
Reply to reviewer 2: 

“Comments to failure criterions described in the paper” 

!

Figure 1. Ice failure envelopes on the plane of principal stresses (a) and Coulomb-Morh plane (b). SFE 
– Schulson’s failure envelope, WFE – Williams failure envelope.  

Failure envelopes on the planes of principal stresses (PPS)! (σ1,!σ2) and plane of normal and shear 
stresses (Coulomb-Morh plane or PCM) (σn,!τn)  are considered. Mapping of failure envelopes from 
PPS to PCM is only possible for the points where the tangent lines are inclined to the line C45 (Fig. 1a) 
under the angle less than 45o. Points C1,2 and D1,2 are mapped in the points OC and OD (Fig. 2). WFE 
interpolates SFE linearly in the region where principal stresses are positive. It has a shape similar to 
shown in Fig. 1a by lines WFE. If slope angle of the WFE to the line C45 are less than 45o then the 
WFE is mapped on PCN in two lines denoted as WFE in Fig. 1b. SFE assumes that the ratio of 
compressive strength σc to tensile strength σt is about 5.    !!

Stress state in 2D plane bending is characterized by one nonzero principal stress, while the other 
principal stress is zero. Absolute value of nonzero principal stress reaches maximum at the plate 
surface and plate bottom. Since tensile strength is lower compressive strength then the plate fail in 
places where principal stress is positive. Stress state of a material point is characterized by the point on 
PPS with coordinates (σ1, σ2), where σ2=0 when σ1>0, and σ1=0 when σ2<0. Thus principal stresses 
inside the plate sit on segments OO1 and OO2 (Fig. 1a). Point O1 has coordinates (σt,0), and point O2 
has coordinates (0,σt).  

Stress state of a material point is characterized by the Mohr circle on PCM. The center of the Mohr 
circle sits on the axis σn, the radius of the Mohr circle equals (σ1−σ2)/2, and the Morh circle crosses 
axis σn in points with coordinates σn=σ1 and σn=σ2. Material fails when the Morh circle touches the 
failure envelope. Since one of the principal stresses in bended plate is always zero then the stress state 
of the plate points with tensile stresses is performed by a set of Mohr circles Mt shown in Fig. 1b. 
They touch vertical axis τn in the origin and extended in the region of positive stresses. These Mohr 
circles touch the failure envelope when the diameter of the Mohr circle equals tensile strength σt. Thus 
there is no difference in the consideration of failure criterions on PPS and PCM. According to SFE the 
plate is broken when maximal tensile stress reaches σt, and according to WFE the plate is broken when 
maximal tensile stress reaches σt if points O1 and O2 belong to SFE and WFE.  



Reply 

We thank the reviewer for their comprehensive discussion on Mohr-Coulomb failure. We have 
amended sections 2.3 and 3.4.1-3.4.2 so that the failure criterion is applied in the PPS, in the manner 
of Dansereau et al (2016) and Rampal et al (2016). In fact, the failure criterion was already done in 
this way inside neXtSIM – it was only the description that was incorrect. The breaking criterion under 
plane wave forcing needed amending to determine the proper point when the wave stress met the 
failure envelope. In practice this meant the conversion from small-scale cohesion to breaking 
stress/strain needed correcting, so in addition to the changes to the theoretical description in 3.4.1-
3.4.2, the results section needed changing so that the correct values of small-scale cohesion were 
stated in captions and figure legends. 

Further comments: 

• We do indeed use linear interpolation to the Schulson (2006) envelope in the 1st quadrant (as 
Schulson himself does). Other data (eg Weiss et al, 2007, fig 2) also are quite well fitted by a 
linear envelope in this quadrant. 

• We have extended this linear fit into the other quadrants, which is also consistent with the data 
of Weiss et al (2007). This is discussed in detail in section 2.3. Similarly, the closing of the 
envelope for high compressions is discussed briefly. Neither of these have large impact on 
failure inside the ice rheology, but the extension of the envelope into the 3rd quadrant would 
make a difference to the wave failure criterion, since it produces tensile failure. However, with 
the uncertainty in this failure criterion, we don’t feel it is worth dwelling on too much. Stress 
measurements for ice during break-up by waves would be extremely interesting from this 
point of view but would also be very difficult to obtain. 
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CHANGE LOG

All changes can be seen in the difference between the submitted and revised manuscripts
(shown below). The most important changes relates to correcting the Mohr-Coulomb
envelope for the wave breakage. Note we have changed sign convention to the previous
revision, so that tensile stresses are now negative.

With the corrected failure envelope, we have failure when

σ1 =
−2τS0 /(q − ν)
√

µ2 + 1− µ
≡ γτS0 ,

while in the previous revision we had failure when

σ1 =
−2τS0

1− ν + µ(1 + ν)
≡ γbadτ

S
0 = γ

(

γbad
γ

τS0

)

.

That is, the mapping between cohesion τS0 and the value of σ1 = σ11 at failure was incorrect.
The effect of this error is then that the value we thought we were using for the small scale
cohesion τS0 was actually (fbadτS0 ), where the correction factor is

fbad =
γbad
γ

≈ 1.10.

In practice, we have amended this error by changing the values of τS0 in the legends, figure
captions and discussion of figures to the correct values of τS0 .
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Abstract. In this paper we describe a waves-in-ice model which calculates ice breakage and the wave radiation stress (WRS)

that is coupled to the new sea-ice model neXtSIM, which is based on the Elasto-Brittle (EB) rheology. We highlight some

numerical issues involved in the coupling, and investigate the impact of the WRS, and of modifying the EB rheology to lower

the stiffness of the ice in the area where the ice has broken up (the marginal ice zone, or MIZ).

In experiments in the absence of wind, we find that wind waves can produce noticeable movement of the ice edge in loose ice5

(concentration around 70%) — up to 36 km, depending on the material parameters of the ice that are used, and the dynamical

model used for the broken ice. The ice edge position is unaffected by the WRS if the initial concentration is higher (&0.9).

Swell waves (monochromatic waves with low frequency) do not affect the ice edge location (even for loose ice), as they are

attenuated much less than the higher frequency components of a wind wave spectrum, and so consequently produce a much

lower WRS (by about an order of magnitude at least).10

In the presence of wind, we find that the wind stress dominates the WRS, which while large near the ice edge, decays

exponentially away from it. This is in contrast to the wind stress which is applied over a much larger ice area. In this case

(when wind is present) the dynamical model for the MIZ has more impact than the WRS, although that effect too is relatively

modest. When the stiffness in the MIZ is lowered due to ice breakage, we find that on-ice winds produce more compression in

the MIZ than in the pack, while off-ice winds can cause the MIZ to be separated from the pack ice.15

1 Introduction

Wave-ice interactions have received a great deal of attention in recent years (e.g. Dumont et al., 2011; Kohout et al., 2014;

Ardhuin et al., 2016, 2017), with progress in both modelling and measuring (particularly via Synthetic Aperture Radar imagery,

or SAR) of waves in ice. To a large extent, this is due to climate change, with a series of record lows in both minimum and

maximum Arctic sea-ice extents in the last decade (e.g. Meier, 2017).20

Specifically, large parts of the Arctic are becoming and are expected to become even more accessible for resource exploitation

and shipping in the summer, whereas 10 years ago they weren’t (e.g. Stephenson et al., 2011). Associated with this low sea-ice

extent is an increased open-water fetch available for wave generation which means there are potentially more large wave events

in the Arctic in summer (e.g. in the Beaufort Sea in summer 2012; Thomson & Rogers, 2014). As well as being dangerous for

shipping in themselves, large waves also increase the amount of ice breakage in the marginal ice zone (MIZ), creating an extra25

hazard as small floes could potentially be thrown onto a ship deck for example.
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Closely connected to waves in ice, but with other controlling factors apart from waves, is the concept of floe size distribution

(FSD e.g. Toyota et al., 2011; Herman, 2010). This can influence both the dynamics and thermodynamics of the ice, ocean and

atmosphere in the MIZ. For example, it affects sea-ice rheology (Herman, 2012; Feltham, 2005) and can increase wind/ocean

drag and consequently increase the stresses applied to the ice. It can also enhance lateral melting in summer (Horvat et al.,

2016; Steele, 1992). Horvat et al. (2016) showed that increased horizontal salinity gradients at the floe edges produced eddies5

which allowed warm water to travel under the ice floes and enhance the melting from the edges. This was true even for large

floes (⇠ 1 km), when the lateral-to-horizontal-surface-area ratio is quite small. (Previously, this ratio was used to compute

results which indicated lateral melting was unimportant for floes larger than ⇠ 100m; Steele, 1992.) Models for full numerical

FSD’s (Zhang et al., 2016), where a histogram of floe size bins can evolve in time, as well as joint ice thickness and floe size

distributions have been proposed (Horvat & Tziperman, 2015). In the latter model, each thickness category can have its own10

FSD. More parametric approaches have also been used (Dumont et al., 2011; Williams et al., 2013a; Bennetts et al., 2017).

On the sea-ice modelling side, there has been a lot of progress in making sea-ice dynamics more realistic, especially in the

Arctic pack. Rampal et al. (2016) presented a validation of the neXt-generation Sea Ice Model neXtSIM, looking at sea-ice area

and extent, sea-ice drift, and the spatial scaling of sea-ice deformation derived from SAR (see also Bouillon & Rampal, 2015a).

The dynamical core of neXtSIM is the EB sea-ice rheology, which is a thin elastic plate model with stresses constrained by15

a Mohr-Coulomb failure envelope. If stresses become too large and leave this envelope in a grid cell, the ice stiffness inside

that cell is reduced (in practice a parameter called the damage is increased) in order to bring the stresses back onto the failure

envelope (Rampal et al., 2016, for more details). When one cell is highly damaged, the likelihood for the surrounding cells to

also become damaged is increased, leading to the rapid (i.e. after a few sea-ice-model time steps) emergence of very localised

lines of damaged cells where sea ice can deform almost freely. These lines of concentrated damage can accommodate large20

deformation (i.e., opening, ridging and shearing) in a way that is similar to the so-called linear kinematic features that are

observed from satellites (Kwok, 2001).

In this paper we demonstrate the coupling of a waves-in-ice model (WIM) to neXtSIM in an idealised domain. The physical

effects included in the coupling are the break-up of ice by waves, the wave radiation stress (WRS), and an additional (optional)

feedback to the sea-ice model where the ice stiffness is reduced where the ice is broken (in the MIZ). We conduct experiments25

with waves by themselves to see the impact of the WRS on the ice edge location, and also with wind to see the relative

importance of the wind stress and the WRS. In addition, we do some simulations to see the particular effects of the rheological

change.

We also highlight some general numerical issues involved with coupling wave models and sea-ice models on different

grids. In addition, we do some theoretical reformulations of the WIM to put the ice break-up model in the context of Mohr-30

Coulomb failure, and do some sensitivity tests of the sensitivity of the MIZ width to the Young’s modulus in particular, as

well as the small-scale “cohesion" parameter in the WIM breaking model. Its response to the Young’s modulus was previously

uninvestigated.
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2 Sea-ice model

2.1 Evolution equations

The ice is modelled as a thin elastic plate (e.g. Fung, 1965, §16.8) with constitutive relation

� = C(Y⇤,⌫)", (1)

or in full:5
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where �
ij

and "
ij

(i, j = 1,2) are respectively the stress and strain tensors, ⌫ is Poisson’s ratio and Y⇤ is the effective Young’s

modulus (depending on the concentration c and the damage d), given by

Y⇤(c,d) = Y0(1� d)e�C(1�c), (3)

where C is the compactness parameter, and Y0 is the Young’s modulus of fully-compacted, undamaged ice.10

The momentum balance equation we will use is the following:

⇢ih
Du

Dt
= r · (�h)�rP + ⌧a + ⌧o + ⌧w,i; (4)

here ⇢i, h and u are the density, actual thickness, velocity and internal stress tensor of the ice (respectively), r= (@
x

,@
y

)

T

is the horizontal gradient, and ⌧o and ⌧a are the applied stresses by the ocean and the atmosphere (respectively). These latter

stresses come from quadratic drag laws. Note that we neglect the Coriolis force and the gravitational force due to the slope of15

the ocean surface because of our idealised domain. Also appearing in (4) are the wave radiation stress (WRS), ⌧w,i, and the term

involving P , which is a strictly positive pressure that provides a resistance to compaction and ridging (i.e., it is only activated

when the divergence r ·u< 0):

P = max
⇢
0,�P⇤h

2e�C(1�c)r ·u
|r ·u|+ "̇min

�
, (5)

where P⇤ is the pressure parameter, and "̇min = (0.01/86400)s�1 is the minimum divergence rate. If the ice becomes very20

damaged, and loses its stiffness, this term prevents the ice from piling up and becoming too thick. As a default, we use the

standard value of P⇤ = 12 kPa, as suggested by Thorndike et al. (1975), but we will test the sensitivity of our results to C (see

§5.3). C = 20 is commonly used in the standard sea-ice models using a Viscous Plastic (VP) rheology, so the pressure drops

by a factor of about 55 when the open water fraction increases from 0 to 20%. So, for example, increasing C to 40 means the

open water fraction only needs to be 10% for the pressure to reduce by 55.25

We also have equations for evolution of any conserved quantity �:

D�

Dt
= ��(r ·u)+S

�

; (6)

3



� could be concentration (c, also requiring c 1), volume (ch) or variables relating to the damage (retrieved from (1� d)�1).

The terms S
�

are thermodynamic source/sink terms which are switched off for this paper, since the simulations are in an

idealised setting and run for short durations. In an Eulerian frame of reference,

D�

Dt
=

@�

@t
+u ·r�, (7)

but since we work in a Lagrangian frame the relationship is simply D�/Dt= d�/dt. The ��(r ·u) term represents the5

conserved quantity decreasing if the divergence is positive e.g. if a triangle in the finite element mesh increased in area then �

should drop in that triangle.

Like Williams et al. (2013a), we will parameterise the floe size distribution in terms of the maximum floe size, Dmax (see

§3.3), which we wish to advect like a tracer: D(Dmax)/Dt= 0. In the Lagrangian framework, advection is usually exact, unless

a local remeshing is required. This happens if the triangles of the mesh become too deformed, and requires (local) interpolation10

of the advected variable. Details on the remeshing procedure in the neXtSIM model can be found in Rampal et al. (2016).

Additional (global) interpolation is required to obtain Dmax on the fixed grid of the WIM (see §4). We found that transporting

and interpolating Dmax itself led to some errors, which were reduced by transporting an auxiliary variable Nfloes = c/D2
max

according to

D
Dt

�
log(Nfloes)

�
=

D
Dt

�
log(c)

�
, (8)15

or to progress from (neXtSIM) time step n to n+1, Nfloes should change according to N
(n+1)
floes = c(n+1)N

(n)
floes/c

(n), and being

interpolated when either regridding or communication with the WIM is required.

The evolution of stress and damage from time step n to n+1 is done via an intermediate stress calculation:

�0
= �(n)

+C(c,d) ˙"�t, (9a)

�(n+1)
= �0, (9b)20

d(n+1)
= 1� (1� d(n))+�

d

�t, (9c)

where �
d

is a thermodynamic source term (again not used here), while  (0<  1) is a factor determined from the position

of the stress vector relative to the Mohr-Coulomb failure envelope, described in section 2.3. There is no continuous version of

(9) since fracturing is an extremely rapid process, well below our typical time step�t.

2.2 Uncoupled neXtSIM simulation25

Since the damage variable d is probably unfamiliar to most readers, we include here an example simulation illustrating its main

role in the EB rheology. Figure 1 shows four fields after a 2-day simulation. The wind stress plotted is calculated from the

quadratic drag law

⌧ a = ⇢aCd,a|ua � u|(ua � u), (10)
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where ⇢a = 1.3 kg m�3 and ua are the density and 10-m-velocity of the air, while Cd,a = 7.6⇥ 10

�3 is the drag coefficient of

the wind on the ice. The gradient in the wind stress comes from the differences in relative velocity. We have plotted this stress

as a reference for when we discuss the WRS.
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Figure 1. Results after forcing from uniform, steady wind (with speed 14.9 m s�1, from the left) has been applied for 48 h. Initially, constant

ice conditions were applied (c= 0.7, h= 1m, d= 0) were applied to the right of the ice edge, which corresponded to approximately

x= 124 km. The upper, lower and right hand boundaries are closed. Fields plotted are (a) concentration, (b) effective thickness, (c) the

damage (with blue being more damaged and red less), and (d) the x-component of the wind stress ⌧ a. There are no wave interactions

considered, C=40 and ⌧L
0 = 4 kPa.

Initially, the concentration was relatively low, so the internal stress was also low (see the formulae for Y⇤ and P in equa-

tions 3, 5), meaning the ice was almost in free drift, being compressed against the right hand boundary. As the concentration5

increased, the internal stress increased causing it to fail (increase d) in localised regions. Comparing the damage with the con-

centration and thickness, it can be seen that the regions of high compression and thickening correspond to the regions where the

damage is highest. This is the usual role (without waves) of the damage — to produce localised deformation and features such

as thicker regions (under shearing or convergent conditions, such as in the current simulation) and leads (under shearing or

divergent conditions). We note here that the initial combination of c= 0.7 (loose ice) with no damage is not inconsistent since10

the damage only increases if the concentration is high, although the reasons it is usually initialised to zero are: (i) for simplicity

and (ii) since it is not an observable variable. It then evolves with the other variables in response to the applied forcings.

2.3 Mohr-Coulomb failure

Let

⌧ =

1

2

(�1 ��2), �
N

=

1

2

(�1 +�2)15
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be the shear and normal stresses respectively, where �1 and �2 are
::
be the principal stresses,

::::
with

::::::::::::
compressions

::::::::::::
corresponding

::
to

::::::
positive

:::::::
stresses. Then a stress state is within the Mohr-Coulomb failure envelope if the conditions

|⌧̂ | ⌧̂0 + µ̂�N, �2  �c + q�1,
::::::::::::::

�1  �c + q�2,
::::::::::::

(11a)

�N,min  �N⌘
1

2

(�1 +�2)

:::::::::::

 �N,max (11b)

::
are

:::::::
satisfied

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Schulson et al., 2006; Dansereau et al., 2016; Rampal et al., 2016) ,

:::::
where

:
5

�c =
2⌧0p

µ2
+1�µ

, q =
�p

µ2
+1+µ

�2
, �N,min =� 5�c

6(q� 1)

, �N,max =
75

4

⌧0,

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

:::
and

:
⌧0 is the cohesion, and µ is the internal friction coefficient. Also �N,min =�75⌧0/4 is the negative of the compressive

strength, and �N,max = (5⌧0)/(6µ) is the tensile strength. See Figure 2(a) for some example envelopes (⌧0 = 573

:::::::
⌧0 = 629

:
and

989 kPa). In (
:::
The

::::
lines

::::::::::::
�2 = �c + q�1:::

and
::::::::::::
�1 = �c + q�2::

in
:::
the

:::::
space

::
of

:::::::
principal

:::::::
stresses

:::::::::::::::::::::::::::::::::::::::::::::::
(Schulson et al., 2006; Dansereau et al., 2016) correspond

::
to

:::
the

::::
lines

:::::::::::::
|⌧ |�µ�N = ⌧0,

::
so

:::
the

:::::::
material

::::
fails

:::::
when

:::
the

::::::
applied

:::::
shear

:::::
force

::
|⌧ |

:::::::
reaches

:::
the

::::
sum

::
of

:::
the

::::::::
frictional

::::
force

::::::
inside10

::
the

:::::::
material

::::::
(µ�N)

:::
and

:::
the

::::::::
cohesion

::
of

:::
the

:::::::
material

::::
(⌧0).

::::
Now

:

|⌧ |= 1

2

(�1 ��2)(sin(2#)+µcos(2#)) 1

2

(�1 ��2)
p

µ2
+1

::::::::::::::::::::::::::::::::::::::::::::::::::

(12)

:::::::::::::::::::
(Schulson et al., 2006) ,

::::::
where

:
#
::

is
::::

the
:::::
angle

:::::::
between

:::
the

:::::::::
maximum

:::::::
principal

:::::
stress

::::::
(taken

::
as

:::
the

:::::
most

::::::::::
compressive

:::::::
stress),

:::
�1,

:::
and

:::
the

::::::
failure

:::::
plane.

::::
This

:::::::
reaches

::
its

:::::::::
maximum

:::::
value

:::::
when

:::::::::::::
tan(2#) = 1/µ,

::
so

::
if

:::::::
µ= 0.7,

:::
the

::::::
failure

:::::
plane

::
is

:::::::
oriented

::
at

::::
about

:::::
27.5�

:::::
from

:::
the

:::::::
direction

:::
of

:::
�1.

:::::::
Equation

::::
(12)

::::
also

:::
lets

::
us

::::::
derive

:::
the

::::::::::
expressions

::
for

::
q
:::
and

:::
�c.

:
15

:::
The

:::::::::
conditions

:::::
(11b)

:::
are

::::
less

::::::
certain

:::::
since

:::::
there

:::
are

:::::
fewer

:::::::::::::
measurements

::
in

::::
pure

:::::::
tension

::
or

:::::::::::
compression.

:::
In

:::::::::
particular,

::::::::
extending

:::
the

::::::::
Coulomb

:::::::
branches

:::
into

:::
the

::::
third

::::::::
quadrant

::
in

:::::::
principal

:::::
stress

:::::
space

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(see Figure 2 of Dansereau et al., 2016, who instead apply tensile failure criteria �1,�2 ���c/q) could

::
be

::::
seen

::
as

::::::::::
theoretically

:::::::
suspect

:::::
(since

::::
there

::::::
should

::
be

:::
no

::::::
friction

:::::
under

:::::::
tension),

:::
but

:::
the

:::::::::::
observations

::
of

::::::::::::::::
Weiss et al. (2007 ;

:::
see

:::::
Figure

::
2)

:::::
seem

::
to

::::::
support

::::
this

::::::::
approach.

::
In

:::::::
practice,

:::::
using

::::::::::
�N � �N,min ::

or
:::::::::::::
�1,�2 ���c/q:::

was
::::::
found

:
to
:::::
make

::::
little

:::::::::
difference

::
to

:::::::::
large-scale

::::::::::
simulations.

::::::::
Similarly,

::::::
�N,max :

is
:::
set

::::
large

:::::::
enough

:::
that

::
it

::
is

:::
not

::::::
reached

::
in
:::::::::::
simulations,

:::::
which

::
is

:::::::::
reasonable

::::
since

::::
few20

::::::::
examples

::
of

::::
large

::::::
biaxial

::::::::::
compressive

:::::::
stresses

::::
have

::::
been

:::::::
observed

:::::::::::::::::
(Weiss et al., 2007) .

:::::
Note

:::
that

::::::::::::::::::::::::
Dansereau et al. (2016) chose

:::
not

::
to

::::
close

:::
the

::::::
failure

:::::::
envelope

::
at
:::
all

:::
for

:::
this

:::::
same

::::::
reason.

::::::::
Returning

::
to

:
(9), if �0 is outside the envelope it is scaled back onto the nearest branch of the envelope by setting �(n+1)

=

 �0, where  < 1. This ensures that the stress always remains within the envelope, but the damage d is increased if this

happens. Otherwise, if �0 is inside the envelope,  = 1 and the damage is unchanged.25

2.4 Scaling of the Mohr-Coulomb envelope

Mohr-Coulomb envelopes have been observed on many different scales in rock mechanics, and has also been seen in ice. The

parameter µ controls the orientation of fractures that form, while the cohesion sets the sizes of the stresses which cause any

fractures, and so is more influential.
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This property should scale as ⌧0 / L
�1/2
c , where Lc is the size of the defects, or “stress concentrators" (Weiss, 2013, §4.2).

Put in another way,

⌧0,0
⌧0,1

=

s
Lc,1

Lc,0
, (13)

where the additional indices 0 or 1 correspond to different scales on which fracture is occurring. Table 1 shows the Mohr-

Coulomb parameters, and the estimated defect sizes, which have been fitted to various time series of stress measurements.5

Measurement type ⌧0 µ Lc Reference

Lab 1.1 MPa 0.92 1.3 mm Schulson et al. (2006)

In situ 40 kPa 0.7 1 m Weiss et al. (2007)

Reference simulation 4 kPa 0.7 100 m Bouillon & Rampal (2015b)

In situ 1 kPa 0.7 1.6 km Weiss et al. (2007)

Table 1. Cohesion values, internal friction coefficient from measured Mohr-Coulomb failure envelopes. Also given are approximate defect

sizes deduced from these envelopes, using the scaling law (13). (These defect sizes, or sizes of stress concentrators, are only meant to give

an idea of the relative sizes compared to those corresponding to the second cohesion value which is approximated to be around 1 m which

is of the same order as the ice thickness. The first defect size is of the same order as the grain size — the grains measured in the sample

were columns of diameter 3.9 mm and length 1 cm.) For some additional context, we also give the value used in the reference simulation of

Bouillon & Rampal (2015b). This large-scale cohesion is in contrast to our small-scale cohesion (Lc ⇠ 1 cm), which we use to determine if

single ice floes will fracture due to wave flexure.

Note that these values do not necessarily correspond to the breaking stress of ice since the measurements are not exactly

taken at the point of fracture. The lab measurement (uni-axial compression test) should be closer since we know the ice did

actually break and the scale of the measurement; the in-situ measurements are certainly underestimations since the ice did not

break, and in fact the value of 1 kPa was derived from a 3-day subset of the time series which was bounded by the envelope

with cohesion 40 kPa. That is, the lower in-situ value corresponds to more remote fracturing, or fracturing over a larger scale.10

In their presentation of the dynamical core of the neXtSIM model (using a resolution of approximately 10 km), Bouillon

& Rampal (2015b) found that the model was quite sensitive to the cohesion value when varied between 0.5 kPa and 8 kPa.

However, the results for ⌧L
0 = 8 kPa (the superscript ‘L’ here indicates it is the large-scale cohesion, as opposed to the small-

scale one discussed below) and ⌧L
0 = 4 kPa were similar. In the follow-up paper to the aforementioned one, Rampal et al.

(2016) used ⌧L
0 = 8 kPa, or Lc ⇡ 25m. This gave good agreement with the deformation-scaling statistics.15

In the simulations done in this paper we will use a model resolution of 4 km, so we will test a range of cohesions from 4–

13 kPa to be somewhat consistent with the above choice. Also, we will discuss the ice breakage by waves (below in §3.4.1) in

terms of Mohr-Coulomb failure, and define an additional small-scale cohesion ⌧S
0 and defect scale Lc for the breaking criterion

we settle on in section 3.4.2.
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3 Waves-in-ice model

3.1 Attenuation

The amount of attenuation that waves in ice experience is the main factor in determining the amount of momentum transferred

to the ice. However, definitive confirmation of any particular physical models for this is still lacking. Meylan et al. (2014) came

up with an empirical formula fitted to Antarctic attenuation from the experiments reported by Kohout et al. (2014). Ardhuin5

et al. (2016) compared the creep model of Wadhams (1973) (also see Tolman et al., 2016, §2.4) with drifting buoy data from

within the ice, with some success in the timing of the peaks in wave heights. Other theoretical models that have been used are

a viscoelastic attenuation model (Wang & Shen, 2010), and “localisation" predicted by 1D multiple scattering models (Kohout

& Meylan, 2008; Bennetts & Squire, 2012). In the wave scattering context, localisation refers to how these models predict

exponential decay of waves as they travel into the ice. Or in other words, the wave energy is localised in the vicinity of the ice10

edge.

Doble & Bidlot (2013) used the model of Kohout & Meylan (2008) in Antarctic simulations using WAM, while Williams

et al. (2013a) used a theoretical result from Bennetts & Squire (2012) to investigate break-up by waves. Tolman et al. (2016,

§2.4) give a full summary of waves-in-ice parameterisations implemented in Wavewatch III.

Our attenuation model is essentially model B from Williams et al. (2013a), slightly modified to allow Young’s modulus15

to be varied. It has a scattering component determined from the expected number of floes per unit length, and a dissipative

component coming from the drag model of Robinson & Palmer (1990)

↵scat =
↵c

hDi , ↵dis = 2c�; (14)

here, ↵ is the scattering per floe, while � is the imaginary part of the wave number satisfying the dispersion relation of Robinson

& Palmer (1990), calculated using the method of Williams et al. (2013a, Appendix A) with drag coefficient �= 13Pa s m�1.20

As stated above, the choice of attenuation model is crucial in determining the wave radiation stress, yet physical mechanisms

are still relatively uncertain. However, we can still calculate the response of the ice to waves attenuated by our model, and make

conclusions which should still hold for similar ranges of the WRS.

3.2 Energy transport

A general formulation for wave energy transport is25

@E

@t
+Cg ·rE = Sin +Snl +Sice, (15a)

1

cg
Sice(x, t;!,✓) = (Lscat �↵dis)E(x, t;!,✓), (15b)

LscatE =�↵scatE+

2⇡Z

0

K(✓� ✓0)E(x, t;!,✓0)d✓0. (15c)
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where Cg = cg(cos✓,sin✓)
T is the group velocity vector, cg = d!/dk, ! is the radial frequency, k is the wavenumber, and E

is the spectral density function (SDF) of the variance of the wave elevation ⌘:

⌦
⌘2
↵
=m0, m

n

=

1Z

0

2⇡Z

0

E(x, t;!,✓)!n d✓d! (n= 0,1,2, . . .); (16)

the SDF of the time-averaged energy is E0
= ⇢wgE, where ⇢w is the water density and g the acceleration due to gravity.

We neglect the terms Sin and Snl, which represent wind generation and non-linear energy transfer between frequencies and5

directions (respectively). The term Snl moves energy from high frequencies to lower ones, and becomes more significant

if E is larger. For example, Kohout et al. (2014) described a storm event off Antarctica (with approximate latitude 61�S

and longitude 125�E) where the significant wave height was measured to decay linearly with distance into the ice, whereas

it decayed exponentially during calmer periods. Li et al. (2015) attributed this to the effect of Snl, and the fact that lower

frequencies are attenuated less than higher ones. Thus we need to remember that our results could change (e.g. waves could10

induce ice breakage further from the edge) if our wave forcing becomes very large. In particular, the WRS may also persist

further than predicted with our linear model — however, it would also have a smaller size since the longer waves are attenuated

less.

The scattering kernel K distributes energy from the incident wave among the other directions and is discussed further in the

next section. Various authors (e.g. Perrie & Hu, 1996; Masson & LeBlond, 1989) have used the solution for a rigid circular15

floating disc to deduce an expression for K; Meylan et al. (1997) extended this to make the disc elastic, and this solution was

also used by Zhao & Shen (2016); Ardhuin et al. (2016) used the simpler kernel K = ↵scat/(2⇡) to distribute the incident

energy uniformly in all directions. However, due to the fact that these models conserve energy, i.e.
2⇡Z

0

LscatE d✓ = 0, or ↵scat =

2⇡Z

0

K(✓� ✓0)d✓ for 0 ✓0  2⇡, (17)

the operator Lscat has some zero eigenvalues. (This is most easily seen by considering the discretised version of (17) — i.e.20

considering only a finite number of directions — which would state that all the columns of the matrix representing Lscat add to

zero. Thus the rows are linearly dependant and the matrix will have at least one zero eigenvalue.) This usually means that the

solution E of (15) will usually not decay exponentially into the ice (in the absence of dissipation). (This decay depends on the

eigenvector(s) corresponding to the zero eigenvalue, of course, but in general they are such that E does not decay into the ice.)

As a result, the results of Ardhuin et al. (2016) which included scattering in this way were quite unrepresentative of phase-25

resolving multiple-scattering models such as those of Kohout & Meylan (2008) and Bennetts & Squire (2012). Consequently,

we will use K = 0 and not conserve energy, since we think that it is preferable to preserve the localisation predicted by the

scattering models.

3.3 Floe size distribution

We use a parametric form of the FSD. We initially require that Dmax �Dmin and that large floes (> 200m) have a uniform floe30

size distribution — i.e. p(D|Dmax > 200m) = �(D� 200m). This latter assumption is somewhat vestigial but was related to
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the fact that wavelengths that do breaking in the ice are usually less than about 400 m. The rest of our approximation is similar

to the FSD used by Dumont et al. (2011), which was based on the renormalisation group (RG) approach to the same problem,

used by Toyota et al. (2011). However, this formula made the mean floe size a discontinuous function of the maximum floe

size, so we have modified it to a continuous (as opposed to discrete) FSD — a power-law-type probability density function

p(D) truncated at D =Dmax, but with the same exponent as before:5

p(D|Dmax  200m) =

8
><

>:

�D�

minD
�

max

D�

max �D�

min
D�(1+�) for Dmin D Dmax,

0 otherwise
(18)

where � = 2+logf/ log⇠, f is the fragility in the RG formulation of Toyota et al. (2011), and ⇠2 is the number of pieces formed

during each successive break-up in the same RG formulation. We use Dmin = 20m, f = 0.9 and ⇠ = 2, making � ⇡ 1.84.

Results for the MIZ width (not shown) with the RG approach are similar to those with the FSD (18), but the momentum flux

is less smooth, which could cause numerical problems. We recognise that both parameterisations are completely arbitrary, and10

that numerical histograms (e.g. as used by Horvat & Tziperman, 2015) are preferable in terms of being able to let the wave

spectrum try to produce the FSD naturally. (They also let other factors influence the FSD more easily). However, the FSD itself

is not the focus of this current paper, and these alternative models are quite costly and not trivial to implement, so we do not

try them out here.

3.4 Ice breakage due to waves15

3.4.1 Plane strain and Mohr-Coulomb failure

It is instructive to put the situation of ice breakage due to a plane wave in the context of the discussion in §2.3. We also use

a thin elastic plate model, so the constitutive relation is similar to equations (1–2): � = C(Y,⌫)", where Y is the Young’s

modulus for an ice floe. However, for waves we are interested in the stresses that are induced by a vertical displacement ⌘. The

stresses are assumed to be confined to the horizontal plane and varying linearly with the vertical coordinate z = x3 (z = 0 is20

the middle of the plate, and � 1
2h z  1

2h) (Fung, 1965, §16.9). We then have the following results for stresses and strains

�3i = �
i3 = �33 = "3i = "

i3 = 0 for i= 1,2, (19a)

"
ij

=�z@
xi@xj⌘, "33 =�⌫(�11 +�22) =� ⌫

1� ⌫

2X

k=1

"
kk

for i, j = 1,2, (19b)

where x1 = x and x2 = y. For a plane wave (travelling in the x direction with amplitude A) in a thin elastic plate, ⌘ =

Acos(kx�!t), "11 = k2z⌘, "22 = "12 = �12 = 0, and so the only non-trivial stresses are given by25

�1 = �11 =
Y "11
1� ⌫2

, �2 = �22 = ⌫
Y "11
1� ⌫2

= ⌫�111, (20)
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where �1 and �2 are the principal stresses in the horizontal plane. Thus, the normal and shear stresses are
::::
This

:::::
meets

:::
the

:::::
upper

:::::::::::::
Mohr-Coulomb

:::::
branch

:::::
when

:

�
N 2 = (⌫

:
�1 +�2)1 = (1�c

:
+ ⌫)q�111, (21a)

⌧�1
::

= (�1
(tens)
1 ⌘
:::::

��2)
�c

q� ⌫
::::

= (1� ⌫)�11 = ↵�
N

,� (2⌧S
0 )/(q� ⌫)p
µ2

+1�µ
⇡�1.13⌧S

0

::::::::::::::::::::::

(21b)

where ↵⌘ (1� ⌫)/(1+ ⌫). The maximum strains are produced when z =±h/2 (at the upper and lower surfaces of the ice),5

and so for a plane wave

"⌘ max{"11}=
1

2

k2Ah.

For a wave spectrum, the corresponding quantity to (22)is related to the maximum mean square strain by

"2

2

⌘
⌦
max{"11}2

↵
=m

"

, m
"

⌘
h2

4

1Z

0

2⇡Z

0

E(x, t;!,✓)k4 d✓d!.

Here we have assumed that all the wave energy is directed in one direction (which direction is not relevant since we also do10

not attempt to consider an anisotropic wave medium) . We will return to this assumption in the following section.
:
if

:::::::
µ= 0.7,

::
it

::::::
doesn’t

::::
meet

:::
the

:::::
lower

::::::
branch,

:::::::::::::
�1 = �c + q�2,

::
if

:::::::::::
�N � �N,min).

::::
Note

::::
that

:::
here

:::
the

:::::
shape

::
of
:::
the

:::
tip

::
of

:::
the

::::::
failure

:::::::
envelope

::::::
makes

:
a
:::::::::
difference,

:::::
since

:
a
::::
pure

::::::
tensile

::::::
failure

:::::::
criterion

::::::
would

:::::::
increase

:::
the

:::::
lower

::::
limit

:::
on

::
�1::

to
::::::::::::::::
��c/q ⇡�1.04⌧S

0 ::::::
(which

:::::
would

:::
be

::::::
reached

::
at
:::::::
smaller

::::
wave

:::::::::::
amplitudes).

::::::::
However,

:::::
given

:::
the

::::::::::
uncertainty

:::::
about

:::
the

::::::
failure

:::::::
envelope

::::::
under

::::
pure

::::::
tension

::::
and

::::
high

:::::::::::
compression,

:::
and

::
so

::::
that

:::
our

:::::
small-

::::
and

:::::::::
large-scale

::::::::
envelopes

:::::
have

::
the

:::::
same

::::::
shape,

::
we

::::
use

:::
(11)

:::
for

:::::
wave

::::::
failure

::::
also.15

Figure 2(a) plots the failure envelopes for two values of the cohesion. The figure also shows where the line corresponding to

the stress state for plane waves, ⌧ = ↵�
N::::::::
�2 = ⌫�1, meets these Mohr-Coulomb envelopes . This happens when

�
N

= �±
N

=± ⌧S
0

↵±µ
;

the ‘+’ corresponds to tensile failure, while the ‘�’ corresponds to compressive failure. The stress �11 at these points is given

by20

�+
11 =

2�+
N

1+⌫

=

2⌧S
0

(1+⌫)(↵+µ) =
2⌧S

0
1�⌫+µ(1+⌫) ⇡ 1.24⌧S

0 ,

��
11 =

2��
N

1+⌫

=� 2⌧S
0

(1+⌫)(↵�µ) =� 2⌧S
0

1�⌫�µ(1+⌫) ⇡�9.5⌧S
0

(using µ= 0.7
:::
(i.e., ⌫ = 0.3).Therefore the ice will fail under tension first.Note however, that �N ⇡ 0.8⌧S

0 always reaches

the upper Coulomb branch (⌧ = µ�N) before it exceeds the maximum tensile strength (�N,max ⇡ 1.2⌧S
0 , again using µ= 0.7,

⌫ = 0.3
::::
when

::::::::::
�1 = �

(tens)
1 ).25
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(a) (b)

Figure 2. (a) Mohr-Coulomb fracture envelope for different values of the cohesion. The red line shows the line

⌧ = �N (1+ ⌫)/(1� ⌫)
:::::::
�2 = ⌫�1, where ⌫ = 0.3 is Poisson’s ratio — this gives the relationship between ⌧ and �N for plane waves

in ice
:
a
:::
thin

:::::
elastic

:::::
plate. When the ice has thickness 1 m, Young’s modulus 5.49 GPa, and the wave period is 12 s, the red line meets the

black one when the wave height is about 60 cm.
:::
The

:::::
dashed

::::
line

:::::
shows

::
the

::::::::
symmetry

::
of
:::
the

::::::::
envelopes

::
in

:::
the

:::
line

:::::::
�2 = �1. (b) Breaking

strain for different values of the cohesion and Young’s modulus (Y ). The dotted line corresponds to "c = 5⇥ 10�5.

3.4.2 Breaking criterion

:::
The

:::::::::
maximum

:::::
strains

:::
are

::::::::
produced

:::::
when

:::::::::
z =±h/2

::
(at

:::
the

:::::
upper

::::
and

:::::
lower

:::::::
surfaces

::
of

:::
the

::::
ice),

:::
and

:::
so

::
for

::
a
:::::
plane

::::
wave

:

"⌘ max{"11}=
1

2

k2Ah.
::::::::::::::::::::

(22)

Williams et al. (2013a) imposed a strain criterion for breaking, supposing that ice would break if "� "est
c = �est

f /Y , where �est
f

is the flexural strength estimated from measurements. Timco & Weeks (2010) compiled many measurements for the flexural5

strength, fitting the formula

10

�6�est
f = 1.76e�5.88

p
vb , (23)

where vb is the brine volume fraction. (It should be noted however, that Karulina et al., 2013, found a different relationship

for Barents Sea sea ice.) When considering flexural strength measurements, however, it is useful to remember how they are

obtained. In a cantilever situation, an ice beam is subjected to a force Fc at one end until it breaks at the other. The force is then10

converted to a stress in order to remove the effects of the beam dimensions according to the formula

�est
f =

6FcL

h2b
(24)

(Frederking & Svec, 1985), where L and b are the length and breadth of the beam respectively. (Similar formulae exist for

three-and four-point-bending tests.) This conversion assumes that the beam can be modelled as an Euler-Bernoulli beam (e.g.

infinitesimally thin and wide). With this model, the only non-zero stress is15

�11 = Y "11 = 2�N = 2⌧,
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::::::::::
�11 = Y "11 which would produce Mohr-Coulombfailure when �N = ⌧ = ⌧S

0 �µ⌧
:::::
/tensile

::::::
failure

:::::
when

:::::::::::
�11 =��c/q. Hence

the failure stress
::::::
flexural

:::::::
strength can be used to estimate the small scale cohesion by

�est
f =

2⌧S,est
0

1+µ

2⌧S,est
0 /qp

µ2
+1�µ

:::::::::::

⇡ 1.17.04
::

⌧S,est
0 . (25)

The lab measurement of cohesion (⌧S
0 = 1.1MPa, Schulson, 2009, also see Table 1) used a sample with vb = 0.05, so

�est
f ⇡ 473 kPa and ⌧S,est

0 ⇡ 403kPa
:::::::::::::
⌧S,est
0 ⇡ 454kPa — that is, the estimated failure stress and cohesion are too small, by a5

factor of approximately 2.73
:::
2.42. A similar factor was obtained by Marchenko et al. (2014), who used a full finite element 3D

solver (COMSOL) to estimate the stress at the fixed end of a cantilever at the time of breaking, and found it to be approximately

2.6�est
f . Now, the results of these simulations depends on the boundary conditions used (e.g. the properties of the spring

foundation used; free surface conditions when the ice was partially submerged), and in addition some predictions were not

observed (e.g. they predicted the force measured in the tests should increase when the radius of the holes drilled near the10

beam root increased: Marchenko et al., 2017). However, it gives further indication that �est
f could definitely be a significant

underestimation for the actual breaking stress. If we wanted to be consistent with the lab scale measurement of the cohesion

over a range of brine volume fractions, we could propose the relationship ⌧S
0 ⇡ 2.73⌧S,est

0 ⇡ 2.32�est
f :::::::::::::::::::::
⌧S
0 ⇡ 2.42⌧S,est

0 ⇡ 2.33�est
f .

In practice though, the sensitivity studies are conducted by varying the small scale cohesion directly, and see
:::::
seeing the range of

MIZ widths obtained. However, more observations with regard to ice breakage by waves are needed to set a definitive breaking15

criterion. Some laboratory experiments to this effect are planned to occur in 2018 in the wave/ice tank in Aalto, Finland, as

part of the Hydralab+ programme, but field observations would also be very useful.

When we return to our plane wave in an elastic plate, the Mohr-Coulomb criterion is equivalent to the strain criterion

"� "c =
1

Y
(1� ⌫2)

�����
+
11

(tens)
1
:::

����⇡ 1.13.03
::

⌧S
0

Y
, (26)

instead of using "est
c .

:::
Due

::
to
:::::::::::
cancellation

::
of

::::::::
unrelated

:::
but

::::::
similar

::::::
factors

:::
this

::
is
::::::::::::
approximately

:::
the

:::::
same

::
as

:::
the

::::::::
breaking

:::::
strain20

::
of

:::::::::::::::::::::::::::
Williams et al. (2013a) (�est

f /Y ). This ("c) is plotted in Fig 2(b) as a function of Y . The breaking strain for sea ice (from

beam tests) is typically thought to be about 3� 10⇥ 10

�5 (e.g. Langhorne et al., 1998), but this number contains a lot of

assumptions, e.g. about the value of Young’s modulus and the stress at the time of breaking (see the discussion below about the

flexural strength). In fact, we are not aware of any strain measurements for ice which actually broke. Langhorne et al. (2001)

measured strains up to about 3.6⇥ 10

�6 in landfast ice which was experiencing incoming waves but which did not break.25

Fig 2(b) shows the breaking strains are about the right order (5⇥10

�5 is plotted as a dotted line for reference), although higher

values of the cohesion combined with lower values of Young’s modulus can take them up to 10

�3.

When we have a wave spectrum , assuming
:::::::
spectrum

::
of

::::::
waves,

:::
the

::::::::::::
corresponding

:::::::
quantity

::
to

::::
(22)

:
is
::::::
related

::
to

:::
the

:::::::::
maximum

::::
mean

::::::
square

:::::
strain

::
by

:

"2

2

⌘
⌦
max{"11}2

↵
=m

"

, m
"

⌘
:::::::::::::::::::::::::::

h2
::

4

:

1Z

0

2⇡Z

0

E(x, t;!,✓)k4 d✓d!.

:::::::::::::::::::::

(27)30
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:
If
:
all the wave energy is travelling in one direction

:::::
(which

::::::::
direction

::
is

:::
not

:::::::
relevant

::::
since

:::
we

::::
also

::
do

:::
not

:::::::
attempt

::
to

:::::::
consider

:::
an

:::::::::
anisotropic

::::
wave

::::::::
medium), equation (26) is still equivalent to the Mohr-Coulomb criterion since we still have ⌧ = ↵�N::::::::

�2 = ⌫�1.

However, we now have a statistical (approximately normal) distribution of strains max{"11}, instead of a fixed strain ampli-

tude. Thus (26) corresponds to a condition on the probability of max{"11} exceeding "c

P(max{"11}> "c)� Pc, (28)5

where Pc is some critical probability. An alternative to (26) could be to choose Pc another way (e.g. defining it as the ratio of

a breaking time scale to the mean wave period), or else P(max{"11}> "c) could be used directly in a similar formulation to

Horvat & Tziperman (2015). However, for now we use (26) so that the criterion agrees with the criterion for a plane wave (e.g.

a swell wave).

When the wave energy is not unidirectional, the stresses are no longer distributed on the line ⌧ = ↵�N::::::::
�2 = ⌫�1, so the10

probability condition (28) is no longer equivalent to the Mohr-Coulomb criterion. A simple numerical experiment generating

random waves in an ice sheet and creating an artificial time series (not shown) found that P(max{"11}> "c) was significantly

lower than the probability of the stresses leaving the failure envelope (about 45% compared to about 65% in one example).

However, for now we will leave this as a caveat and attempt a fuller investigation of the Mohr-Coulomb failure in a random

sea at a later date.15

3.4.3 Ice break-up

When (26) is satisfied, we calculate the mean zero crossing frequency from

h!2
02i=

m2

m0
(29)

and convert this to a wavelength �02 using the dispersion relation for a thin elastic plate (Williams et al., 2013a, Appendix

A). Then Dmax is reduced to �02/2 (requiring that it stays above Dmin = 20m, and that it is actually reduced — i.e. it can’t20

increase, since we don’t consider thermodynamic effects in this paper).

3.5 Momentum loss due to attenuation

Following Phillips (1977, Chapter 3), we first connect the mean energy per unit area (integrated over the entire water column)

for a single plane wave to the mean momentum per unit area. The mean kinetic energy density is

EK = ⇢w

*
⌘Z

zbot

�
u2

w + v2w
�
dz

+
⇡ ⇢w

0Z

zbot

⌦
u2

w + v2w
↵

dz25

= ⇢w!
2A

2

4k
cosh(kZ) = ⇢wg

A2

4

, (30)
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where uw and vw are the horizontal and vertical wave orbital velocities, and Z is the water depth. In a conservative system, the

mean potential energy and the mean kinetic energy are equal, so the mean energy density is simply

Etot = 2EK = ⇢wg
A2

2

= ⇢wg
⌦
⌘2
↵
. (31)

The mean momentum per unit area is:

M=

*
⌘Z

�Z

�
uw,vw

�
dz

+
=�⇢w h�z=⌘

r⌘i ⇡ �⇢w h�z=0r⌘i5

= ⇢wg
kA2

2!

�
cos✓,sin✓

�
=

Etot

cp

�
cos✓,sin✓

�
, (32)

where cp = !/k is the phase velocity.

When we consider a complete wave spectrum, then

M= ⇢wg

1Z

0

2⇡Z

0

E(x;!,✓)

cp

1

cp
::

E(

:::
x;!,✓)

::::

�
cos✓,sin✓

�
d✓d!, (33)

and its flux is10

D
t

M

D
Dt

M

::::

= ⇢wg

1Z

0

2⇡Z

0

D
t

E(x;!,✓)

cp

1

cp
⇥ D

Dt
E(

:::::::::

:
x;!,✓)

::::

�
cos✓,sin✓

�
d✓d!

= ⇢wg

1Z

0

2⇡Z

0

Sice(x;!,✓)

cp

1

cp
Sice(

:::::

:
x;!,✓)

::::

�
cos✓,sin✓

�
d✓d!. (34)

This quantity can then be transferred to the ice, ocean and atmosphere, according to the different attenuation mechanisms, i.e.

�D
t

M� D
Dt

M

::::::

= ⌧w,i + ⌧w,o + ⌧w,a. (35)

For this study we assume that all the momentum goes to the ice — i.e. ⌧w,o = ⌧w,a = 0.15

4 Coupling to the WIM

Figure 3 shows a schematic diagram of the information passed between the WIM and neXtSIM, as well as external inputs and

outputs to and from the WIM. Each time the WIM is called, it takes in the following fields from neXtSIM: c, h and Nfloes.

Between calls, these will have changed due to dynamic (advection) and thermodynamic processes (melting, freezing). These

are interpolated from the neXtSIM mesh to the WIM grid, and Dmax is retrieved from Nfloes. After the call to the WIM, Nfloes20

is passed back onto the centres of the mesh, and the stresses ⌧
w,i

are interpolated from the grid centres onto the nodes of the

mesh, and are used in the solution of the momentum equation. These stresses are kept constant until the next call to the WIM

— since the mesh is moving, this requires re-interpolation at each neXtSIM time step.
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Figure 3. Schematic showing the information passed between neXtSIM and the WIM. Note that Nfloes is modified by both the WIM and

neXtSIM (which use different grids), so must be treated carefully to avoid numerical diffusion. Also input to the WIM are incident wave

fields, and it also outputs diagnostic fields of the waves in the ice. Optional: the WIM may also update the damage d.

In an initial more naive implementation of the coupling, Nfloes was computed only on the WIM grid, then interpolated back

onto the mesh. However, passing this field to and fro between the mesh leads to a large amount of numerical diffusion. To solve

this problem, the WIM model takes in the neXtSIM mesh, and each WIM timestep the smoother integrals m0, m2 and m
"

are

interpolated from the grid to the mesh. This allows the breaking calculation to be done on the mesh in parallel to the one on

the grid — thus Nfloes does not need to be interpolated back to the mesh. This also reduced the diffusion in Nfloes significantly.5

(See Figures 7–8 below.)

The directional wave spectrum is remembered from the previous call, and if necessary can be updated regularly using forcing

from an external model, or as in the simulations presented in this paper, using idealised (constant) wave forcing.

We can also change the dynamics of the broken ice. The default, “R0" or rheology 0, does not change the underlying EB

rheology. In an alternative, “R1" or rheology 1, we increase the damage parameter d to an arbitrary high value dbroken when the10

ice is broken by waves. This reduces the internal stress, apart from a pressure term which resists compression, causing the ice

velocity to be closer to the free drift velocity.

Alternative continuum approaches to MIZ dynamics are based on the idea of a “granular temperature" (kinetic energy

associated with velocity fluctuations relative to the mean flow field). Most recently, Feltham (2005) used a binary collision

model to formulate an equation for the granular temperature. Previously, Shen et al. (1986, 1987) had used a similar but simpler15

approach, where the granular temperature was approximated to be in steady state. This enabled the granular temperature to

be found analytically and the constitutive relation to be directly modified without solving any other equations apart from

the momentum equations. Shen et al. (1987) compared the granular temperature to field data from the MIZEX campaign of

1983 (Hibler & Leppäranta, 1984), and found it to be correlated, but found that it was an order of magnitude too small. The

internal ice stresses were also very low. Feltham (2005) was able to produce some qualitative features such as ice jets in a one-20
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dimensional simulation, but no further comparisons were done. This model is now being introduced into CICE-E (Community

ICE code, version E; Rynders et al., 2016).

However, in the field of 3D granular flows, different types of flow regimes have also been observed. For example, the

introduction of Guo & Campbell (2016) describes a transition between an inertial collision regime to an inertial non-collisional

regime where the stresses follow Bagnold’s law (Bagnold, 1954) as the concentration and shear rate increase, and then a5

further transition to what they call the elastic regime as the concentration and shear rate increase even more. This regime is

characterised by the formation of force chains at high concentrations and shear rates, which deform elastically to support the

applied stresses.

There have also been a number of direct (discrete) numerical simulations of collections of floes (e.g. Herman, 2013; Rabatel

et al., 2015). They have also observed phenomena similar to the force chains mentioned above, where elaborate force contact10

networks were observed over the full domain of simulation. To summarise, the binary collisional models represent only a small

fraction of the types of granular flows observed, so there is much more work required before a complete “MIZ rheology" that

could be substituted for our simple modification is ready.

5 Results

5.1 Note on wave and wind forcing15

In our results section we will partly use incident wind wave spectra based on the Bretschneider spectrum:

EB(!;Hs,!p) =
5H2

s !
4
p

16!5
e�(5!4

p )/(4!
4), (36)

where Hs is the significant wave height, !p = 2⇡/Tp, and Tp is the peak period.

Since Hs and Tp are not totally independent, to try to make them roughly consistent we will also use a special case of (36),

the Pierson-Moskowitz spectrum which was defined as an approximation for fully-developed wind seas:20

EPM(!;!0) =
aPMg2

!5
e�bPM(!0/!)4 , (37)

where aPM = 8.1⇥10

�3, bPM = 0.74, and !0 = g/U19.5 ⇡ g/(1.026U10). Here U19.5 and U10 are the wind speeds 19.5 m and

10 m above the sea (respectively) — note that these wind speeds are linked to the incident wave parameters, and we will also try

to keep them consistent when we are presenting coupled WIM-neXtSIM results. The Bretschneider parameters corresponding

to the Pierson-Moskowitz parameters are:25

!p = (4bPM/5)1/4!0 ⇡ 0.877!0, (38a)

Hs =
4g

!2
p

r
aPM

5

. (38b)

Our incident wind wave spectra will then combine a Bretschneider frequency spectrum with some directional spreading:

Einc(!,✓;Hs,!p) = EB(!;Hs,!p)Dinc(✓), Dinc(✓) =
2

⇡
cos

2 ✓⇥H(|✓|�⇡/2), (39)
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where H is the Heaviside step function. (Note that the mean wave direction is zero, ie to the right in our model domain, which

can be seen in Figure 1.) We will also look at so-called swell waves, which are not locally generated, generally quite long

(wave period greater than about 10 s or longer), and are monochromatic and mono-directional:

Eswell(!,✓;Hswell,!swell) =
1

8

H2
swell�(!�!swell)�(✓). (40)

5.2 Sensitivity of MIZ width to Young’s modulus and small-scale cohesion5

The purpose of this section is to test sensitivity to the Young’s modulus and the small-scale cohesion, not necessarily to decide

on “correct" values, which are best determined from future observations. The experiments are similar to those of Williams

et al. (2013b), although the effect of the Young’s modulus was not tested in that paper. This is an interesting parameter since

increasing it makes the ice less compliant and easier to break (ie. a given wave amplitude produces a higher stress in the ice) —

potentially increasing the MIZ width — but this also increases the attenuation, which could potentially reduce the MIZ width.10

The effect of the small-scale cohesion will play a similar role to the breaking strain in that paper.

The Young’s modulus is typically somewhere in the range of 1–10 GPa. Williams et al. (2013a) argued for values within

the interval 5–7 GPa (depending on the brine volume fraction), proposing that the effective elastic modulus, which includes

a response to primary, recoverable creep, should cause it to drop somewhat from the relationship of Timco & Weeks (2010).

However, Marchenko et al. (2013) derived significantly lower values of Young’s modulus (about 1.5 GPa) in Svalbard fjord ice.15

Marchenko et al. (2017) also measured lower values in the Barents Sea, ranging between 1–4 GPa, with no obvious dependance

on the brine volume. Therefore, we do some tests of the sensitivity of the MIZ width and the maximum WRS to this parameter.
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Figure 4. Variation of MIZ width (a) and maximum WRS (b) with peak wave period and Young’s modulus. Dashed curves: Pierson-

Moskowitz spectra are used for the forcing. Solid curves: Bretschneider spectra are used with the significant wave height being 4m. The

concentration was 0.7, the thickness was 1 m, and the small-scale cohesion used was 573
:::
629 kPa. The WIM is not coupled to neXtSIM.
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Figure 4 shows the variation of the MIZ width (panel a) and the maximum WRS (panel b) with peak period for different val-

ues of the Young’s modulus. Since increasing the Young’s modulus increases the attenuation, the waves lose more momentum

and so the maximum radiation stress increases, and this is clearly seen in Figure 4(b). However, Figure 4(a) clearly shows that

the MIZ width increases with increasing Young’s modulus, so its effect on the breaking criterion clearly dominates its effect

on the attenuation. The magnitude of the maximum radiation stress is of the order of 0.1–1 Pa, which is comparable to the5

wind stress from a 10–15 m s�1 winds (see Figure 1d). However, while stresses of this size are significant, they are very much

localised around the ice edge as opposed to being applied over large areas (as wind stresses are — see Figure 1(d)).

The dashed curves use fully-developed seas (Pierson-Moskowitz spectra), where Hs increases with Tp, for wave forcing.

Although waves of higher periods are attenuated less, the increasing wave height overcomes this effect and both the MIZ width

and maximum radiation stress increases monotonically with peak period.10

The solid curves in Figure 4 are created using an incident wave spectrum based on a Bretschneider spectrum with a constant

significant wave height of Hs = 4m. Like with the dashed curves (fully developed seas), larger values of Young’s modulus

cause the MIZ width to increase monotonically as peak period increases (in the plotted range of periods). However, when

Y = 1GPa, as peak period is increased, the MIZ width is initially 8km, then increasing to a maximum of 12 km as the wave

frequencies with the most energy are attenuated less, before dropping down to 8 km again as the waves with the most energy,15

while still being attenuated less strongly, now produce less strain (see equations (22–27)).
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Figure 5. Variation of MIZ width (a) and maximum radiation stress (b) with peak wave period and Young’s modulus for swells of height 3 m.

The concentration was 0.7, the thickness was 1 m, and the small-scale cohesion used was 573
:::
629 kPa. The WIM is not coupled to neXtSIM.

This latter result (Y = 1GPa, constant wave height) is similar to results for constant-amplitude swell waves, plotted in

Figure 5 — very low periods are attenuated too strongly to do much breaking so the MIZ width is zero; above a certain period

the MIZ width increases (with period) to a maximum then drops back down to zero when the induced strain is no longer large

enough to cause breakage. For this wave height of 3 m, which is relatively large, but not unrealistic for the usual range of swell20
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periods (ca. 10–20 s), the maximum radiation stress drops from about 0.1 Pa to about 0.01 Pa showing the reduced ability of

swells to produce wave drift in comparison to wind seas.
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Figure 6. Variation of MIZ width with peak wave period and small-scale cohesion for (a) wind seas and (b) swells. (a) Dashed curves:

Pierson-Moskowitz spectra are used for the forcing. Solid curves: Bretschneider spectrum are used with the significant wave height being

4m. (b) Swell waves of height 3 m. For both plots, the concentration is 0.7, the thickness is 1 m, and the Young’s modulus used was 5.49 GPa.

The WIM is not coupled to neXtSIM.

Figure 6 shows the variation of the MIZ width with the peak period and the small scale cohesion. Unlike the Young’s

modulus, this parameter does not change the attenuation directly, and so the maximum radiation stress is essentially the same

for all values of the cohesion (notwithstanding small differences, mainly due to the different MIZ widths, since the attenuation5

is higher in the MIZ in our model).

The three values chosen are 246
:::
270 kPa , 573

:::::::::::::
(approximately

:::
the

:::::::
flexural

:::::::
strength

:::::
when

::::::::
vb = 0.1,

:::
274 kPa, 989

:
),

:::
629 kPa

. These approximately cover the range 232–1100
::::::::::::
(approximately

:::::::::::::::
2.33⇥ 274 = 638 kPa(232

:
),
::::
and

::::
1.08 kPa being the value

estimated from the flexural strength when vb = 0.1, and
::::
MPa

:::::::::::::
(approximately 1.1 MPabeing ,

:
the laboratory value of the co-

hesion). The results for the MIZ width are significantly different but all are in the correct order of magnitude (a few tens of10

kilometers). Therefore we will use ⌧0 = 573

:::::::
⌧0 = 629 kPa throughout the rest of the paper. We will also use a Young’s modulus

of Y0 = Y = 5.49
:::::::::::::
Y0 = Y⇤ = 5.49GPa (i.e. the same value in neXtSIM and the WIM).

5.3 Coupled waves-in-ice results

Figure 7 shows plots of different fields after a 2-day simulation with neXtSIM coupled to the WIM. There is no wind, only

waves arriving from the left (the initial wave state is shown in Figure 7(a)), breaking the ice and pushing it to the right by about15

24 km by the end of the 48-h simulation. The initial ice state is the same as in Figure 1, but with the addition of unbroken ice

(Dmax = 300m everywhere where c > 0), as shown in Figure 7(b). This could correspond to summer ice in the Fram Strait

20



where there can be large floes with large gaps between them (perhaps due to smaller floes melting faster), producing a low

concentration.

The resulting MIZ width is about 50 km, which is not unrealistic. Following (39), there is a cos-squared type of directional

spreading applied (and 16 directions used) and the upper and lower grid cells, which contain land, act to completely absorb

the waves. Therefore, in Figure 7(c), the waves are slightly lower (by about 1 m) near the coast than they are at the centre. In5

Figure 7(f), the x-component of the WRS is plotted — note that while it reaches 1 Pa in the vicinity of the ice edge, it decays

exponentially further into the ice. This is reflected in the concentration field (Figure 7(e)), which shows that the ice is much

more compact at the ice edge. Note that the WRS is not varying significantly in the y direction, showing that the boundary

conditions used for the waves at the coast are not having too much influence. Also note that the pack and the MIZ, as shown in

the Dmax field (Figure 7(d)), are separated by quite a sharp boundary. This has been preserved by doing breaking on the mesh10

in parallel to the breaking on the grid, as opposed to simply interpolating Dmax back to the mesh after doing breaking on the

grid. Figure 8 shows the same plot as Figure 7(d), but with this latter, more naive, method of coupling. The sharp MIZ-pack

boundary has now become extremely diffuse compared to the former scheme.

Figure 9 tests the sensitivity of the ice edge motion to the rheological parameters C and ⌧L0 when the ice is subjected to

steady waves of varying heights (and periods). In Figure 9(a), the damage is set to 0.9999 everywhere the ice is broken by the15

waves, while in Figure 9(b) the damage and cohesion are unchanged by ice breakage due to waves. Consequently in Figure 9(a)

for higher concentrations the internal stress is mainly coming from the ice pressure P , while in Figure 9(b) � also plays a role

since it is not damaged.

There is a strong response to the compactness factor, C, which is used in the neXtSIM model to determine how high the

concentration needs to be to increase the effective elastic stiffness and the resistance to ridging to their maximum values.20

In Figure 9(a), for this initial value of concentration (70%), lowering C by 10 roughly reduces the ice movement by half.

Comparing Figure 9(b) to Figure 9(a), if C = 40, � makes a difference of between 8–15 km; if it drops to 30, the ice edge

movement is approximately reduced by half; if it drops even further to 20, then the ice edge no longer moves at all.

However, the large-scale cohesion makes little difference in these simulations where the ice is not failing. Part of the reason

for this is that the wave radiation stress is a compressive stress, so the stresses need to be larger to move outside the Mohr-25

Coulomb envelope than if they were tensile or shear stresses (see Figure 2: the tensile and shear stresses are near the points of

the triangles, while compressive stresses are near their bases).

Some of the runs from Figure 9 (those with C = 40 and ⌧L
0 = 4 kPa) were repeated with swell waves (of a single frequency

and direction), with amplitude of 3 m and periods ranging from 10–14 s (recalling that the maximum WRS dropped with wave

period — Figure 5(b)). These were not able to produce any movement of the ice edge though. Therefore, the main influence of30

swell will be due to their changing of the dynamical and thermodynamical properties of the ice through the ice break-up. As

can be seen from Figures 5–6, they are attenuated less and so they can produce break-up further into the ice than wind waves.

Figure 10 shows the combined effects of wind and waves on the concentration (c) and the effective thickness (ch). For

reference Figures 10(a,b) have only waves (5-m waves following a Pierson-Moskowitz spectrum) and no wind (Figure 10(a) is

the same as Figure 7(e)), while Figures 10(c,d) have no waves, but only a 15 m s�1 wind from the left (as in Figure 1). This wind35
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Figure 7. Waves breaking ice in an idealized experiment (the right hand, upper, lower lines of grid cells correspond to land). The wave

model, based on (Williams et al., 2013a), is coupled to the neXtSIM sea-ice model. The figure shows results after 48 h of steady pushing

by a Pierson-Moskowitz wind wave spectrum with significant wave height Hs = 5m (so the peak period Tp = 11.2 s), that is arriving from

the left. It initially occupies the strip shown in (a) then travels to the right, with some directional spreading; the final wave height is shown

in (c). (b,d): initial, final maximum floe size (respectively); (e,f): final sea-ice concentration and x-component of the wave radiation stress

(respectively). The ice has initial conditions (constant where there is ice—see (b) for the initial ice mask): c= 0.7, h= 1m, Dmax = 300m,

and d= 0. Also C=40, ⌧L
0 = 4 kPa, ⌧ S

0 = 573
::::::
⌧ S
0 = 629 kPa, and d is increased to dbreak = 0.9999 if the ice is broken.

speed is consistent with the wind wave spectrum in Figures 10(a,b). Figures 10(e-h) have both 5-m waves and 15 m s�1 wind.

All figures with wind Figure 10(c–h) exhibit similar ice edge locations, and all show thickening at the far right “coastline",

concentrated in thin “ridges". The area over which the ridging is concentrated also seems similar for all the runs. However,
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remained much sharper when Nfloes is calculated directly on the neXtSIM mesh.
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Figure 9. Maximum movement of ice edge over 2 days for different pairs (C,⌧L
0 ) of the compactness factor and the large scale cohesion

(in kPa). Initial concentration is 0.7, initial thickness is 1 m. Wave forcing is from Pierson-Moskowitz spectra. (a) Damage is set to dbreak =

0.9999 if the ice is broken. (b) Damage is unchanged if the ice is broken.

while the pattern of thickening between the three runs seems quite different, perturbations to certain parameters in the run

with the R1 modification to the EB rheology (Figures 10(g,h)), such as dbreak (0.99 and 0.999 were tried), or the minimum
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concentration of ice required to cause attenuation (0 or 5% were tried), produce similar degrees of differences. Therefore we

conclude the actual ridging patterns are not significant in themselves. The main differences therefore between the R1 run and

the other two are therefore in the concentrations at the ice edge (the actual thickness, h, which is not plotted, is constant near

the edge). In this run, when the damage is increased if ice breakage occurs, the ice is noticeably more concentrated in a region

approximately corresponding to the MIZ. Additionally, the ice edge is more diffuse, possibly due to some feedback effect5

where if the ice begins to become less concentrated at the ice edge, the attenuation reduces and therefore so does the wave

radiation stress, and then moves more slowly compared to the more concentrated ice which will experience a higher radiation

stress — an effect enhanced by the high degree of damage which keeps the more compressed ice quite mobile (as opposed to

the run where the rheology is not modified).

Figure 11(a) quantifies the results of Figure 10 with respect to the ice edge location, as well as varying the wind speed. As10

can be seen from the figure, the waves only increase the movement by 4 km (no damage in the MIZ due to breakage) or 8 km

(damage is dbreak = 0.9999 in the MIZ when the ice is broken). That is, the effect of the WRS on the ice edge position is almost

completely dominated by the wind stress. When the initial concentration was increased to 95%, the difference was even less

(0–4 km), as then the stress and ice pressure P increased due to their e�C(1�c) factors becoming closer to 1.

To repeat what we have seen in Figure 10, when the ice was subjected to on-ice winds in addition to waves, the main effect15

of linking the damage to the break-up due to waves was that the MIZ region became more highly compressed than the ice

immediately further in. In Figure 11(b), we see the effects of off-ice winds on ice preconditioned by swell waves. For the wind

speed used in the figure shown (2 m s�1), the wind stress is not able to move the pack ice at all, but the MIZ, which is about

60 km wide and has damage dbreak = 0.9999, has started to detach from the pack. The ice edge has moved about 15 km to the

left in the centre of the domain, with less movement at the coasts since there is still some friction there (due to the condition of20

no slip applied at the top and bottom boundaries).

6 Conclusions and discussions

In this paper, we have investigated the impact of the WRS on sea-ice state and drift in an idealised domain. While this stress

can be quite large (⇠.1–1 Pa), depending on the wave conditions, it is extremely localised — decaying exponentially away

from the ice edge. Probably as a consequence of this localisation, overall we found its effects on ice edge location were quite25

modest, with the most noticeable effects being seen when a wind wave spectrum was applied steadily to the ice in the absence

of wind. Then, depending on the initial concentration, the rheological parameters used and the response to the ice breakage

by waves, the radiation stress could produce a movement of the ice edge of between 0–36 km over two days. However, this

experiment is more hypothetical since wind waves are by definition associated with wind. Indeed, in the presence of wind,

the wind stress dominated the WRS with almost no difference in ice edge position between experiments with and without30

waves. There were differences in ridging patterns in the presence of waves but these were probably not significant. However,

when we modified the damage parameter after ice breakage, additional compression was observed in the MIZ after the ice was
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Figure 10. (a,b) Concentration (c) and effective thickness (ch) after the same experiment as Figure 7. (c,d) Same as Figure 1(c,d): wind

forcing only. Figures (e–h) show results when steady waves (with Hs = 5m, Tp = 11.2 s, from the left) are applied in addition to the wind

forcing. Initial ice conditions are the same as in Figure 7. In (e,f) the ice rheology is not affected by the ice breakage, but in (g,h) damage is

set to dbreak =0.9999. The large-scale cohesion is ⌧L
0 =4 kPa, C = 40, and the small-scale cohesion is ⌧ S

0 =573
::
629 kPa.

broken. Consequently, it seems that the WRS has a very limited effect in general, although it could be a very efficient process

to precondition the ice cover and its mechanical properties via the formation of a MIZ area filled with highly damaged ice.

Having said this however, there are many uncertainties regarding the WRS, and we have certainly not included all of its

potential effects, especially since the wave and ice models are not coupled to the ocean yet. For example, the attenuation

models are still uncertain (they determine the WRS), and how the partitioning of the WRS between the ice and the ocean5

should be done is also unknown. On the face of it, if less of the WRS is applied to the ice, it should have even less effect than
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Figure 11. (a) shows the maximum movement of the ice edge as a function of wind speed. The different curves show the response to wind

forcing only (“no waves"), wind and waves without changing the EB rheology in the MIZ (“no damage"), and wind and waves where the

damage is set to dbreak = 0.9999 in the MIZ (“0.9999"). (b) The effect of swell preconditioning on the response to off-ice winds. Initial

conditions: swell of 12 s period and height 3 m is sent into the ice for 24 h, where the ice has constant concentration of 95% and thickness

1 m, breaking the ice for about 50 km. The damage is set to dbreak = 0.9999 where the ice is broken. Spatially and temporally constant off-ice

wind forcing is then applied for a further 48 h, at a speed of 2 m s�1. The large-scale cohesion is 13 kPa, and C = 40.

we find in our current paper. However, perhaps it could then produce similar effects to those discussed and reported by Suzuki

& Fox-Kemper (2016) and Suzuki et al. (2016) in relation to overturning circulation produced by the Stokes shear force and

thereby change the currents and heat fluxes acting on the ice.

We also highlighted the problem of numerical diffusion of Nfloes due to it being modified by both neXtSIM and the WIM, and

therefore having to be communicated in both directions. We presented a solution to this problem, where Nfloes was calculated5

on the neXtSIM mesh each WIM time step, after interpolating smoother wave fields. While not unfeasible, this is somewhat

costly and we will continue to look for alternative solutions.

As touched on in the discussion of the WRS above, we also introduced a simple MIZ rheology by increasing the damage

where ice was broken, effectively putting the MIZ into free drift, with the addition of the ice pressure which resists compression.

Under compressive wind forcing this led to increased compression in the MIZ relative to the pack ice in its vicinity. This10

modification also influenced the ice flow when off-ice winds were applied to ice that had previously been broken by swell

waves. At lower wind speeds, the MIZ was able to be move relatively freely with the wind, while the pack was still stationary.

These effects would undoubtedly be reduced in magnitude were a rheology that represented true granular flow to be used,

but could still occur. However, it is difficult to know for certain without the existence of such a rheology. Direct numerical

simulations such as those done by Herman (2016) could possibly reproduce some of the effects observed here. Similarly, the15
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granular temperature model of Feltham (2005) could be tried, although this would be limited to flow regimes where large force

networks are not expected to be present.

So far we have also restricted ourselves to a simple idealised domain, and with very idealised forcings. Work to set up

the current model in a pan-Arctic domain is ongoing, and perhaps studies with forcings with more realistic temporal and

spatial variability could find the WRS will have more impact. In addition, the study of Horvat et al. (2016) suggests that5

including the thermodynamic effects of ice breakage by waves could be important. We are also currently implementing the

more conservative lateral melting model of Steele (1992) in our model to include this effect to some extent. With simulations

using a WIM coupled to a stand-alone version of CICE-E, which contains the model of Steele (1992), Bennetts et al. (2017)

found that the concentration in the vicinity of the Antarctic ice edge could drop by a modest amount (of the order of 10%) in

the summer. However, this could also change with coupling to an ocean model, as well as if a different parameterisation that10

reflects the increased lateral melting of larger floes were used.

7 Code availability

This code is not publicly available.

8 Data availability

This data is not publicly available.15
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