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1 2D trace gas transport model 

1.1 Numerical integration scheme 

Trace gas migration in firn is governed by the partial differential Eq. (S1): 

𝑠̃
𝜕𝑞

𝜕𝑡
= ∇⃑⃑ ⋅ [𝑠̃𝑫𝑚 (∇⃑⃑ 𝑞 − 𝐺  𝑞 + Ω

𝜕𝑇

𝜕𝑧
𝑞 𝑘̂)] + ∇⃑⃑ ⋅ [𝑠̃𝑫𝑑 ∇⃑⃑ 𝑞] −  (𝑠̃ u⃑ ) ⋅ ∇⃑⃑ 𝑞 , (S1)  

where 𝐺 ≡
∆𝑚 𝑔⃑ 

𝑅 𝑇
, 𝑞 ≡

𝛿

1000
+ 1 is the trace gas or isotope mixing ratio, 𝑠̃ ≡  𝑠𝑜𝑝exp (

M 𝑔

𝑅 𝑇
𝑧) pressure-corrected open porosity 10 

(m3 m-3), 𝑇 temperature (K), ∆𝑚 isotope mass difference (kg mol-1) to the mass of air M (kg mol-1), 𝑔  gravitational acceleration 

(m s-2), 𝑅 the fundamental gas constant (J mol-1 K-1), 𝑢⃑  air advection velocity due to snow accumulation, pore compression 

and barometric pumping (m s-1), and Ω thermal diffusion sensitivity (K-1). 𝑫𝑚  is the molecular diffusivity and 𝑫𝑑  is the 

dispersion tensor (m2 s-1). 𝑫𝑚 has different entries on the diagonal to represent different strengths of molecular diffusion in 

the vertical and horizontal direction. Similarly, 𝑫𝑑 is simplified to an “eddy diffusivity”, 𝑫𝑒, acting in vertical and horizontal 15 

direction as described in the text. 𝑠̃ = 𝑠̃(𝑧), 𝑇 = T(z, t), and 𝑞 = 𝑞(𝑥, 𝑧, 𝑡) are scalar fields. Furthermore, u⃑ = 𝑢(𝑥, 𝑧, 𝑡) 𝑖̂ +

 𝑤(𝑥, 𝑧, 𝑡) 𝑘̂ is a vector field and ∇⃑⃑ ≡
𝜕

𝜕𝑥
𝑖̂ +

𝜕

𝜕𝑧
𝑘̂ is the gradient operator.  

Equation (S1) is discretized using a Crank-Nicolson time stepping scheme and central difference approximations derived 

from flux balance on an Arakawa C (i.e., staggered; Fig. S1) grid as follows: 

𝑠̃(𝑧)
𝑞(𝑥, 𝑧, 𝑡 + Δ𝑡) − 𝑞(𝑥, 𝑧, 𝑡)

Δ𝑡
=

1

2
[(𝐀 + 𝐁)|𝑡+Δ𝑡𝑞(𝑥, 𝑧, 𝑡 + Δ𝑡) + (𝐀 + 𝐁)|𝑡  𝑞(𝑥, 𝑧, 𝑡)] , (S2)  

where 20 

𝐀|𝑡  𝑞(𝑥, 𝑧, 𝑡) ≡
−𝑠̃𝑢(𝑥+

Δ𝑥

2
,𝑧,𝑡)

2Δ𝑥
 𝑞(𝑥 + Δ𝑥, 𝑧, 𝑡) +

𝑠̃𝑢(𝑥−
Δ𝑥

2
,𝑧,𝑡)

2Δ𝑥
 𝑞(𝑥 − Δ𝑥, 𝑧, 𝑡) −

𝑠̃𝑤(𝑥,𝑧+
Δ𝑧

2
,𝑡)

2Δ𝑧
 𝑞(𝑥, 𝑧 + Δ𝑧, 𝑡) +

𝑠̃𝑤(𝑥,𝑧−
Δ𝑧

2
,𝑡)

2Δ𝑧
 𝑞(𝑥, 𝑧 − Δ𝑧, 𝑡) + [

𝑠̃𝑢(𝑥+
Δ𝑥

2
,𝑧,𝑡) − 𝑠̃𝑢(𝑥−

Δ𝑥

2
,𝑧,𝑡)

2Δ𝑥
+

𝑠̃𝑤(𝑥,𝑧+
Δ𝑧

2
,𝑡) − 𝑠̃𝑤(𝑥,𝑧−

Δ𝑧

2
,𝑡)

2Δ𝑧
]  𝑞(𝑥, 𝑧, 𝑡) ,  

(S3)  
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𝐁|𝑡  𝑞(𝑥, 𝑧, 𝑡) ≡
𝑠̃𝐷ℎ

∗(𝑥+
Δ𝑥

2
,𝑧,𝑡)

Δ𝑥2 𝑞(𝑥 + Δ𝑥, 𝑧, 𝑡) +
𝑠̃𝐷ℎ

∗(𝑥−
Δ𝑥

2
,𝑧,𝑡)

Δ𝑥2 𝑞(𝑥 − Δ𝑥, 𝑧, 𝑡) + [
𝑠̃𝐷𝑣

∗(𝑥,𝑧+
Δ𝑧

2
,𝑡)

Δ𝑧2 − 𝐺
𝑠̃𝐷𝑚,𝑣(𝑥,𝑧+

Δ𝑧

2
,𝑡)

2Δ𝑧
+

𝑠̃𝐷𝑚,𝑣Ω(𝑥,𝑧+
Δ𝑧

2
)(

𝑇(𝑥,𝑧+Δ𝑧,𝑡)−𝑇(𝑥,𝑧,𝑡)

Δ𝑧
)

2Δ𝑧
] 𝑞(𝑥, 𝑧 + Δ𝑧, 𝑡) + [

𝑠̃𝐷𝑣
∗(𝑥,𝑧−

Δ𝑧

2
,𝑡)

Δ𝑧2 + 𝐺
𝑠̃𝐷𝑚,𝑣(𝑥,𝑧−

Δ𝑧

2
,𝑡)

2Δ𝑧
−

𝑠̃𝐷𝑚,𝑣Ω(𝑥,𝑧−
Δ𝑧

2
)(

𝑇(𝑥,𝑧,𝑡)−𝑇(𝑥,𝑧−Δ𝑧,𝑡)

Δ𝑧
)

2Δ𝑧
] 𝑞(𝑥, 𝑧 − Δ𝑧, 𝑡) + [−

𝑠̃𝐷ℎ
∗(𝑥+

Δ𝑥

2
,𝑧,𝑡)+ 𝑠̃𝐷ℎ

∗(𝑥−
Δ𝑥

2
,𝑧,𝑡)

Δ𝑥2 −
 𝑠̃𝐷𝑣

∗(𝑥,𝑧+
Δ𝑧

2
,𝑡) + 𝑠̃𝐷𝑣

∗(𝑥,𝑧−
Δ𝑧

2
,𝑡) 

Δ𝑧2 +

𝐺
 𝑠̃𝐷𝑚,𝑣(𝑥,𝑧−

Δ𝑧

2
,𝑡) − 𝑠̃𝐷𝑚,𝑣(𝑥,𝑧+

Δ𝑧

2
,𝑡) 

2Δ𝑧
+

𝑠̃𝐷𝑚,𝑣Ω(𝑥,𝑧+
Δ𝑧

2
)(

𝑇(𝑥,𝑧+Δ𝑧,𝑡)−𝑇(𝑥,𝑧,𝑡)

Δ𝑧
)−𝑠̃𝐷𝑚,𝑣Ω(𝑥,𝑧−

Δ𝑧

2
)(

𝑇(𝑥,𝑧,𝑡)−𝑇(𝑥,𝑧−Δ𝑧,𝑡)

Δ𝑧
)

2Δ𝑧
] 𝑞(𝑥, 𝑧, 𝑡) ,  

(S4)  

with 𝑫∗ ≡ 𝑫𝑒  +  𝑫𝑚 a combination of eddy and molecular diffusivity in vertical (𝐷𝑣
∗) and horizontal (𝐷ℎ

∗) direction, Δ𝑡 time 

step of integration (s), Δ𝑧 vertical grid spacing (m), and Δ𝑥 horizontal grid spacing (m). Here 𝑞 is a Nx1 vectors where N is 

the number of grid cells; 𝐀 and 𝐁 are banded square-matrices of dimensions NxN that represent the advection operator (i.e., 

the sum of the three velocity components) and the diffusion operator (Fickian diffusion, eddy diffusion, thermal diffusion, and 

gravitational fractionation), respectively. The two matrices have entries on the diagonal as well as four off diagonals 5 

corresponding to the grid points above, below, to the left and to the right. Because 𝐀 and 𝐁 are also dependent on time, 

subscripts indicate the time step in Eqs. (S3) and (S4). Equations (S2) – (S4) form a system of linear equations describing the 

change in time of 𝑞 at all spatial points. Rearranging Eq. (S2) yields 

(𝑥, 𝑧, 𝑡 + Δ𝑡) = [𝑠̃(𝑧) 𝐈 − (𝐀 + 𝐁)|𝒕+Δt]
−1

[
Δt

2
(𝐀 + 𝐁)|𝒕 + 𝑠̃(𝑧) 𝐈] 𝑞(𝑥, 𝑧, 𝑡) , (S5)  

with 𝐈 the identity matrix, which can be stepped forward in time. In the limit of no horizontal transport and constant coefficients 

(𝑠̃, 𝐷𝑚, 𝐷𝑒  and 𝑢⃑  constant), we find good agreement between our numerical model and analytical solutions for a simple 1D 10 

model (Appendix A, Fig. S2). δ15N profiles from the model run at 5x higher temporal resolution indicate that the error 

introduced by a coarser time step converges and is small (~0.5 per meg) relative to the signal in the deep firn (~5 per meg) 

(Fig. S3). 
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Figure S1. Schematic of the distribution of variables 𝑞, 𝑇, 𝑢, 𝑠̃, D*, Ω and 𝑤 on the staggered grid. 

 

Figure S2. Comparison of 1D analytical solutions (Appendix A, solid lines) and numerical model output (dashed coloured lines). Here 𝑤 =
10−9 m s-1, 𝐷𝑒 = 6 × 10−7 m2 s-1 and molecular diffusivity of CO2 𝐷𝑚 = 6 × 10−6 m2 s-1 up to the COD The dashed black line shows the 5 
gravitational settling equilibrium, i.e., the steady-state solution for each isotope pair neglecting advection and non-fractionating mixing 

processes (𝛿𝑔𝑟𝑎𝑣). 
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Figure S3. Evolution of the root-mean-square difference between the δ15N profile produced by the model with barometric pumping and a 

time step of 3.5 days (default setting) relative to results obtained with 5x higher temporal resolution (assumed to yield the “true” solution). 

The error is quantified in the depth range of 68-75 m at WAIS Divide and converges at less than 0.5 per meg after ~30 years. The pressure 

forcing was linearly interpolated for the high-resolution run and the model was initialized with the steady-state solution presented in the 5 
main text for both time steps.  

1.2 Layering 

We solve the trace gas transport equation under the consideration of discontinuous, impermeable, horizontal layers. Owing to 

computational limitations, layers cannot be resolved directly in the model and are thus idealized by assigning them an 

infinitesimal thickness. The discretization of Eq. (S1) using a staggered grid as in Eqs. (S3) and (S4) greatly simplifies the 10 

implementation of these impermeable layers.  

Layers are advected with the firn. The z-axis position of layer 𝑙, at time t, is found by numerically integrating the equation 

𝑧𝑙(𝑡) = 𝑧𝑙(𝑡0) + ∫ 𝑤𝑓𝑖𝑟𝑛(𝑧𝑙(𝑡
′)) dt′

𝑡

𝑡0

 , (S6)  

where 𝑧𝑙 is the depth of the layer and 𝑤𝑓𝑖𝑟𝑛  is the vertical firn advection velocity. Equation (S6) is discretized using Forward 

Euler time stepping such that 

𝑧𝑙(𝑡) = 𝑧𝑙(𝑡 − Δt) + wfirn(zl(z − Δt))Δt . (S7)  

Layer positions on the discrete grid are updated once a layer has moved below the depth of the next grid box. New layers 15 

are introduced at 70% of the total depth of the firn column (i.e. 𝑧(𝑠̃ > 0)) once the top layer was displaced by at least the 

thickness of one annual layer from its initial position. The centre of each layer opening alternates between two locations 

(separated by half the horizontal domain length) and the layer size increases linearly with depth. Layers begin to cover the 

entire horizontal range of the model when the COD is reached and are not tracked further below this depth because any further 

gas transport is limited to advection with the pores.  20 

1.3 Boundary conditions 

A set of boundary and initial conditions accompany Eq. (S1):  
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1) The model is initialized with isotopic ratios as expected from gravitational equilibrium at all depth. For CO2 and CH4 

transport simulations, initial concentrations are set to the lowest atmospheric concentrations observed for the time window 

of the simulation. 

2) Surface values of q are given by the atmospheric trace gas concentration at each time step (i.e., a Dirichlet boundary). 

Atmospheric isotope ratios are assumed to be constant. Atmospheric CO2 and CH4 histories are taken and updated from 5 

Buizert et al. (2012) based on a combination of direct measurements and reconstructions from the Law Dome ice core site 

(Figure S4) (Dlugokencky et al., 2016a, 2016b, Etheridge et al., 1996, 1998; Keeling et al., 2001).  

3) A periodic boundary condition is implemented for all horizontal fluxes by connecting both sides of the domain. 

4) Because Eq. (S1) only describes the trace gas evolution in open pore space, the bottom of the domain is reached where 𝑠̃ 

equals zero. A Neumann boundary condition is chosen for this boundary and the flux leaving through the bottom of the 10 

domain is equal to the advection of pores with the firn. Diffusion already ceases to occur at the considerably shallower 

close-off depth (COD). Because the advective flux at the bottom boundary depends on q, it must be approximated locally 

using a backward difference scheme. 

5) Layers are implemented on the staggered grid by setting the diffusivity and permeability between two adjacent boxes to 

zero. Layers have an infinitesimally small thickness and do not change the porosity anywhere. The permeability increases 15 

from layer edges towards the centre of the layer opening as if porosity in the layer opening increased linearly to obtain a 

more realistic flow field near layer edges. Other firn properties, such as the diffusivity, are only changed on layers grid 

points because their porosity-dependence should be considerably weaker than for permeability. Vertical gas advection 

velocities on layers correspond to the local velocity of firn such that mixing ratio discontinuities are preserved and 

correctly advected downward at the same speed as layers. Layers do not directly impact the horizontal diffusion, 20 

permeability or porosity. 

 

Figure S4. Atmospheric CO2 and CH4 histories composed from a combination of direct measurements and reconstructions from the Law 

Dome ice core site (Buizert et al., 2012; Dlugokencky et al., 2016a, 2016b, Etheridge et al., 1996, 1998; Keeling et al., 2001). 
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2 Flow field models for firn advection and barometric pumping 

2.1 Firn pore advection and pore compression 

Advection in the Eularian frame of the model has three components that combine to form the vector u⃑  in Eq. (S1). The first 

component of advection represents the downward migration of firn and air contained in the pore spaces due to the continuous 

accumulation of fresh snow at the surface. This flux can easily be calculated from the snow/ice mass balance and the density 5 

profile of the firn. Secondly, the compression of pores in the firn squeezes air out and drives a macroscopic airflow from the 

firn back to the atmosphere. Finally, barometric pumping drives direction-reversing airflows in response to surface pressure 

anomalies. These airflows act to return firn air pressures to hydrostatic balance. Barometric pumping flows are orders of 

magnitude faster than the other fluxes (Fig. 4c) but cause no net airflow when averaged over seasonal or longer time scales. 

Nevertheless, the fast flow speeds associated with barometric pumping may produce notable dispersive mixing in the deep firn 10 

(Buizert and Severinghaus, 2016). 

The return and barometric pumping flows 𝑢⃑ 𝑟 and 𝑢⃑ 𝑏 move through the porous firn medium and obey Darcy’s law. Darcy’s 

law (Darcy, 1856) states that the equilibrium-state volume transport 𝑄⃑  through the cross-sectional area A for laminar, 

incompressible flow is given by 

𝑄⃑  = −𝐴
𝜅

𝜇
∇𝑃 , (S8)  

where 𝜅 is permeability of the medium (m2), 𝜇 is dynamic viscosity of the fluid (Pa⋅s), and ∇𝑃 is pressure gradient (Pa m-1) 15 

driving the flow. We note that the hydrostatic component of pressure (𝑃̃) is no cause of flow and can thus be removed in the 

flow field model. Discharge 𝑄⃑  must be divided by area A and the pressure-corrected open porosity 𝑠̃ to obtain the true flow 

speed 𝑢⃑  per pore-cross sectional area used in the tracer advection equation because only a fraction of the total area is available 

for flow 

𝑢⃑ =
𝑄⃑ 

𝐴 𝑠̃
= −

𝜅

𝜇 𝑠̃
∇𝑃̃′. (S9)  

The continuity equation for a compressible fluid in a porous medium can be derived from the conservation equation of air 20 

molecules, using the ideal gas law, which yields 

𝜕(𝑠𝑜𝑝  𝜌)

𝜕𝑡
+ ∇ ⋅ (𝑠𝑜𝑝  𝜌 𝑢⃑ ) = 𝑠𝑜𝑝  𝑆 , (S10)  
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where 𝜌  is air density and 𝑆  denotes a source or sink of mass (Buizert and Severinghaus, 2016). Assuming porosity is 

independent of time, 
𝜕(𝑠𝑜𝑝)

𝜕𝑡
= 0, and the density in the firn is obtained from hydrostatic balance of an isothermal atmosphere, 

𝜌 ≃  𝜌0 exp (
𝑔 𝑀

𝑅 𝑇
 𝑧), the continuity equation implies that 

∇ ⋅ (𝑠̃ 𝑢⃑ ) =
𝑠̃ 𝑆

𝜌0

−
𝜕(𝜌0)

𝜕𝑡
≡ 𝛼 , (S11)  

where 𝜌0 is surface air density, 𝛼 is a volume source or sink of air. The depth dependency of density has been absorbed into 

the open porosity as before. Equation (S11) shows that the divergence of the porosity-scaled velocity must equal the local 5 

source of air and change in density.  

For the return flow of air to the atmosphere (i.e., 𝑢⃑ 𝑟) the source term 𝛼𝑟 is the compression of pores during firn advection 

and density changes are neglected 

𝛼𝑟 = ∇ ⋅ (𝑠̃ 𝑢⃑ 𝑟) = ∇ ⋅ [−
𝜅

𝜇
∇𝑃̃′ ] , (S12)  

and for barometric pumping component of flow (i.e., 𝑢⃑ 𝑏) the source or sink 𝛼𝑏 is the local density change in response to surface 

pressure anomalies 10 

𝛼𝑏 = ∇ ⋅ (𝑠̃ 𝑢⃑ 𝑏) = ∇ ⋅ [−
𝜅

𝜇
∇𝑃̃′ ] . (S13)  

𝛼𝑟 can be calculated as the vertical derivative of the mean vertical flow due to pore compression 〈𝑤𝑟〉 = 𝑤𝑎𝑖𝑟 − 𝑤𝑓𝑖𝑟𝑛 , 

where 𝑤𝑎𝑖𝑟  is the mean effective vertical air transport velocity (m s-1), such that 

𝛼𝑟 =
𝜕

𝜕𝑧
[𝑠̃ ( 𝑤𝑎𝑖𝑟 − 𝑤𝑓𝑖𝑟𝑛)] . (S14)  

This is analogous to calculating pore compression in a 1D firn column (Rommelaere et al., 1997). At steady-state, mass 

conservation of air requires that the net vertical flux of air molecules is equal at all depth when integrated horizontally. Using 

the ideal gas law, the total vertical transport of air molecules n per area A is given by  15 

𝑛

𝐴 𝑡
=

𝑃
𝑉
𝑡

𝐴 𝑅 𝑇
=

1

𝑅 𝑇
(𝑃̃𝑠𝑜𝑝𝑤𝑎𝑖𝑟 + 𝑃𝑏𝑠𝑐𝑙𝑤𝑓𝑖𝑟𝑛) ≡ const., (S15)  

where 𝑃̃ is the ambient hydrostatic pressure in open pores, 𝑃𝑏  is pressure of air in bubbles, and 𝑠𝑐𝑙 is closed porosity (m3 m-3). 

Temporal changes in 𝑃̃ are small and their impact on 𝑤𝑎𝑖𝑟  and 𝑃𝑏  is neglected in Eq. (S15). At 𝑧 = 𝑧(COD), vertical airflow 
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ceases and air is only carried further downward by the advection of pores with the firn. Therefore, 𝑤𝑎𝑖𝑟  is equal to the advection 

velocity at and below this depth and 

𝑛

𝐴 𝑡
=

1

𝑅 𝑇
(𝑃̃𝑠𝑜𝑝𝑤𝑓𝑖𝑟𝑛 + 𝑃𝑏𝑠𝑐𝑙𝑤𝑓𝑖𝑟𝑛)

|𝑧=𝑧𝐶𝑂𝐷

 . (S16)  

For given bubble pressure 𝑃𝑏 , Eqs. (S15) and (S16) can be solved to find 𝑤𝑎𝑖𝑟  and 𝛼𝑟 at all depths. Rommelaere et al. 

(1997) derive an equation for the change in bubble air content based on the compression of previously existing bubbles and 

the trapping of air in new bubbles 5 

𝑃𝑏(𝑧) =
1

𝑤𝑓𝑖𝑟𝑛  𝑠𝑐𝑙

∫ 𝑃̃ 𝑤𝑓𝑖𝑟𝑛𝑠𝑡

𝜕

𝜕𝑧
 (

𝑠𝑐𝑙

𝑠𝑡

)  𝑑𝑧
𝑧

0

 , (S17)  

where 𝑠𝑡 ≡ 𝑠𝑐𝑙 + 𝑠𝑜𝑝 is total porosity. Typical pressure profiles are shown in Fig. S5. High 𝑃𝑏  near the surface results from the 

very small, but non-zero closed porosity values that are an artefact of the porosity parameterization at that depth. Mean 𝑃𝑏  in 

the top ~60 % of the firn column above the COD should thus be interpreted with caution.  

 

Figure S5. Normalized profiles of pressure in bubbles and of hydrostatic pressure in open pores at WAIS Divide. 10 

Equations (S12), (S14), (S15), and (S17) are combined to calculate the hypothetical pressure fields for the return flow  

𝜕

𝜕𝑧
[𝑠̃ ( 𝑤𝑎𝑖𝑟 − 𝑤𝑓𝑖𝑟𝑛)] = ∇ ⋅ [−

𝜅

𝜇
∇𝑃̃′] . (S18)  

Subsequently, the corresponding velocity field 𝑢⃑ 𝑟 is obtained using Eq. (S9). Plots of a representative pressure anomaly field 

and corresponding flow field are shown in Figs. S6 and S7. 
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Figure S6. Pressure anomaly field calculated for the return flow to the atmosphere shown in Fig. S7. Layers appear as discontinuities in the 

pressure field on the model domain. Plot is shown at reduced grid resolution for clarity. 

 

Figure S7. Return flow of air to the atmosphere corresponding to Fig. S6. Plot is shown at reduced grid resolution for clarity. 5 

2.2 Barometric pumping 

The source term for barometric pumping, 𝛼𝑏, is equal to the change in firn air density caused by surface pressure anomalies 

associated with passing storms. Air compression or expansion demands a local convergence or divergence of flow that forces 

air to move in or out of the firn, assuming porosity remains constant.  

Starting from Darcy’s law, the continuity equation and hydrostatic balance, Buizert and Severinghaus (2016) derive a 10 

partial differential equation for firn air pressure similar to Eq. (S19) 
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𝑠𝑜𝑝

𝜕𝑃

𝜕𝑡
= ∇ ⋅ [𝑠𝑜𝑝 𝑃̅0 exp (

𝑀 𝑔

𝑅 𝑇
𝑧) 

𝜅

 𝑠̃𝜇
∇𝑃̃′] . (S19)  

Here, we chose not to expand the divergence operator, remove the hydrostatic component of pressure through the definition 

of 𝑃̃′ and use the version of Darcy’s law given by Eq. (S9) instead. Following Buizert and Severinghaus (2016), we linearized 

Eq. (S19) in the pressure anomaly by replacing the pressure (or equivalently the density) in the continuity equation by the 

annual mean hydrostatic pressure (𝑃 = 𝑃̅0 exp (
𝑀 𝑔

𝑅 𝑇
𝑧)). However, the high computational costs of running a 2D model prevent 

us from reducing the time step below ~3 days and explicitly resolving the propagation of surface pressure waves into firn. 5 

Instead, we assume the pressure changes on the LHS should be approximately in hydrostatic balance throughout the firn, in 

line with results by Buizert and Severinghaus (2016) 

𝜕𝑃

𝜕𝑡
≃

𝜕𝑃̃

𝜕𝑡
=

𝜕𝑃0

𝜕𝑡
exp (

𝑀 𝑔

𝑅 𝑇
𝑧) , (S20)  

where 𝑃0 = 𝑃0(𝑡) is the time-varying surface pressure. Combining Eqs. (S19) and (S20) yields 𝛼𝑏 

𝛼𝑏 ≡
𝑠̃

𝑃̅0

𝜕𝑃0

𝜕𝑡
 , (S21)  

and an equation to calculate a hypothetical pressure field which gives rise to the barometric pumping flow 

𝑠̃

𝑃̅0

𝜕𝑃0

𝜕𝑡
= ∇ ⋅ [

𝜅

𝜇
∇𝑃̃′] , (S22)  

where 𝑃̅0 is the annual mean surface pressure. The flow field, found using Eq. (S9), may be interpreted as the flow required 10 

over timestep Δt to return the column to hydrostatic balance with a new surface pressure of 𝑃0. To represent storm activity, we 

prescribe 𝑃0(𝑡) as pseudo red noise. The surface pressure variability in the model is slightly damped compared to observations 

in order to account for non-hydrostatic changes. This yields comparable mean vertical velocities as published by Buizert and 

Severinghaus (2016). 

Similar to Eq. (S1), the flow field models for the return flow and barometric pumping are discretized using central 15 

differences on a staggered grid. Values for κ are calculated using the parametrization of Adolph and Albert (2014) and 𝜇 is 

assumed to be constant. Surface values of 𝑃̃′ are set to zero for the return flow and to 𝑃0(𝑡) − 𝑃̅0 for barometric pumping. The 

grid is periodic in the x-direction and no fluxes through the bottom boundary are permitted. Layers set the permeability 𝜅, and 

thus also velocities, between grid boxes to zero. Because layers are advected with the firn, the total flow field must be 

recalculated at every time step.  20 
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3 Thermal model 

We use the thermal model of Alley and Koci (1990) to obtain temperature fields for all time steps. The temperature evolution 

of firn and ice can be simulated in 1D because horizontal temperature gradients are negligibly small. Heat transport in firn is 

governed by a slightly modified version of the traditional heat equation (Cuffey, K.M. and Paterson, 2010) 

𝜌𝑐𝑝

𝜕𝑇

𝜕𝑡
= 𝛾

𝜕2𝑇

𝜕𝑧2
+

𝜕𝛾

𝜕𝑧

𝜕𝑇

𝜕𝑧
−  𝜌𝑐𝑝𝑤𝑠

𝜕𝑇

𝜕𝑧
+ 𝑄 , (S23)  

where 𝑇 is temperature (°C), 𝜌 = 𝜌(𝑧) firn density (kg m-3), 𝑐𝑝 = 𝑐𝑝(𝑇) specific heat capacity of firn (J kg-1 °C-1), 𝛾 =5 

𝛾(𝑇, 𝜌) heat conductivity (W m-1 °C-1), 𝑤𝑠 vertical advection velocity of firn 



12 

 

/ice (m s-1), and 𝑄 is local heat production due to firn compaction and ice deformation (J s-1 m-2). Using the chain rule, this 

expression can be rewritten in terms of the thermal diffusivity 𝑘 =
𝛾

𝑐𝑝𝜌
 (m2 s-1) (Johnsen, 1977) as 

𝜕𝑇

𝜕𝑡
= 𝑘

𝜕2𝑇

𝜕𝑧2
+ [(

𝑘

𝜌
+

𝜕𝑘

𝜕𝜌
)
𝜕𝜌

𝜕𝑦
− 𝑤𝑠]

𝜕𝑇

𝜕𝑧
+ [

𝜕𝑘

𝜕𝑇
+

𝑘

𝑐𝑝

𝑑𝑐𝑝

𝑑𝑇
] (

𝜕𝑇

𝜕𝑧
)
2

+ 𝑄 . (S24)  

Following Alley and Koci (1990) and references therein, we use the following parametrizations for 𝑤𝑠, cpand 𝑘 

𝑤𝑠 = 𝑤𝑓𝑖𝑟𝑛 (1 −
𝜎

𝜌𝑖𝑐𝑒𝐻
), (S25)  

cp  =  2096 + 7.7752T , (S26)  

𝑘 = (1 − 0.00882(𝑇 + 30)) (−1.229 × 10−14𝜌3 + 2.1312 × 10−11𝜌2 − 9.4 × 10−9𝜌 + 1.779 × 10−6) , (S27)  

where 𝜎 is the cumulative load of firnf 

 above (kg m-2) and H the total thickness of the ice sheet. 𝑄 parameterized as 5 

𝑄 =  𝜎
𝑏̇ 𝜌𝑖𝑐𝑒

𝜌3

𝜕𝜌

𝜕𝑧

𝑔

𝑐𝑝

+

2(
𝑏̇
𝐻

)

4
3

𝜌 𝑐𝑝 (4.26 × 10−13 exp (−
7217

𝑇 + 273.15
))

1
3

 , (S28)  

where 𝑏̇ is the ice equivalent accumulation rate (m s-1). Equation (S24) is solved by explicit (forward Euler) time stepping 

because of the non-linearity in T. Spatial derivatives are approximated by central differences. Since the firn air transport model 

just requires firn temperature for the last ~200 years, only the top 130 m of the ice sheet are simulated in the temperature model 

for computational efficiency. The temperature gradient at the bottom boundary is fixed to zero but temperature at that depth 

can evolve freely. Surface temperature histories for WAIS Divide and Law Dome DSS were previously published by Orsi et 10 

al. (2012), Van Ommen et al. (1999) and Dahl-Jensen et al. (1999) and allow us to develop a surface forcing for the model. 

For the Law Dome site DSSW20K, we combine the water oxygen isotope record translated to temperature following Van 

Ommen et al. (1999) and supplemented this published, six centuries long record with the rescaled mean annual temperature 

recorded at the nearby Casey Station for the last ~50 years (Jones and Reid, 2001). Further information on the isotope to 

temperature scaling and the relationship to the historic data at Casey station can be found in Van Ommen et al. (1999). An 15 

appropriate offset is applied to the isotope and instrumental temperatures to match the slightly different mean annual 

temperature at DSSW20K compared to DSS. The Orsi et al. (2012) best fit WAIS Divide surface temperature record is 

modified slightly to bring our model results in line with the published borehole temperature profiles. A generic Antarctic 

seasonal cycle is superimposed on both long-term temperature forcings. The seasonal cycle is generated by matching a sine 
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and cosine wave including serval harmonic to a climatology of Automated Weather Station data at WAIS Divide and Law 

Dome (Lazzara et al., 2012). The exact details of the seasonal cycle are of limited importance for trace gas transport to the 

lock-in zone because the seasonal temperature wave becomes quickly attenuated in the firn. We do not mean to imply that our 

forcings are necessarily accurate reconstructions of local surface temperature but the forcings should yield approximately 

correct thermal gradients in the firn using our model’s temperature module. Moreover, thermal fractionation of isotopes only 5 

amounts to a comparatively small influence on most isotopes ratios. Thus, an approximately correct temperature profile is 

sufficient for our purposes. Temperature fields are only used to account for isotope thermal fractionation and any temperature 

influence on firn densification is neglected. 

4 Model parameter summary 

Table S1. Overview of important model parameters 10 

Parameters WAIS Divide Law Dome DSSW20K 

Depth  85 m 65 m 

Width 12 x thickness of an annual layer (i.e., ~2-4 m) 

Horizontal grid spacing 0.03 m 

0.03 m 
Vertical grid spacing 0.04 m 

0.04 m 
Depth of first layer 70% of total firn column height 

Time 1800–2006 in 3.5-day timesteps 1800–1998.05 in 3.5-day timesteps 

Temperature T1,2 243.15 K 253.45 K 

Ice sheet height H 3500 m 1200 m 

Surface Pressure 1,2  789 hPa 850 hPa 

Pressure variability 5 hPa day-1 8 hPa day-1 

Ice equiv. advection velocity1,2 6.9714×10-9 m s-1 5.1706×10-9 m s-1 

CO2 and CH4 atmospheric history Compilation of Law Dome ice core data3 & direct measurements at South Pole4 and 

Mauna Loa5 corrected for the interhemispheric gradient 

Density of ice6 𝜌𝑖𝑐𝑒 =  916.5 −  0.14438 (𝑇 − 273.15) − 1.517 ⋅ 10−4(𝑇 − 273.15)2 kg m-3 

Free air relative diffusivities to CO2 Buizert et al. (2012) and references therein 

Convective zone eddy diffusion 

𝑫𝒆 = 𝑫𝒆𝟎 𝐞𝐱𝐩 (−
𝒛

𝝉
) 

𝐷𝑒0 = 2.38 × 𝐷𝑚0 

𝜏 = 2.5 m  

range: 0 – 8 m + 2 m linear taper 

𝐷𝑒0 = 2.4 × 𝐷𝑚0 

𝜏 = 3.5 m  

range: 0 – 14 m + 2 m linear taper 

Dispersivity7 (assumed isotropic)   𝛼(𝑠𝑜𝑝) =   1.26 · exp(−25.7𝑠𝑜𝑝) 

Total porosity  𝑠𝑡  =  1 −
𝜌𝑓𝑖𝑟𝑛

𝜌𝑖𝑐𝑒
  

Closed porosity8 
𝑠𝑐𝑙  =  0.37 ⋅  𝑠𝑡 (

𝑠𝑡

1−
831.2

𝜌𝑖𝑐𝑒

)

−7.6

  

Firn density fit 
<𝑧𝑐𝑟𝑖𝑡1 𝜌𝑓𝑖𝑟𝑛 = 𝑎0  +  𝑎1𝑧 + 𝑎2 ⋅ exp[𝑎3 ⋅ (𝑧𝑐𝑟𝑖𝑡1 − 𝑧)] kg m-3 

 𝑧𝑐𝑟𝑖𝑡1 − 𝑧𝑐𝑟𝑖𝑡2 𝜌𝑓𝑖𝑟𝑛 = 𝑏0 + 𝑏1𝑧 + 𝑏2𝑧²  kg m-3 

 >𝑧𝑐𝑟𝑖𝑡2 𝜌𝑓𝑖𝑟𝑛 = 𝜌𝑖𝑐𝑒 − (𝜌𝑖𝑐𝑒 − 𝜌(zcrit2)) ⋅ exp [−
𝑧−zcrit2

𝜌𝑖𝑐𝑒−𝜌(zcrit2)
(b1 + 2 ⋅ b2zcrit2)]kg m-3 

Density fit parameters9 
𝑧𝑐𝑟𝑖𝑡1 =  16 
𝑧𝑐𝑟𝑖𝑡2 = 110 
𝑎0 = 420 
𝑎1 = 20.0121  
𝑎2 = −151.242 

𝑧𝑐𝑟𝑖𝑡1 =  19.7186 
𝑧𝑐𝑟𝑖𝑡2 = 37.4193 
𝑎0 = 511.8111 
𝑎1 = 7.8210  
𝑎2 = −0.0476 
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𝑎3 = −0.1 
𝑏0 = 506.85 
𝑏1 = 5.3748 
𝑏2 = −0.0152 

𝑎3 = 0.4143 
𝑏0 = 556.5176 
𝑏1 = 5.3204 
𝑏2 = 0.0117 

1 WAIS Divide: WAIS Divide Project Members (2016) 

2 Law Dome: Etheridge et al. (1992) 
3 Etheridge et al. (1996, 1998) and MacFarling Meure et al. (2006) 
4 Dlugokencky et al. (2016a) and Dlugokencky et al. (2016b) 
5 Keeling et al. (2001) and Dlugokencky et al. (2016b) 
6 Eq: Schwander et al. (1997) 
7 original Eq: Buizert and Severinghaus (2016)  
8 Eq: Goujon et al. (2003) in Severinghaus et al. (2010) and Kawamura et al. (2013) 
9 data: Trudinger et al. (1997); WAIS Divide coefficients: Battle et al. (2011) 

 

5 Law Dome DSSW20K firn properties 

 

Figure S8. Same as Fig. 4 for Law Dome DSSW20K. Density data: Trudinger et al. (2002, 2013) 

 5 
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Figure S9. Same as Fig. 6 for Law Dome DSSW20K. Every third annual layer is shown. 

6 Mass normalization 

Isotope ratios in delta notation are mass-normalized when mentioned to an isotope mass difference of one atomic mass unit 

(amu) using q-values 5 

𝑞𝑛𝑜𝑟𝑚 = 𝑞
1

1000 × Δ𝑚 . (S29)  

This is more accurate than dividing the ratio in delta notation by the isotope mass difference in amu (e.g. divide δ40Ar/36Ar by 

~4 amu). 

7 WAIS Divide CO2 profile comparison 

Four different versions of the 2D model are presented for WAIS Divide in the text. They represent combinations of active and 

inactive barometric pumping and the presence or absence of layers in the model. 2D models without layers contain no 10 

horizontal inhomogeneities and are thus reduced to 1D for computational efficiency but contain essentially the same physics 

and numerical implementation. Diffusivities in both 1D models are automatically tuned such that the CO2 profiles are (nearly) 

identical to the corresponding 2D versions. The use of an automatic tuning procedure to match the CO2 and CH4 profiles of 
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any 2D version of the model is prohibited by the high computational costs of running a 2D model. Differences in the CO2 

profiles between the different models are shown in Fig. S10. 

 

Figure S10. Comparison of simulated CO2 values at WAIS Divide between both 2D models (black line) and between each 2D model and 

the corresponding 1D model (red and blue line). 5 

8 Predicting kinetic isotope fractionation at WAIS Divide 

Kinetic isotope fractionation (𝜖′) of the krypton-nitrogen ratio can be directly related to 𝜖′ of krypton isotopes. A linear fit 

yields the relationship shown in Fig. S11 and discussed in the text. 

 

Figure S11. Linear fit to the relationship between mass-normalized 𝜖′ of 84Kr/28N2 and 𝜖′ of 86Kr/82Kr observed in the 2D model with 10 
barometric pumping at WAIS Divide. 
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