medeHingright-hand side of Figure 12 the-step-(modelling branch) switching
from SIT to SIFB is dealing with uncertainty on the same input variables (snow and ice densities and snow depth), which
renders the simulation of SIFB more uncertain than that of SIT. In the model, the uncertainty in these variables is determined
by the prior uncertainty of the control vector, either directly (snow and ice densities) or indirectly (snow depth) through their
model-simulated dependency on the control vector. It appears that the increase in uncertainty, when going from SIT to SIFB
on the modelling sidebranch, overcompensates for the reduction in uncertainty on the retrieval side, when going back from
SIT to SIFB. In other words, on the modelling sidebranch, the assumptions on uncertain input appear more conservative than

those on the retrieval sidebranch. On the retrieval side-branch going (backwards) from SIFB to RFB consists in a reduction of

product uncertainty by about another order of magnitude, as the retrieval of RFB does not require information on snow depth.
Even with this further reduction of product uncertainty, the performance of RFB is inferior to that of SIT for SIV over WLS
and ONSI, and only just superior for SIV over ESS.

Differences between target regions in the performance of the same product are the result of a complex interplay of the
Jacobians N’ for the target regions and the product’s constraint on the control vector quantified by C(x) (see Equation (3)).
For each of the target regions a different (combination) of control regions is most relevant: For WLS this is control region 5
(not shown), for ONSI control region-regions 5 and 6 (Figure 16 and enlarged in Figure 17) and for ESS on control region
regions 6 and 7 (not shown). The ability of a product to constrain a particular control region is determined by the combination
of the observational Jacobian of the product and the product uncertainty (see Equation (1)).

One-is-alwaystempted-It is tempting to explain regional performance differences tn-a-simple-way,justfrom-simplistically by
linking them to differences in observational coverage and uncertainty. Technicallythis-means-to-replace-, such an explanation
corresponds to replacing our observational Jacobian M’ that is based on model dynamics by-with a drastically simplified
representationbased-on-the-assumptions-. Such a simplistic approach would imply that only observations over a given control
region do-constrain-that-constrain that same region (and ne-etherregionnone other), and that the observational Jacobian for
each product and control variable is spatially uniform. The eenstraint-constraints of a product on a control region would then
be proportional to the square root of the number of samples n of that region and to the reciprocal of the average observational
uncertainty o over the region. Table 2 shows both impact factors for the most relevant control regions, i.e. 5-7. For RFB and
compared to region 6, the relevant quantity 1/n/a is about 41% lower in region 5 and 12% lower in region 7. This is at least

quantitatively in line with the performance decrease for RFB and SIV from ONSI (most relevant regions:=—in region 6 and
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to smaller extent in 5) to ESS (most relevant regions:—in region 6 and to smaller extent in 7) to WLS (most relevant region:
in region 5). But the performance ranking for RFB and SNV is different, i.e. the simple-explanation-alreadyfailssimplistic
approach does not hold. Also for SIT, the differences in y/n /7 between the three control regions are smaller and fail to explain
the performance decrease from WLS to ONSI to ESS. Such calculations demonstrate the limits of a performance assessment
that is only based on observational coverage and uncertainty, while neglecting the model dynamics.

The two hypothetical LFB products have a slightly better spatial coverage of the most relevant control regions than the
products derived from CryoSat-2 and use uniform data uncertainties that span the range from 2 cm (high accuracy LFB) to
20 cm (low accuracy LFB). We-need-to-recat-here-Recall that the specified data uncertainty combines ()-the observational
uncertainty (i.e. product uncertainty) with the residual model uncertainty due to structural errors and uncertain contributions
not accounted for in the control vector (Equation (2)). Only the high accuracy LFB can clearly outperform all CryoSat-2
products for both SIV and SNV and over all three regions, while the low accuracy LFB is between that of SIFB and RFB.

Next we discuss the effect of combining either of these five products with the two hypothetical SND products. The difference
in the (samplerew-of-the)yrespective product Jacobians shown in Figure 14 suggests complementarity of SND to the SIT and EB
freeboard products. Indeed, the combination with SND considerably increases the performance of all SIT/freeboard products
for SIV and SNV and over all regions. Most striking is the fift-ef-the-improved SIT performance for SNV. The combination
with SND results in similar performance for SIT and SIFB, slightly better performance of low accuracy LFB, yet slightly
better performance for RFB and the best performance for the high accuracy LFB. The assessment for SIV and in combination
with low accuracy SND yields the same performance ranking of products, with slightly larger differences between products.
Combining with the high accuracy SND product instead of the low accuracy SND product yields a performance gain for all
products and for SIV and SNV over all regions.

Between the two LFB products, the increase in accuracy yields a considerable performance gain for SIV and SND over all

regions, when assessed individually and in combination with SND. Fhe-Over all regions the combination of the high accuracy
LFB with the low accuracy SND performs better for SIV and-SNV-ever-all-regionsthan the combination of the low accurac
LFB with the high accuracy SND. For SNV the two combinations are similar in performance.
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Figure 14. The sensitivities of the respective EO product to the control vector (“observational Jacobians”) for a-April means of

(orange bars), SHB-RFB (red bars), SIFB
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6 Discussion

There are a number of factors in the setup of our ArcMBA system that impact our assessments. One of them is the model that
is required to realistically compute the sensitivities (Jacobians) of the target quantities and of the observation equivalents to
changes in the control vector. As detailed in Section 2.3, the MPIOM has a state of the art representation of processes, compares
reasonably wel-with a range of observations (Notz et al., 2013; Kaminski et al., 2017), and the setup of MPIOM we are using
has a spatial resolution below the grid size of the observations and well below the size of the target regions. The model thus
appears appropriate for our study and the ArcMBA system in general. Nevertheless, through the Jacobians the results depend

on the model, and it would be useful to confirm the robustness of the assessments through the use of a second model, or even

an ensemble of models.

The study has investigated the performance of four-week forecasts in May 2015. ft-would-be-interestingto-analyse—if-the

products perform-for different The impact of an observation is likely to depend on the state of the Arctic sea-ice ocean system.
The robustness of the ArcMBA assessments can thus be increased through extension of the system for an ensemble of ice and
ocean conditions representing different forecasting times (for example 2. 7-10, and 90 days and also 0 days, i.e. an analysis),
different seasons, different typical years (potentially also including conditions of very low ice cover), and different target

regions and variables, e.g. SIC.

In our setup, the control vector has 157 components. In particular within any of our 9 control regions we do not resolve
changes in the spatial patterns of the initial conditions nor in the spatio-temporal patterns of the forcing data. This means
that we are ignoring uncertain aspects in the inputs that determine our simulation, which results in so-called aggregation
errors (Trampert and Snieder, 1996; Kaminski et al., 2001) and renders the ArcMBA assessments of the product impacts too
optimistic. As the target quantities are integrals over large regions, we expect, however, that our control regions can capture
most of the uncertainty. Also the set of reasonable surface forcings is in practise limited by physical relations between variables,
in space s-and in time. Similar restrictions apply to the initial state. Further, we use the same control vector for all cases, so that
the relative performance with respect to the prior (uncertainty reduction) and among products is more reliable. Nevertheless
it appears useful to explore extended control vectors, for example with decreased sizes of the control regions, in particular in
areas with high impact on observations or target quantities.

Another factor that impacts our assessments are correlations in the data uncertainty. These uncertainty correlations are
difficult to estimate. We used zero correlation for each of the products, which is certainly the most optimistic assumption
and yields the best performance. As we made this assumption consistently for all products, the relative performance between
the products is less affected. To illustrate the implications of uncorrelated uncertainty in the products, we have computed the
resulting uncertainty in the respective average of each observable over all sampled grid cells (last column of Table 2). This
yields for the April 2015 mean of SIT about 2e#2 cm, of SIFB about 2###2 mm, of RFB about 8-4###-0.4 mm and (using
the respective high-accuracy versions) of LFB and SND about 6-1##70.1 mm.
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The effect of uncertainty correlation on the assessments can be demonstrated also by the following simplified calculation: If
we partition our product grid into groups of n by n pixels, and assume perfect uncertainty correlation and the same Jacobian
for each observation within a given group, then we decrease the first term in Equation (1) by a factor of n2. This case then
yields the same results as a case with an uncertainty that is uncorrelated and increased by a factor of n. This means we can
interpret the impact of the low resolution LFB product (uncorrelated uncertainty of 20 cm) as the impact of a high resolution
LFB product (with 10 times lower uncertainty, i.e. 2 cm) in which the uncertainty within each 10 by 10 group of pixels is
completely correlated. Likewise for the SND product and (roughly) 6 by 9 groups of pixels, because (15 cm/2 cm)? is about
6 x 9. One reason for spatial uncertainty correlation would be a sensor footprint that exceeds the size of a 25km EASE grid
cell. Likewise, for sensors with footprints considerably smaller than a 25km EASE grid cell, the procedure for upscaling from
the sampled fraction of a grid cell to a grid-cell average could suffer from systematic errors that affect large scales in the same
way, which would result in large-scale uncertainty correlations.

Our hypothetical products (LFB and SND) observe every pixel with SIC above 0.7. This is optimistic but, at least for snow,
not totally unrealistic, depending on the mission concept. Recalling that the data uncertainty has to include also an uncertainty
from model error, the value of 0.02 m for the high accuracy products (without spatial correlation) is extreme and unrealistic (as

it is already a challenging requirement on the observational uncertainty) but still useful as a sanity check —for the methodology.

We note that, even for the assessment of an individual product, the posterior uncertainty on the target quantities is not a simple
linear function of the product uncertainty, because of the contribution from the prior term in Equation (1). This means, for
example, the posterior uncertainties achieved by a hypothetical LFB product with 0.11 em uncertainty will not be the average
of the posterior uncertainties achieved by our two hypothetical SND products with respective uncertainties of 0.02 m and 0.20
m. For combined assessment of multiple products the relation between the uncertainty of a single product and the posterior

The uncertainty specified with the SIT product is higher than the uncertainty specified with the SIFB products derived from

CryoSat-2. This increase reflects the inclusion of uncertainty input quantities for the application of Archimedes’ principle,
in particular of climatological snow depth. In the assessment of SIFBArchimides, Archimedes’ principle is applied in the
observation operator, where the input quantities including snow depth are taken from the model. The fact that the impact
of SIFB on SIV is lower than than-that of SIT indicates that the assumptions on the uncertainty of input quantities for the
application of Archimedes’ principle is more conservative on the modelling side-branch than those that were made on the
retrieval side-branch (yielding the respective product uncertainties). More conservative assumptions on the retrieval side-branch

would yield higher uncertainty in the SIT product. We also note that the-use-of-the REB-produet-that-biases may be reduced
when using the RFB product instead, as it does not rely on an external snow depth climatology but uses a consistently simulated

snow depthmay-reduce-biases.
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7 Summary and conclusions

The ArcMBA tool was used to assess the impact of a series of EO products on the quality of four-week forecasts of SIV and
SNV over three regions along the Nerthern-SeaReute-NSR in May 2015. The tool is built around the MPIOM, a coupled
model of the sea ice-ocean system extended by observation operators that link the simulated variables to equivalents of SIT,
SIFB, RFB, LFB, and SND products.

On the basis of the per-pixel uncertainty ranges that are provided with the CryoSat-2 SIT, SIFB, and RFB products, the SIT

SHFFer-SNVand RFB products achieve the best performance for the target SIV. For the SNV target, the performance of SIT
is only low, the performance of SIFB higher and the performance of RFB yet higher. A hypothetical LFB product with low

accuracy (20 cm uncertainty) lies in performance between SIFB and RFB for both SIV and SNV. A reduction in the uncertainty
of the LFB product to 2 cm yields a significant increase in performance.

Combining either of the SIT/freeboard products with a hypothetical SND product achieves a significant performance in-
crease. The uncertainty in the SND product matters: A higher accuracy product achieves an extra performance gain.

The provision of spatial and temporal uncertainty correlations with the EO products would be beneficial not only for assess-
ments within systems like the ArcMBA, but also for assimilation of the products. For example, complete uncertainty correlation
within each group of 10 by 10 pixels (with uniform Jacobians within each group) is equivalent to an uncertainty increase by a
factor of 10.

The ArcMBA can be extended to cover further EO products and further target variables. In the setup used here the model
can simulate a range of sea ice-ocean variables in addition to those considered in the present study (e.g. ice drift, mixed
layer depth, freshwater, sea surface salinity, sea surface temperature, or circulation). Switching to a more comprehensive
model configuration would enable the investigation of yet further variables. For example the model can be operated with its
biogeochemistry module HAMOCC (Ilyina et al., 2013) or in a mode coupled to an atmospheric general circulation model.

The study has investigated the performance of four-week forecasts in May 2015. It would be interesting to analyse how the
relative performance of the products varies from year to year, with the length of the forecasting period, for other target regions,

and with a different sea ice-ocean model.

As the QND approach can evaluate a (group of) hypothetical product(s) - characterised by their space-time coverage and
uncertainty ranges - it is generally suited to assess the benefit of filling a given observational gap. It provides answers to

hypothetical questions such as: “Provided we could derive a product of a given variable with a given accuracy, at a given

sampling frequency and spatial coverage. What is the added value of this additional observation for the quality of sea ice

orecasts (as quantified by uncertainty reduction in a set of predicted target quantities)?” ArcMBA assessments of a set of
such products (each filling an observational gap) can help to establish a priority list.

The ArcMBA system is an ideal framework to assist the formulation of mission requirements or the development of EO
products. ThreughIn an end-to-end simulation it can translate product specifications in terms of spatio-temporal resolution and

coverage, accuracy, and precision into a range of performance metrics. Alternatively, it can translate requirements on forecast
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erformance into requirements on the respective observables. As demonstrated in the present study, the joint assessment of

roducts from (constellations of) multiple satellites is one of the particular strengths of the ArcMBA approach. This type of

assessment can be performed for higher-level products (e.g. SIT or SIC) but also for rawer products (e.g. freeboard or brightness

temperature).
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