1	Reconstruction of the Greenland Ice Sheet surface
2	mass balance and the spatiotemporal distribution of
3	freshwater runoff from Greenland to surrounding seas
4	SEBASTIAN H. MERNILD
5 6 7 8 9	Nansen Environmental and Remote Sensing Center, Bergen, NORWAY, Direction of Antarctic and Sub-Antarctic Programs, Universidad de Magallanes, Punta Arenas, CHILE, and Department of Environmental Sciences, Western Norway University of Applied Sciences, Sogndal, NORWAY
10	GLEN E. LISTON
11 12 13	Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado, USA
14	ANDREW P. BECKERMAN
15	Department of Animal and Plant Sciences, University of Sheffield, UK
16	
17	JACOB C. YDE
18 19 20	Department of Environmental Sciences, Western Norway University of Applied Sciences, Sogndal, NORWAY
21	
22	Submitted to The Cryosphere, October 15, 2017
23	Resubmitted April 10, 2018
24	
25	Corresponding author address:
26	Sebastian H. Mernild, e-mail: sebastian.mernild@nersc.no

27 Abstract

28	Knowledge about variations in runoff from Greenland to adjacent fjords and seas is important for		
29	the hydrochemistry and ocean research communities to understand the link between terrestrial		
30	and marine Arctic environments. Here, we simulate the Greenland Ice Sheet (GrIS) surface mass		
31	balance (SMB), including refreezing and retention, and runoff together with catchment-scale		
32 runoff from the entire Greenland landmass ($n = 3,272$ simulated catchments) through			
33	year period 1979–2014. SnowModel/HydroFlow was is applied at 3-h intervals to resolve the		
34	diurnal cycle and at 5-km horizontal grid resolution increments using ERA-Interim (ERA-I)		
35	reanalysis atmospheric forcing. Variations in meteorological and surface ice and snow cover		
36	conditions influenced the seasonal variability in simulated catchment runoff; variations in the		
37	GrIS internal drainage system were are assumed negligible and a time-invariant digital elevation		
38	model was-is_applied. Approximately 80 % of all catchments showed increasing runoff trends		
39	over the 35 years, with on average relatively high and low catchment-scale runoff from the SW		
40	and N parts of Greenland, respectively. Outputs from an Empirical Orthogonal Function (EOF)		
41	analysis were are combined with cross-correlations indicating a direct link (zero lag time)		
42	between modeled catchment-scale runoff and variations in the large-scale atmospheric		
43	circulation indices North Atlantic Oscillation (NAO) and Atlantic Multidecadal Oscillation		
44	(AMO). This suggests that natural variabilities in AMO and NAO constitute major controls on		
45	catchment-scale runoff variations in Greenland.		
46			
47	KEYWORDS: Empirical Orthogonal Function; Greenland freshwater runoff; Greenland Ice		

- 48 Sheet; HydroFlow; Modeling; NASA MERRA; SnowModel; surface mass-balance
- 49

50 1. Introduction

51	51 The Greenland Ice Sheet (GrIS) is highly sensitive to changes in climate (e.g., Box et			
52	52 2012; Hanna et al. 2013; Langen et al. 2015; Wilton et al. 2016; AMAP 2017). It is of scient			
53	interest and importance because it constitutes a massive reserve of freshwater that discharges to			
54	adjacent fjords and seas (Cullather et al. 2016). Runoff from Greenland influences the sea			
55	surface temperature, salinity, stratification, marine ecology, and sea-level in a number of direct			
56	and indirect ways (e.g., Rahmstorf et al. 2005; Straneo et al. 2011; Shepherd et. al. 2012; Weijer			
57	et al. 2012; Church et al. 2013; Lenaerts et al. 2015).			
58	The GrIS surface mass balance (SMB) and freshwater runoff have changed over the last			
59	decades and most significantly since the mid-1990s (e.g., Church et al. 2013; Wilton et al. 2016).			
60	For example, recent estimates by Wilton et al. (2016) showed a decrease in SMB from ~350 Gt			
61	yr ⁻¹ (early-1990s) to ~100 Gt yr ⁻¹ (late 2000s in 2010–2012) and an increase in runoff from ~200			
62	Gt yr ⁻¹ (early-1990s) to ~450 Gt yr ⁻¹ (late 2000sin 2010 and 2012). Van den Broeke et al. (2016)			
63	showed a decrease in SMB from 398 Gt yr ⁻¹ (1961–1990) to 306 Gt yr ⁻¹ (1991–2015) and an			
64	increase in runoff from 256 Gt yr ⁻¹ (1961–1990) to 363 Gt yr ⁻¹ (1991–2015). For 2009 through			
65	2012, the runoff has been estimated to include approximately two-third of the gross GrIS mass			
66	loss (Enderlin et al. 2014), while the net GrIS mass loss, on average, was 375 Gt yr ⁻¹ (2011-			
67	2014) (AMAP 2017). The contribution of GrIS mass loss to global mean sea-level was around 5			
68	% in 1993, and more than 25 % in 2014 (Chen et al. 2017), and up to 43 % for the GrIS and -			
69	Noël et al. (2017), however, estimated the GrIS and peripheral glaciers and ice caps in 2010-			
70	2012 (Noël et al. 2017). to contribute approximately 43 % to the contemporary sea level rise,			
71	Runoff from the GrIS is an integrated response of rain, snowmelt, and glacier melt and			
72	other hydrometeorological processes (e.g., Bliss et al. 2014). Tedesco et al. (2016) estimated a			

Formatted: Font: Font color: Black

73	1979–2016 change in GrIS spatial surface melt extent of \sim 15,820 km ² yr ⁻¹ , and a change in
74	surface ablationmelt season duration of ~30–40 days in NE and 15–20 days along the west coast.
75	At higher GrIS elevations, surface melt does not necessarily equal surface runoff because
76	meltwater may be retained or refrozen refreeze-in the porous near-surface snow and firn layers
77	(Machguth et al. 2016) _{a} where the firn pore space provides potential storage for meltwater
78	(Haper et al. 2012; van Angelen et al. 2013). Melt water percolation, refreezing, and
79	densification processes are common in GrIS snow, firn, and multi-year firn layers - especially
80	where semipermeable or impermeable ice layers are present (Brown et al. 2012; van As et al.
81	2016). Such physical mechanisms and conditions in the firn and multi-year firn layers lead, e.g.,
82	to non-linearity in meltwater retention (Brown et al. 2012).
83	The GrIS internal drainage system has received increased attention in recent years. This
84	is, in part, because the summer acceleration of ice flow is controlled by supraglacial meltwater
85	draining to the subglacial environment (Zwally et al. 2002; van de Wal et al. 2008; Shephard et
86	al. 2009). Enhanced production of supraglacial meltwater results in more water supplied to the
87	glacier bed, leading to reduced basal drag and accelerated basal ice motion. This process is
88	referred to as basal lubrication, and it constitutes a potential positive feedback mechanism
89	between climate change and sea-level rise (Hewitt 2013). At high GrIS elevations, surface
90	meltwater primarily drains to the glacier bed via hydrofractures (van der Veen 2007), whereas
91	meltwater is routed to the glacier bed via crevasses and moulins in the peripheral areas (Banwell
92	et al. 2016; Everett et al. 2016; Koziol et al. 2017). Rapid drainage of large volumes of GrIS
93	meltwater come from sudden release from supraglacial and proglacial lakes (known as a glacial
94	lake outburst flood (GLOF) or jökulhlaup), which are particularly common in \www.est Greenland
95	(Selmes et al. 2011; Carrivick and Quincey 2014). The seasonal evolution of the structure and
96	efficiency of the drainage system beneath the GrIS is indirectly assumed from our understanding

97	of the subglacial hydraulic potential beneath Alpine glaciers. This general understanding is used		
98	to explain the observed seasonal changes in ice motion (Bartholomew et al. 2010, 2012) where		
99	few direct observations exist (Kohler et al. 2017). In fact, we know very little about		
100	spatiotemporal shifts in the configuration of the subglacial drainage network beneath the GrIS.		
101	We therefore assume that the subglacial drainage network in the natural system is dynamic and		
102	sensitive to rerouting of water flow between adjacent catchments (so-called water piracy; Chu et		
103	al. 2016), although we do not understand the details sufficiently to implement them in a runoff		
104	routing model.		
105	We also lack high resolution information on the spatiotemporal distribution of GrIS and		
106	Greenland freshwater runoff to the fjords and seas, and the spatiotemporal distribution of solid-		
107	ice discharge (calving) from tidewater glaciers is also largely unknown, even-although Enderlin		
108	et al. (2014) estimated solid-ice discharge from around 180 tidewater glaciers -(Howat et al.		
109	2013) . To address this lack of knowledge, information about the quantitative discharge (runoff		
110	and solid-ice discharge) conditions from the numerous of-catchments in Greenland is required.		
111	Available GrIS calving rates are insufficient to represent the calving rates from the entire		
112	Greenland and are therefore not generally included in overall Greenland freshwater estimates		
113	(Nick et al. 2009; Lenaerts et al. 2015). This is an unaddressed gap, which likely prevents us		
114	from comprehensively understanding the terrestrial freshwater discharge to the fjords and seas.		
115	This also limits the subsequent the link between changes in terrestrial inputs and changes in the		
116	hydrographic and circulation conditions. This unaddressed knowledge gap has further		
117	implications for ocean model simulations, where, for example, earlier representations of		

. .

. .

118 Greenland discharge boundary conditions were either non-existent or overly simplistic (e.g.,

119 Weijer et al. 2012).

120	Previous GrIS studies constructed a section-wise runoff distribution by dividing the ice
121	sheet into six to eight overall defined sections (e.g., Rignot et al. 2008; Bamber et al. 2012;
122	Rignot and Mouginot 2012; Lenaerts et al. 2015; Wilton et al. 2016). These studies illustrated an
123	increase in runoff since 1870 for all GrIS sections, with the greatest increase in runoff since mid-
124	1990s and in the <u>SWsouthwestern</u> part of the ice sheet.
125	Mernild and Liston (2012) reconstructed the GrIS SMB and the Greenland
126	spatiotemporal runoff distribution from \sim 3,150 individually simulated catchments, at 5-km
127	spatial, and daily temporal, resolutions covering the period from 1960 through 2010. Automatic
128	weather stations located both on and off the GrIS were used for atmospheric forcings in Mernild
129	and Liston (2012) and tThe study was carried out using a full energy balance, multi-layer
130	snowpack and snow distribution, and freshwater runoff model and <u>a</u> software package called
131	SnowModel/HydroFlow (Liston and Elder 2006a; Liston and Mernild 2012). These individual
132	catchment outlet runoff time series were analyzed to map runoff magnitudes and variabilities in
133	time, but also emphasized trends and spatiotemporal variations, including runoff contributions
134	from the GrIS, the land area (the tundra region) between the GrIS ice margin and the ocean, from
135	the relatively small isolated glaciers and ice caps, and from entire Greenland. This approach is
136	especially important when trying to understand the total runoff fraction from Greenland,
137	including the annual and seasonal freshwater runoff variabilities within individual catchments.
138	Here, we improve the work by Mernild and Liston (2012) by using an updated version of
139	SnowModel/HydroFlow and by including a new digital elevation model (DEM). We also extend
140	the time series to 2014 by using the ERA-Interim (ERA-I) reanalysis products on 3-h time step
141	(Dee et al. 2011). The objective of this study is to simulate, map, and analyze first-order
142	atmospheric forcings and GrIS mass balance components for Greenland. The analyzed variables

143	include the GrIS SMB, together with GrIS surface air temperature, surface melt, precipitation,			
144	evaporation, sublimation, refreezing and retention, and surface freshwater runoff and specific			
145	runoff (runoff volume per time per unit drainage area, L s ⁻¹ km ⁻² ; to convert to mm yr ⁻¹ , multiply			
146	by 31.6) conditions. The time period covers 1979–2014 (35 years), with a focus on the present			
147	day conditions 2005–2014 (the last decade of the simulations). Further, the spatiotemporal			
148	magnitude, distribution, and trends of individual catchment-scale runoff and specific runoff from			
149	Greenland ($n = 3,272$; where <i>n</i> is the number of simulated catchments, each with an individual			
150	flow network) were simulated based on HydroFlow-generated watershed divides and flow			
151	networks for each catchment. The simulated spatiotemporal catchment-scale outlet runoff is			
152	useful as boundary conditions for fjord and ocean model simulations. We also analyzed the			
153	spatiotemporal catchment-scale outlet runoff using Empirical Orthogonal Functions (EOF). This			
154	analysis allowed us to describe simultaneously how the spatial patterns of catchment-scale outlet			
155	runoff changed over time. It also allowed us to explore via cross-correlations the relationship			
156	between the spatiotemporal patterns of runoff and large-scale atmospheric-ocean circulation			
157	indices including the North Atlantic Oscillation (NAO) and the Atlantic Multidecadal Oscillation			
158	(AMO), with particular attention to the lag-times, if any, between variations in NAO and AMO			
159	and responses in Greenland catchment-scale runoff.			

160

. . .

~

161 2. Model description, setup, and <u>evaulation</u>verification

162 2.1 SnowModel

SnowModel (Liston and Elder 2006a) is established by six sub-models, where five of the
models were used here to quantify spatiotemporal variations in atmospheric forcing, surface
snow properties, GrIS SMB, and Greenland catchment runoff. The sub-model *MicroMet* (Liston

166	and Elder 2006b; Mernild et al. 2006a) downscaled and distributed the spatiotemporal			
167	atmospheric fields using the Barnes objective interpolation scheme. Interpolation fields were			
168	adjusted , where the interpolated fields subsequent were adjusted using known meteorological			
169	algorithms, e.g., temperature-elevation, wind-topography, humidity-cloudiness, and radiation-			
170	cloud-topography relationships (Liston and Elder 2006b). Enbal (Liston 1995; Liston et al. 1999)			
171	simulated a full surface energy balance considering the influence of cloud cover, sun angle,			
172	topographic slope, and aspect on incoming solar radiation, and moisture exchanges, e.g.,			
173	multilayer heat- and mass-transfer processes within the snow (Liston and Mernild 2012).			
174	SnowTran-3D (Liston and Sturm 1998, 2002; Liston et al. 2007) accounted for the snow			
175	(re)distribution by wind. SnowPack-ML (Liston and Mernild 2012) simulated multilayer snow			
176	depths, temperatures, and density evolutions water equivalent evolutions. HydroFlow (Liston and			
177	Mernild 2012) simulated watershed divides, routing network, flow residence-time, and runoff			
178	routing (configurations based on the hypothetical-gridded topography)-and ocean-mask datasets),			
179	and discharge hydrographs for each grid cell including from-catchment outlets. These sub-			
180	models have been tested evaluated against independent observations with success in Greenland,			
181	Arctic, high mountain regions, and on the Antarctic Ice Sheet with acceptable results (e.g.,			
182	Hiemstra et al. 2006; Liston and Hiemstra 2011; Beamer et al. 2016). For detailed information			
183	regarding the use of SnowModel for the GrIS ² or local Greenlandic glaciers ² SMB and runoff			
184	simulations, we refer to Mernild and Liston (2010, 2012) and Mernild et al. (2010a, 2014).			
185				
186	2.2 Meteorological forcing, model configuration and model limitations			

- 187 SnowModel was forced with ERA-Interim (ERA-I) reanalysis products on a 0.75°
- 188 longitude $\times 0.75^{\circ}$ latitude grid from the European Centre for Medium-Range Weather Forecasts

189	(ECMWF; Dee et al. 2011). The simulations were conducted from 1 September 1979 through 31			
190	August 2014 (35 years) (henceforth 1979–2014), where the 6-hour (precipitation at 12-hour)			
191	temporal resolution ERA-I data was downscaled to 3-hourly values and on a 5-km grid using			
192	MicroMet. The 6-hour data were scaled to 3-hours by linear interpolation, and the 12-hour			
193	precipitation was equally distributed over the 3-hour intervals for the last 12 hours. The 3-hour			
194	temporal resolution was chosen to allow SnowModel to resolve the solar radiation diurnal cycle			
195	in its simulation of snow and ice temperature evolution and melt processes.			
196	The DEM was obtained from Levinsen et al. (2015) <u>(original resolution 2×2 km; 4</u>			
197	<u>km²</u>), and rescaled to a 5-km horizontal grid increment-resolution that covered the GrIS			
198	$(1,646,175 \text{ km}^2)$, mountain glaciers, and the entire Greenland $(2,166,725 \text{ km}^2)$ and the			
199	surrounding fjords and seas (Figure 1a). The DEM is time-invariant specific to the year 2010. The			
200	DEM was developed by merging contemporary radar and laser altimetry data, where radar data			
201	were acquired with Envisat and CryoSat-2, and laser data with the Ice, Cloud, and land Elevation			
202	Satellite (ICESat), the Airborne Topographic Mapper (ATM), and the Land, Vegetation, and Ice			
203	Sensor (LVIS). Radar data were corrected for horizontal, slope-induced, and vertical errors from			
204	penetration of the echoes into the subsurface (Levinsen et al. 2015). Since laser data are not			
205	subject to such errors, merging radar and laser data yields a DEM that resolves both surface			
206	depressions and topographic features at higher altitudes (Levinsen et al. 2015). The distribution			
207	of glacier cover was obtained from the Randolph Glacier Inventory (RGI, v. 5.0) polygons; these			
208	data were resampled to the 5-km grid. The SnowModel land-cover mask defined glaciers to be			
209	present when individual grid cells were covered by 50 % or more of with glacier ice.			
210	In MicroMet, only one-way atmospheric coupling was provided, where the			
211	meteorological conditions were prescribed at each time step. In the natural system, the			

212	atmospheric conditions would be adjusted in response to changes in surface conditions and			
213	properties (Liston and Hiemstra 2011). Due to the use of the 5-km horizontal grid increments,			
214	snow transport and blowing-snow sublimation processes (usually produced by SnowTran-3D in			
215	SnowModel) were excluded from the simulations because blowing snow does not typically move			
216	completely across 5-km distances (Liston and Sturm 2002; Mernild et al. 2017). Static			
217	sublimation was, however, included in the model integrations. In HydroFlow, the generated			
218	catchment divides and flow network were controlled by the DEM, i.e., exclusively by the surface			
219	topography and not by the development of the glacial drainage system. The role of GrIS bedrock			
220	topography on controlling the potentiometric surface and the associated meltwater flow direction			
221	was assumed to be a secondary control on discharge processes (Cuffey and Paterson 2010).			
222	First, the GrIS DEM was initially divided into six major sections following Rignot et al.			
223	(unpublished): southwest (SW), west (W), northwest (NW), north (N), northeast (NE), and			
223 224	(unpublished): southwest (SW), west (W), northwest (NW), north (N), northeast (NE), and southwest (SW) (Figure 1b and Table 1). Second, HydroFlow divided Greenland into 3,272			
	· · · · · · · · · · · · · · · · · · ·			
224	southwest (SW) (Figure 1b and Table 1). Second, HydroFlow divided Greenland into 3,272			
224 225	southwest (SW) (Figure 1b and Table 1). Second, HydroFlow divided Greenland into 3,272 individual catchments (Figure 1c), each with an eight-compass-direction water-flow network			
224 225 226	southwest (SW) (Figure 1b and Table 1). Second, HydroFlow divided Greenland into 3,272 individual catchments (Figure 1c), each with an eight-compass-direction water-flow network where water is transported through this network via linear reservoirs. Only a single outlet into the			
224 225 226 227	southwest (SW) (Figure 1b and Table 1). Second, HydroFlow divided Greenland into 3,272 individual catchments (Figure 1c), each with an eight-compass-direction water-flow network where water is transported through this network via linear reservoirs. Only a single outlet into the seas was allowed for each individual catchment.			
224 225 226 227 228	southwest (SW) (Figure 1b and Table 1). Second, HydroFlow divided Greenland into 3,272 individual catchments (Figure 1c), each with an eight-compass-direction water-flow network where water is transported through this network via linear reservoirs. Only a single outlet into the seas was allowed for each individual catchment. The mean and median catchment sizes were 680 km ² and 75 km ² , respectively. The top			
 224 225 226 227 228 229 	southwest (SW) (Figure 1b and Table 1). Second, HydroFlow divided Greenland into 3,272 individual catchments (Figure 1c), each with an eight-compass-direction water-flow network where water is transported through this network via linear reservoirs. Only a single outlet into the seas was allowed for each individual catchment. The mean and median catchment sizes were 680 km ² and 75 km ² , respectively. The top one percent of the largest catchments accounted for 53 % of the Greenland area. This distribution			
 224 225 226 227 228 229 230 	southwest (SW) (Figure 1b and Table 1). Second, HydroFlow divided Greenland into 3,272 individual catchments (Figure 1c), each with an eight-compass-direction water-flow network where water is transported through this network via linear reservoirs. Only a single outlet into the seas was allowed for each individual catchment. The mean and median catchment sizes were 680 km ² and 75 km ² , respectively. The top one percent of the largest catchments accounted for 53 % of the Greenland area. This distribution of HydroFlow-defined GrIS catchments (Figure 1c) closely matched both the catchment			

Formatted: Not Highlight

234	presented in this study was ~4 % higher due to the use of the DEM obtained from Levinsen et al.			
235	(2015), than the number of Greenland catchments in the Mernild and Liston (2012) study			
236	In MicroMet, only one way atmospheric coupling was provided, where the			
237	meteorological conditions were prescribed at each time step. In the natural system, the			
238	atmospheric conditions would be adjusted in response to changes in surface conditions and			
239	properties (Liston and Hiemstra 2011). Due to the use of the 5-km horizontal grid increments,			
240	snow transport and blowing-snow sublimation processes (usually produced by SnowTran-3D in			
241	SnowModel) were excluded from the simulations because blowing snow does not typically move			
242	completely across 5 km distances. Static sublimation was, however, included in the model			
243	integrations. In HydroFlow, the generated eatchment divides and flow network were controlled			
244	by the DEM, i.e., exclusively by the surface topography and not by the development of the			
245	glacial drainage system. The role of GrIS bedrock topography on controlling the potentiometric			
246	surface and the associated meltwater flow direction was assumed to be a secondary control on			
247	discharge processes (Cuffey and Paterson 2010).			
248	An example of the HydroFlow generated catchment divides and flow network is			
249	illustrated in detail by Mernild et al. (20187; Figure 1c) for the Kangerlussuaq catchment in			
250	central <u>Ww</u> est Greenland, which includes a part of the GrIS (67°N, 50°W; SW sector of the			
251	GrIS): The same catchment from where SnowModel/HydroFlow was evaluated against			
252	independent observations (see Section 2.3). Because the DEM is time-invariant, no changes			
253	though feedbacks from a thinning ice, ice retreat, and from changes in hypsometry will influence			
254	the catchment divides and the flow network patterns, including the glacial drainage system.			
255	Changes in runoff over time are therefore solely influenced by the climate signal and the surface			
256	snow and ice cover conditions (runoff was generated from gridded inputs from rain, snowmelt,			

Formatted: Not Highlight
Formatted: Not Highlight

257	and ice melt), not by the glacial drainage system. In HydroFlow, the meltwater flow velocities		
258	were gained obtained from dye tracer experiments conducted both through the snowpack (in		
259	early and late-summer) and through the englacial and subglacial environments (Mernild et al.		
260	2006b).		
261			
262	2.3 VerificationEvaluation		
263	For Greenland, long-term catchment river runoff observations are sparse; at present		
264	approximately tenat least eight permanent hydrometric monitoring stations are operating		
265	(Mernild 2016), measuring the sub-daily and sub-seasonal runoff variability originating from		
266	rain, melting snow, and melting ice from local glaciers and the GrIS. In addition, these		
267	observations only span parts of the runoff season, ranging between few weeks to approximately		
268	three months. For the Kangerlussuaq area, independent meteorological, and snow and ice		
269	observational, and river runoff datasets are also available, e.g., K-transect point observed air		
270	temperature, and SMB and catchment outlet observed discharge runoff (discharge) from Watson		
271	River (e.g., van de Wal et al. 2005; van den Broeke et al. 2008a; 2008b, Hasholt et. al. 2013, van		Formatted: Font: (Default) Times New Roman, 12 pt, Not
272	As et al. 2018). These observed datasets were used for verification evaluation of the	l	Highlight
273	SnowModel/HydroFlow ERA-I simulated GrIS mean annual air temperature (MAAT), GrIS		
274	SMB, ELA (equilibrium-line altitude: the spatially averaged elevation of the equilibrium line,		
275	defined as the set of points on the glacier surface where the net mass balance is zero), and		Formatted: Not Highlight Formatted: Not Highlight
			Formatted: Font: (Default) Times New Roman, 12 pt
276	catchment <u>river outlet</u> freshwater runoff presented herein (Mernild et al. 20172018). These		Formatted: Not Highlight
277	model verifications evaluations showed acceptable results for the Kangerlussuag area,		Formatted: Not Highlight
277	moder vermeations <u>evaluations</u> showed acceptable results for the <u>Rangendssuay alea</u> ,		Formatted: Font: (Default) Times New Roman, 12 pt
278	illustrating a difference between observations and simulations, for example, in MAAT of 0.2-		Formatted: Not Highlight
			Formatted: Font: (Default) Times New Roman, 12 pt
279	0.5°C (1993–2014) and in GrIS SMB of 0.17 \pm 0.23 m w.e(1990–2014), where the r_{s}^{2} -value	\leq	Formatted: Not Highlight
I		\backslash	Formatted: Font: Italic

280	(where r ² / ₂ is the explained variance) ranged between 0.55 and 0.67 (linear), except for one AWS			
281	in the K-Transect where r_{\star}^2 was 0.28 (AWS S6). The simulated Kangerlussuaq mean GrIS ELA			
282	(1979–2014) was located at 1,760 ± 260 m a.s.l. In van As et al. (20187), the ELA was defined			
283	as the altitude where SMB minus refreezing equals zero, and it wasto be located at			
284	approximately 1,800 m a.s.l. (2009–2015), and in van de Wal et al. (2012) ELA was estimated			
285	toat approximately 1,610 m a.s.l. (1991–2014) (for further information see (Mernild et al.			
286	20187) <u>Regarding, sSimulated Kangerlussuaq catchment river outlet runoff it-was, however, on</u>			
287	average overestimated by $31 \pm 9\%$ (2007–2013) and subsequently adjusted against observed			
288	runoff $(r_{\star}^2 = 0.76 \text{ (linear)}; \text{ for further information see Mernild et al. 2018)}. This freshwater runoff$			
289	overestimation is early likely related to the because of missing multiyear firn processes in			
290	SnowModel, such as nonlinear meltwater retention, percolation blocked by ice layers, and			
291	refreezing. Due to the limited long-term river runoff observations from the GrIS, the			
292	Kangerlussuaq runoff adjustment from Mernild et al. (2018) was used herein for the entire GrIS.			
293	The adjusted GrIS runoff is henceforth referred to as runoff.			
294	Further, The-the use of ERA-I has also showed promising results after a full evaluation			
295	estimating changes in ice sheet surface mass balance <u>SMB</u> for the catchments linked to			
296	Godthåbsfjord (64° N) in Southwest Greenland (Langen et al. 2015).			
297	In the analysis that follows, all correlation trends declared 'significant' are statistically			
298	significant at or above the 5 % level (p <0.05; based on a linear regression t test).			
299				
300	2.4 Surface water balance components			
301	For the GrIS, surface water balance components can be estimated using the hydrological			

Formatted: Not Highlight
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt, Italic
Formatted: Font: (Default) Times New Roman, 12 pt, Italic, Superscript
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: Italic
Formatted: Font: Italic, Superscript
Formatted: Not Highlight
Formatted: Not Highlight
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: English (United States)
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Not Highlight
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: Italic
Formatted: Font: Italic, Superscript
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Highlight

method (continuity equation) (Equation 1):

$304 \qquad P - (Su + E) - R + \Delta S = 0 \pm \eta,$

305

306	where P is precipitation input from snow and rain, Su is sublimation from a static surface, E is			
307	evaporation, R is runoff from snowmelt, ice melt, and rain, ΔS is change in storage (ΔS is also			
308	referred to as SMB) derived as the residual value from changes in glacier and snowpack storage.			
309	For snow and ice surfaces, the ablation was estimated as: $Su + E + R$. The amount of snow			
310	refreezing and retention was estimated as: $P_{rain} + melt_{surface} - R$ (for bare ice: $P_{rain} + melt_{surface} =$			
311	<i>R</i>). The parameter η is the water balance discrepancy. This discrepancy should be 0 (or small), if			
312	the components P, Su, E, R, and ΔS have been determined accurately.			
313				
314	3. EOF runoff analysis			
315	We applied an Empirical Orthogonal Function (EOF) analysis to define the			
316	spatiotemporal pattern in simulated catchment outlet runoff. EOF is a statistical tool that			
317	analyzes spatial and temporal runoff data to find combinations of locations that vary consistently			
318	through time, and combinations of time, that vary in a spatially consistent manner (e.g.,			
319	Preisendorfer 1998; Sparnocchia et al. 2003). The major axes of the EOF analysis identify			
320	variations in the catchment outlet runoff in both time and space.			
321	The eigenvalues of the EOFs can be correlated with the temporal data, and the			
322	eigenvectors with spatial locations, to identify how the EOF describes change in runoff in time			
323	and across space. Furthermore, the temporal patterns embedded in the EOFs can, via cross-			
324	correlation analysis, be related to larger scale atmospheric-ocean indices (Mernild et al. 2015), in			
325	this case the North Atlantic Oscillation (NAO) and Atlantic Multi-decadal Oscillation (AMO).			

(1)

326	The NAO and AMO indices were obtained from Hurrell and van Loon (1997) and Kaplan et al.				
327	(1998), respectively. Theis latter analysis enables to link changefluctuations in can generate				
328	hypotheses about whether, for example, NAO or AMO towith GrIS catchment mass-loss and				
329	outlet river runoff leads by some years changes in mass balance and runoff (the lag in the cross-				
330	correlation analyses tells us these details).				
331	We focused on the NAO and AMO for several reasons. NAO is estimated based on the				
332	mean sea-level pressure difference between the Azores High and Icelandic Low. NAO is a large-				
333	scale atmospheric circulation index, and is therefore a good measure of airflow and jet-stream				
334	moisture transport variability (e.g., Overland et al. 2012) from the North Atlantic onto Northwest				
335	Europe (Dickson et al. 2000; Rogers et al. 2001). According to Hurrell (1995), a positive NAO is				
336	associated with cold conditions in Greenland, while a negative NAO corresponds to mild				
337	conditions. AMO is a large-scale oceanic circulation index, and an expression of fluctuating				
338	mean sea-surface temperatures in the North Atlantic (Kaplan et al. 1998). For example, Arctic				
339	land surface air temperatures are highly correlated with the AMO (Chylek et al. 2010), and the				
340	overall annual trend in the mean GrIS melt extent correlates with the smoothed trends of the				
341	AMO (Mernild et al. 2011). A positive AMO indicates relatively high surface air temperature				
342	and less precipitation at high latitudes (relatively high net mass balance-loss), whereas a negative				
343	AMO indicates relatively low surface air temperature and a higher precipitation (relatively low				
344	net mass balance loss) (Kaplan et al. 1998).				

4. Results and discussion

4.1 GrIS surface water balance conditions

348	Figure 2 presents the SnowModel ERA-I simulated 35-year mean spatial GrIS surface			
349	MAAT, precipitation, surface melt, evaporation and sublimation, ablation, and SMB. Overall, all			
350	variables follow the expected spatial patterns. For example, the lowest MAAT occurred at the			
351	GrIS interior (\leq -27°C) and highest values were at the margin (\geq 0°C). Also, the lowest annual			
352	mean precipitation values were situated in the northern half of the GrIS interior (≤ 0.25 m water			
353	equivalent (w.e.)), while peak values occurred in the southeastern part of Greenland (\geq 3.5 m			
354	w.e.). The lowest annual mean surface melt values (≤ 0.0625 m w.e.) were present at the upper			
355	parts of the GrIS and vice versa at the lowest margin areas (\geq 5.0 m w.e.). The 35-year mean			
356	SMB illustrated net loss at the lowest elevations of $\geq 3.54.0$ m w.e. and net gain at the highest			
357	elevations of between 0 and 0.25 m w.e. The peak net gain of $\geq 3.5-0$ m w.e. occurred in			
358	Southeast Greenland, which matches what is generally expected from the overall precipitation			
359	pattern over the GrIS. The SnowModel ERA-I spatial simulated 35-year mean distributions			
360	generally agree with previous studies by Fettweis et al. (2008, 2017), Hanna et al. (2011), and			
361	Box (2013), within the different temporal domains covered by these studies.			
362	On GrIS section-scale (Table 1), a clear variability between the six sections (Figure 1b)			
363	occurred for the surface mass-balance components (Equation 1) for both the 35-year mean and			
364	the last decade. On average, most precipitation fell in the Southeast Greenland sector of 242.6 \pm			
365	39.1 Gt yr ⁻¹ (where, \pm equals one standard deviation). This was likely due to the cyclonicity			
366	between Iceland and Greenland, which typically sets up a prevailing easterly airflow towards the	F		
367	steep slopes of the southern coast of Greenland, generating orographic enhancement southeastern			
368	coast of Greenland that includes orographic enhancement (Hanna et al. 2006; Bales et al. 2009).			
369	The lowest 35-year mean precipitation of 31.1 ± 5.4 Gt yr ⁻¹ occurred in the dry North Greenland.			
370	For the last decade, the mean annual precipitation was 232.4 \pm 25.2 Gt yr^{-1} and 30.9 \pm 5.1 Gt yr^{-1}			

Formatted: Not Highlight

371	for Southeast Greenland and North Greenland, respectively. This regional distribution is in		
372	accordance with the study on Greenlandic precipitation patterns by Mernild et al. (2015),		
373	although their analysis was based on observed precipitation from 2001–2012. Further, in Mernild		
374	et al. (20187; Figure 6b), the mean ERA-I grid point precipitation (located closest to the center of		
375	the Kangerlussuaq watershed) was tested against Kangerlussuaq SnowModel ERA-I downscaled		
376	mean catchment precipitation conditions; this analysis indicated no significant difference		
377	between the two datasets.		
378	The ratio between rain and snow precipitation varied from <1 % (Northeast section) to 5		
379	% (Southwest section), averaging 2 % and indicating that rain only played a minor role in the		
380	GrIS precipitation budget (Table 1). For the last decade, the average rainfall-to-snowfall ratio		
381	was 3 % for the entire GrIS.		
382	For the GrIS, the overall precipitation was 653.9 \pm 66.4 Gt yr $^{-1}$ (35 years) and 645.0 \pm		
383	39.0 Gt yr ⁻¹ (2005–2014), which is within the lower range of previously reported values		
384	(Fettweis et al. 2017; Table 1). For example, in MAR (Modèle Atmosphérique Régional; v.		
385	3.5.2) the simulated precipitation was between <u>642.0 and 747.0 642747</u> .0 Gt yr ⁻¹ (1980–1999;		
386	snowfall plus rainfall) forced with a variety of forcings, e.g., ERA-40 (Uppala et al. 2005), ERA-		
387	I (Dee et al. 2011), JRA-55 (Japanese 55-year Reanalysis; Kobayashi et al. 2015).		
388	As shown by Fettweis et al. (2017), precipitation is the parameter with the largest		
389	uncertainty due to the spread among the different forcing datasets. Also, systematic observational		
390	errors may occur during precipitation monitoring, such as wind-induced undercatch, because of		
391	turbulence and wind field deformation from the precipitation gauge, wetting losses, and trace		
392	amounts (e.g., Goodison et al. 1989; Metcalfe et al. 1994; Yang et al. 1999; Rasmussen et al.		
393	2012). This highlights the importance of accurately representing precipitation for estimating the		
I			

394 energy An understanding of precipitation conditions and uncertainties are therefore highly 395 relevant for estimating the energy and moisture balances, surface albedo, GrIS SMB conditions, 396 and, in a broader perspective, the GrIS's contribution to sea-level changes. 397 Besides precipitation, melt (including extent, intensity, and duration) and ablation are 398 other relevant parameters for estimation and understanding GrIS SMB. surface conditions, where 399 sSurface melt can influence albedo, as wet snow (including extent, intensity, and duration) is 400 relevant for SMB conditions. An altered surface melt regime can influence surface albedo, 401 because wet snow absorbs up to three times more incident solar energy than dry snow (Steffen 402 1995), and the energy and moisture balances. Changes in the amount of meltwater also affect 403 total runoff, but also ice dynamics, and subglacial lubrication and sliding processes (Hewitt 404 2013). Surface melt varied on a section-scale, for the 35-year mean, from 57.2 ± 24.1 Gt yr⁻¹ in 405 North Greenland to 155.2 ± 48.4 Gt yr⁻¹ in Southwest Greenland (Table 1). The average for the 406 407 entire GrIS was 542.9 ± 175.3 Gt yr⁻¹ (Table 1). During the last decade, the surface melt for the GrIS had increased to 713.4 \pm 138.6 Gt yr⁻¹, varying from 75.9 \pm 26.9 Gt yr⁻¹ in the Nnortheast 408 409 of Greenland to 202.4 ± 39.2 Gt yr⁻¹ in Southwest Greenland. This is an increase of 31 % for the 410 last decade compared to the entire simulation period, which was likely due to increasing MAAT 411 (assuming an empirical relationship between air temperature (sensible heat) and surface melt 412 rates) throughout the simulation period (Hanna et al. 2012). 413 The GrIS ablation patterns varied as expected between the northern and southern 414 southwestern sections from $50.265.7 \pm 15.622.6$ Gt yr⁻¹ in the north to $132.998.1 \pm 29.242.2$ Gt yr⁻¹ in the south<u>west</u>. For the entire GrIS, the mean annual ablation was $\frac{400.9530.3}{530.3} \pm \frac{106.2153}{500.3}$ 415 Gt yr⁻¹ and $\frac{687.8510.0}{2} \pm \frac{118.881.7}{2}$ Gt yr⁻¹ for the 35-year period and 2005–2014, respectively. 416

417	This was equal to an increase of $\frac{30.28}{28.0}$ %, which was also reflected in the differences in			
418	variability from 83.362.3 ± 24.717.0 Gt yr ⁻¹ in North Greenland to 175.1127.3 ± 35.223.9 Gt yr ⁻¹			
419	in Southwest Greenland (Table 1).			
420	Runoff is a part of the ablation budget and therefore must be quantified to understand			
421	GrIS mass balance changes. Runoff varied from $\frac{50.034.5}{22.715.7}$ Gt yr ⁻¹ in North Greenland			
422	to $\frac{112.677.7}{\pm} \pm \frac{41.828.9}{\pm}$ Gt yr ⁻¹ in South <u>west</u> Greenland, averaging $\frac{418.1288.7}{\pm} \pm \frac{151.1104.3}{\pm}$ Gt			
423	yr ⁻¹ for the 35-year mean period <u>over the GrIS</u> . For 2005–2014, the mean runoff was $\frac{73.7395.4}{73.7395.4} \pm$	_		
424	119.882.7 Gt yr ⁻¹ ; a 37 % increase (Table 1). For the period 1991–2015 van den Broeke et al.			
425	(2016) estimated on average the GrIS runoff to 363 ± 102 Gt yr ⁻¹ . This-The increase in			
426	SnowModel simulated GrIS runoff over time confirms the results from previous studies (e.g.,			
427	van den Broeke et al. 2016, Wilton et al. 2016). On a regional-scale, runoff varied from 67.646.6	_		
428	$\pm \frac{25.017.3}{100}$ Gt yr ⁻¹ in North Greenland to $\frac{154.4106.6}{100.6} \pm \frac{36.325.0}{100}$ Gt yr ⁻¹ in Southwest Greenland.			
429	The simulated section runoff distribution was largely in agreement with trends noted by Lewis			
430	and Smith (2009) and Mernild and Liston (2012). The section runoff variability roughly followed			
431	the precipitation patterns, where sections with high precipitation equaled low runoff (e.g., in			
432	Southeast Greenland) and vice versa (e.g., in Southwest Greenland). More specifically, GrIS			
433	snowpack retention and refreezing processes suggest that sections with relatively high surface			
434	runoff were synchronous with relatively low end-of-winter snow accumulation because more			
435	meltwater was retained in the thicker, colder snowpack, reducing and delaying runoff to the			
436	internal glacier drainage system (e.g., Hanna et al. 2008). However, in maritime regions such as			
437	Southeast Greenland, high surface runoff can result from abnormally wet conditions (Mernild et			
438	al. 2014). Furthermore, runoff was negatively correlated to surface albedo and snow cold			
439	content, as confirmed by Hanna et al. (2008) and Ettema et al. (2009).			

-	Formatted: Not Highlight
-	Formatted: Not Highlight
1	Formatted: Not Highlight
Ľ	Formatted: Not Highlight
Υ	Formatted: Not Highlight

Formatted: Not Highlight

Formatted: Not Highlight

Formatted: Not Highlight Formatted: Not Highlight Formatted: Not Highlight

440	For the dry North and Northeast Greenland (Table 1), the relatively low end-of-winter			
441	snowpack melted relatively fast during spring warm-up. After the winter snowpack had ablated,			
442	the ice surface albedo promoted a stronger radiation-driven ablation and surface runoff, owing to			
443	the lower ice albedo. For the wetter Southeast Greenland (Table 1), the relatively high end-of-			
444	winter snow accumulation, combined with frequent summer snow precipitation events, kept the			
445	albedo high. Therefore, in that region the snowpack persists longer compared to it generally took			
446	longer time to melt the snowpack compared to the drier parts of the GrIS before ablation started			
447	to affect the underlying glacier ice.			
448	Regarding specific runoff (runoff volume per unit drainage area per time, L s ^{-1} km ^{-2} ; to			
449	convert to mm yr ⁻¹ , multiply by 31.6), maximum values of $\frac{16.711.5}{10.711.5}$ L s ⁻¹ km ⁻² and $\frac{22.915.8}{10.71100}$ L s ⁻¹			
450	km ⁻² were seen in Southwest Greenland for the mean 35-year and 2005–2014 periods,			
451	respectively. The minimum values of $4.43.0$ L s ⁻¹ km ⁻² and $6.24.3$ L s ⁻¹ km ⁻² for the mean 35-year			
452	and 2005–2014 periods, respectively, occurred in Northeast Greenland (Table 2). On average for			
453	the GrIS, the corresponding specific runoffs were $\frac{8.15.6}{1.5}$ L s ⁻¹ km ⁻² and $\frac{11.17.6}{1.5}$ L s ⁻¹ km ⁻² ,			
454	respectively, which are within the range of our previous study previous studies (e.g., Mernild et			
455	al. 2008). Specific runoff is a valuable tool for comparing runoff on regional and catchment			
456	scales, where regions and catchments varyies in size. and it can also be used to quantifying the			
457	absolute runoff contributions from increasing runoff and increasing melt area extent. The			
458	difference in specific runoff between the two periods indicates that the increase in runoff has			
459	increased faster than the increase in melt area extent.			
460	Refreezing and retention in the snow and firn packs were defined as rain plus surface			
461	melt minus runoff (see Section 2.4). For the GrIS, the 35-year mean refreezing and retention was			
462	estimated to be $\frac{25 \cdot 49}{25 \cdot 49}$ % ($\frac{140.1269.9}{269.9} \pm \frac{35.577.4}{577.4}$ Gt yr ⁻¹), and it was $\frac{2245}{2245}$ % ($\frac{158.4318.0}{218.0} \pm \frac{110}{218}$			

463	34.462.8 Gt yr ⁻¹) for 2005–2014 (Table 1). Hence, refreezing and retention provided an			
464	important quantitative contribution to the evolution of snow and firn layers, ice densities, snow			
465	temperatures (cold content or snow temperatures below freezing), and moisture available for			
466	runoff (Liston and Mernild 2012). The SnowModel ERA-I refreezing and retention simulations			
467	were within the order of magnitude (~45 %) -produced by the single layer snowpack model used			
468	by Hanna et al. (2008), but lower than the 45 % simulated by Noël et al. (2017) and Steger et al.			
469	(2017), where Steger et al. (2017) showed values in the range between 216–242 Gt yr ⁻¹ (1960–			
470	2014). Ettema et al. (2009). Vizcaino et al. (2013), however, indicated refreezing values			
471	representing 35% of the available liquid water (the sum of rain and melt). On the regional-scale			
472	for the GrIS, the 35-year mean refreezing and retention value varied from $\frac{1340}{13}$ % in North			
473	Greenland to 5730 % in both Southeast and Southwest Greenland. For 2005–2014, the values			
474	were <u>12-39</u> % for North Greenland and <u>3257</u> % for Southeast Greenland (Table 1), indicating a			
475	clear variability in refreezing and retention between the different regions.			
476	In Figure 3a, the time series of GrIS mean annual refreezing and retention shows an			
477	increasing trend (significant) and variability ranging from -0.05-07 m w.e. (1992) to -0.1429 m			
478	w.e. (2012), with an annual mean value of 0.0916 ± 0.042 m w.e. In Figure 3b, the spatial 35-			
l 479	year mean GrIS refreezing and retention is presented together with values from 1992 and 2012,			
480	the minimum and maximum years, respectively. The mean spatial distribution highlights			
481	minimal refreezing and retention at the GrIS interior, whereas areas with low elevation had			
482	values above 0.758 m w.e. in southern part of the GrIS. For the minimum year 1992, the pattern			
483	was more pronounced with no refreezing and retention in the interior. The maximum year 2012			
484	on the other hand had refreezing and retention at the interior (between 0 and 0.025 m w.e.)			
485	(Figure 3b). This was likely due to the extreme GrIS surface melt event throughout July 2012			

1	Formatted: Font: (Default) Times New Roman, 12 pt, Not Highlight
1	Formatted: Font: (Default) Times New Roman, 12 pt, Not Highlight
-	Formatted: Font: (Default) Times New Roman, 12 pt, English (United States), Not Highlight
-1	Formatted: Font: (Default) Times New Roman, 12 pt

480	(e.g., Ngmem et al. 2012; Hanna et al. 2014). when divided into regions and catchments, the		
487	2012 simulated refreezing and retention showed a clear separation between highest values in		
488	Southwest Greenland and lowest values in Northeast and East Greenland. Because here,		
489	refreezing and retention were estimated as the sum of rain and melt minus the sum of runoff, this		
490	SnowModel analysis did not provide a detailed description of the physical mechanisms and		
491	conditions (beyond the standard SnowModel snowpack temperature and density evolution)		
492	leading to, e.g., non-linearities in snow and firn meltwater retention (Brown et al. 2012).		
493	However, while likely an oversimplification of the natural system, this quantitative estimation of		
494	refreezing and retention is an important step forward, and improves our runoff and the associated		
495	SMB estimates. A model that does not include refreezing and retention processes in its snow and		
496	firn evolution calculations, and the associated impacts on SMB, will introduce additional		
497	uncertainty in it calculations of GrIS SMB and its contribution to sea-level change.		
498	The GrIS SMB for the 35-year mean was $\frac{123.7253.4}{253.4} \pm \frac{163.2121.4}{2121.4}$ Gt yr ⁻¹ , indicating a		
499	negative sea-level contribution, and $\frac{-42.9135.5}{-133.598.2}$ Gt yr ⁻¹ for 2005–2014, indicating a		
500	trend towards a less positive SMB value sea level contribution (Table 1). This change in SMB		
501	between the two periods was mainly due to an increase in runoff of 155.6106.7 Gt yr ⁻¹ , where	Formatted: Not Highlight	
502	other water balance components showed relatively lesser increases. For comparison e.g.,	Formatted: Danish	
503	Vizcaino et al. (2013), Noël et al. (2016), and Wilton et al. (2016) have estimated the mean GrIS	Formatted: Not Highlight	
504	SMB to be 359.3 ± 120 Gt yr ⁻¹ (1960–2005), 349.3 Gt yr ⁻¹ (1958–2015), and 382 ± 78 Gt yr ⁻¹		
505	(1979–2012), respectively. For the GrIS, the 35-year mean SMB was negative for the northern		
506	region s, in balance for northeast Greenland , and positive for all other the southern regions and		
507	only positive for the southeastern, southwestern, and western southeastern sectors for 2005-2014		

508	(Table 1). Overall, the SMB patterns were highly controlled by the distribution of precipitation	
509	and runoff.	
510	The linear trends for the different water balance components are shown in Table 1. For	
511	the 35-year period, only-significant trends occurred for rain, surface melt, runoff, ablation,	
512	refreezing and retention, and SMB (highlighted in bold in Table 1), where all except SMB	
513	showed positive trends (note that SMB loss is calculated as negative by convention). In Figure 4,	
514	selected GrIS parameters are illustrated, where, for example, SMB showed a negative trend of -	
515	9966.2 Gt decade ⁻¹ (significant), heading towards a zero-less positive balance at the end of the	
516	simulation period_(Figure 4). For 2005–2014, however, the SMB trend was positive 24.216.6 Gt	Formatted: Not Highlight
517	decade ⁻¹ (insignificant). Similar positive SMB trends have previously been shown in studies by	
518	Hanna et al. (2011), Tedesco et al. (2014), Fettweis et al., (2008, 2011, 2013) and Wilton et al.	
519	(2016), even though variabilities in mean SMB occur between the different studies. Wilton et al.	
520	(2016) estimated the GrIS SMB to be $\sim \frac{100 - 150}{100}$ Gt yr ⁻¹ for 2002–2012 in the late 2000s and	Formatted: Not Highlight
520 521	(2016) estimated the GrIS SMB to be $\sim \frac{100 - 150}{200}$ Gt yr ⁻¹ for 2002–2012 in the late 2000s and ~100 Gt for the years 2010–2012. Further, for 2005–2014, air temperature, precipitation, surface	Formatted: Not Highlight
		Formatted: Not Highlight
521	\sim 100 Gt for the years 2010–2012. Further, for 2005–2014, air temperature, precipitation, surface	Formatted: Not Highlight
521 522	<u>~100 Gt for the years 2010–2012</u> . Further, for 2005–2014, air temperature, precipitation, surface melt, sublimation and evaporation, and runoff trends were all negative (insignificant) (Figure 4	Formatted: Not Highlight
521 522 523	<u>~100 Gt for the years 2010–2012</u> . Further, for 2005–2014, air temperature, precipitation, surface melt, sublimation and evaporation, and runoff trends were all negative (insignificant) (Figure 4	Formatted: Not Highlight
521 522 523 524	<u>~100 Gt for the years 2010–2012</u> . Further, for 2005–2014, air temperature, precipitation, surface melt, sublimation and evaporation, and runoff trends were all negative (insignificant) (Figure 4 and Table 1).	Formatted: Not Highlight
521 522 523 524 525	 ~100 Gt for the years 2010–2012. Further, for 2005–2014, air temperature, precipitation, surface melt, sublimation and evaporation, and runoff trends were all negative (insignificant) (Figure 4 and Table 1). 4.2 Greenland spatiotemporal runoff distribution and EOF analysis 	Formatted: Not Highlight
521 522 523 524 525 526	 ~100 Gt for the years 2010–2012. Further, for 2005–2014, air temperature, precipitation, surface melt, sublimation and evaporation, and runoff trends were all negative (insignificant) (Figure 4 and Table 1). 4.2 Greenland spatiotemporal runoff distribution and EOF analysis The Greenland 35-year simulated catchment outlet runoff and specific runoff distribution 	Formatted: Not Highlight
521 522 523 524 525 526 527	 ~100 Gt for the years 2010–2012. Further, for 2005–2014, air temperature, precipitation, surface melt, sublimation and evaporation, and runoff trends were all negative (insignificant) (Figure 4 and Table 1). 4.2 Greenland spatiotemporal runoff distribution and EOF analysis The Greenland 35-year simulated catchment outlet runoff and specific runoff distribution are shown in Figure 5. Each circle represents the volume (individual catchment outlet	Formatted: Not Highlight

531	(Figure 5b). Catchment runoff variability depends on the regional climate conditions, land-ice	
532	area cover, elevation range (including hypsometry) within each catchment, and catchment area.	
533	Here the length in runoff season varied from two to three weeks in the north to four to six	
534	months in the south. The median annual catchment runoff and specific runoff were $0.025-018$ ×	
535	10^9 m ³ and <u>9.16.4</u> L s ⁻¹ km ⁻² , respectively. The median specific runoff value is in agreement with	
536	previous studies (e.g., Mernild et al. 2010a). Further, the variance in catchment runoff and	
537	specific runoff varied from <0.0001 to $\frac{87.3-1}{1} \times 10^9 \text{ m}^3 \text{ and } <0.01 \text{ to } \frac{19.315.3}{10.315.3} \text{ L s}^{-1} \text{ km}^{-2}$,	
538	respectively, with a median variance of $0.006-004 \times 10^9$ m ³ and $2.4-1.8$ L s ⁻¹ km ⁻² (Figures 4a-5a)	
539	and 4b5b). Regarding the linear trend in annual runoff, both increasing and decreasing trends	
540	occurred over the 35 years. In total, 81 % (19 %) of all catchments had increasing (decreasing)	
541	runoff trends over the 35 years (all of the decreasing trends were insignificant). For western	
542	Greenland catchments, only increasing runoff trends occurred (Figures <u>54a and 4b5b</u>). The	
543	runoff and specific runoff trends varied among catchments from -0.09-06 to $\frac{5.43.8}{5.43.8} \times 10^9$ m ³	
544	decade ⁻¹ and from $-\frac{1.30.9}{1.30.9}$ to $\frac{12.99.0}{1.20}$ L s ⁻¹ km ⁻² decade ⁻¹ , respectively, with a median value of	
545	$\leq 0.001 \times 10^9 \text{ m}^3 \text{ and } 0.5-4 \text{ L s}^{-1} \text{ km}^{-2} \text{ decade}^{-1} \text{ (Figures } 4a-5a \text{ and } 4b-5b).$	
546	The EOF analysis of runoff returned three axes that captured $\frac{2526}{187}$, 187 and $\frac{12-14}{12}$ % of	
547	the variation-variance in runoff from the simulated SnowModel ERA-I annual catchment runoff	
548	(Figure 6a and S1). Following several significance tests, only EOF1 captured significant	
549	variation. In Figure 6a, the temporal pattern in EOF1, with a 5-year running mean, reveals a	
550	pattern of positive running mean values for the first two decades of the simulation period (1979-	
551	1999), and negative values hereafter (2000-2014). When EOF1 is positive, Greenland runoff is	
552	relatively low and vice versa (Figure $7\underline{6b}$). Overall, this indicates a positive temporal trend in	
553	runoff; as EOF1 goes downdecreases, runoff goes upincreases. While not significant based on	

Formatted: Not Highlight

Formatted: Not Highlight
Formatted: Not Highlight

554 EOF test metrics, EOF2 and EOF3 patterns are less pronounced and in anti-phase to each other 555 (Figure <u>6</u><u>81</u>). The temporal cycle of EOF patterns has associated spatial elements, derived from the 556 557 eigenvectors (Figure <u>86c and S2</u>). The eigenvectors in Figures <u>8-6c and S2</u> reveal the spatial 558 pattern as a correlation between temporal trends captured by the EOFs and each individual 559 Greenland catchment. These data indicate that the temporal trend of increasing runoff captured in 560 EOF1 is shared by nearly all catchments in Greenland (Figure 6c). Because decreasing EOF1 561 values indicate increasing runoff, a negative correlation with EOF1 in space indicates increasing 562 runoff. Catchment numbers greater than #2500 (Figure 86c) are located in Southeast Greenland 563 and are in contrast to this. These catchments (~-20 % of the catchments in Southeast Greenland) 564 experience a distinct out-of-phase pattern of runoff compared to the Southeast Greenland runoff 565 and the overall Greenland conditions for the last 35 years. 566 This difference between Southeast Greenland and the rest of Greenland supports previous 567 findings (e.g., Lenaerts et al. 2015) proposing that variabilities in runoff are not only influenced 568 by melt conditions, but also by precipitation patterns (primarily the end-of-winter snow 569 accumulation), where high precipitation equals low runoff conditions such as in Southeast 570 Greenland. Furthermore, patterns were also detected to be associated to EOF2 and EOF3 571 (Figures 8b and 8cS2). These EOF2 and EOF3 patterns differed from EOF1, and they were 572 associated with a different geographic breakdown, where both positive and negative correlations 573 were seen for all regions. The physical mechanism behind these distributions is not clear. 574 There were strong correlations between the EOF1 and regional climate patterns expressed 575 by the AMO and NAO (Figure 97). We found a negative correlation between EOF1 and AMO (r = 0.68; significant, p<0.01), suggesting that stronger AMO is associated with lower EOF1 values 576

577	which are indicative of higher runoff (Figure $\frac{9a7a}{2}$). In contrast, we found a positive correlation	
578	between EOF1 and NAO ($r = 0.40$; significant, $p < 0.01$), suggesting that stronger NAO values	
579	are associated with higher EOF1 values which are indicative of lower runoff (Figure 79b).	
580	Additional insight into the time frame over which these correlations arises is seen in Figure 9.	
581	For AMO, the lags are centered near zero, suggesting an immediate, real time correlation	
582	between AMO and runoff. In contrast, the strongest lag in the NAO-EOF1 relationships is at -2,	
583	suggesting a short delay in effects. Lags of 0 and -2 are not large, indicating that overall, large-	
584	scale natural variability in AMO and NAO are closely associated in time to catchment runoff	
585	variations in Greenland.	
586	Mernild et al. (2011) emphasized that trends in AMO (smoothed) was analogous to trends	
587	in GrIS melt extent, where increasing AMO equaled increasing melt extent, and vice versa.	
588	Further, Chylek et al. (2010) showed that the Arctic detrended temperatures were highly	
589	correlated with AMO. However, this issue requires further investigation to establish the details	
590	of, and the mechanisms behind, the interrelationships.	
591		
592	5. Conclusions	
593	Greenland catchment outlet runoff is rarely observed and studied, although quantification	
594	of runoff from Greenland is crucial for our understanding of the link between a changing climate	
595	and changes in the cryosphere, hydrosphere, and atmosphere. We have reconstructed the impact	
596	of changes in climate conditions on hydrological processes at the surface of the GrIS for the 35-	

сс /**т**

• . •

1...

6---

597 year period 1979–2014. We have also simulated the Greenland spatiotemporal distribution of

598 refreezing and retention, and freshwater runoff to surrounding seas by merging SnowModel (a

spatially distributed meteorological, full surface energy balance, snow and ice evolution model)

600	with HydroFlow (a linear-reservoir run-off routing model) forced by ERA-I atmospheric forcing
601	data. Before simulating the individual catchment runoff to downstream areas, the catchment
602	divides and flow networks were estimated, yielding a total of 3,272 catchments in Greenland.
603	For the GrIS, the simulated spatial distribution and time series of surface hydrological
604	processes were in accordance with previous studies, although precipitation and SMB were in the
605	lower range of these studies. Overall, Greenland has warmed and the runoff from Greenland has
606	increased in magnitude. Specifically, 81 % of the catchments showed increasing runoff trends
607	over the simulation period, with relatively high and low mean catchment runoff from the
608	southwestern and northern parts of Greenland, respectively. This indicates distinct regional-scale
609	runoff variability in Greenland. Runoff variability with near zero lag time suggests a real-time
610	covariation between the pattern in EOF1 and changes in AMO and NAO. This indicates suggests
611	that <u>runoff variations are related to</u> large-scale natural variability <u>of in</u> AMO and NAO is closely
612	related to catchment runoff variations-in Greenland. The physical mechanism behind this
613	phenomenon is unclear, unless it is a response to "long-term" cycles in AMO and NAO.
614	The simulated runoff can be used as boundary conditions in ocean models to understand
615	hydrologic links between terrestrial and marine environments in the Arctic. Changes and
616	variability in runoff from Greenland are expected to play an essential role in the hydrographic
617	and circulation conditions in fjords and the surrounding ocean under a changing climate.
618	

619 Acknowledgements

620

621

We thank the Nansen Environmental and Remote Sensing Center (NERSC) and Japan Society for the Promotion of Science (JSPS) for financial support under project number S17096, Formatted: Indent: First line: 0.5"

.

622	and the Western Norway University of Applied Sciences (HVL) for travel funds. All model data
623	requests should be addressed to the first author. The authors have no conflict of interest.
624	
625	
626	
627	
628	
629	
630	
631	
632	
633	
634	
635	
636	
637	
638	
639	
640	
641	
642	
643	
644	
645	
646	
647	
648	
649	
650	
651	

2 and the Western Norway University of Applied Sciences (HVL) for travel funds. All mo	del data
--	----------

652	References
653	AMAP, 2017. Snow, Water, Ice and Permafrost. Summary for Policy-makers. Arctic Monitoring
654	and Assessment Programme (AMAP), Oslo, Norway, 20 pp.
655	
656	Bales, R. C., Guo, Q., Shen, D., McConnell, J. R., Du, G., Burkhart, J. F., Spikes, V. B., Hanna,
657	E., and Cappelen, J. 2009. Annual accumulation for Greenland updated using ice core data
658	developed during 2000–2006 and analysis, of daily coastal meteorological data. J. Geophys.
659	Res., 114, D06116, doi:10.1029/2008JD011208.
660	
661	Bamber, J., van den Broeke, M., Ettema, J., Lenaerts, J., and Rignot, E., 2012. Recent large
662	increases in freshwater fluxes from Greenland into the North Atlantic. Geophys. Res. Letts., 39,
663	L19501, doi:10.1029/2012GL052552.
664	
665	Banwell, A., Hewitt, I., Willis, I., and Arnold, N. 2016. Moulin density controls drainage
666	development beneath the Greenland ice sheet. J. Geophys. Res. Earth Surf., 121, 2248–2269.
667	
668	Bartholomew, I., Nienow, P., Mair, D., Hubbard, A., King, M. A., and Sole, A. 2010. Seasonal
669	evolution of subglacial drainage and acceleration in a Greenland outlet glacier. Nat. Geosci.,
670	3(6), 408–411.
671	
672	Bartholomew, I., Nienow, P., Sole, A., Mair, D., Cowton, T., and King, M. 2012. Short-term
673	variability in Greenland ice sheet motion forces by time-varying meltwater drainage:
674	Implications for the relationship between subglacial drainage system behavior and ice velocity. J.
675	Geophys. Res., 117, F03002, doi:10.1029/2011JF002220.
676	
677	Beamer, J. P., Hill, D. F., Arendt, A., and Liston, G. E. 2016. High-resolution modeling of
678	coastal freshwater discharge and glacier mass balance in the Gulf of Alaska watershed. Water
679	Resour. Res., 52, 3888–3909, doi:10.1002/2015WR018457.
680	
681	Bliss, A., Hock, R., and Radić, V. 2014. Global response of glacier runoff to twenty-first century
682	climate change, J. Geophys. Res. Earth Surf-, 119, doi:10.1002/2013JF002931.

683	
684	Box, J. E. 2013. Greenland ice sheet mass balance reconstruction, Part II: Surface mass balance
685	(1840-2010). Journal of Climate, 26, 6974-6989, doi:10.1175/JCLI-D-12-00518.1.
686	
687	Box, J. E., Cappelen, J., Chen, C., Decker, D., Fettweis, X., Mote, T., Tedesco, M., van de Wal,
688	R. S. W., and Wahr, J. 2012. Greenland Ice Sheet. In Jeffries, M. O., Richter-Menge, J. A., and
689	Overland, J. E. (Eds). Arctic Report Card 2012, http://www.arctic.noaa.gov/reportcard.
690	
691	Brown, J., Bradford, J., Harper, J., Pfeffer, W. T., Humphrey, N., and Mosley-Thompson, E.,
692	2012. Georadar-derived estimates of firn density in the percolation zone, western Greenland ice
693	sheet. Journal of Geophysical Research, 117, F01011, doi:10.1029/2011JF002089.
694	
695	Carrivick, J. L., and Quincey, D. J., 2014. Progressive increase in number and volume of ice-
696	marginal lakes on the western margin of the Greenland Ice Sheet. Global and Planetary Change,
697	116, 156-163, doi:10.1016/j.gloplacha.2014.02.009.
698	
699	Chen, X., Zhang, X., Church, J. A., Watson, C. S., King, M. A., Monselesan, D., Legresy, B.,
700	and Harig C. 2017. The increasing rate of global mean sea-level rise during 1993-2014. Nature
701	Climate Change, doi:10.1038/nclimate3325.
702	
703	Chu, W., Creyts, T., and Bell, R. E., 2016. Rerouting of subglacial water flow between
704	neighboring glaciers in West Greenland. J. Geophys. Res. Earth Surf., 121, 925–938.
705	
706	Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A.,
707	Merrifield, M. A., Milne, G. A., Nerem, R. S., Nunn, P. D., Payne, A. J., Pfeffer, W. T.,
708	Stammer, D., and Unnikrishnan, A. S. 2013. Sea Level Change. In: Climate Change 2013: The
709	Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the
710	Intergovernmental Panel on Climate Change [Stocker, T.F., Qin, D., Plattner, GK., Tignor, M.,
711	Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and, Midgley, P.M. (eds.)]. Cambridge
712	University Press, Cambridge, United Kingdom and New York, NY, USA.
713	

- 714 Chylek, P., C.K. Folland, G. Lesins and M.K. Dubey. 2010. Twentieth century bipolar seesaw of
- the Arctic and Antarctic surface air temperatures. Geophys. Res. Lett., 37(8), L08703,
- 716 doi:10.1029/2010GL042793.
- 717
- Cuffey, K. M. and Paterson, W. S. B. 2010. The Physics of Glaciers. Fourth Edition. Elsevier,pp. 693.
- 720
- 721 Cullather R. I., Nowicki, S. M. J., Zhao, B., and Koenig, L. S. 2016. A Characterization of
- 722 Greenland Ice Sheet Surface Melt and Runoff in Contemporary Reanalyses and a Regional
- 723 Climate Model. Front. Earth Sci., 4(10), doi:10.3389/feart.2016.00010.
- 724
- 725 Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U.,
- 726 Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L.,
- 727 Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy,
- 728 S. B., Hersbach, H., Holm, E. V., Isaksen, L., Kållberg, P., Kohler, M., Matricardi, M., McNally,
- 729 A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C.,
- 730 Thepaut, J.-N., Vitart, F. 2011. The ERA-Interim reanalysis: configuration and performance of
- 731 the data assimilation system. Q. J. R. Meteorol. Soc., 137, 553–597, doi:10.1002/qj.828.
- 732
- 733 Dickson, R. R., Osborn, T. J., Hurrell, J. W., Meincke, J., Blindheim, J., Adlandsvik, B., Vinje,
- T., Alekseev, G., and Maslowski, W. 2000. The Arctic Ocean response to the North Atlantic
- 735 Oscillation. Journal of Climate, 13, 2671–2696.
- 736
- Finderlin, E. M., Howat, I. M., Jeong, S., Hoh, M.-J., van Angelen, J. H., and van den Broeke, M.
 R. 2014. An improved mass budget for the Greenland ice sheet. Geophysical Research Letters,
 41(3), 866–872.
- 740
- 741 Ettema, J., van den Broeke, M. R., van Meijgaard, E., van den Berg, W. J., Bamber, J. L., Box, J.
- 742 E., and Bales, R. C. 2009. Higher surface mass balance of the Greenland ice sheet revealed by
- high-resolution climate modeling. Geophysical Research Letters, 36, L12501.
- 744

745	Everett, A., Murray, T., Selmes, N., Rutt, I. C., Luckman, A., James, T. D., Clason, S., O'Leary,
746	M., Karunarathna, H., Moloney, V., and Reeve, D. E. 2016. Annual down-glacier drainage of
747	lakes and water-filled crevasses at Helheim Glacier, southeast Greenland. J. Geophys. Res. Earth
748	Surf., 121, 1819–1833.
749	
750	Fettweis, X., Box, J. E., Agosta, C., Amory, C., Kittel, C., Lang, C., van As, D., Machguth, H.,
751	and Gallée, H., 2017. Reconstructions of the 1900-2015 Greenland ice sheet surface mass
752	balance using the regional climate MAR model. The Cryosphere, 11, 1015–1033, doi:10.5194/tc-
753	11-1015-2017.
754	
755	Fettweis, X., Franco, B., Tedesco, M., van Angelen, J. H., Lenaerts, J. T. M., van den Broeke, M.
756	R., and Gallée, H., 2013. Estimating the Greenland ice sheet surface mass balance contribution to
757	future sea level rise using the regional atmospheric climate model MAR. The Cryosphere, 7, 709
758	469–489.
759	
760	Fettweis, X., Hanna, E., Gallée, H., Huybrechts, P., and Erpicum, M. 2008. Estimation of the
761	Greenland ice sheet surface mass balance for the 20th and 21st centuries, The Cryosphere, 2,
762	117–129, doi:10.5194/tc-2-117-2008.
763	
764	Fettweis, X., Tedesco, M., van den Broeke, M., and Ettema, J., 2011. Melting trends over the
765	Greenland ice sheet (1958–2009) from spaceborne microwave data and regional climate models.
766	The Cryosphere, 5, 359–375.
767	
768	Goodison, B. E., Sevruk, B., and Klemm, S. 1989.WMO solid precipitation measurement
769	intercomparison: objectives, methodology, analysis. IAHS publication, 179, 57-64.
770	
771	Hanna, E., Fettweis, X., Mernild, S. H., Cappelen, J., Ribergaard, M., Shuman, C., Steffen, K.,
772	Wood, L., and Mote, T. 2014. Atmospheric and oceanic climate forcing of the exceptional
773	Greenland Ice Sheet surface melt in summer 2012. International Journal of Climatology, 34,
774	1022–1037.

776	Hanna, E., Huybrechts, P., Cappelen, J., Steffen, K., Bales, R., Burgess, E., McConnell, J.,	
777	Steffensen, J. P., Van den Broeke, M., Wake, L., Bigg, B., Griffiths, M., and Savas, D. 2011.	
778	Greenland Ice Sheet surface mass balance 1870 to 2010 based on Twentieth Century Reanalysis,	
779	and links with global climate forcing, Journal of Geophysical Research, 116, D24121,	
780	doi:10.1029/2011JD016387.	
781		
782	Hanna, E., Huybrechts, P., Steffen, K., Cappelen, J., Huff, R., Shuman, C., Irvine-Fynn, T.,	
783	Wise, S., and Griffiths, M. 2008. Increased runoff from melt from the Greenland ice sheet: A	
784	response to global warming. Journal of Climate, 21, 331–341.	
785		
786	Hanna, E., McConnell, J., Das, S., Cappelen, J., and Stephens, A. 2006. Observed and modelled	
787	Greenland Ice Sheet snow accumulation, 1958–2003, and links with regional climate forcing.	
788	Journal of Climate, 19(3), 344–358, doi:10.1175/JCLI3615.1.	
789		
790	Hanna, E., Navarro, F. J., Pattyn, F., Domingues, C., Fettweis, X., Ivins, E., Nicholls, R. J., Ritz,	
791	C., Smith, B., Tulaczyk, S., Whitehouse, P., and Zwally, J. 2013. Ice-sheet mass balance and	
792	climate change. Nature, 498, 51–59.	
793		
794	Hanna, E., Mernild, S. H., Cappelen, J., and Steffen, K. 2012. Recent warming in Greenland in a	
795	long-term instrumental (1881–2012) climatic context. Part 1: Evaluation of surface air	
796	temperature records. Environmental Research Letters, 7, 045404, doi:10.1088/1748-	
797	9326/7/4/045404.	
798		
799	Haper, J., Humphrey, N., Pfeffer, W. T., Brown, J. and Fettweis, X. 2012. Greenland ice-sheet	
800	contribution to sae-level rise buffered by meltwater storage in firn. Nature, 22117–22124.	
801		
802	Hasholt, B., Mikkelsen, A. B., Nielsen, H. M, and Larsen, M. A. D. 2013. Observations of	
803	Runoff and Sediment and Dissolved Loads from the Greenland Ice Sheet at Kangerlussuaq, West	
804	Greenland, 2007 to 2010. Zeitschrift für Geomorphologie, 57(2), 3–27, doi:10.1127/0372-	
805	8854/2012/S-00121.	

807	Hewitt, I. 2013. Seasonal changes in ice sheet motion due to melt water iubrication. Earth Plant.
808	Sci. Lett., 371–372, 16–25.
809	
810	Hiemstra, C. A., Liston, G. E., and Reiners, W. A. 2006. Observing, modelling, and validating
811	snow redistribution by wind in a Wyoming upper treeline landscape. Ecol. Model. 197, 35–51,
812	doi: 10.1016/j.ecolmodel.2006.03.005.
813	
814	Howat, I. M., De la Peña, S., Van Angelen, J. H., Lenaerts, J. T. M., and Van den Broeke, M. R. 2013.
815	Expansion of meltwater lakes on the Greenland Ice Sheet. The Cryosphere, 7, 201-204.
816	doi:10.5194/te-7-201-2013.
817	
818	Hurrell, J. W. 1995. Decadal trends in the North Atlantic Oscillation: regional temperatures and
819	precipitation. Science, 269, 676-679. doi:10.1126/science.269.5224.676.
820	
821	Hurrell, J. W. and van Loon, H. 1997. Decadal variations in climate associated with the North
822	Atlantic oscillation, Climate Change, 36, 301–326.
823	
824	Kaplan, A., Cane, M. A., Kushnir, Y. and Clement, A. C. 1998. Analyses of global sea surface
825	temperatures 1856–1991. Journal of Geophysical Research, 103, 18575–18589.
826	
827	Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H.,
828	Kobayashi, C., Endo, H., Miyaoka, K., and Takahashi, K. 2015. The JRA-55 Reanalysis:
829	General Specifications and Basic Characteristics, J. Meteorol. Soc. Jpn., 93, 5–48,
830	doi:10.2151/jmsj.2015-001.
831	
832	Kohler, T. J., Zarsky, J. D., Yde, J. C., Lamarche-Gagnon, G., Hawkings, J. R., Tedstone, A. J.,
833	Wadham, J. L., Box, J. E., Beaton, A., and Stibal, M., 2017. Carbon dating reveals seasonal
834	shifts in the source of sediments exported from the Greenland Ice Sheet. Geophys. Res. Lett.,
835	44(12), 6209–6217.

Formatted: English (United States)

836

007

TT ...

T 2012 C

837	Kozioi, C., Arnoid, N., Pope, A., and Colgan, W., 2017. Quantifying supragracial mentwater	
838	pathways in the Paakitsoq region, West Greenland. J. Glaciol., 63(239), 464-476.	
839		
840	Langen, P. L., Mottram, R. H., Christensen, J. H., Boberg, F., Rodehacke, C. B., Stendel, M., van	
841	As, D., Ahlstrøm, A. P., Mortensen, J., Rysgaard, S., Petersen, D., Svendsen, K. H.,	
842	Algeirsdottir, G. A., and Cappelen, J. 2015. Quantifying Energy and Mass Fluxes Controlling	
843	Godthåbsfjord Freshwater Input in a 5-km Simulation (1991–2012). Journal of Climate, 28,	
844	3694–3713, doi:10.1175/JCLI-D-14-00271.1.	
845		
846	Lenaerts, J. T. M., Le Bars, D., van Kampenhout, L., Vizcaino, M., Enderlin, E. M., and van den	
847	Broeke, M. R. 2015. Representing Greenland ice sheet freshwater fluxes in climate models.	
848	Geophys. Res. Lett., 42, 6373-6381, doi:10.1002/2015GL064738.	
849		
850	Levinsen, J. F., Forsberg, R., Sørensen, L. S., and Khan, S. A. 2015. Essential Climate Variables	
851	for the Ice Sheets from Space and Airborne measurements. Danmarks Tekniske Universitet	Formatted: Engli
852	(DTU) PhD Thesis, Kgs. Lyngby, pp. 1–232.	
853		
854	Lewis, S. M., and Smith, L. C. 2009. Hydrological drainage of the Greenland ice sheet. Hydrol.	
855	Processes, 23, 2004–2011, doi:10.1002/hyp.7343.	
856		
857	Liston, G. E. 1995. Local advection of momentum, heat, and moisture during the melt of patchy	
858	snow covers. J. Appl.Meteorol., 34, 1705-1715, doi:10.1175/1520-0450-34.7.1705.	
859		
860	Liston, G. E. and Elder, K. 2006a. A distributed snow-evolution modeling system (SnowModel).	
861	J. Hydrometeorol., 7, 1259–1276, doi:10.1175/JHM548.1.	
862		
863	Liston, G. E. and Elder, K. 2006b. A meteorological distribution system for high-resolution	
864	terrestrial modeling (MicroMet). J. Hydrometeorol., 7, 217-234, doi:10.1175/JHM486.1.	
865		

77 . 1

.

101

W 2017 0

. .

Formatted: English (United Kingdom)

866	Liston, G. E., Haehnel, R. B., Sturm, M., Hiemstra, C. A., Berezovskaya, S., and Tabler, R. D.	
867	2007. Simulating complex snow distributions in windy environments using SnowTran-3D. J.	
868	Glaciol., 53, 241–256.	
869		
870	Liston, G. E. and Hiemstra, C. A. 2011. The changing cryosphere: pan-Arctic snow trends	
871	(1979–2009). J. Clim., 24, 5691–5712.	
872		
873	Liston, G. E. and Mernild, S. H. 2012. Greenland freshwater runoff. Part I: a runoff routing	
874	model for glaciated and non-glaciated landscapes (HydroFlow). J. Clim., 25(17), 5997-6014.	
875		
876	Liston, G. E. and Sturm, M. 1998. A snow-transport model for complex terrain. J. Glaciol., 44,	
877	498–516.	
878		
879	Liston, G. E. and Sturm, M. 2002. Winter precipitation patterns in Arctic Alaska determined from	
880	a blowing-snow model and snow depth observations. J. Hydrometeorol., 3, 646-659.	
881		
882	Liston, G. E., Winther, JG., Bruland, O., Elvehøy, H., and Sand, K. 1999. Below surface ice	
883	melt on the coastal Antarctic ice sheet. J. Glaciol., 45, 273-285.	
884		
885	Machguth, H., MacFerrin, M., van as, D., Box, J., Charalampidis, C., Colgan, W., Fausto, R. S.,	
886	Meijer, H. A. J., Mosley-Yhompson, E., and van de Wal, R. S. W. 2016. Greenland meltwater	
887	storage in firn limited by near-surface ice formation. Nature Climate Change, 6(4), 390-393,	
888	doi.org/10.1038/nclimate2899.	
889		
890	Mernild, S. H. 2016. Water balance from mountain glacier scale to ice sheet scale - With focus	Formatted: Font: (Default) Times New Roman, 12 pt
891	on Mittivakkat Gletscher, Southeast Greenland, and the Greenland Ice Sheet. Doctoral thesis.	
892	Faculty of Science, University of Copenhagen, Copenhagen, pp. 419.	Formatted: Font: (Default) Times New Roman, 12 pt
893		
894	Mernild, S. H., B. Hasholt and G. E. Liston 2006b. Water flow through Mittivakkat Glacier,	
895	Ammassalik Island, SE Greenland. Geografisk Tidsskrift-Danish Journal of Geography, 106(1),	

 Mernild, S. H., Hanna, E., McConnell, J. R., Sigl, M., Beckerman, A. P., Yde, J. C., Cap and Steffen, K. 2015. Greenland precipitation trends in a long-term instrumental climate (1890–2012): Evaluation of coastal and ice core records. International Journal of Climate 35, 303–320, doi:10.1002/joc.3986. 	e context tology,
 900 (1890–2012): Evaluation of coastal and ice core records. International Journal of Climat 901 35, 303–320, doi:10.1002/joc.3986. 	tology,
901 35, 303–320, doi:10.1002/joc.3986.	
902	
903 Mernild, S. H. and Liston, G. E. 2010. The influence of air temperature inversion on sno	ow melt
904 and glacier surface mass-balance simulations, SW Ammassalik Island, SE Greenland. Je	ournal of
Applied Meteorology and Climate, 49(1), 47–67.	
906	
907 Mernild, S. H. and Liston, G. E. 2012. Greenland freshwater runoff. Part II: distribution	ı and
908 trends, 1960–2010. J. Clim., 25(17), 6015–6035.	
909	
910 Mernild, S. H., Liston, G. E., Hasholt, B., and Knudsen, N. T. 2006a. Snow distribution	and melt
911 modeling for Mittivakkat Glacier, Ammassalik Island, SE Greenland. Journal of	
912 Hydrometeorology, 7, 808–824.	
913	
914 Mernild, S. H., and Liston, G. E., and Hiemstra, C. A. 2014. Northern hemisphere glacie	ers and
915 ice caps surface mass balance and contribution to sea-level rise. J. Clim., 27(15), 6051-	6073,
916 doi:10.1175/JCLI-D-13-00669.1.	
917	
918 Mernild, S. H., Liston, G. E., Hiemstra, C. A. and Christensen, J. H. 2010a. Greenland I	Ice Sheet
surface mass-balance modeling in a 131 year perspective 1950–2080. Journal of	
920 Hydrometeorology, 11(1), 3–25, doi.org/10.1175/2009JHM1140.1.	
921	
922 Mernild, S. H., Liston, G. E., Hiemstra, C. A., and Steffen, K. 2008. Surface Melt Area	and
923 Water Balance Modeling on the Greenland Ice Sheet 1995–2005. Journal of Hydrometer	eorology,
924 9(6), 1191–1211, doi.org/10.1175/2008JHM957.1.	
925	
Mernild, S. H., Liston, G. E., van As, D., Hasholt, B., and Yde, J. C. 20187. High-resolu	ution ice

927 sheet surface mass-balance and spatiotemporal runoff simulations: Kangerlussuaq, West

928	Greenland. Accepted Arctic, Antarctic, and Alpine Research (Special Issue, Kangerlussuaq).		Formatted: Font: (Default) Times New Roman, 12 pt
929	doi.org/10.1080/15230430.2017.1415856.		
930			
931	Mernild, S. H., Mote, T., and Liston, G. E. 2011. Greenland Ice Sheet surface melt extent and		
932	trends, 1960–2010. Journal of Glaciology, 57(204), 621–628.		
933			
934	Mernild, S. H., Liston, G. E., Hiemstra, C. A., Wilson, R. 2017. The Andes Cordillera. Part III:	_	Formatted: Font: Times New Roman
		\leq	Formatted: Line spacing: 1.5 lines
935	Glacier Surface Mass Balance and Contribution to Sea Level Rise (1979–2014). International		Formatted: Font: Times New Roman, Not Bold, Not Italic
936	Journal of Climatology, 37(7), 3154–3174, doi: 10.1002/joc.4907		Formatted: Font: Times New Roman
937		$\langle \rangle$	Formatted: Default Paragraph Font, Font: Times New Roman, Font color: Custom Color(RGB(54,31,14))
938	Metcalfe, J. R., Ishida, S., and Goodison, B. E. 1994. A corrected precipitation archive for the		Formatted: Font: Times New Roman
939	Northwest Territories of Canada,		Formatted: Font: 12 pt
940	http://www.usask.ca/geography/MAGS/Data/Public_Data/precip_corr/pcpncor_e.htm.		
941			
942	Nghiem, S. V., Hall, D. K., Mote, T. L., Tedesco, M., Albert, M. R., Keegann, K., Shuman, C.		
943	A., DiGirolamo, N. E., and Neumann, G. 2012. The extreme melt across the Greenland ice sheet		
944	in 2012. Geophysical Research Letters, 39, L20502.		
945			
946	Nick, F. M., Vieli, A., Howat, I. M., and Joughin, I. R. 2009. Large-scale changes in Greenland		
947	outlet glacier dynamics triggered at the terminus. Nature Geoscience, 2(2), 110–114,		
948	doi:10.1038/ngeo394.		
949			
950	Noël, B., van de Berg, W. L., Lhermitte, S., Wouters; B., Machguth, H., Howat, I., Citterio, M.,		
951	Moholdt, G., Lenaerts, J. T. M., and van den Broeke, M. R. 2017. A tipping point in refreezing		
952	accelerates mass loss of Greenland's glaciers and ice caps. Nature Communications, 8, 1-8,	/	Formatted: English (United Kingdom)
953	doi:10.1038/ncomms14730.		Formatted: English (United States)
954			Formatted: English (United States)
		/	Formatted: English (United States)
955	Noël, B. van de Berg, W. J., Machguth, H., Lhermitte, S., Howat, I., Fettweis, X., and van den		Formatted: English (United States)
956	Broeke, M. R. 2016. A daily 1 km resolution data set of down scaled Greenland jce sheet		Formatted: English (United States) Formatted: English (United States)
957	surface mass balance (1958-2015). The Cryosphere, 10, 2361-2377, doi:10.5194/tc-10-2361-	_	Formatted: English (United States)
958	2016.	\sim	Formatted: English (United States)

Formatted: English (United States)

959	
960	Overland, J. E., Francis, J., Hanna, E. and Wang, M. 2012. The recent shift in early summer
961	arctic atmospheric circulation. Geophysical Research Letters, 39, L19804.
962	
963	Preisendorfer, R.W. 1998. Principal Component Analysis in Meteorology and Oceanography. In:
964	Mobley, C.D. (Ed.) Elsevier, Amsterdam, p. 452.
965	
966	Rahmstorf, S., and Coauthors. 2005. Thermohaline circulation hysteresis: A model
967	intercomparison. Geophys. Res. Lett., 32, L23605, doi:10.1029/2005GL023655.
968	
969	Rasmussen, R., Baker, B., Kochendorfer, J., Meyers, T., Landolt, S., Fischer, A. P., Black, J.,
970	Theriault, J. M., Kucera, p., Gochis, D., Smith, C., Nitu, R., Hall, M., Ikeda, K., and Gutmann,
971	E. 2012. How well are we measuring snow? The NOAA/FAA/NCAR Winter Precipitation Test
972	Bed. BAMS, 811–829.
973	
974	Rignot, E. and Mouginot, J. 2012. Ice flow in Greenland for the International Polar Year 2008-
975	2009. Geophysical Research Letters, 39, L11501, doi:10.1029/2012GL051634.
976	
977	Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A., and Lenaerts, J. 2011.
978	Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise.
979	Geophysical Research Letters, 38, L05503.
980	
981	Roberts, M.J. 2005. Jökulhlaups: a reassessment of floodwater flow through glaciers. Rev.
982	Geophys., 43(1), RG1002, doi:10.1029/2003RG000147.
983	
984	Rogers, A. N., Bromwich, D. H., Sinclair, E. N. and Cullather, R. I., 2001. The atmospheric
985	hydrological cycle over the Arctic basins from reanalysis. Part II: Inter-annual variability.
986	Journal of Climate, 14, 2414–2429.
987	
988	Selmes, N., Murray, T., and James, T. D. 2011. Fast draining lakes on the Greenland ice sheet.

Geophys Res. Lett., 38(15), doi:10.1029/2011GL047872.

990	
991	Shepherd, A. et al. 2012. A Reconciled Estimate of Ice-Sheet Mass Balance. Science, 338,
992	1183–1189.
993	
994	Sparnocchia S, Pinardi N, and Demirov E. 2003. Multivariate empirical orthogonal function
995	analysis of the upper thermocline structure of the Mediterranean Sea from observations and
996	model simulations. Ann. Geophys, 21, 167–187.
997	
998	Sugden, D.E., Clapperton, C. M, and Knight, P. G.1985. A jökulhlaup near Søndre Strømfjord,
999	West Greenland, and some effects on the ice-sheet margin. Journal of Glaciology, 31(109), 366-
1000	368.
1001	
1002	Steger, C, R, Reijmer, C, H, van den Broeke, M, R, Wever, N, Forster, R, R, Koenig, L, S,
1003	Kuipers Munneke, P., Lehning, M., Lhermitte, S., Ligtenberg, S. R. M., Miège, C. and Noël, B.
1004	P. Y. 2017, Firn Meltwater Retention on the Greenland Ice Sheet: A Model Comparison. Front.
1005	Earth Sci. 5:3. doi: 10.3389/feart.2017.00003,
1006	
1007	Steffen, K. 1995. Surface energy exchange at the equilibrium line on the Greenland ice sheet
1008	during onset of melt. Annals of Glaciology, 21, 13–18.
1009	
1010	Straneo, F., Curry,R. G., Sutherland, D. A., Hamilton, G. S., Cenedese, C., Våge, K., and Sterns,
1011	L. A. 2011. Impact of fjord dynamics and glacial runoff on the circulation near Helheim Glacier.
1012	Nat.Geosci., 4, 322–327, doi:10.1038/ngeo1109.
1013	
1014	Tedesco, M., Willis, I. C., Hoffman, M. J., Banwell, A. F., Alexander, P., and Arnold, N. S.
1015	2013. Ice dynamic response to two modes of surface lake drainage on the Greenland ice sheet.
1016	Environ. Res. Lett., 8(3), 34007, doi:10.1088/1748-9326/8/3/034007.
1017	
1018	Tedesco, M., Box, J. E., Cappelen, J., Fettweis, X., Mote. T., van de Wal, R. S. W., Smeets, C. J.
1019	P. P., and Wahr, J. 2014. Greenland Ice Sheet. In Jeffries, M. O., Richter-Menge, J. A., and
1020	Overland, J. E. (eds.). Arctic Report Card 2014.

....

1021			
1022	Tedesco, M., Box, J. E., Cappelen, J., Fausto, R. S., Fettweis, X., Mote, T., Smeets C. J. P. P.,		
1023	van As, D., Velicogna, I., van de Wal, R. S. W. and Wahr, J. 2016. Greenland Ice Sheet. In		
1024	Richter-Menge, J. A., Overland, J. E., and Mathis, J. T. (eds.). Arctic Card Report 2016.		
1025			
1026	Uppala, S. M., Kållberg, P. W., Simmons, A. J., Andrae, U., Da Costa Bechtold, V., Fiorino, M.,		
1027	Gibson, J.K., Haseler, J., Hernandez, A., Kelly, G. A., Li, X., Onogi, K., Saarinen, S., Sokka,		
1028	N., Allan, R. P., Anderson, E., Arpe, K., Balmaseda, M. A., Beljaars, A. C. M., Van De Berg, L.,		
1029	Bidlot, J., Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher, M.,		
1029	Fuentes, M., Hagemann, S., Hólm, E., Hoskins, B. J., Isaksen, L., Janssen, P. A. E. M., Jenne, R.,		
1031	Mcnally, A. P., Mahfouf, JF., Morcrette, JJ., Rayner, N. A., Saunders, R.W., Simon, P., Sterl,		
1032	A., Trenbreth, K. E., Untch, A., Vasiljevic, D., Viterbo, P., and Woollen, J.: The ERA-40 re-		
1033	analysis, Q. J. Roy. Meteor. Soc., 131, 2961–3012, doi:10.1256/qj.04.176, 2005.		
1034			
1035	van Angelen, J. H., Lenaerts, J. T. M., van den Broeke, J. T. M., Fettweis, X., van Meijgaard, E.		
1036	2013. Rapid loss of firn pore space accelerates 21 century Greenland mass loss. Geophysical		
1037	Research Letter, 40, 2109–2113.		
1038			
1039	van As., D, Box, J. E., and Fausto, R. S., 2016: Challenges of Quantifying Meltwater Retention		
1040	in Snow and Firn: An Expert Elicitation. Frontiers in Earth Science, 4(101), 1–5,	F	ormatted: Font: Not Bold
1041		_	
1042	yan As, D. Hasholt, B., Ahlstrøm, A. P., Box, J. E., Cappelen, J., Colgan, W., Fausto, R. S.,		ormatted: Font: (Default) Times New Roman, 12 pt, Not
1043	Mernild, S. H., Mikkelsen, A. B., Noël, B. P.Y., Petersen, D., and Van den Broeke, M. R. 2018.		ighlight prmatted: Font: (Default) Times New Roman, 12 pt
1044	The longest observationally-constrained record of Greenland ice sheet meltwater discharge		ormatted: No Spacing, Line spacing: 1.5 lines
1045	(1949–2016). Accepted, Arctic, Antarctic, and Alpine Research (Special Issue).	F	ormatted: Font: (Default) Times New Roman, 12 pt
1046			ormatted: Font: (Default) Times New Roman, 12 pt, Not old, Not Italic
1047	van den Broeke, M. R., Enderlin, E. M., Howat, I. M., Munneke, P.K., Noël, B. P., Y., van de	F	ormatted: Font: 12 pt
1048	Berg, W. J., van Meijgaard, E., and Wouters, B. 2016. On the recent contribution of the	\succ	ormatted: Norwegian (Bokmål)
1049	Greenland ice sheet to sea level change. The Cryosphere, 10, 1933–1946, doi:10.5194/tc-10-	\succ	ormatted: English (United States) ormatted: English (United States)
1050	1933-2016.	\sim	prmatted: English (United States)
1051			ormatted: English (United States)
1051	۸	F	ormatted: Font: Not Bold

 yan den Broeke, M., Smeets, P., Ettema, J., and Munneke, P. K. 2008a. Surface radiation balance Formatted: English (Uni in the ablation zone of the west Greenland ice sheet, J. Geophys. Res., 113, D13105, doi:10.1029/2007/JD009283. van den Broeke, M., Smeets, P., Ettema, J., van der Veen, C., van de Wal, R., and Oerlemans, J. 2008b. Partitioning of melt energy and meltwater fluxes in the ablation zone of the west Greenland ice sheet, The Cryosphere, 2, 179–189, doi:10.5194/tc-2-179-2008. yan de Wal, R. S. W., Greuell, W., van den Broeke, M. R., Reijmer, C. H., and Oerlemans, J. 2005. Surface mass-balance observations and automatic weather station data along a transect near Kangerlussuaq, West Greenland, Ann. Glaciol., 42, 311–316. 	ted Kingdom)
 doi:10.1029/2007/JD009283. van den Broeke, M., Smeets, P., Ettema, J., van der Veen, C., van de Wal, R., and Oerlemans, J. 2008b. Partitioning of melt energy and meltwater fluxes in the ablation zone of the west Greenland ice sheet, The Cryosphere, 2, 179–189, doi:10.5194/tc-2-179-2008. greenland ice sheet, The Cryosphere, 2, 179–189, doi:10.5194/tc-2-179-2008. yan de Wal, R. S. W., Greuell, W., van den Broeke, M. R., Reijmer, C. H., and Oerlemans, J. 2005. Surface mass-balance observations and automatic weather station data along a transect near Kangerlussuaq, West Greenland, Ann. Glaciol., 42, 311–316. 	
 1055 van den Broeke, M., Smeets, P., Ettema, J., van der Veen, C., van de Wal, R., and Oerlemans, J. 1057 2008b. Partitioning of melt energy and meltwater fluxes in the ablation zone of the west 1058 Greenland ice sheet, The Cryosphere, 2, 179–189, doi:10.5194/tc-2-179-2008. 1059 1060 1061 van de Wal, R. S. W., Greuell, W., van den Broeke, M. R., Reijmer, C. H., and Oerlemans, J. 1052 2005. Surface mass-balance observations and automatic weather station data along a transect 1063 near Kangerlussuaq, West Greenland, Ann. Glaciol., 42, 311–316. 	
 van den Broeke, M., Smeets, P., Ettema, J., van der Veen, C., van de Wal, R., and Oerlemans, J. 2008b. Partitioning of melt energy and meltwater fluxes in the ablation zone of the west Greenland ice sheet, The Cryosphere, 2, 179–189, doi:10.5194/tc-2-179-2008. p 	
 2008b. Partitioning of melt energy and meltwater fluxes in the ablation zone of the west Greenland ice sheet, The Cryosphere, 2, 179–189, doi:10.5194/tc-2-179-2008. 1059 1060 1061 van de Wal, R. S. W., Greuell, W., van den Broeke, M. R., Reijmer, C. H., and Oerlemans, J. Formatted: Norwegian (1063) 1063 near Kangerlussuaq, West Greenland, Ann. Glaciol., 42, 311–316. 	
 Greenland ice sheet, The Cryosphere, 2, 179–189, doi:10.5194/tc-2-179-2008. psi psi psi point yan de Wal, R. S. W., Greuell, W., van den Broeke, M. R., Reijmer, C. H., and Oerlemans, J. Formatted: Norwegian (1062) point 2005. Surface mass-balance observations and automatic weather station data along a transect near Kangerlussuaq, West Greenland, Ann. Glaciol., 42, 311–316. 	
 1059 1060 1061 van de Wal, R. S. W., Greuell, W., van den Broeke, M. R., Reijmer, C. H., and Oerlemans, J. 1062 2005. Surface mass-balance observations and automatic weather station data along a transect 1063 near Kangerlussuaq, West Greenland, Ann. Glaciol., 42, 311–316. 	
1060 van de Wal, R. S. W., Greuell, W., van den Broeke, M. R., Reijmer, C. H., and Oerlemans, J. Formatted: Norwegian (1061 van de Wal, R. S. W., Greuell, W., van den Broeke, M. R., Reijmer, C. H., and Oerlemans, J. Formatted: Norwegian (1062 2005. Surface mass-balance observations and automatic weather station data along a transect near Kangerlussuaq, West Greenland, Ann. Glaciol., 42, 311–316.	
1061 van de Wal, R. S. W., Greuell, W., van den Broeke, M. R., Reijmer, C. H., and Oerlemans, J. Formatted: Norwegian (1062 2005. Surface mass-balance observations and automatic weather station data along a transect 1063 near Kangerlussuaq, West Greenland, Ann. Glaciol., 42, 311–316.	
1062 2005. Surface mass-balance observations and automatic weather station data along a transect 1063 near Kangerlussuaq, West Greenland, Ann. Glaciol., 42, 311–316.	
1063 near Kangerlussuaq, West Greenland, Ann. Glaciol., 42, 311–316.	Bokmål)
1064	
1065 van de Wal, R. S. W., Boot, W., van den Broeke, M., Smeets, C. J. P. P., Reijmer, C. H., Donker,	
1066 J. J. A., and Oerlemans, J. 2008. Large and rapid melt-induced velocity changes in the ablation	
1067zone of the Greenland ice sheet. Science, 321, 111–113.	
1068	
1069 van der Veen, C. J. 2007. Fracture propagation as a means of rapidly transferring surface	
1070 meltwater to the base of glaciers. Geophys. Res. Lett., 34, L01501.	
1071	
1072 Weijer, W., M. E. Maltrud, M. W. Hecht, H. A. Dijkstra, and M. A. Kliphuis, 2012. Response of	
1073 the Atlantic Ocean circulation to Greenland Ice Sheet melting in a strongly-eddying ocean	
1074 model. Geophys. Res. Lett., 39, L09606, doi:10.1029/2012GL051611.	
1075	
1076 Wilton, D. J., Jowett, A., Hanna, E., Bigg, G. R., van den Broeke, M. R., Fettweis, X., and	
1077 Huybrechts, P., 2017. High resolution (1 km) positive degree-day modelling of Greenland ice	
1078 sheet surface mass balance, 1870-2012 using reanalysis data. Journal of Glaciology, 63(237),	
1079 176–193.	
1080	
1081 <u>Vizcaino, M., Lipscomb, W. H., Sacks, W. J., van Angelen, J. H. Wouters, B., and van den</u>	
1082 <u>Broeke, M. R. 2013. Greenland Surface Mass Balance as Simulated by the Community Earth</u> Bold	ult) Times New Roman, 12 pt, Not

1083	System Model. Part I: Model Evaluation and 1850-2005 Results. Journal of Climate, 26, 7793-
1084	7812, doi.10.1175/JCLI-D-12-00615.1.
1085	
1086	Yang, D., Ishida, S., Goodison, B. E., and Gunter, T. 1999. Bias correction of daily precipitation
1087	measurements for Greenland. J. Geophys. Res. 104(D6), 6171-6181,
1088	doi:10.1029/1998JD200110.
1089	
1090	Zwally, H. J., Abdalati, W., Herring, T., Larson, K., Saba, J., and Steffen, K. 2002. Surface melt-
1091	induced acceleration of Greenland ice-sheet flow. Science, 297, 218-222.
1092	
1093	
1094	
1095	
1096	
1097	
1098	
1099	
1100	
1101	
1102	
1103	
1104	

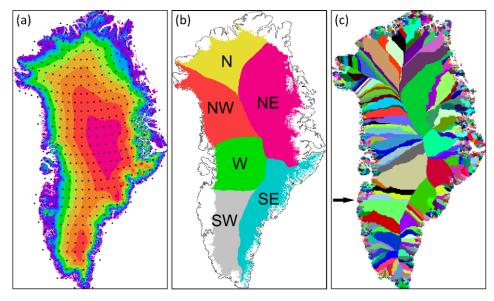
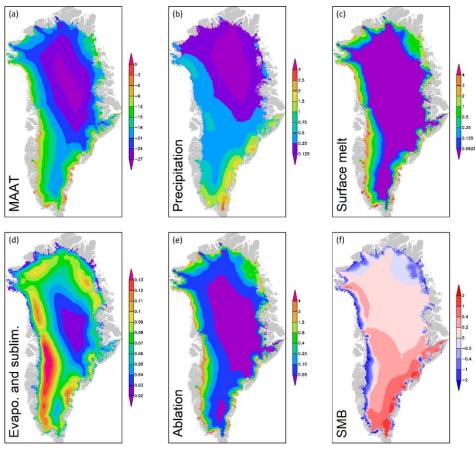
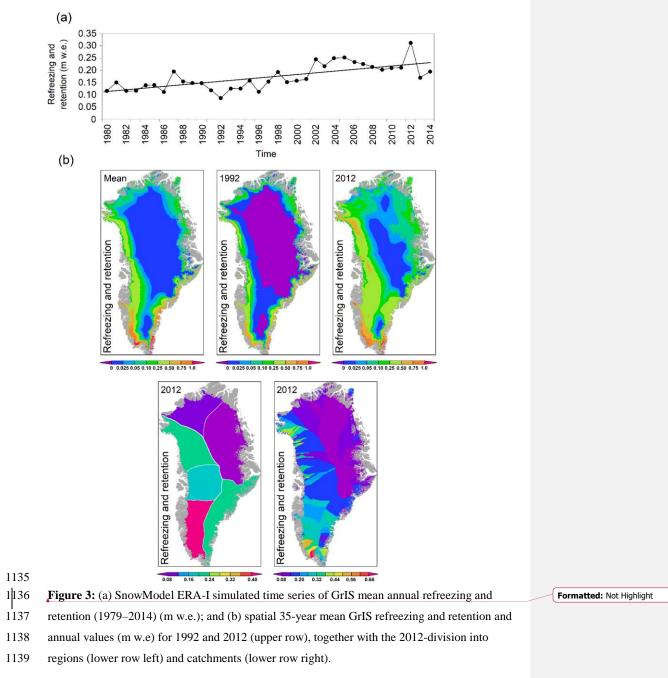
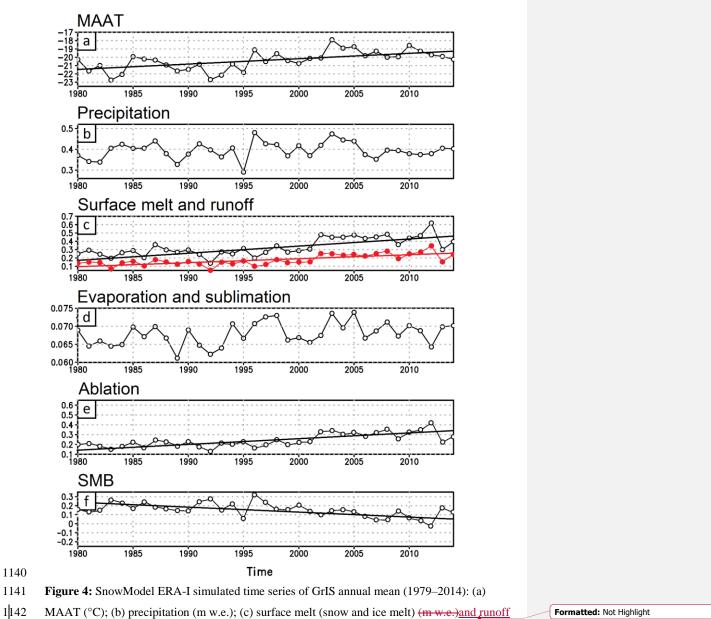
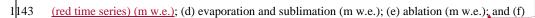



Figure 1: (a) Greenland simulation domain with topography (500-m contour interval) and locations of ERA-I atmospheric forcing grid points used in the model simulations (black dots; to improve clarity only every other grid point was plotted in x and y, i.e., 25 % of the grid points used are shown); (b) the major regional division of the GrIS following Rignot et al. (unpublished); and (c) HydroFlow simulated individual Greenland drainage catchments (n =3,272; represented by multiple colors). The approximate location of the Kangerlussuaq catchment is shown with a black arrow from where the SnowModel evaluations were conducted.

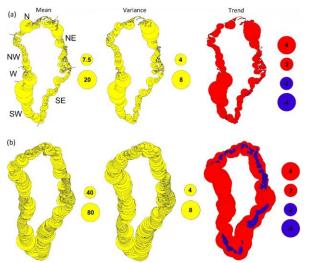



 1125
 Figure 2: SnowModel ERA-I simulated 35-year mean spatial GrIS surface (1979–2014): (a)


Formatted: Not Highlight

1126 MAAT (°C); (b) precipitation (m w.e.); (c) surface melt (snow and ice melt) (m w.e.); (d)

- 1 27 evaporation and sublimation (m w.e.); (e)_-ablation (m w.e.); and (f) SMB (m w.e.).



- Formatted: Not Highlight
- Formatted: Not Highlight

1144 SMB (m w.e.). Only significant linear trends are shown.

1145				
1145		C		
1146	Figure 5: SnowModel ERA-I simulated 35-year spatial Greenland catchment runoff (1979–	F	ormatted: Not Highlight	
1147	2014): (a) mean runoff (×10 ⁹ m ³) (the locations of the major regions SW, W, NW, etc., are			
1148	illustrated), runoff variance (here illustrated as one standard deviation; $\times 10^9$ m ³), and decadal			
1149	runoff trends (linear; $\times 10^9$ m ³ decade ⁻¹) (catchments with increasing runoff trends are shown			
1150	with red and decreasing trends with blue colors); and (b) mean specific runoff (L s ⁻¹ km ⁻²),			
1151	specific runoff variance (L s ⁻¹ km ⁻²), and specific runoff trends (linear; L s ⁻¹ km ⁻² decade ⁻¹).			
1152				
1153				
1154				
1155				
1156				
1157				
1158				
1159				
1160				
1161				
1162				
1163				
1164				
	40			

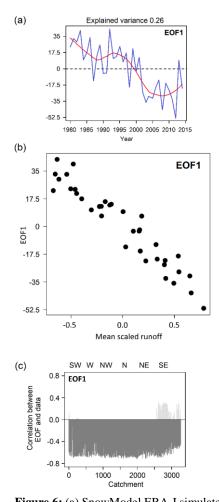


Figure 6: (a) SnowModel ERA-I simulated runoff time series (1979–2014) of the empirical
orthogonal functions (black curve) and 5-year running mean smoothing line (red curve) of EOF1
(significant); (b) EOF1 cross correlation relationships with mean annual scaled runoff from
Greenland; and (c) Eigenvector correlation values for each simulated catchment (1 to 3,272) for
EOF1. From left to right on the lower x-axis the catchments follows the clockwise path from the

1171 southern tip of Greenland (Southwest Greenland, Catchment 1) to the northern part (N section)

1172 and back to the southern tip (Southeast Greenland, Catchment 3,272). The location of the major

1173 regions: SW, W, NW, etc., are shown on the upper x-axis.

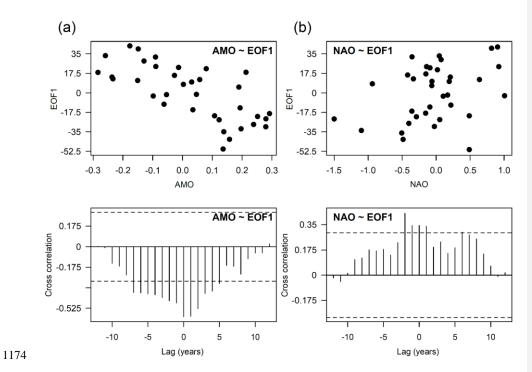


Figure 7: EOF1 cross correlation relationships between simulated Greenland runoff: (a) AMOand (b) NAO. The horizontal dashed lines on each of the column charts indicate the significance

- 1177 (95% confidence).

1187 **Table 1:** Regional breakdown of GrIS surface mean annual conditions (units are in Gt) and

1188 trends (linear; Gt decade⁻¹): precipitation (P) (including rain and snow), surface melt, evaporation

(E) and sublimation (Su), runoff (R), ablation, refreezing and retention (rain and surface melt

minus runoff), and surface mass-balance (SMB) for GrIS and for each of the six regions both
 from 1979–2014 (35 years) and 2005–2014 (10 years). Specifically for rain the %-value of total

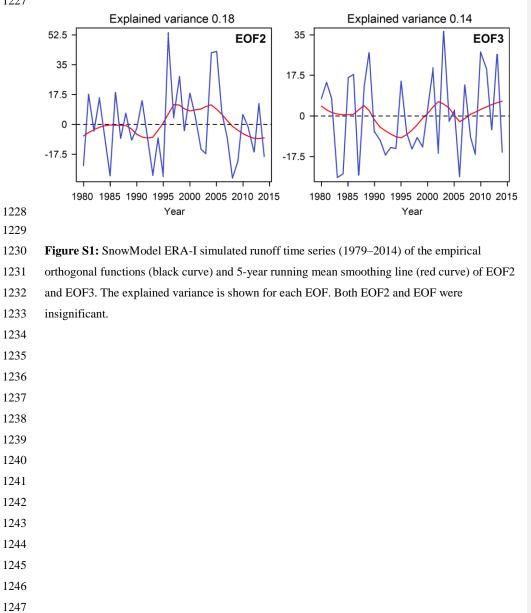
1193 (p < 0.05) are highlighted in bold.

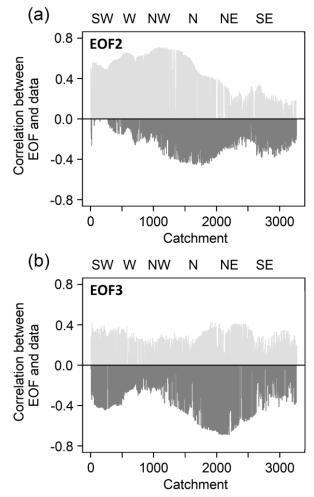
						GrIS
(229,075 km ²)	(454,900 km ²)			(231,150 km ²)	(267,075 km ²)	(1,646,175 km ²)
		1979	-2014		r	
31.1 ± 5.4	68.4 ± 10.6	242.6 ± 39.1	142.3 ± 23.3	85.4 ± 13.5	84.2 ± 13.9	653.9 ± 66.4 (9.0)
$0.4 \pm 0.2 \ (1 \ \%)$	$0.4 \pm 0.2 \; ({<}1\;\%)$	$4.2 \pm 1.8 \ (2 \ \%)$	$6.6 \pm 2.8 \ (5 \ \%)$	$1.7 \pm 0.8 \ (2 \ \%)$	2.2 ± 1.1 (3 %)	15.3 ± 5.4 (2 %) (3.0)
30.7 ± 5.3	68.0 ± 10.5	238.5 ± 38.7	135.7 ± 22.7	83.7 ± 13.2	82.0 ± 13.5	638.6 ± 65.0 (6.0)
57.2 ± 24.1	72.2 ± 33.8	101.0 ± 27.1	155.2 ± 48.4	67.4 ± 24.0	89.8 ± 33.2	542.9 ± 175.3 (121.7)
15.7 ± 0.9	25.3 ± 1.6	16.8 ± 0.8	20.3 ± 1.7	16.4 ± 1.1	17.7 ± 0.9	112.2 ± 5.2 (1.8)
34.5 ± 15.7	43.3 ± 21.8	47.8 ± 14.5	77.7 ± 28.9	37.0 ± 13.4	48.4 ± 19.4	288.7 ± 104.3 (73.4)
50.2 ± 15.6	68.5 ± 21.8	64.6 ± 14.9	98.1 ± 29.2	54.4 ± 13.9	66.0 ± 19.8	400.9 ± 106.2 (75.2)
23.1 ± 8.7 (40 %)	29.4 ± 12.5 (41 %)	57.5 ± 14.5 (57 %)	84.1 ± 23.2 (54 %)	32.1 ± 11.4 (46 %)	43.7 ± 14.9 (48 %)	269.9 ± 77.4 (49 %) (51.3)
-19.2 ± 17.9	-0.2 ± 23.3	178.1 ± 41.7	44.3 ± 39.2	32.1 ± 18.9	18.2 ± 24.4	253.4 ± 121.4 (-66.2)
		2005	-2014			
30.9 ± 5.1	71.0 ± 11.9	232.4 ± 25.2	138.5 ± 16.1	86.4 ± 8.6	85.3 ± 16.9	645.0 ± 39.0 (-5.1)
$0.5 \pm 0.3 \ (2 \ \%)$	$0.4 \pm 0.2 \; (<\!1\;\%)$	5.2 ± 1.9 (2 %)	$7.8 \pm 2.3 \ (6 \ \%)$	$2.0 \pm 0.6 (2 \%)$	2.9 ± 1.3 (4 %)	18.7 ± 3.4 (3 %) (-2.8)
30.4 ± 5.0	70.6 ± 11.9	227.1 ± 25.0	130.8 ± 15.7	84.4 ± 8.6	82.9 ± 16.4	626.3 ± 39.2 (-2.3)
75.9 ± 26.9	101.7 ± 34.5	129.7 ± 16.3	202.4 ± 39.2	89.3 ± 19.7	124.6 ± 26.8	713.4 ± 138.6 (-79.7)
15.7 ± 1.0	25.9 ± 1.1	17.3 ± 0.9	20.7 ± 1.5	16.7 ± 0.8	17.8 ± 0.9	114.1 ± 4.3 (-3.8)
46.6 ± 17.3	61.7 ± 21.4	63.3 ± 10.0	106.6 ± 25.0	49.1 ± 10.5	68.7 ± 15.5	395.4 ± 82.7 (-26.0)
62.3 ± 17.0	87.6 ± 21.2	80.6 ± 9.7	127.3 ± 23.9	65.9 ± 10.2	86.5 ± 15.6	510.0 ± 81.7 (-17.9)
29.7 ± 10.0 (39 %)	40.5 ± 13.6 (40 %)	$\begin{array}{c} 66.4 \pm 8.7 \\ (51 \ \%) \end{array}$	$95.8 \pm 18.5 \\ (47 \%)$	$\begin{array}{c} 40.2 \pm 9.9 \\ (45 \ \%) \end{array}$	55.9 ± 13.0 (45 %)	318.0 ± 62.8 (45 %) (-64.6)
-31.4 ± 18.7	-16.5 ± 22.0	151.8 ± 32.0	11.3 ± 34.5	20.6 ± 12.6	-0.7 ± 24.3	135.5 ± 98.2 (16.6)
	$0.4 \pm 0.2 (1 \%)$ 30.7 ± 5.3 57.2 ± 24.1 15.7 ± 0.9 34.5 ± 15.7 50.2 ± 15.6 23.1 ± 8.7 (40%) -19.2 ± 17.9 30.9 ± 5.1 $0.5 \pm 0.3 (2 \%)$ 30.4 ± 5.0 75.9 ± 26.9 15.7 ± 1.0 46.6 ± 17.3 62.3 ± 17.0 29.7 ± 10.0 (39%)	(229,075 km²)(454,900 km²) 31.1 ± 5.4 68.4 ± 10.6 0.4 ± 0.2 (1 %) 0.4 ± 0.2 (<1 %)	(229,075 km²)(454,900 km²)(250,425 km²) 1979 31.1 ± 5.4 68.4 ± 10.6 242.6 ± 39.1 $0.4 \pm 0.2 (1 \%)$ $0.4 \pm 0.2 (<1 \%)$ $4.2 \pm 1.8 (2 \%)$ 30.7 ± 5.3 68.0 ± 10.5 238.5 ± 38.7 57.2 ± 24.1 72.2 ± 33.8 101.0 ± 27.1 15.7 ± 0.9 25.3 ± 1.6 16.8 ± 0.8 34.5 ± 15.7 43.3 ± 21.8 47.8 ± 14.5 50.2 ± 15.6 68.5 ± 21.8 64.6 ± 14.9 23.1 ± 8.7 29.4 ± 12.5 57.5 ± 14.5 (40%) -0.2 ± 23.3 178.1 ± 41.7 -19.2 ± 17.9 -0.2 ± 23.3 178.1 ± 41.7 30.9 ± 5.1 71.0 ± 11.9 232.4 ± 25.2 $0.5 \pm 0.3 (2 \%)$ $0.4 \pm 0.2 (<1 \%)$ $5.2 \pm 1.9 (2 \%)$ 30.4 ± 5.0 70.6 ± 11.9 227.1 ± 25.0 75.9 ± 26.9 101.7 ± 34.5 129.7 ± 16.3 15.7 ± 1.0 25.9 ± 1.1 17.3 ± 0.9 46.6 ± 17.3 61.7 ± 21.4 63.3 ± 10.0 62.3 ± 17.0 87.6 ± 21.2 80.6 ± 9.7 29.7 ± 10.0 40.5 ± 13.6 66.4 ± 8.7 (39%) 40.5 ± 13.6 66.4 ± 8.7	(229,075 km²)(454,900 km²)(250,425 km²)(213,550 km²) $197-2014$ 31.1 ± 5.468.4 ± 10.6242.6 ± 39.1142.3 ± 23.3 $0.4 \pm 0.2 (1 \%)$ $0.4 \pm 0.2 (<1 \%)$ $4.2 \pm 1.8 (2 \%)$ $6.6 \pm 2.8 (5 \%)$ 30.7 ± 5.3 68.0 ± 10.5238.5 ± 38.7135.7 ± 22.7 57.2 ± 24.1 72.2 ± 33.8 101.0 ± 27.1 155.2 ± 48.4 15.7 ± 0.9 25.3 ± 1.6 16.8 ± 0.8 20.3 ± 1.7 34.5 ± 15.7 43.3 ± 21.8 47.8 ± 14.5 77.7 ± 28.9 50.2 ± 15.6 68.5 ± 21.8 64.6 ± 14.9 98.1 ± 29.2 23.1 ± 8.7 29.4 ± 12.5 (57.5 ± 14.5) 84.1 ± 23.2 (40%) -0.2 ± 23.3 178.1 ± 41.7 44.3 ± 39.2 2.1 ± 17.9 -0.2 ± 23.3 178.1 ± 41.7 44.3 ± 39.2 30.9 ± 5.1 71.0 ± 11.9 232.4 ± 25.2 138.5 ± 16.1 $0.5 \pm 0.3 (2 \%)$ $0.4 \pm 0.2 (<1 \%)$ $5.2 \pm 1.9 (2 \%)$ $7.8 \pm 2.3 (6 \%)$ 30.4 ± 5.0 70.6 ± 11.9 227.1 ± 25.0 130.8 ± 15.7 75.9 ± 26.9 101.7 ± 34.5 129.7 ± 16.3 202.4 ± 39.2 15.7 ± 1.0 25.9 ± 1.1 17.3 ± 0.9 20.7 ± 1.5 46.6 ± 17.3 61.7 ± 21.4 63.3 ± 10.0 106.6 ± 25.0 62.3 ± 17.0 87.6 ± 21.2 80.6 ± 9.7 127.3 ± 23.9 29.7 ± 10.0 40.5 ± 13.6 66.4 ± 8.7 95.8 ± 18.5 (47%) (40%) (40%) (40%) (47%)	(229,075 km²)(454,900 km²)(250,425 km²)(213,550 km²)(231,150 km²) $197-2014$ 31.1 ± 5.4 68.4 ± 10.6 242.6 ± 39.1 142.3 ± 23.3 85.4 ± 13.5 $0.4 \pm 0.2 (1 \%)$ $0.4 \pm 0.2 (<1 \%)$ $4.2 \pm 1.8 (2 \%)$ $6.6 \pm 2.8 (5 \%)$ $1.7 \pm 0.8 (2 \%)$ 30.7 ± 5.3 68.0 ± 10.5 238.5 ± 38.7 135.7 ± 22.7 83.7 ± 13.2 57.2 ± 24.1 72.2 ± 33.8 101.0 ± 27.1 155.2 ± 48.4 67.4 ± 24.0 15.7 ± 0.9 25.3 ± 1.6 16.8 ± 0.8 20.3 ± 1.7 16.4 ± 1.1 34.5 ± 15.7 43.3 ± 21.8 47.8 ± 14.5 77.7 ± 28.9 37.0 ± 13.4 50.2 ± 15.6 68.5 ± 21.8 64.6 ± 14.9 98.1 ± 29.2 54.4 ± 13.9 23.1 ± 8.7 29.4 ± 12.5 57.5 ± 14.5 84.1 ± 23.2 32.1 ± 11.4 (40%) (41%) (57%) 84.1 ± 23.2 32.1 ± 18.9 -19.2 ± 17.9 -0.2 ± 23.3 178.1 ± 41.7 44.3 ± 39.2 32.1 ± 18.9 (40%) 232.4 ± 25.2 138.5 ± 16.1 86.4 ± 8.6 $0.5 \pm 0.3 (2 \%)$ $0.4 \pm 0.2 (<1 \%)$ $5.2 \pm 1.9 (2 \%)$ $7.8 \pm 2.3 (6 \%)$ $2.0 \pm 0.6 (2 \%)$ 30.4 ± 5.0 70.6 ± 11.9 227.1 ± 25.0 130.8 ± 15.7 84.4 ± 8.6 75.9 ± 26.9 101.7 ± 34.5 129.7 ± 16.3 202.4 ± 39.2 89.3 ± 19.7 15.7 ± 1.0 25.9 ± 1.1 17.3 ± 0.9 20.7 ± 1.5 16.7 ± 0.8 46.6 ± 17.3 61.7 ± 21.4 63.3 ± 10.0 106.6 ± 25.0 $49.1 \pm 10.$	(229,075 km²) (454,900 km²) (250,425 km²) (213,550 km²) (231,150 km²) (267,075 km²) 31.1 ± 5.4 68.4 ± 10.6 242.6 ± 39.1 142.3 ± 23.3 85.4 ± 13.5 84.2 ± 13.9 0.4 ± 0.2 (1 %) 0.4 ± 0.2 (<1 %)

1194

1195

right precipitation is shown. Trends are shown in paragraphs for the GrIS column. Significant trends


	N	NE	SE	SW	W	NW	GrIS
1979–2014 2005–2014	4.8 6.5	3.0 4.3	6.0 8.0	11.5 15.8	5.1 6.7	5.7 8.2	5.6 7.6
2005-2014	0.3	4.3	8.0	15.8	0.7	8.2	7.0


Table 2: Regional breakdown of GrIS specific runoff (L s⁻¹ km⁻²) for GrIS and each of the six

- 1197 individual sections both from 1979–2014 and 2005–2014.

1249 **Figure S2:** Eigenvector correlation values for each simulated catchment (1 to 3,272) for: (a)

1250 EOF2 and (b) EOF3. From left to right on the lower x-axis the catchments follows the clockwise

1251 path from the southern tip of Greenland (Southwest Greenland, Catchment 1) to the northern part

1252 (N section) and back to the southern tip (Southeast Greenland, Catchment 3,272). The location of

1253 the major regions: SW, W, NW, etc., are shown on the upper x-axis.