1	Nitrate deposition and preservation in the snowpack along a traverse							
2	from coast to the ice sheet summit (Dome A) in East Antarctica							
3								
4	Guitao Shi ^{1,2} , Meredith G. Hastings ³ , Jinhai Yu ^{2,4} , Tianming Ma ^{2,5} , Zhengyi Hu ² ,							
5	Chunlei An ² , Chuanjin Li ⁶ , Hongmei Ma ² , Su Jiang ² , and Yuansheng Li ²							
6								
7	¹ Key Laboratory of Geographic Information Science (Ministry of Education) and School of							
8	Geographic Sciences, East China Normal University, Shanghai 200241, China							
9	² Key Laboratory for Polar Science of State Oceanic Administration, Polar Research Institute of China,							
10	Shanghai 200062, China							
11	³ Department of Earth, Environmental and Planetary Sciences and Institute at Brown for Environment							
12	and Society, Brown University, Providence, Rhode Island 02912, USA.							
13	⁴ School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China							
14	⁵ School of Ocean and Earth Science, Tongji University, Shanghai 200092, China							
15	⁶ The State Key Laboratory of the Cryospheric Sciences, Northwest Institute of Eco-Environment and							
16	Resources, Chinese Academy of Sciences, Lanzhou 730000, China							
17								
18	Correspondence to: G. Shi (gt_shi@163.com) and M.G. Hastings (meredith_hastings@brown.edu)							
19								
20								
21								

22 Abstract. Antarctic ice core nitrate (NO_3) can provide a unique record of the atmospheric reactive 23 nitrogen cycle. However, the factors influencing the deposition and preservation of NO_3 at the ice sheet 24 surface must first be understood. Therefore, an intensive program of snow and atmospheric sampling 25 was made on a traverse from the coast to the ice sheet summit, Dome A, East Antarctica. Snow samples 26 in this observation include 120 surface snow samples (top ~ 3 cm), 20 snowpits with depths of 150 to 27 300 cm, and 6 crystal ice samples (the topmost needle like layer on Dome A plateau). The main 28 purpose of this investigation is to characterize the distribution pattern and preservation of NO_3^{-1} 29 concentrations in the snow in different environments. Results show that an increasing trend of NO₃ concentrations with distance inland is present in surface snow, and NO₃⁻ is extremely enriched in the 30 crystal ice (with a maximum of 16.1 µeq L⁻¹). NO₃⁻ concentration profiles for snowpits vary between 31 32 coastal and inland sites. On the coast, the deposited NO_3^- was largely preserved, and the archived NO_3^- 33 fluxes are dominated by snow accumulation. The relationship between the archived NO_3^- and snow 34 accumulation rate can be well depicted by a linear model, suggesting a homogeneity of atmospheric 35 NO_3^- levels. It is estimated that dry deposition contributes 27-44 % of the archived NO_3^- fluxes, and the 36 dry deposition velocity and scavenging ratio for NO₃⁻ was relatively constant near the coast. Compared to the coast, the inland snow shows a relatively weak correlation between archived NO₃⁻ and snow 37 38 accumulation, and the archived NO_3^- fluxes were more concentration dependent. The relationship between NO₃⁻ and coexisting ions ($nssSO_4^{2-}$, Na⁺ and Cl⁻) was also investigated, and the results show a 39 40 correlation between $nssSO_4^{2-}$ (fine aerosol particles) and NO_3^{-} in surface snow, while the correlation 41 between NO3⁻ and Na⁺ (mainly associated with coarse aerosol particles) is not significant. In inland 42 snow, there were no significant relationships found between NO_3^- and the coexisting ions, suggesting a 43 dominant role of NO₃⁻ recycling in determining the concentrations.

44

45

47 1 Introduction

48

49 As the major sink of atmospheric nitrogen oxides ($NO_x = NO$ and NO_2), nitrate (NO_3^{-1}) is one of the major chemical species measured in polar snow and ice. The measurements of NO₃⁻ in ice cores may 50 51 offer potential for understanding the complex atmospheric nitrogen cycle as well as oxidative capacity 52 of the atmosphere through time (Legrand and Mayewski, 1997; Alexander et al., 2004; Hastings et al., 53 2009; Geng et al., 2017). However, the sources, transport pathways, and preservation of NO_3^{-1} in 54 Antarctic snowpack are still not well understood, hampering the interpretation of ice core NO₃⁻ records. 55 The accumulation of NO_3 in snow is associated with various environmental factors and continental, 56 tropospheric and stratospheric sources could influence NO3⁻ concentrations (Legrand and Kirchner, 57 1990; McCabe et al., 2007; Wolff et al., 2008; Lee et al., 2014). In surface snow, NO₃⁻ levels are thought to be linked with snow accumulation rate, and higher values are usually present in areas with 58 59 low accumulation, e.g., East Antarctic plateaus (Qin et al., 1992; Erbland et al., 2013; Traversi et al., 2017). Unlike sea salt related ions (e.g., chloride (Cl⁻), sodium (Na⁺), and occasionally sulfate (SO₄²⁻)), 60 61 NO3⁻ does not usually show an elevated level in coastal Antarctic snow (Mulvaney and Wolff, 1994; 62 Bertler et al., 2005; Frey et al., 2009), suggesting a negligible contribution from sea salt aerosols. 63 However, the marine emissions of alkyl NO₃, particularly methyl and ethyl NO₃, produced in surface 64 oceans by microbiological and/or photochemical processes, are thought to be a possible contribution to 65 Antarctic NO₃⁻ (Jones et al., 1999; Liss et al., 2004). At Halley station in coastal Antarctica, significant 66 concentrations of organic nitrates (peroxyacetyl nitrate (PAN) and alkyl NO3⁻) were observed in the 67 lower atmosphere (Jones et al., 2011). Organic nitrates dominated the NO_v (sum of reactive nitrogen 68 oxide compounds) budget during the winter, and were on par with inorganic nitrate compounds during 69 the summer. Although not a direct source of snowpack nitrate, organic nitrates could act as source of 70 NO_x to coastal Antarctica that would ultimately contribute to NO_3^- within the snowpack (Jones et al.,

70 100x 1071 2011).

72 While industrial and/or agricultural emissions have contributed to increasing NO_3^- levels in 73 Greenland snow and ice over recent decades to hundreds of years, the anthropogenic contribution to Antarctic NO3⁻ is less clear (Mayewski and Legrand, 1990; Hastings et al., 2009; Felix and Elliott, 74 75 2013; Geng et al., 2014). Lightning and NO_x produced in the lower stratosphere have long been 76 thought to play a major role (Legrand et al., 1989; Legrand and Kirchner, 1990). Recently, adjoint 77 model simulations proposed that tropospheric transport of NO_3^- from mid-low latitude NO_x sources is 78 an important source to the Antarctic year round, though less so in austral spring/summer (Lee et al., 79 2014). A recent treatment of NO_3^- in snow in the same global chemical transport model suggests that 80 the recycling of NO₃⁻ and/or transport of NO_x due to photolysis of NO₃⁻ in the surface snow layer is 81 important in determining summertime concentrations (Zatko et al., 2016). The stratospheric inputs of 82 NO_3^- are thought to result from N_2O oxidation to NO, then formation of NO_3^- that is deposited via polar 83 stratospheric cloud (PSC) sedimentation (Legrand et al., 1989; Legrand and Kirchner, 1990). The late 84 winter/early spring secondary maximum of NO₃⁻ observed in the atmosphere at coastal and inland 85 locations has been attributed to the stratospheric source based on the NO₃⁻ stable isotopic composition 86 (Legrand et al., 1989; Savarino et al., 2007; Frey et al., 2009). At some sites, the snow/ice core NO₃ 87 concentrations were found to be linked with regional atmospheric circulation (e.g., sea level pressure 88 gradient; Goodwin et al., 2003; Russell et al., 2006). In general, atmospheric circulation appears not to 89 affect snow NO₃⁻ concentrations directly, but indirectly through an influence on the air mass transport 90 and/or snow accumulation rate (Russell et al., 2004; Russell et al., 2006). In addition, while some

- 91 studies suggested that snow/ice NO₃ is possibly linked with extraterrestrial fluxes of energetic particles 92 and solar irradiation, with solar flares corresponding to NO₃ spikes (Zeller et al., 1986; Smart et al., 93 2014), other observations and recent modeling studies have established that there is not a clear 94 connection between solar variability and NO3⁻ concentrations (Legrand et al., 1989; Legrand and 95 Kirchner, 1990; Wolff et al., 2008; Wolff et al., 2012; Duderstadt et al., 2014; Duderstadt et al., 2016; 96 Wolff et al., 2016). However, the potential link between the long-term (e.g., centennial to millennial 97 time scales) variability of NO_3^- and solar cycles may be present at some locations (Traversi et al., 2012). 98 In summary, factors influencing NO_3^- levels in snow/ice are complicated, and the significance of the 99 relationship between NO₃⁻ and controlling factors varies temporally and spatially.
- 100 Gas phase and snow concentration studies, and recent isotopic investigations and modeling have 101 shown that NO₃, particularly in snow on the Antarctic plateau, is a combination of deposition of HNO₃ 102 and post-depositional loss or recycling of NO₃⁻ (e.g., Röthlisberger et al., 2002; Davis et al., 2004; 103 Dibb et al., 2004; Erbland et al., 2013; Erbland et al., 2015; Shi et al., 2015; Bock et al., 2016; Zatko et 104 al., 2016). Based upon a suite of isotopic studies in the field and laboratory, it has been demonstrated 105 that under cold, sunlit conditions ultraviolet photolysis dominates NO₃⁻ post-depositional processing, whereas HNO₃ volatilization may become more important at warmer temperatures > -20 °C 106 107 (R äthlisberger et al., 2002; Frey et al., 2009; Erbland et al., 2013; Berhanu et al., 2015). In snowpack, 108 the solar radiation decreases exponentially, with attenuation described in terms of an *e*-folding depth (z_e) 109 where the actinic flux is reduced to 37 % (i.e., 1/e) of the surface value. Thus, about 95 % of snowpack 110 photochemistry is expected to occur above the depth of three times z_e (Warren et al., 2006). Field measurements at Dome C on the East Antarctic plateau suggest a z_e of 10 to 20 cm (France et al., 2011), 111 112 and the depth is dependent upon the concentration of impurities contained in the snow (Zatko et al., 113 2013). In the inland regions with low snow accumulation rates, particularly on the East Antarctic 114 plateaus, photolysis has been shown to lead to significant post-depositional loss of NO_3^- , demonstrated by significant enrichment in ¹⁵N of snow NO₃⁻ (i.e., high δ^{15} N) (Frey et al., 2009; Erbland et al., 2013; 115 Berhanu et al., 2015; Erbland et al., 2015; Shi et al., 2015), as well as a decrease in δ^{18} O and Δ^{17} O due 116 117 to reformation of NO₃⁻ in the condensed phase (Erbland et al., 2013; Shi et al., 2015 and references 118 therein). The transport and recycling of NO_x sourced from photolysis of snow NO_3^- in the summertime 119 has been invoked to model the distribution of snowpack NO₃⁻ across the Antarctic plateau (Zatko et al., 120 2016). However, snow physical characteristics play a crucial role in NO_3^- deposition and preservation. 121 For instance, summertime concentrations in the surface skin layer of snow (the uppermost ~4 mm) can 122 be explained as the result of co-condensation of HNO₃ and water vapour, with little to no photolytic 123 loss in this microlayer (Bock et al., 2016). The combination of concentration and isotopic studies, along 124 with physical aspects of the snow, could lead to the reconstruction and interpretation of atmospheric NO₃ over time (e.g., Erbland et al., 2015; Bock et al., 2016), if there is detailed understanding of the 125 126 NO₃⁻ deposition and preservation in different environments in Antarctica.
- 127 The effects of volatilization of NO_3^- are uncertain, given that one field experiment suggests that this process is an active player in NO₃⁻ loss (17 % (-30 °C) to 67 % (-10 °C) of NO₃⁻ lost after two weeks' 128 physical release experiments; Erbland et al., 2013), while other laboratory and field studies show that 129 130 volatilization plays a negligible role in NO_3^- loss (Berhanu et al., 2014; Berhanu et al., 2015). Further 131 investigations are needed to quantify the effects of volatilization for a better understanding of NO_3^{-1} 132 preservation in snow/ice. Based on z_e , NO₃⁻ at deeper depths in Antarctic snow (e.g., > 100 cm), well 133 beyond the snow photic zone, may be taken as the archived fraction. Thus, NO_3^{-1} in deeper snow 134 possibly provides an opportunity to investigate the archived fraction and potential influencing factors

135 (e.g., snow accumulation rate). Given that an extensive array of ice core measurements is unavailable 136 in most of Antarctica, the deeper snowpits (with depth > 100 cm) may offer a useful way to investigate 137 the archived NO₃⁻.

In the atmosphere in Antarctica, particularly during spring and summer, NO_3^{-1} is found to be mainly 138 139 in the form of gas phase HNO_3 , with NO_3^- concentration several times higher in gas phase than in the 140 particulate phase (Piel et al., 2006; Legrand et al., 2017b; Traversi et al., 2017). During 141 post-depositional processes, the uptake of gaseous HNO₃ is thought to be important in NO₃ 142 concentrations in surface snow layers (Udisti et al., 2004; Traversi et al., 2014; Traversi et al., 2017). 143 Due to the high concentration in summer, HNO₃ appears to play an important role in acidifying sea-salt 144 particles, possibly accounting for the presence of NO_3^- in the particulate phase in summer (Jourdain and 145 Legrand, 2002; Legrand et al., 2017b; Traversi et al., 2017). It is noted that the significant increase of NO3⁻ during the cold periods (e.g., Last Glacial Maximum) could be associated with its attachment to 146 147 dust aerosol, instead of formation of gas phase HNO₃ (Legrand et al., 1999; Wolff et al., 2010).

148 To date, investigations on spatial and temporal patterns of snow NO₃⁻ have been performed on 149 several traverses in Antarctica (e.g., 1990 International Trans-Antarctica Expedition, and DDU to Dome C; Oin et al., 1992; Bertler et al., 2005; Frey et al., 2009; Erbland et al., 2013; Pasteris et al., 150 151 2014), but these provide an uneven distribution of snow NO₃⁻ concentrations and leave large regions 152 un-sampled (e.g., Lambert Glacier basin and Dome A plateau). Over the past few decades, while 153 several glaciological observations have been carried out on the Chinese inland Antarctic traverse route 154 from Zhongshan to Dome A, East Antarctica (Hou et al., 2007; Ding et al., 2010; Ma et al., 2010; Ding et al., 2011; Li et al., 2013; Shi et al., 2015), the data on snow chemistry are still rare, particularly 155 detailed information on NO3⁻. From 2009 to 2013, we therefore conducted surface snow and snowpit 156 157 sampling campaigns along the traverse route, with the main objectives to (1) describe NO_3^- distribution 158 in surface snow and snowpits, (2) characterize the relationship between archived NO₃⁻ and snow accumulation rate, and (3) examine the potential effects of coexisting ions on NO_3^- preservation. The 159 160 results of this study may help to better understand NO_3^- deposition and preservation in the snowpack, 161 which is critical to the interpretation of ice core NO_3^- records.

162

163 2 Methodology

164

165 **2.1 Study area (Zhongshan to Dome A traverse)**

The Zhongshan to Dome A CHINARE (Chinese National Antarctic Research Expedition) inland 166 167 traverse is an important leg of the ITASE (International Trans-Antarctic Scientific Expedition). The 168 traverse is in the Indian Ocean sector of East Antarctica, passing through the Lambert Glacier, the 169 largest glacier in Antarctica. In January 1997 the first Chinese Antarctic inland expedition reached an 170 area ~300 km from the coast; in January 1998 the traverse was extended to 464 km, and in December 171 1998, to the Dome A area ~1100 km from the coast. In the austral 2004/2005 summer for the first time, the traverse extended to the ice sheet summit, Dome A, a total distance of ~1260 km. In January 2009, 172 the Chinese inland research base, Kunlun station (80°25'1.7"S and 77 °6'58.0"E, 4087 m above mean 173 174 sea level), was established at Dome A, mainly aimed at deep ice core drilling and astronomical 175 observations. Now, Kunlun base is a summer station, and the CHINARE team typically conducts an 176 annual inland traverse from the coastal Zhongshan station to Dome A.

177 In January 2010, the Dome A deep ice core project was started, and the construction of basic 178 infrastructure (including drill trench and scientific workroom) took 4 summer seasons. The deep ice 179 core drilling began in January 2013, and in total 801 m ice core was recovered by the 2016/2017 season. 180 The investigation of NO_3^- deposition and preservation in the snowpack will be of help to the 181 interpretation of Dome A deep ice core NO_3^- records.

182

183 2.2 Sample collection

184 During the 2010/2011 CHINARE, surface snow samples (the topmost ~3 cm) were collected at an 185 interval of ~10 km along the traverse route from Zhongshan to Dome A, using 3.0 cm diameter 186 high-density polyethylene (HDPE) bottles (volume = 100 ml). The bottles were pre-cleaned with Milli-O ultrapure water (18.2 M Ω), until electrical conductivity of the water stored in bottles (> 24 h) 187 decreased to $<0.5 \ \mu$ S cm⁻¹. Then, the bottles were dried under a class 100 super clean hood at 20 °C. 188 189 Immediately after the drying procedure, the bottles were sealed in clean PE bags that were not opened 190 until the field sampling started. At each sampling site (typically > 500 m away from the traverse route), 191 the bottles were pushed into surface snow layers in the windward direction. In total, 120 surface snow 192 samples were collected. In addition, at each sampling site, the upper snow density (~10 cm) was measured using a density scoop with a volume of 1000 cm³. As the field blanks, pre-cleaned bottles 193 194 filled with Milli-O water were taken to the field and treated to the same conditions as field samples (n =195 3).

196 On the Dome A plateau, the snow is soft and non-cohesive, and morphology of the surface snow is 197 different from other areas on the traverse, with a needle ice crystal layer extensively developed, in 198 particular on the sastrugi (Fig. S1 in supporting information). The depth of the needle-like crystal ice 199 layer (referred to as "crystal ice" in the following context) is generally < 1.0 cm. In order to investigate 200 air-snow transfer of NO_3^- in this uppermost ~1 cm layer, the crystal ice was collected using a clean 201 HDPE scoop, and then poured into clean wide mouth HDPE bottles. Approximately 30 g of crystal ice 202 was collected for each sample. In total, 6 crystal ice samples were collected on the traverse near Dome 203 A plateau.

204 In addition to surface snow, snowpit samples were collected during CHINARE inland traverse 205 campaigns in 2009/2010, 2010/2011, and 2012/2013. The snowpits were excavated manually, and the 206 snow wall in the windward direction was scraped clean and flat with a clean HDPE scraper. Then the 207 bottles were pushed horizontally into the snow wall. Snowpit samples were collected from the base 208 towards the top layer along a vertical line. During the sampling process, all personnel wore PE gloves 209 and facemasks to minimize potential contamination. Note that the snowpits are generally > 1 km from 210 the traverse route to avoid possible contamination from the expedition activities. The full information 211 about individual snowpits, including location, distance from the coast, elevation, snowpit depth, 212 sampling resolution, collection date, and annual snow accumulation rate, is summarized in Table 1. All 213 together, 20 snowpits (SP1 to SP20 in Fig. 2, with SP20 corresponding to the location of Kunlun 214 station at Dome A) as 1741 snow samples, were collected.

215 To support understanding of the air-snow transfer of NO_3^{-1} on the traverse, atmospheric NO_3^{-1} was 216 collected on glass fiber filters (Whatman G653) using a high volume air sampler (HVAS), with a flow rate of ~1.0 m³ min⁻¹ for 12-15 hr, during the inland traverse campaign in 2015/2016. The NO₃⁻¹ 217 218 collected on glass fiber filters are expected to equal the sum of particulate NO_3^- and gaseous HNO₃, 219 based upon previous investigations in East Antarctica (Savarino et al., 2007; Frey et al., 2009; Erbland 220 et al., 2013). In total, 34 atmospheric samples were collected on the traverse. In addition, two field 221 blanks were collected from filters installed in the HVAS without pumping and treated as samples 222 thereafter. Detailed information about the atmospheric sampling is presented in Table S1 in supporting 223 information.

After sample collection, all filters and snow samples were sealed in clean PE bags and preserved in clean thermal insulated boxes. All of the samples were transported to the laboratory under freezing conditions (< -20 °C).

227

228 2.3 Sample analysis

229 In the laboratory, three quarters of individual filters were cut into pieces using pre-cleaned scissors 230 that were rinsed between samples, placed in ~100 ml of Milli-Q water, ultrasonicated for 40 min and leached for 24 hr under shaking. The sample solutions were then filtered through 0.22 µm ANPEL 231 PTFE filters for concentration analysis. Snow samples were melted in the closed sampling bottles on a 232 super clean bench (class 100) before chemical measurements. Analyses of Na⁺, NH₄⁺, K⁺, Mg²⁺, Ca²⁺, 233 Cl⁻, NO₃⁻ and SO₄²⁻ were performed using a Dionex ICS-3000 ion chromatography system. The column 234 used for cation analysis (Na⁺, NH₄⁺, K⁺, Mg²⁺ and Ca²⁺) was a Dionex column CS12 (2×250 mm), with 235 a guard column CG12 (2×50 mm); while the anions (Cl⁻, NO₃⁻ and SO₄²⁻) were analyzed using a 236 Dionex column AS11 (2×250 mm) with a guard column AG11 (2×50 mm). The eluent for cations was 237 18.0 mM methanesulfonic acid (MSA), and the gradient elution method was employed for anion 238 239 analysis, with eluent of potassium hydroxide (KOH). More details on this method are described in a 240 previous report (Shi et al., 2012). During sample analysis, duplicated samples and field blanks were

synchronously analyzed. The pooled standard deviation $(\sigma_p, \sigma_p = \sqrt{\sum_{i=1}^{k} (n_i - 1) s_i^2 / \sum_{i=1}^{k} (n_i - 1)},$

where n_i and s_i^2 are the size and variance of the *i*th samples respectively, and k is the total number of sample sets) of all replicate samples run at least twice in two different sample sets is 0.019 (Cl⁻), 0.023 (NO₃⁻), 0.037 (SO₄²⁻), 0.022 (Na⁺), 0.039 (NH₄⁺), 0.006 (K⁺), 0.006 (Mg²⁺) and 0.006 (Ca²⁺) µeq L⁻¹ respectively (n = 65 pairs of samples). Ion concentrations in field blanks (n = 3) are generally lower than the detection limit (DL, 3 standard deviations of water blank in the laboratory).

For Antarctic snow samples, the concentrations of H^+ are usually not measured directly, but deduced from the ion-balance disequilibrium in the snow. Here, H^+ concentration is calculated through ion balance.

250 $[H^+] = [CI^-] + [NO_3^-] + [SO_4^{2-}] - [Na^+] - [NH_4^+] - [Mg^{2+}] - [Ca^{2+}] (Eq. 1),$

where ion concentrations are in μ eq L⁻¹. In addition, the non-sea salt fractions of SO₄²⁻ (nssSO₄²⁻) and Cl⁻ (nssCl⁻) can be calculated from the following expressions, by assuming Na⁺ exclusively from sea salt (in μ eq L⁻¹).

254 $[nssSO_4^{2-}] = [SO_4^{2-}] - 0.12 \times [Na^+] (Eq. 2),$

255 $[nssCl^{-}] = [Cl^{-}] - 1.17 \times [Na^{+}] (Eq. 3).$

256 It is noted that SO_4^{2-} fractionation (the precipitation of mirabilite (Na₂SO₄ ·10H₂O)) may introduce a 257 bias in nssSO₄²⁻, particularly during the winter half year (Wagenbach et al., 1998a).

258

259 3 Results

260

261 **3.1** NO₃⁻ concentration in surface snow

262 Concentrations of NO_3^- in surface snow are shown in Fig. 1, ranging from 0.6 to 5.1 µeq L⁻¹, with a 263 mean of 2.4 µeq L⁻¹. One standard deviation (1 σ) of NO_3^- concentration in surface snow is 1.1 µeq L⁻¹, 264 with coefficient of variation (Cv, 1 σ over mean) of 0.5, indicating a moderate spatial variability. On the 265 coastal ~450 km, NO_3^- shows a slightly increasing trend towards the interior, with low variability, while 266 NO₃⁻ concentrations are higher in the inland region, with a large fluctuation. It is notable that in the 267 area ~800 km from the coast, where snow accumulation is relatively high, NO₃⁻ concentrations 268 decrease to < 2.0 μ eq L⁻¹, comparable to the values on the coast. Near the Dome A plateau (> 1000 km 269 from coast), there is a tendency for higher NO₃⁻ concentrations (> 5.0 μ eq L⁻¹). Similarly, atmospheric 270 NO₃⁻ concentrations increase from the coast towards the plateau, ranging from 6 to 118 ng m⁻³ (mean = 271 38 ng m⁻³) (Fig. 1).

The percentage that surface snow NO₃⁻ contributes to total ions (i.e., total ionic strength, sum of Na⁺, NH₄⁺, K⁺, Mg²⁺, Ca²⁺, Cl⁻, NO₃⁻, SO₄²⁻ and H⁺, in µeq L⁻¹) varies from 6.7 to 37.6 % (mean = 27.0 %; Fig. S2 in supporting information), with low values near the coast and high percentages on the plateau. A strong relationship was found between NO₃⁻ and the total ionic strength in surface snow ($R^2 = 0.55$, p = 276 < 0.01).

In the crystal ice, the means (ranges) of Cl⁻, NO₃⁻, SO₄²⁻, Na⁺, NH₄⁺, K⁺, Mg²⁺, Ca²⁺ and H⁺ 277 concentrations are 0.98 (0.62 - 1.27), 10.40 (8.35 - 16.06), 1.29 (0.87 - 2.13), 0.27 (0.21 - 0.33), 0.24 278 279 (0.03 - 0.56), 0.05, (0.03 - 0.08), 0.18, (0.15 - 0.22), 0.18, (0.05 - 0.57) and 11.75, (9.56 - 18.12) µeq L⁻¹, respectively. H⁺ and NO₃⁻ are the most abundant species, accounting for 46.4 and 41.0 % of the total 280 ions, followed by SO_4^{2-} (5.1 %) and Cl^- (3.9 %). The other 5 cations, Na^+ , NH_4^+ , K^+ , Mg^{2+} and Ca^{2+} , 281 only represent 3.6 % of the total ion budget. A significant linear relationship was found between NO₃⁻ 282 and the total ionic strength ($R^2 = 0.99$, p < 0.01), possibly suggesting that NO₃⁻ is the species 283 284 controlling ion abundance by influencing acidity of the crystal ice (i.e., H⁺ levels). In comparison with surface snow, concentrations of H⁺ and NO₃⁻ are significantly higher in crystal ice (Independent 285 Samples T Test, p < 0.01), while concentrations of Cl⁻, SO₄²⁻, Na⁺, NH₄⁺, K⁺, Mg²⁺ and Ca²⁺ are 286 comparable in the two types of snow samples (Fig. S2 in supporting information). To date, the 287 information on the chemistry of ice crystal is rather limited but data from the so-called skin layer at 288 289 Dome C (top ~4 mm snow), where NO₃⁻ concentrations are in the range of 9 – 22 μ eq L⁻¹ in 290 summertime (Erbland et al., 2013), are generally comparable to our observations.

291 NO3⁻ concentrations in surface snow have been widely measured across Antarctica (Fig. 2), and the values vary from 0.2 to 12.9 μ eq L⁻¹, with a mean of 2.1 μ eq L⁻¹ (n = 594, $1\sigma = 1.7 \mu$ eq L⁻¹) and a 292 median of 1.4 μ eq L⁻¹. Most of the data (87 %) fall in the range of 0.5 - 4.0 μ eq L⁻¹, and only 7 % of the 293 values are above 5.0 µeq L⁻¹, mainly distributed on the East Antarctic plateaus. Spatially, NO₃⁻¹ 294 295 concentrations show an increasing trend with distance inland, and the values are higher in East than in 296 West Antarctica. Overall, this spatial pattern is opposite to that of the annual snow accumulation rate 297 (Arthern et al., 2006), i.e., low (high) snow accumulation corresponds to high (low) NO₃ 298 concentrations. It is difficult to compare with NO₃⁻ concentrations derived from the "upper snow layer" 299 in different studies because each study sampled a different depth (Fig. 2), e.g., 2 - 10 cm for 300 DDU-Dome C traverse (Frey et al., 2009; Erbland et al., 2013), 25 cm for the 1989-1990 International 301 Trans-Antarctica Expedition (Qin et al., 1992) and 3 cm for this study. The different sampling depths 302 can result in large differences in NO3⁻ concentration, especially on the East Antarctic plateaus (e.g., the values of the topmost 1 cm of snow, the crystal ice in this study, can be up to >15 μ eq L⁻¹; Fig. 1). 303 Because of this, any comparison of NO3⁻ concentrations in surface snow collected in different 304 305 campaigns should be made with caution.

306

307 3.2 Snowpit NO₃ concentrations

308 Mean NO_3^- concentrations for snowpits are shown in Fig. 1. From the coast to ~450 km inland, 309 snowpit NO_3^- means are comparable to those of surface snow; whereas, NO_3^- means are lower in inland snowpits than in surface snow with the exception of sites ~800 km from the coast. In general, the differences between snowpit NO_3^- means and the corresponding surface snow values are small at sites with high snow accumulation (e.g., close to coast), while the differences are large in low snow accumulation areas (e.g., near Dome A).

314 The profiles of NO_3^- for all snowpits are shown in Fig. 3. NO_3^- concentrations vary remarkably with 315 depth in pits SP1 - SP5, which are located near the coast. Although SP2 and SP5 show high NO₃⁻ 316 concentrations in the topmost sample, the data from deeper depths can be compared with the surface 317 values. In addition, NO_3^- means for the entire snowpits are close to the means of the topmost layer 318 covering a full annual cycle of accumulation (i.e., the most recent year of snow accumulation) at 319 SP1-SP5 (Fig. 4). Given the high snow accumulation (Fig. 1), NO_3^- variability in coastal snowpits is likely suggestive of a seasonal signature (Wagenbach et al., 1998b; Grannas et al., 2007; Shi et al., 320 321 2015). Among the coastal snowpits, water isotope ratios (δ^{18} O of H₂O) of samples at SP2 were also 322 determined, thus allowing for investigating NO3⁻ seasonal variability (Fig. S3 in supporting 323 information). In general, the $\delta^{18}O(H_2O)$ peaks correspond to high NO₃⁻ concentrations (i.e., NO₃⁻ peaks 324 present in summer). This seasonal pattern is in agreement with previous observations of NO3⁻ in snow/ice and atmosphere in coastal Antarctica (Mulvaney and Wolff, 1993; Mulvaney et al., 1998; 325 326 Wagenbach et al., 1998b; Savarino et al., 2007).

In contrast, most of the inland snowpits show high NO₃⁻ concentrations in the top layer, and then fall sharply from > 2.0 μ eq L⁻¹ in top snow to < 0.2 μ eq L⁻¹ in the first meter of depth (Fig. 3). NO₃⁻ means for the entire snowpits are typically lower than those of the most recent year snow layer (Fig. 4). Similar NO₃⁻ profiles for snowpits have been reported elsewhere in Antarctica, as a result of post-depositional processing of NO₃⁻ (R öthlisberger et al., 2000; McCabe et al., 2007; Erbland et al., 2013; Shi et al., 2015).

333 Comparison of the NO₃ profile patterns reveals significant spatial heterogeneity, even for 334 neighboring sites. For instance, sites SP11 and SP12, 14 km apart, feature similar snow accumulation 335 rate (Table 1). If it is assumed that snow accumulation is relatively constant during the past several 336 years at SP11 (sampled in 2012/2013), snow in the depth of ~54 cm corresponds to the deposition in 2009/2010 (snow density = 0.45 g cm⁻³, from field measurements). NO₃⁻ concentrations are much 337 338 higher in the top snow of SP12 (sampled in 2009/2010) than in the depth of ~54 cm in SP11 (Fig. 3). 339 This variation in NO₃⁻ profiles at a local scale has been reported, possibly related to local morphologies 340 associated with sastrugi formation and wind drift (Frey et al., 2009; Traversi et al., 2009). It is 341 interesting that higher NO₃⁻ concentrations were not found in the uppermost layer at sites SP7 and SP8 342 (~600 km from coast; Fig. 3), where large sastrugi with hard smooth surfaces was extensively 343 developed (from field observations; Fig. S4 in supporting information). Snow accumulation rate in this 344 area fluctuates remarkably, and the values of some sites are rather small or close to zero due to the 345 strong wind scouring (Fig. 1) (Ding et al., 2011; Das et al., 2013). In this case, the snowpit NO_3^{-1} 346 profiles appear to be largely influenced by wind scour on snow, possibly resulting in missing years 347 and/or intra-annual mixing.

348

349 4 Discussion

350

351 4.1 Accumulation influence on NO₃⁻

The preservation of NO_3^- is thought to be closely associated with snow accumulation, where most of the deposited NO_3^- is preserved at sites with higher snow accumulation (Wagenbach et al., 1994; Hastings et al., 2004; Fibiger et al., 2013). Whereas NO_3^- may be altered significantly at sites with low snow accumulation, largely due to photolysis (Blunier et al., 2005; Grannas et al., 2007; Frey et al., 2009; Erbland et al., 2013; Erbland et al., 2015). In the following discussion, we divide the traverse into two zones, i.e., the coastal zone (<~450 km from the coast, including SP1-SP5 and Core 1; Table 1) and the inland region (~450 km to Dome A, including pits SP6-SP20 and Core 2; Table 1), following NO_3^- distribution patterns in surface snow and snowpits (sections 3.1 and 3.2) as well as the spatial pattern of snow accumulation rate (Fig. 1).

361 As for snowpits, NO_3^- levels in top and deeper layers are comparable near the coast, while NO_3^- 362 differs considerably between the upper and deeper snow at inland sites (Figs. 3 and 4). Photochemical 363 processing is responsible for NO₃⁻ distribution in inland snowpits (Erbland et al., 2013; Berhanu et al., 364 2015). Considering that the actinic flux is always negligible below the depth of 1 m, the bottom layers of the snowpits (i.e., > 100 cm; Table 1) are well below the photochemically active zone (France et al., 365 366 2011; Zatko et al., 2013). In this case, NO_3^- in the bottom snowpit, i.e., below the photic zone, can be 367 taken as the archived fraction without further modification, as also suggested by previous observations 368 (Frey et al., 2009; Erbland et al., 2013; Erbland et al., 2015). Here, we define NO₃⁻ in the bottom layer 369 covering a full annual cycle of deposition as an approximation of the annual mean of archived NO_3 370 (i.e., beyond photochemical processing; denoted as "Carchived" in the following context; Fig. 4), thus 371 allowing for calculating the archived annual NO₃⁻ flux (i.e., the product of C_{archived} and annual snow 372 accumulation rate). Although there is uncertainty in the calculation of archived NO_3^- flux due to 373 interannual variability in NO_3^- inputs and snow accumulation, this assumption provides a useful way to 374 investigate the relationship between preservation of NO_3^{-1} and physical factors considering that an extensive array of ice core measurements is unavailable in most of Antarctica. It is noted that C_{archived} is 375 376 generally close to (lower than) the NO₃⁻ means for entire snowpits in coastal (inland) Antarctica (Fig. 377 4).

378

379 4.1.1 NO₃⁻ in coastal snowpack

The simplest plausible model to relate flux and concentration of NO_3^- in snow to its atmospheric concentration (Legrand, 1987; Alley et al., 1995) can be expressed as,

382 383

389

$$F_{\text{total}} = K_1 C_{\text{atm}} + K_2 C_{\text{atm}} A \text{ (Eq. 4)},$$
$$F_{\text{total}} = C_{\text{firm}} \times A \text{ (Eq. 5)},$$

where F_{total} is snow NO₃⁻ flux (µeq m⁻² a⁻¹); C_{atm} is atmospheric concentration of NO₃⁻ (µeq m⁻³); *A* is annual snow accumulation rate (kg m⁻² a⁻¹); C_{firn} is measured firn NO₃⁻ concentration (µeq L⁻¹, here $C_{\text{firn}} = C_{\text{archived}}$); K_1 is the dry deposition velocity (cm s⁻¹); and K_2 is the scavenging ratio for precipitation (m³ kg⁻¹), which allows conversion of atmospheric concentration to snow concentration of NO₃⁻ in this study. From Eqs. 4 and 5, firn NO₃⁻ concentration can be expressed as,

 $C_{\text{firn}} = K_1 C_{\text{atm}} \times 1/A + K_2 C_{\text{atm}} \text{ (Eq. 6)}$

390 If K_1 and K_2 are constants, a linear relationship between measured NO₃⁻ concentration ($C_{\rm firm}$) and snow 391 accumulation (A) can be interpreted using Eq. 6, which assumes regional spatial homogeneity of fresh snow NO₃⁻ levels and dry deposition flux. The slope (K_1C_{atm}) of the linear model represents an 392 393 approximation of dry deposition flux of NO₃⁻ (i.e., an apparent dry deposition flux), while the intercept 394 (K_2C_{atm}) stands for NO₃⁻ concentration in fresh snowfall. If dry deposition (K_1C_{atm}) is much larger than 395 wet deposition ($K_2C_{\text{atm}}A$), the concentration of NO₃⁻ in snow will be proportional to its concentration in 396 the atmosphere. In the condition of a constant atmospheric concentration, larger snow accumulation 397 will increase the flux of NO₃⁻ but decrease its concentration in snow. While this linear model is a gross

- 398 over-simplification of the complex nature of air-snow exchange of NO_3^- , it provides a simple approach 399 to compare the processes occurring on the coast versus those inland. In addition, this model can 400 provide useful parameter values in modeling NO_3^- deposition/preservation at large scales, considering 401 that observations remain sparse across Antarctica (e.g., Zatko et al., 2016).
- 402 The relationship between C_{archived} of NO₃⁻ and snow accumulation rate is shown in Fig. 5. The linear 403 fit of C_{archived} vs. inverse snow accumulation (R^2 =0.88, p<0.01; Fig. 5a) supports the assumptions of spatial homogeneity. The intercept and slope of the linear fit suggest a NO3⁻ concentration in fresh 404 snow and an apparent NO₃⁻ dry deposition flux of 0.7±0.07 μ eq L⁻¹ and 45.7±7.8 μ eq m⁻² a⁻¹ 405 respectively. The apparent dry deposition flux is opposite to the observation in Dronning Maud Land 406 407 (DML) region, where a negative dry deposition flux suggested net losses of NO₃⁻ (Pasteris et al., 2014). Figure 5b shows the archived fluxes of NO_3^{-1} on the coast, with values from 104 (at the lowest 408 accumulation site) to 169 μ eq m⁻² a⁻¹ (at the highest accumulation site). Taking the calculated NO₃⁻ dry 409 deposition flux of 45.7 μ eq m⁻² a⁻¹, dry deposition accounts for 27-44 % (mean = 36 %) of total NO₃⁻¹ 410 411 inputs, with higher (lower) percentages at lower (higher) snow accumulation sites. This result is in line 412 with the observations in Taylor Valley (coastal West Antarctica), where the snowfall was found to be the primary driver for NO₃⁻ inputs (Witherow et al., 2006). This observation also generally agrees with, 413 414 but is greater than that in the modeling study of Zatko et al. (2016), which predicts a ratio of dry 415 deposition to total deposition of NO_3^- in Antarctica as < 20 % close to the coast, increasing towards the 416 plateaus.
- 417 In Figs. 5a and b, the strong linear relationships between NO3⁻ and snow accumulation support that K_1 and K_2 are relatively constant on the coast (Eqs. 4 and 6). The average atmospheric concentration of 418 NO_3^- in the coastal ~450 km region is 15.6 ng m⁻³ in summer (Table S1 in supporting information). 419 Taking $C_{\text{atm}}=15.6 \text{ ng m}^{-3}$, K_1 is estimated to be 0.6 cm s⁻¹, close to a typical estimate for HNO₃ 420 421 deposition velocity to a snow/ice surface (0.5 cm s⁻¹; Seinfeld and Pandis, 1997). This predicted K_1 422 value is lower than that calculated for the dry deposition of HNO₃ at South Pole (0.8 cm s⁻¹; Huey et al., 423 2004). It is noted that the true K_1 value could be larger than the prediction (0.6 cm s⁻¹) due to the higher 424 values of C_{atm} in summer (i.e., 15.6 ng m⁻³ for the calculation of K_1) than in other seasons (Mulvaney et 425 al., 1998; Wagenbach et al., 1998b; Savarino et al., 2007). The scavenging ratio for precipitation (K_2) is estimated to be about 0.2×10^4 m³ kg⁻¹, i.e., 2 m³ g⁻¹. 426
- 427 If it is assumed that NO_3^- concentration in snow is related to its concentration in the atmosphere, the 428 scavenging ratio for NO_3^- (*W*) can be calculated on a mass basis from the following expression 429 (Kasper-Giebl et al., 1999),
- 430

$$W = \rho_{\text{atm}} \times (C_{\text{f-snow}} / C_{\text{atm}})$$
 (Eq. 7),

where ρ_{atm} is air density (g m⁻³), and $C_{\text{f-snow}}$ and C_{atm} are NO₃⁻ concentrations in fresh snow (ng g⁻¹) and 431 atmosphere (ng m⁻³) respectively. If taking $\rho_{atm} \approx 1000$ g m⁻³ (on average, ground surface temperature t 432 433 ≈ 255 k, ground pressure $P \approx 0.08$ MPa, in the coastal region), $C_{\text{f-snow}} = 43$ ng g⁻¹ (see discussion above 434 and section 4.2 below), and C_{atm} = 15.6 ng m⁻³, W is calculated to be ~2700, generally comparable to 435 previous reports (Barrie, 1985; Kasper-Giebl et al., 1999; Shrestha et al., 2002). It is noted that the 436 calculation here may be subject to uncertainty, due to the complex transfer of atmospheric NO_3^- into the 437 snow. However, the scavenging ratio provides valuable insights into the relation between NO₃⁻ 438 concentrations in the atmosphere and snow, which might be useful in modeling NO_3^- deposition at a 439 large-scale.

Figure 5c shows the distribution of flux is negatively correlated with C_{archived} of NO₃, which is not surprising since C_{archived} is positively related to inverse accumulation (Fig. 5a). Based on the observed strong linear relationship between NO_3^- flux and snow accumulation (Fig. 5b), the archived NO_3^- flux is more accumulation dependent compared to $C_{archived}$. This is compatible with the observations in Greenland (Burkhart et al., 2009), where accumulation is generally above 100 kg m⁻² a⁻¹, similar to the coastal values in this study.

446 In terms of surface snow on the coast, NO_3^- may be disturbed by the katabatic winds and wind 447 convergence located near the Amery Ice Shelf (that is, the snow-sourced NO_x and NO_3^- from the 448 Antarctic plateau possibly contributes to coastal snow NO₃) (Parish and Bromwich, 2007; Ma et al., 449 2010; Zatko et al., 2016). In addition, the sampled ~3 cm surface layer roughly corresponds to the net 450 accumulation in the past 0.5-1.5 months assuming an even distribution of snow accumulation in the 451 course of a single year. This difference in exposure time of the surface snow at different sampling sites, 452 could possibly affect the concentration of NO_3^- , although the post-depositional alteration of NO_3^- was 453 thought to be minor on the coast (Wolff et al., 2008; Erbland et al., 2013; Shi et al., 2015). Taken 454 together, NO₃⁻ in coastal surface snow might represent some post-depositional alteration. Even so, a 455 negative correlation between NO₃⁻ concentration and snow accumulation rate was found at the coast 456 $(R^2=0.42, p<0.01;$ Fig. 6a), suggesting that overall the majority of the NO₃⁻ appears to be preserved and 457 is determined by snow accumulation.

458

459 **4.1.2 NO₃ in inland snowpack**

460 In comparison with the coast, the correlation between C_{archived} and inverse snow accumulation is 461 relatively weak in inland regions (Fig. 5d), suggesting more variable conditions in ambient concentrations and dry deposition flux of NO_3 . In addition, the relationship of $C_{archived}$ vs. inverse 462 accumulation inland is opposite to that of coast. Based on current understanding of the 463 post-depositional processing of NO_3^- , the negative correlation between $C_{archived}$ and inverse snow 464 accumulation (Fig. 5d) suggests losses of NO3. The slope of the linear relationship indicates apparent 465 NO₃⁻ dry deposition flux of -44.5 \pm 13.0 µeq m⁻² a⁻¹, much larger than that of DML (-22.0 \pm 2.8 µeq m⁻² 466 a⁻¹), where the snow accumulation is generally lower than 100 kg m⁻² a⁻¹ (Pasteris et al., 2014). At 467 Kohnen Station (an inland site in East Antarctica), with snow accumulation of 71 kg m⁻² a^{-1} , the 468 emission flux of NO₃⁻¹ is estimated to be $-22.9\pm13.7 \ \mu eq \ m^{-2} \ a^{-1}$ (Weller and Wagenbach, 2007), which 469 470 is also smaller in comparison with this observation. Weller et al. (2004) proposed that loss rate of NO_3^{-1} 471 does not depend on snow accumulation rate and the losses become insignificant at accumulation rates 472 above 100 kg m⁻² a⁻¹. Among the inland sites, SP10 and Core2 (~800 km from the coast), featured by high snow accumulation rate (> 100 kg m⁻² a⁻¹; Table 1 and Fig. 1), exhibit even higher values of 473 C_{archived} and archived fluxes of NO₃⁻ than those of the coastal sites. It is noted that these two cases 474 475 influence the linear regression significantly (Fig. 5d). If the two sites are excluded, we can get a linear regression with a slope of $-27.7\pm9.2 \ \mu eq \ m^{-2} \ a^{-1}$, which is comparable to previous reports in DML 476 477 (Pasteris et al., 2014).

478 The depths of inland snowpits cover several to tens of years snow accumulation, thus allowing for 479 directly investigating NO_3^- emission rate. The difference between NO_3^- concentrations in the snow 480 layer accumulated during the most recent year (Fig. 4) and in the snow accumulated during the year 481 before the most recent year can represent the loss rate of NO_3^- . If it is assumed that snow accumulation 482 rate is relatively constant during recent decades at specific-sites, on average, 36.7 ± 21.3 % of NO₃⁻ (in μ eq L⁻¹) was lost during one year, with the two sites (SP10 and Core2) with snow accumulation >100 483 kg m⁻² a⁻¹ excluded from the calculation. The percentages are generally higher at the sites with lower 484 snow accumulation rate. Together with snow accumulation rate, the emission flux of NO3⁻ is calculated 485

- to be -28.1 \pm 23.0 µeq m⁻² a⁻¹, close to the linear model prediction (-27.7 \pm 9.2 µeq m⁻² a⁻¹). Significant 486 losses can account for NO₃⁻ profiles at inland sites, i.e., NO₃⁻ concentration decreasing with increasing 487 488 depths. Previous observations and modeling works suggested that photolysis dominates the losses (Frey 489 et al., 2009; Erbland et al., 2013; Shi et al., 2015). During photolysis of NO₃, some of the 490 photoproducts (NO_x) are emitted into the gas phase (Davis et al., 2004; France et al., 2011), and these 491 products should undergo reoxidation by the local oxidants (e.g., hydroxyl radical (OH), $NO_2 + OH + M$ 492 \rightarrow HNO₃ + M), forming gas phase HNO₃. In inland Antarctica, the dominant NO₃ species in the 493 atmosphere is gaseous HNO₃ during summertime, while particulate NO₃⁻ is more important in winter 494 (Legrand et al., 2017b; Traversi et al., 2017). The high levels of gas phase HNO₃ in summer support the 495 importance of the re-emission from snow through the photolysis of NO_3^- in affecting the atmospheric 496 NO_{y}/NO_{3} budget (Erbland et al., 2013). On the one hand, the gaseous HNO₃ can be efficiently 497 co-condensed with water vapour onto the extensively developed crystal ice layers on Antarctic plateaus 498 (e.g., Fig. S1 in supporting information), leading to an enrichment of NO_3^- in surface snow (Bock et al., 499 2016). On the other hand, a large concentration of HNO_3 would enhance its reaction with sea-salt, leading to elevated particulate NO₃⁻ concentrations (Legrand et al., 2017b). The significant correlation 500 between NO₃⁻ and H⁺ in inland Antarctic surface snow ($R^2 = 0.65$, p < 0.01) seems to support the 501 importance of atmospheric gas phase HNO₃ in affecting surface snow NO₃⁻ concentrations, in 502 503 particular NO_3^- levels in the crystal ice samples (Fig. 1).
- 504 Several modeling works have been performed to understand NO₃⁻ recycling processes across Antarctica (e.g., Erbland et al., 2015; Zatko et al., 2016; Bock et al., 2016), however, each employs 505 506 different assumptions and large uncertainty remains in quantifying NO₃⁻ recycling and preservation. It 507 is thought that emission and transport strength are the main factors controlling the recycling of NO₃, 508 while the former is associated with initial NO_3^- concentrations, UV and snow optical properties, and the 509 latter is linked with air mass movement (Wolff et al., 2008; Frey et al., 2009). As a result, snow accumulation alone is likely insufficient to account for NO₃⁻ variability in surface snow (i.e., no 510 511 significant correlation between NO₃⁻ concentration and snow accumulation; Fig. 6b).
- The archived NO₃⁻ fluxes vary considerably among inland sites, from ~3 to 333 μ eq m⁻² a⁻¹, with 512 513 high values generally corresponding to high snow accumulation (Fig. 5e). However, the nearly 1:1 relationship between C_{archived} and NO₃⁻ flux (Fig. 5f), suggests that accumulation rate is not the main 514 515 driver of the archived NO₃⁻ concentration. In inland Antarctica, the archived NO₃⁻ fraction is largely 516 influenced by the length of time that NO₃⁻ was exposed to UV radiation (Berhanu et al., 2015), which 517 decreases exponentially in the snowpack. The *e*-folding depth, z_e value, is thought to be influenced by a 518 variety of factors, such as co-existent impurities (e.g., black carbon), bulk density and grain size (Zatko 519 et al., 2013). In addition, the snow albedo is also dependent on snow physical properties (Carmagnola 520 et al., 2013). Taken together, this suggests that the inland plateau is below a "threshold" of 521 accumulation rate such that the archived NO_3^- flux cannot be explained by snow accumulation rate.
- 522

523 4.2 Effects of coexisting ions on NO₃

Atmospheric NO_3^- in Antarctica is thought to be mainly associated with mid-latitude sources, re-formed NO_3^- driven by snow-sourced photolysis products, and/or stratospheric inputs (Savarino et al., 2007; Lee et al., 2014; Traversi et al., 2017 and references therein). Although organic nitrates can play an important role in the atmospheric NO_y budget, multi-seasonal measurements of surface snow NO_3^- correlate strongly with inorganic NO_y species (especially HNO₃) rather than organic (Jones et al., 2011). Here, we investigate whether NO_3^- in snow is closely associated with coexisting ions (e.g., Cl⁻, 530 SO_4^{2-} , Na^+ , K^+ , Mg^{2+} and Ca^{2+}) since these ions have different main sources, e.g., Cl^- and Na^+ are 531 predominantly influenced by sea salt, and SO_4^{2-} is likely dominated by marine inputs (e.g., sea salt and 532 bio-activity source) (Bertler et al., 2005). In the snow, Cl^- , Na^+ and SO_4^{2-} are the most abundant ions in 533 addition to NO_3^- .

In surface snow, the non-sea salt fraction of SO_4^{2-} accounted for 75-99 % of its total budget, with a 534 535 mean of 95 %. The percentages were relatively higher in inland regions than at coastal sites. On the coast, a positive relationship was found between $nssSO_4^{2-}$ and NO_3^{-} ($R^2 = 0.32$, p < 0.01; Fig. 7a). 536 Previous observations suggest that NO3⁻ and nssSO4²⁻ peaks in the atmosphere and snow are usually 537 present in summer (Jourdain and Legrand, 2002; Wolff et al., 2008; Sigl et al., 2016; Legrand et al., 538 539 2017a; Legrand et al., 2017b). However, the similar seasonal pattern of the two species is associated with distinct sources, i.e., $SO_4^{2^2}$ is mainly derived from marine biogenic emissions while NO_3^{-1} is 540 influenced by photolysis and tropospheric transport (Savarino et al., 2007; Lee et al., 2014; Zatko et al., 541 2016). In the atmosphere, SO_4^{2-} is typically found on the submicron particles, while most of the NO₃⁻ is 542 gaseous HNO₃ and the particulate NO₃⁻ is mainly on intermediate size particles (Jourdain and Legrand, 543 544 2002; Rankin and Wolff, 2003; Legrand et al., 2017a; Legrand et al., 2017b). Thus, the correlation between NO₃⁻ and SO₄²⁻ is unlikely explained by the sources or their occurrence state in the atmosphere 545 (i.e., gaseous and particulate phases). Laluraj et al. (2010) proposed that the correlation between 546 $nssSO_4^{2-}$ vs. NO₃⁻ in ice ($R^2 = 0.31$, p<0.01) could be associated with fine $nssSO_4^{2-}$ aerosols, which 547 provide nucleation centers forming multi-ion complexes with HNO₃ in the atmosphere. This assertion, 548 549 however, should be examined further, considering that the complex chemistry of SO_4^{2-2} and NO_3^{-2-2} in the atmosphere is far from understood (e.g., Wolff, 1995; Brown et al., 2006). Thus far, the mechanism of 550 nssSO4²⁻ influencing NO3⁻ in the snowpack, however, is still debated, and it cannot be ruled out that 551 nssSO₄²⁻ further affects mobilization of NO₃⁻ during and/or after crystallization (Legrand and Kirchner, 552 553 1990; Wolff, 1995; Röthlisberger et al., 2000). It is noted that no relationship was found between $nssSO_4^{2-}$ and NO_3^{-} in inland snow (Fig. 7d), possibly due to the strong alteration of NO_3^{-} during 554 post-depositional processes, as discussed in section 4.1.2. 555

In comparison with $nssSO_4^{2-}$ aerosols, the sea-salt aerosols (Na⁺) are coarser and can be removed 556 preferentially from the atmosphere due to a larger dry deposition velocity. High atmospheric sea salt 557 558 aerosol concentrations are expected to promote the conversion of gaseous HNO₃ to the particulate 559 phase, considering that most of the NO_3^- in the atmosphere is in the gas phase (HNO₃). In this case, 560 particulate NO_3^- can be efficiently lost via aerosol mechanisms. In addition, the saline ice also favors the direct uptake of gaseous HNO₃ to the ice surface. Changes in partitioning between gas phase 561 562 (HNO₃) and particulate phase will affect NO₃⁻ levels due to the different wet and dry deposition rates of 563 the two species (Aw and Kleeman, 2003). Thus, sea salt aerosols play an important role in the scavenging of gaseous HNO₃ from the atmosphere (Hara et al., 2005), and elevated NO₃ 564 565 concentrations are usually accompanied by Na⁺ spikes in the snowpack (e.g., at Halley station; Wolff et al., 2008). Surprisingly, no significant correlation was found between Na^+ and NO_3^- in coastal snow 566 (Fig. 7b). The concentration profiles of NO_3^- and Na^+ in coastal surface snow are shown in Fig. 8, and 567 NO3⁻ roughly corresponds to Na⁺ in some areas, e.g., 50-150 km and 300-450 km distance inland, 568 although in general they are not very coherent. It is noted that amongst the 4 snow samples with Na⁺ > 569 1.5 μ eq L⁻¹ (open circles in Fig. 8), only one sample co-exhibits a NO₃⁻ spike. This is different from 570 571 observations at Halley station, where Na^+ peaks usually led to elevated NO_3^- levels in surface snow in summer (Wolff et al., 2008). Of the 4 largest Na⁺ spikes, one is a fresh snowfall sample (dashed ellipse 572 in Fig. 8), and this sample shows the highest Na⁺ concentration (2.8 μ eq L⁻¹) and low NO₃⁻ (0.75 μ eq 573

574 L^{-1}). It is noted that NO₃⁻ concentration in this fresh snowfall is close to the model predictions 575 (0.7±0.07 µeq L⁻¹; section 4.1.1), validating that the simple linear deposition model (i.e., the Eq. 6) can 576 well depict the deposition and preservation of NO₃⁻ in coastal snowpack. At inland sites, no correlation 577 was found between NO₃⁻ and Na⁺ (Fig. 7e), likely explained by the alteration of NO₃⁻ concentration by 578 post-depositional processing.

- 579 In surface snow, nssCl⁻ represents 0-64 % (mean = 40 %) of the total Cl⁻. On the coast, it is of 580 interest that nssCl⁻ in the 4 samples with the highest Na⁺ concentrations (open circles in Figs. 7b and 8) 581 are close to 0, and positive nssCl values were found for the other samples. The fractionation of Na⁺ can occur due to mirabilite precipitation in sea-ice formation at <-8 °C (Marion et al., 1999), possibly 582 leading to the positive nssCl⁻. However, even if all of SO_4^{2-} in sea water is removed via mirabilite 583 precipitation, only 12 % of sea salt Na⁺ is lost (Rankin et al., 2002). Considering the smallest sea ice 584 585 extent in summertime in East Antarctica (Holland et al., 2014), the high CI^{-}/Na^{+} ratio (mean = 2.1, well 586 above 1.17 of sea water, in μ eq L⁻¹) in surface snow is unlikely from sea salt fractionation associated 587 with mirabilite precipitation in sea-ice formation. In this case, nssCl⁻ could be mainly related to the 588 deposition of volatile HCl, which is from the reaction of H₂SO₄ and/or HNO₃ with NaCl (Röhlisberger 589 et al., 2003). Thus, nssCl in snowpack can roughly represent the atmospherically deposited HCl. In 590 summertime, most of the dechlorination (i.e., production of HCl) is likely associated with HNO₃ due to 591 its high atmospheric concentrations (Jourdain and Legrand, 2002; Legrand et al., 2017b). Accordingly, 592 the observed relationship between NO_3^- and nssCl⁻ (Fig. 7c) appears to suggest that HCl production can 593 be enhanced by elevated HNO₃ levels in the atmosphere.
- 594 With regard to the crystal ice, no significant correlation was found between NO₃⁻ and the coexisting ions (e.g., Cl⁻, Na⁺ and SO₄²⁻), suggesting that these ions are generally less influential on NO₃⁻ in this 595 uppermost thin layer, compared to the strong air-snow transfer process of NO₃⁻ (Erbland et al., 2013). It 596 597 is noted that NO_3^- accounts for most of the calculated H⁺ concentrations (81-97 %, mean = 89 %), and a strong linear relationship was found between them ($R^2 = 0.96$, p < 0.01), suggesting that NO₃⁻ is mainly 598 deposited as acid, HNO₃, rather than in particulate form as salts (e.g., NaNO₃ and Ca(NO₃)₂). This 599 600 deduction is in line with the atmospheric observations at Dome C, where NO₃⁻ was found to be mainly 601 in gaseous phase (HNO₃) in summer (Legrand et al., 2017b). On average, the deposition of HNO₃ contributes > 91 % of NO_3^- in the crystal ice (the lower limit, 91 %, calculated by assuming all of the 602 alkaline species (Na⁺, NH₄⁺, K⁺, Mg²⁺ and Ca²⁺) are neutralized by HNO₃ in the atmosphere), 603 suggesting a dominant role of HNO_3 deposition in snow NO_3^- concentrations. The elevated high 604 atmospheric NO₃⁻ concentrations observed at Dome A (>100 ng m⁻³; 77.12° E and 80.42° S, Table S1 in 605 supporting information) possibly indicate oxidation of gaseous NO_x to HNO₃, providing further 606 607 evidence that NO₃⁻ recycling driven by photolysis plays an important role in its abundance in snowpack 608 on East Antarctic plateaus.
- 609

610 5 Conclusions

Samples of surface snow, snowpits and the uppermost layer of crystal ice, collected on the traverse from the coast to Dome A, East Antarctica, were used to investigate the deposition and preservation of NO_3^- in snow. In general, a spatial trend of NO_3^- in surface snow was found on the traverse, with high (low) concentrations on the plateau (coast). Similarly, NO_3^- concentrations in the atmosphere are higher on the plateau than at coastal sites, with a range of 6 to 118 ng m⁻³. Extremely high NO_3^- levels (e.g., > 10 µeq L⁻¹) were observed in the uppermost crystal ice layer, possibly associated with re-deposition of recycled NO_3^- from snow-sourced NO_x . As for the snowpits, NO_3^- exhibits high levels in the top layer and low concentrations at deeper depths in the inland region, while no clear trend was found on thecoast.

620 On the coast, the archived NO_3^- flux in snow is positively correlated with snow accumulation rate, 621 but negatively with NO_3^- concentration. A linear model can well depict the relationship between

622 archived NO₃⁻ and snow accumulation, supporting that atmospheric levels and dry deposition fluxes of

- 623 NO_3^- are spatially homogeneous on the coast, and that dry deposition plays a minor role in snow NO_3^- 624 inputs. The dry deposition velocity and scavenging ratio for NO_3^- are estimated to be 0.5 cm s⁻¹ and
- 2200, respectively. In inland Antarctica, the archived NO₃⁻ fluxes, varying significantly among sites, are
- 626 largely dependent on NO₃⁻ concentration. A weak correlation between snow accumulation and archived
- NO₃⁻ suggests variable ambient concentrations and dry deposition flux of NO₃⁻, and the relationship is
 opposite to that for the coast. This supports the idea that post-depositional processing dominates NO₃⁻
 concentration and distribution in inland Antarctica (e.g., Erbland et al., 2013; Erbland et al., 2015; Shi
- 630 et al., 2015; Zatko et al., 2016).

The major ions, Cl⁻, SO_4^{2-} and Na^+ , originate from different sources than NO_3^- , but could potentially affect the scavenging and preservation of NO_3^- . In coastal surface snow, a positive correlation between nss SO_4^{2-} and NO_3^- suggests the potential influence of fine aerosols on NO_3^- formation and/or scavenging, while the coarse sea salt aerosol (e.g., Na^+) is likely less influential. In contrast to the coast, NO_3^- in inland surface snow is dominated by post-depositional processes, and the effects of coexisting ions on NO_3^- appear to be rather minor. In inland surface snow, the strong relationship between NO_3^-

- and H^+ suggests a dominant role of gaseous HNO₃ deposition in determining NO₃⁻ concentrations.
- 638
- 639 Associated content
- 640 Please see the file of Supporting Information.
- 641

642 Data availability

- Data on nitrate concentrations in snow on the traverse from coast (Zhongshan Station) to Dome A are
- available in the Chinese National Arctic and Antarctic Data Center,
- http://www.chinare.org.cn/difDetailPublic/?id=9401, DOI: 10.11856/SNS.D.2018.001.v0.
- 646

647 **Competing interests**

- 648 The authors declare that they have no conflict of interest.
- 649

650 Acknowledgement

651 This project was supported by the National Science Foundation of China (Grant nos. 41576190 and 652 41206188 to GS, 41476169 to SJ), the National Key Research and Development Program of China 653 (Grant no. 2016YFA0302204), the Fundamental Research Funds for the Central Universities (Grant No 654 40500-20101-222006), and Chinese Polar Environment Comprehensive Investigation and Assessment Programmes (Grant nos. CHINARE 201X-02-02 and 201X-04-01). The authors appreciate the 655 CHINARE inland members for providing help during sampling. The authors would like to thank Prof. 656 657 Joel Savarino and two anonymous referees for their help in the development and improvement of this 658 paper.

659

660 References

661 Alexander, B., Savarino, J., Kreutz, K.J., and Thiemens, M.: Impact of preindustrial biomass-burning

- emissions on the oxidation pathways of tropospheric sulfur and nitrogen, J. Geophys. Res., 109,
 D08303, doi:10.1029/2003JD004218, 2004.
- Alley, R., Finkel, R., Nishizumi, K., Anandakrishnan, A., Shuman, C., Mershon, G., Zielinski, G., and
 Mayewski, P.A.: Changes in continental and sea-salt atmospheric loadings in central Greenland during
 the most recent deglaciation: Model-based estimates, J. Glaciol., 41, 503-514, 1995.
- Arthern, R.J., Winebrenner, D.P., and Vaughan, D.G.: Antarctic snow accumulation mapped using
 polarization of 4.3-cm wavelength microwave emission, J. Geophys. Res., 111,
 doi:10.1029/2004JD005667, 2006.
- Aw, J., and Kleeman, M.J.: Evaluating the first-order effect of intraannual temperature variability on
 urban air pollution, J. Geophys. Res., 108, -, 2003.
- Barrie, L.A.: Scavenging ratios, wet deposition, and in-cloud oxidation: An application to the oxides of
 sulphur and nitrogen, J. Geophys. Res., 90, 5789–5799, 1985.
- Berhanu, T.A., Meusinger, C., Erbland, J., Jost, R., Bhattacharya, S., Johnson, M.S., and Savarino, J.:
 Laboratory study of nitrate photolysis in Antarctic snow. II. Isotopic effects and wavelength
 dependence, J. Chem. Phy., 140, 244306, doi:10.1063/1.4882899, 2014.
- 677 Berhanu, T.A., Savarino, J., Erbland, J., Vicars, W.C., Preunkert, S., Martins, J.F., and Johnson, M.S.:
- Isotopic effects of nitrate photochemistry in snow: a field study at Dome C, Antarctica, Atmos. Chem.
 Phys., 15, 11243-11256, doi:10.5194/acp-15-11243-2015, 2015.
- Bertler, N., Mayewski, P.A., Aristarain, A., Barrett, P., Becagli, S., Bernardo, R., Bo, S., Xiao, C., Curran,
 M., and Qin, D.: Snow chemistry across Antarctica, Ann. Glaciol., 41, 167-179, 2005.
- Blunier, T., Floch, G., Jacobi, H.-W., and Quansah, E.: Isotopic view on nitrate loss in Antarctic surface
 snow, Geophys. Res. Lett., 32, L13501, doi:10.1029/2005GL023011, 2005.
- Bock, J., Savarino, J., and Picard, G.: Air–snow exchange of nitrate: a modelling approach to investigate
 physicochemical processes in surface snow at Dome C, Antarctica, Atmos. Chem. Phys., 16,
 12531-12550, doi:10.5194/acp-16-12531-2016, 2016.
- Brown, S., Ryerson, T., Wollny, A., Brock, C., Peltier, R., Sullivan, A., Weber, R., Dube, W., Trainer, M.,
 and Meagher, J.: Variability in nocturnal nitrogen oxide processing and its role in regional air quality,
 Science, 311, 67-70, doi:10.1126/science.1120120, 2006.
- Burkhart, J.F., Bales, R.C., McConnell, J.R., Hutterli, M.A., and Frey, M.M.: Geographic variability of
 nitrate deposition and preservation over the Greenland Ice Sheet, J. Geophys. Res., 114,
 doi:10.1029/2008JD010600, 2009.
- Carmagnola, C., Domine, F., Dumont, M., Wright, P., Strellis, B., Bergin, M., Dibb, J., Picard, G., and
 Morin, S.: Snow spectral albedo at Summit, Greenland: measurements and numerical simulations
 based on physical and chemical properties of the snowpack, The Cryosphere, 7, 1139-1160,
 doi:10.5194/tc-7-1139-2013, 2013.
- Das, I., Bell, R.E., Scambos, T.A., Wolovick, M., Creyts, T.T., Studinger, M., Frearson, N., Nicolas, J.P.,
 Lenaerts, J.T., and van den Broeke, M.R.: Influence of persistent wind scour on the surface mass
 balance of Antarctica, Nat. Geosci., 6, 367-371, doi:10.1038/NGE01766, 2013.
- Davis, D., Chen, G., Buhr, M., Crawford, J., Lenschow, D., Lefer, B., Shetter, R., Eisele, F., Mauldin, L., and
 Hogan, A.: South Pole NO_x chemistry: an assessment of factors controlling variability and absolute
 levels, Atmos. Environ., 38, 5375-5388, doi:10.1016/j.atmosenv.2004.04.039, 2004.
- 703 Dibb, J.E., Gregory Huey, L., Slusher, D.L., and Tanner, D.J.: Soluble reactive nitrogen oxides at South
- 704 Pole during ISCAT 2000, Atmos. Environ., 38, 5399-5409, doi:10.1016/j.atmosenv.2003.01.001, 2004.
- 705 Ding, M., Xiao, C., Jin, B., Ren, J., Qin, D., and Sun, W.: Distribution of δ^{18} O in surface snow along a

- transect from Zhongshan Station to Dome A, East Antarctica, Chin. Sci. Bull., 55, 2709-2714,
 doi:10.1007/s11434-010-3179-3, 2010.
- Ding, M., Xiao, C., Li, Y., Ren, J., Hou, S., Jin, B., and Sun, B.: Spatial variability of surface mass balance
 along a traverse route from Zhongshan station to Dome A, Antarctica, J. Glaciol., 57, 658-666, 2011.
- 710 Duderstadt, K.A., Dibb, J.E., Jackman, C.H., Randall, C.E., Solomon, S.C., Mills, M.J., Schwadron, N.A.,
- and Spence, H.E.: Nitrate deposition to surface snow at Summit, Greenland, following the 9 November
- 712 2000 solar proton event, J. Geophys. Res., 119, 6938-6957, 2014.
- 713 Duderstadt, K.A., Dibb, J.E., Schwadron, N.A., Spence, H.E., Solomon, S.C., Yudin, V.A., Jackman, C.H.,
- and Randall, C.E.: Nitrate ion spikes in ice cores not suitable as proxies for solar proton events, J.
 Geophys. Res., 121, 2994-3016, doi:10.1002/2015JD023805, 2016.
- 716 Erbland, J., Savarino, J., Morin, S., France, J.L., Frey, M.M., and King, M.D.: Air-snow transfer of nitrate
- on the East Antarctic plateau -Part 2: An isotopic model for the interpretation of deep ice-core records,
 Atmos. Chem. Phys., 15, 12079–12113, doi:10.5194/acp-15-12079-2015, 2015.
- 719 Erbland, J., Vicars, W., Savarino, J., Morin, S., Frey, M., Frosini, D., Vince, E., and Martins, J.: Air-snow
- transfer of nitrate on the East Antarctic Plateau Part 1: Isotopic evidence for a photolytically driven
- dynamic equilibrium in summer, Atmos. Chem. Phys., 13, 6403-6419, doi:10.5194/acp-13-6403-2013,
 2013.
- Felix, J.D., and Elliott, E.M.: The agricultural history of human nitrogen interactions as recorded in ice
 core δ15N NO3-, Geophys. Res. Lett., 40, 1642-1646, doi:10.1002/grl.50209, 2013.
- Fibiger, D.L., Hastings, M.G., Dibb, J.E., and Huey, L.G.: The preservation of atmospheric nitrate in snow
 at Summit, Greenland, Geophys. Res. Lett., 40, 3484-3489, doi:10.1002/grl.50659, 2013.
- France, J., King, M., Frey, M., Erbland, J., Picard, G., Preunkert, S., MacArthur, A., and Savarino, J.: Snow
 optical properties at Dome C (Concordia), Antarctica; implications for snow emissions and snow
 chemistry of reactive nitrogen, Atmos. Chem. Phys., 11, 9787-9801, doi:10.5194/acp-11-9787-2011,
 2011.
- Frey, M.M., Savarino, J., Morin, S., Erbland, J., and Martins, J.: Photolysis imprint in the nitrate stable
 isotope signal in snow and atmosphere of East Antarctica and implications for reactive nitrogen cycling,
 Atmos. Chem. Phys., 9, 8681-8696, 2009.
- Geng, L., Alexander, B., Cole-Dai, J., Steig, E.J., Savarino, J., Sofen, E.D., and Schauer, A.J.: Nitrogen
 isotopes in ice core nitrate linked to anthropogenic atmospheric acidity change, Proc. Natl. Acad. Sci.,
 111, 5808-5812, doi:10.1073/pnas.1319441111, 2014.
- Geng, L., Murray, L.T., Mickley, L.J., Lin, P., Fu, Q., Schauer, A.J., and Alexander, B.: Isotopic evidence of
 multiple controls on atmospheric oxidants over climate transitions, Nature, 546, 133-136,
 doi:10.1038/nature22340, 2017.
- 740 Goodwin, I., De Angelis, M., Pook, M., and Young, N.: Snow accumulation variability in Wilkes Land,
- East Antarctica, and the relationship to atmospheric ridging in the 130°-170° E region since 1930, J.
 Geophys. Res., 108, doi:10.1029/2002JD002995 2003.
- 743 Grannas, A., Jones, A.E., Dibb, J., Ammann, M., Anastasio, C., Beine, H., Bergin, M., Bottenheim, J.,
- Boxe, C., and Carver, G.: An overview of snow photochemistry: evidence, mechanisms and impacts,
 Atmos. Chem. Phys., 7, 4329-4373, 2007.
- Hara, K., Osada, K., Kido, M., Matsunaga, K., Iwasaka, Y., Hashida, G., and Yamanouchi, T.: Variations of
- 747 constituents of individual sea-salt particles at Syowa station, Antarctica, Tellus B, 57, 230-246, 2005.
- 748 Hastings, M.G., Jarvis, J.C., and Steig, E.J.: Anthropogenic impacts on nitrogen isotopes of ice-core
- 749 nitrate, Science, 324, 1288-1288, doi:10.1126/science.1170510, 2009.

- 750 Hastings, M.G., Steig, E., and Sigman, D.: Seasonal variations in N and O isotopes of nitrate in snow at
- 51 Summit, Greenland: Implications for the study of nitrate in snow and ice cores, J. Geophys. Res., 109,
- 752 D20306, doi:10.1029/2004JD004991, 2004.
- Holland, P.R., Bruneau, N., Enright, C., Losch, M., Kurtz, N.T., and Kwok, R.: Modeled Trends in Antarctic
 Sea Ice Thickness, J. Climate, 27, 3784-3801, doi:10.1175/JCLI-D-13-00301.1, 2014.
- Hou, S., Li, Y., Xiao, C., and Ren, J.: Recent accumulation rate at Dome A, Antarctica, Chin. Sci. Bull., 52,
 428-431, 2007.
- Huey, L.G., Tanner, D.J., Slusher, D.L., Dibb, J.E., Arimoto, R., Chen, G., Davis, D., Buhr, M.P., Nowak, J.B.,
- Mauldin Iii, R.L., Eisele, F.L., and Kosciuch, E.: CIMS measurements of HNO₃ and SO₂ at the South Pole
 during ISCAT 2000, Atmos. Environ., 38, 5411-5421, doi:10.1016/j.atmosenv.2004.04.037, 2004.
- 760 Jones, A.E., Weller, R., Minikin, A., Wolff, E.W., Sturges, W.T., Mcintyre, H.P., Leonard, S.R., Schrems, O.,
- and Bauguitte, S.: Oxidized nitrogen chemistry and speciation in the Antarctic troposphere, J. Geophys.
 Res., 1042, 21355-21366, 1999.
- 763 Jones, A.E., Wolff, E.W., Ames, D., Bauguitte, S.-B., Clemitshaw, K., Fleming, Z., Mills, G., Saiz-Lopez, A.,
- Salmon, R.A., and Sturges, W.: The multi-seasonal NO_y budget in coastal Antarctica and its link with
- surface snow and ice core nitrate: results from the CHABLIS campaign, Atmos. Chem. Phys., 11,9271-9285, 2011.
- Jourdain, B., and Legrand, M.: Year round records of bulk and size segregated aerosol composition and HCl and HNO3 levels in the Dumont d'Urville (coastal Antarctica) atmosphere: Implications for sea - salt aerosol fractionation in the winter and summer, J. Geophys. Res., 107, ACH 20-21 - ACH
- 770 20-13, doi:10.1029/2002JD002471, 2002.
- Kasper-Giebl, A., Kalina, M.F., and Puxbaum, H.: Scavenging ratios for sulfate, ammonium and nitrate
 determined at Mt. Sonnblick (3106m a.s.l.), Atmos. Environ., 33, 895-906, 1999.
- Laluraj, C., Thamban, M., Naik, S., Redkar, B., Chaturvedi, A., and Ravindra, R.: Nitrate records of a
 shallow ice core from East Antarctica: Atmospheric processes, preservation and climatic implications,
 The Holocene, 21, 351-356, doi:10.1177/0959683610374886, 2010.
- Lee, H.-M., Henze, D.K., Alexander, B., and Murray, L.T.: Investigating the sensitivity of surface-level
 nitrate seasonality in Antarctica to primary sources using a global model, Atmos. Environ., 89, 757-767,
- 778 doi:10.1016/j.atmosenv.2014.03.003, 2014.
- Legrand, M.: Chemistry of Antarctic snow and ice, Le Journal De Physique Colloques, 48, C1-77-C71-86,1987.
- Legrand, M., and Kirchner, S.: Origins and variations of nitrate in South Polar precipitation, J. Geophys.
 Res., 95, 3493-3507 1990.
- Legrand, M., and Mayewski, P.A.: Glaciochemistry of polar ice cores: a review, Rev. Geophys., 35,
 219-243, 1997.
- 785 Legrand, M., Preunkert, S., Weller, R., Zipf, L., Elsässer, C., Merchel, S., Rugel, G., and Wagenbach, D.:
- Year-round record of bulk and size-segregated aerosol composition in central Antarctica (Concordia
 site) Part 2: Biogenic sulfur (sulfate and methanesulfonate) aerosol, Atmos. Chem. Phys., 17,
- 788
 14055-14073, doi:10.5194/acp-17-14055-2017, 2017a.
- Legrand, M., Preunkert, S., Wolff, E., Weller, R., Jourdain, B., and Wagenbach, D.: Year-round records of 789 790 bulk and size-segregated aerosol composition in central Antarctica (Concordia site) - Part 1: 791 Fractionation of sea-salt particles, Atmos. Chem. Phys., 17, 14039-14054, 792 doi:10.5194/acp-17-14039-2017, 2017b.
- 793 Legrand, M., Wolff, E., and Wagenbach, D.: Antarctic aerosol and snowfall chemistry: implications for

- deep Antarctic ice-core chemistry, Ann. Glaciol., 29, 66-72, 1999.
- Legrand, M.R., Stordal, F., Isaksen, I.S.A., and Rognerud, B.: A model study of the stratospheric budget
 of odd nitrogen, including effects of solar cycle variations, Tellus Series B-chemical & Physical
 Meteorology, 41B, 413–426, doi:10.1111/j.1600-0889.1989.tb00318.x, 1989.
- Li, C., Ren, J., Qin, D., Xiao, C., Hou, S., Li, Y., and Ding, M.: Factors controlling the nitrate in the DT-401
 ice core in eastern Antarctica, Sci. China Ser. D, doi:10.1007/s11430-012-4557-2, 2013.
- Li, Y., Cole-Dai, J., and Zhou, L.: Glaciochemical evidence in an East Antarctica ice core of a recent (AD
- 801 1450-1850) neoglacial episode, J. Geophys. Res., 114, doi:10.1029/2008JD011091, 2009.
- 802 Li, Z., Zhang, M., Qin, D., Xiao, C., Tian, L., Kang, J., and Li, J.: The seasonal variations of δ^{18} O, Cl⁻, Na⁺,
- NO_3^- and Ca^{2+} in the snow and firn recovered from Princess Elizabeth Land, Antarctica, Chin. Sci. Bull., 44, 2270-2273, 1999.
- Liss, P.S., Chuck, A.L., Turner, S.M., and Watson, A.J.: Air-sea gas exchange in Antarctic waters, Antarct.
 Sci., 16, 517-529, doi:10.1017/S0954102004002299, 2004.
- 807 Ma, Y., Bian, L., Xiao, C., Allison, I., and Zhou, X.: Near surface climate of the traverse route from 808 Zhongshan Station to Dome Α, East Antarctica, Antarct. Sci., 22, 443-459, 809 doi:10.1017/S0954102010000209, 2010.
- Marion, G., Farren, R., and Komrowski, A.: Alternative pathways for seawater freezing, Cold Reg. Sci.
 Technol., 29, 259-266, 1999.
- Mayewski, P.A., and Legrand, M.R.: Recent increase in nitrate concentration of Antarctic snow, Nature,
 346, 258-260, 1990.
- McCabe, J.R., Thiemens, M.H., and Savarino, J.: A record of ozone variability in South Pole Antarctic
 snow: Role of nitrate oxygen isotopes, J. Geophys. Res., 112, D12303, doi:10.1029/2006JD007822,
 2007.
- Mulvaney, R., Wagenbach, D., and Wolff, E.W.: Postdepositional change in snowpack nitrate from
 observation of year-round near-surface snow in coastal Antarctica, J. Geophys. Res., 103, 11021-11031,
 1998.
- Mulvaney, R., and Wolff, E.: Evidence for winter/spring denitrification of the stratosphere in the nitrate
 record of Antarctic firn cores, J. Geophys. Res., 98, 5213-5220, 1993.
- Mulvaney, R., and Wolff, E.: Spatial variability of the major chemistry of the Antarctic ice sheet, Ann.Glaciol., 20, 440-447, 1994.
- Parish, T.R., and Bromwich, D.H.: Reexamination of the near-surface airflow over the Antarctic
 continent and implications on atmospheric circulations at high southern latitudes, Mon. Weather. Rev.,
 135, 1961-1973, doi:10.1175/MWR3374.1, 2007.
- 827 Pasteris, D., McConnell, J.R., Edwards, R., Isaksson, E., and Albert, M.R.: Acidity decline in Antarctic ice
- cores during the Little Ice Age linked to changes in atmospheric nitrate and sea salt concentrations, J.
- 829 Geophys. Res., 119, 5640-5652, doi:10.1002/2013JD020377, 2014.
- Piel, C., Weller, R., Huke, M., and Wagenbach, D.: Atmospheric methane sulfonate and non-sea-salt
 sulfate records at the European Project for Ice Coring in Antarctica (EPICA) deep-drilling site in
 Dronning Maud Land, Antarctica, J. Geophys. Res., 111, -, 2006.
- 833 Qin, D., Zeller, E.J., and Dreschhoff, G.A.: The distribution of nitrate content in the surface snow of the
- Antarctic Ice Sheet along the route of the 1990 International Trans-Antarctica Expedition, J. Geophys.
 Res., 97, 6277-6284, 1992.
- 836 Röthlisberger, R., Hutterli, M.A., Sommer, S., Wolff, E.W., and Mulvaney, R.: Factors controlling nitrate
- in ice cores: Evidence from the Dome C deep ice core, J. Geophys. Res., 105, 20565-20572, 2000.

- Röthlisberger, R., Hutterli, M.A., Wolff, E.W., Mulvaney, R., Fischer, H., Bigler, M., Goto-Azuma, K.,
 Hansson, M.E., Ruth, U., and Siggaard-Andersen, M.-L.: Nitrate in Greenland and Antarctic ice cores: A
 detailed description of post-depositional processes, Ann. Glaciol., 35, 209-216, 2002.
- 841 Röthlisberger, R., Mulvaney, R., Wolff, E.W., Hutterli, M.A., Bigler, M., De Angelis, M., Hansson, M.E.,
- 842 Steffensen, J.P., and Udisti, R.: Limited dechlorination of sea-salt aerosols during the last glacial period:
- Evidence from the European Project for Ice Coring in Antarctica (EPICA) Dome C ice core, J. Geophys.
 Res., 108, 4526, doi:4510.1029/2003JD003604, 2003.
- Rankin, A.M., and Wolff, E.W.: A year-long record of size-segregated aerosol composition at Halley,
 Antarctica, J. Geophys. Res., 108, -, 2003.
- Rankin, A.M., Wolff, E.W., and Martin, S.: Frost flowers: Implications for tropospheric chemistry and ice
 core interpretation, J. Geophys. Res., 107, AAC 4-1–AAC 4-15, 2002.
- Russell, A., McGregor, G., and Marshall, G.: 340 years of atmospheric circulation characteristics
 reconstructed from an eastern Antarctic Peninsula ice core, Geophys. Res. Lett., 33, L08702,
 doi:08710.01029/02006GL025899, 2006.
- Russell, A., Mcgregor, G.R., and Marshall, G.J.: An examination of the precipitation delivery
 mechanisms for Dolleman Island, eastern Antarctic Peninsula, Tellus Series A-dynamic Meteorology &
 Oceanography, 56, 501–513, 2004.
- Savarino, J., Kaiser, J., Morin, S., Sigman, D.M., and Thiemens, M.H.: Nitrogen and oxygen isotopic
 constraints on the origin of atmospheric nitrate in coastal Antarctica, Atmos. Chem. Phys., 7,
 1925-1945, 2007.
- Seinfeld, J.H., and Pandis, S.N., 1997. Atmospheric Chemistry and Physics: From Air Pollution to
 Climate Change, 2nd ed. Wiley, New York.
- Shi, G., Buffen, A.M., Hastings, M.G., Li, C., Ma, H., Li, Y., Sun, B., An, C., and Jiang, S.: Investigation of
 post-depositional processing of nitrate in East Antarctic snow: isotopic constraints on photolytic loss,
 re-oxidation, and source inputs, Atmos. Chem. Phys., 15, 9435–9453, doi:10.5194/acp-15-9435-2015,
 2015.
- Shi, G., Li, Y., Jiang, S., An, C., Ma, H., Sun, B., and Wang, Y.: Large-scale spatial variability of major ions
 in the atmospheric wet deposition along the China Antarctica transect (31° N~ 69° S), Tellus B, 64,
- 866 17134, doi:10.3402/tellusb.v64i0.17134, 2012.
- Shrestha, A., Wake, C., Dibb, J., and Whitlow, S.: Aerosol and Precipitation Chemistry at a Remote
 Himalayan Site in Nepal, Aerosol Science & Technology, 36, 441-456, 2002.
- Sigl, M., Fudge, T.J., Winstrup, M., Coledai, J., Ferris, D., Mcconnell, J.R., Taylor, K.C., Welten, K.C.,
 Woodruff, T.E., and Adolphi, F.: The WAIS Divide deep ice core WD2014 chronology Part 2:
 Annual-layer counting (0-31 ka BP), Clim. Past, 11, 3425-3474, 2016.
- Smart, D.F., Shea, M.A., Melott, A.L., and Laird, C.M.: Low time resolution analysis of polar ice cores
 cannot detect impulsive nitrate events, Journal of Geophysical Research: Space Physics, 119,
 9430-9440, doi:10.1002/2014JA020378, 2014.
- 875 Traversi, R., Becagli, S., Brogioni, M., Caiazzo, L., Ciardini, V., Giardi, F., Legrand, M., Macelloni, G.,
- Petkov, B., Preunkert, S., Scarchilli, C., Severi, M., Vitale, V., and Udisti, R.: Multi-year record of
 atmospheric and snow surface nitrate in the central Antarctic plateau, Chemosphere, 172, 341-354,
- doi:10.1016/j.chemosphere.2016.12.143, 2017.
- 879 Traversi, R., Becagli, S., Castellano, E., Cerri, O., Morganti, A., Severi, M., and Udisti, R.: Study of Dome
- 880 C site (East Antartica) variability by comparing chemical stratigraphies, Microchem. J., 92, 7-14,
- doi:10.1016/j.microc.2008.08.007, 2009.

- Traversi, R., Udisti, R., Frosini, D., Becagli, S., Ciardini, V., Funke, B., Lanconelli, C., Petkov, B., Scarchilli,
 C., and Severi, M.: Insights on nitrate sources at Dome C (East Antarctic Plateau) from multi-year
- aerosol and snow records, Tellus B, 66, 22550, doi:10.3402/tellusb.v66.22550, 2014.
- Traversi, R., Usoskin, I., Solanki, S., Becagli, S., Frezzotti, M., Severi, M., Stenni, B., and Udisti, R.:
 Nitrate in Polar Ice: A New Tracer of Solar Variability, Sol. Phys., 280, 237-254, 2012.
- Udisti, R., Becagli, S., Benassai, S., Castellano, E., Fattori, I., Innocenti, M., Migliori, A., and Traversi, R.:
 Atmospheresnow interaction by a comparison between aerosol and uppermost snow-layers
 composition at Dome C, East Antarctica, Ann. Glaciol., 39, 53-61, 2004.
- Wagenbach, D., Ducroz, F., Mulvaney, R., Keck, L., Minikin, A., Legrand, M., Hall, J.S., and Wolff, E.W.:
 Sea-salt aerosol in coastal Antarctic regions, J. Geophys. Res., 103, 10961-10974, 1998a.
- Wagenbach, D., Graf, V., Minikin, A., Trefzer, U., Kipfstuhl, J., Oerter, H., and Blindow, N.:
 Reconnaissance of chemical and isotopic firn properties on top of Berkner Island, Antarctica, Ann.
 Glaciol., 20, 307-312, 1994.
- Wagenbach, D., Legrand, M., Fischer, H., Pichlmayer, F., and Wolff, E.W.: Atmospheric near-surface
 nitrate at coastal Antarctic sites, J. Geophys. Res., 103, 11007-11020, 1998b.
- Warren, S.G., Brandt, R.E., and Grenfell, T.C.: Visible and near-ultraviolet absorption spectrum of ice
 from transmission of solar radiation into snow, Appl. Optics, 45, 5320-5334, 2006.
- Weller, R., Traufetter, F., Fischer, H., Oerter, H., Piel, C., and Miller, H.: Postdepositional losses of
 methane sulfonate, nitrate, and chloride at the European Project for Ice Coring in Antarctica
 deep-drilling site in Dronning Maud Land, Antarctica, J. Geophys. Res., 109, 1-9,
 doi:10.1029/2003JD004189, 2004.
- Weller, R., and Wagenbach, D., 2007. Year-round chemical aerosol records in continental Antarcticaobtained by automatic samplings.
- 905 Witherow, R.A., Lyons, W.B., Bertler, N.A., Welch, K.A., Mayewski, P.A., Sneed, S.B., Nylen, T., Handley, 906 M.J., and Fountain, A.: The aeolian flux of calcium, chloride and nitrate to the McMurdo Dry Valleys 907 from landscape: evidence snow pit analysis, Antarct. Sci., 18, 497-505, 908 doi:10.1017/S095410200600054X, 2006.
- Wolff, E.W., 1995. Nitrate in polar ice, in: Delmas, R.J. (Ed.), in Ice core studies of global
 biogeochemical cycles. Springer, New York, pp. 195-224.
- Wolff, E.W., Barbante, S., Becagle, S., Bigler, M., Boutron, C.F., Castellano, E., de Angelis, M., and
 Federer, U.: Changes in environment over the last 800,000 years from chemical analysis of the EPICA
 Dome C ice core, Quaternary Sci. Rev., 29, 285-295, 2010.
- Wolff, E.W., Bigler, M., Curran, M., Dibb, J., Frey, M., Legrand, M., and McConnell, J.: The Carrington
 event not observed in most ice core nitrate records, Geophys. Res. Lett., 39, L08503,
 doi:10.1029/2012GL051603, 2012.
- 917 Wolff, E.W., Bigler, M., Curran, M.A.J., Dibb, J.E., Frey, M.M., Legrand, M., and Mcconnell, J.R.:
- 918 Comment on "Low time resolution analysis of polar ice cores cannot detect impulsive nitrate events"
- 919 by D.F. Smart et al, J. Geophys. Res., 121, 1920-1924, 2016.
- Wolff, E.W., Jones, A.E., Bauguitte, S.-B., and Salmon, R.A.: The interpretation of spikes and trends in
 concentration of nitrate in polar ice cores, based on evidence from snow and atmospheric
 measurements, Atmos. Chem. Phys., 8, 5627-5634, 2008.
- 923 Xiao, C., Mayewski, P.A., Qin, D., Li, Z., Zhang, M., and Yan, Y.: Sea level pressure variability over the
- 924 southern Indian Ocean inferred from a glaciochemical record in Princess Elizabeth Land, east
- 925 Antarctica, J. Geophys. Res., 109, doi:10.1029/2003JD004065, 2004.

926 Zatko, M., Grenfell, T., Alexander, B., Doherty, S., Thomas, J., and Yang, X.: The influence of snow grain 927 size and impurities on the vertical profiles of actinic flux and associated NO_x emissions on the 928 Antarctic Greenland and ice sheets, Atmos. Chem. Phys., 13, 3547-3567, 929 doi:10.5194/acp-13-3547-2013, 2013.

930 Zatko, M.C., Geng, L., Alexander, B., Sofen, E.D., and Klein, K.: The impact of snow nitrate photolysis on

931 boundary layer chemistry and the recycling and redistribution of reactive nitrogen across Antarctica

932 and Greenland in a global chemical transport model, Atmos. Chem. Phys., 16, 2819-2842,

933 doi:10.5194/acp-16-2819-2016, 2016.

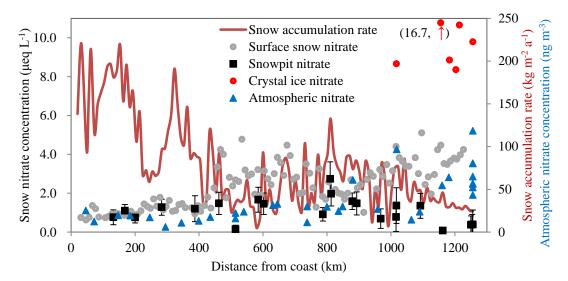
234 Zeller, E.J., Dreschhoff, G.A., and Laird, C.M.: Nitrate flux on the Ross Ice Shelf, Antarctica and its

935 relation to solar cosmic rays, Geophys. Res. Lett., 13, 1264-1267, 1986.

936

Snowpit	Latitude,	Longitude,	Elevation,	Distance	to	Annual snow	Depth,	Sampling	Sampling
No.	0	0	m	coast, km		accumulation,	cm	resolution,	year
						kg m ⁻² a ^{-1 1)}		cm	
SP1	-70.52	76.83	1613	132		193.2	150	5.0	2010/2011
SP2	-71.13	77.31	2037	200		172.0	150	3.0	2012/2013
SP3	-71.81	77.89	2295	283		99.4	200	5.0	2012/2013
SP4	-72.73	77.45	2489	387		98.3	200	5.0	2012/2013
SP5	-73.40	77.00	2545	452		90.7	200	5.0	2012/2013
SP6	-73.86	76.98	2627	514		24.6	300	2.5	2012/2013
SP7	-74.50	77.03	2696	585		29.2	100	2.0	2012/2013
SP8	-74.65	77.01	2734	602		80.2	180	2.0	2010/2011
SP9	-76.29	77.03	2843	787		54.8	200	2.0	2012/2013
SP10	-76.54	77.02	2815	810		100.7	240	3.0	2010/2011
SP11	-77.13	76.98	2928	879		81.2	200	2.5	2012/2013
SP12	-77.26	76.96	2962	893		83.4	265	5.0	2009/2010
SP13	-77.91	77.13	3154	968		33.3	200	2.0	2012/2013
SP14	-78.34	77.00	3368	1015		87.6	216	3.0	2010/2011
SP15	-78.35	77.00	3366	1017		70.0	162	2.0	2009/2010
SP16	-79.02	76.98	3738	1092		25.4	200	2.5	2012/2013
SP17	-79.65	77.21	3969	1162		46.2	130	2.0	2010/2011
SP18	-80.40	77.15	4093	1250		24.2	300	2.0	2010/2011
SP19	-80.41	77.11	4092	1254		23.7	300	1.0	2009/2010
SP20	-80.42	77.12	4093	1256		23.5	300	2.5	2012/2013
Core 1 ²⁾	-70.83	77.08	1850	168		127.0	-	-	1996/1997
Core 2 ³⁾	-76.53	77.03	2814	813		101.0	-	-	1998/1999

Table 1. Snowpit information on the traverse from coastal Zhongshan Station to Dome A, EastAntarctica.


1) Annual snow accumulation rate is obtained from the field bamboo stick measurements (2009 - 2013),

941 updated from the report (Ding et al., 2011). Note that snow accumulation rate at the two ice core sites

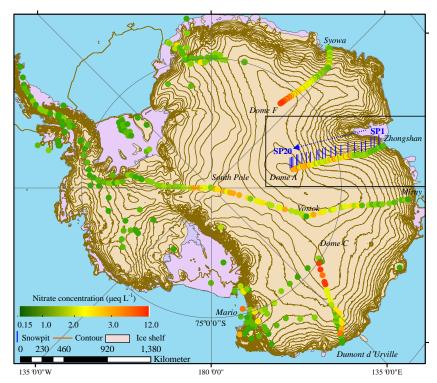
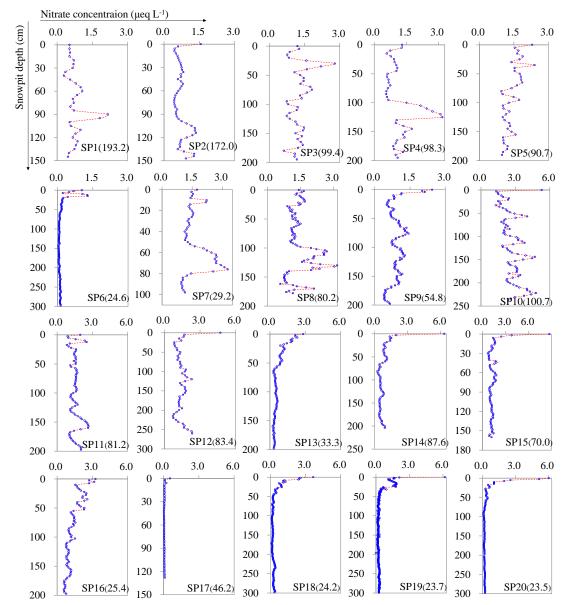
are derived from ice core measurements.

943 2) Core 1, ice core data of previous report (Li et al., 1999; Xiao et al., 2004).

944 3) Core 2, ice core data of previous report (Li et al., 2009).

947

Figure 1. Concentrations of NO_3^- in snow (surface snow, crystal ice and snowpits; on the primary y-axis) and atmosphere (on the secondary y-axis), with error bars representing one standard deviation of NO_3^- (1 σ) for individual snowpits. Also shown is the annual snow accumulation rate on the traverse (red solid line; based on Ding et al. (2011)). Note that NO_3^- concentration in one crystal ice sample (red dot) is higher than the maximum value of the primary y-axis (NO_3^- concentration = 16.7 µeq L⁻¹ in the parentheses).

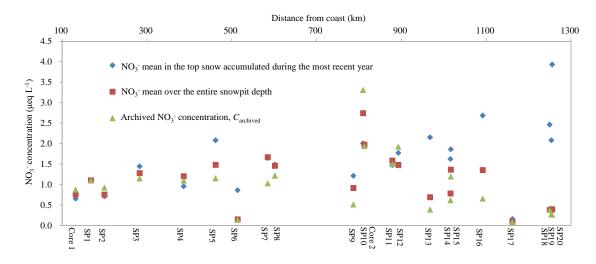
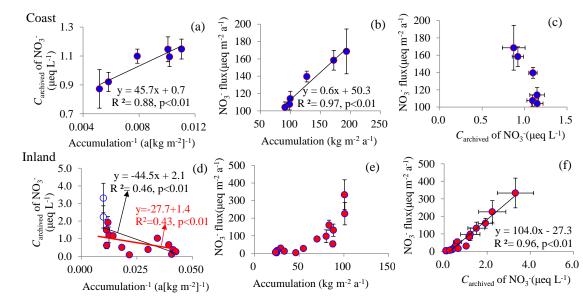
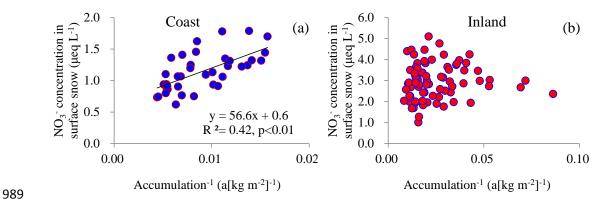


Figure 2. Concentrations of NO₃⁻ in surface snow across Antarctica. Note that the values of crystal ice
around Dome A were not included. The data of DDU to Dome C is from Frey et al. (2009). The other
surface snow NO₃⁻ concentrations are from compiled data (Bertler et al., 2005 and references therein).
Also illustrated are the locations of snowpits on the traverse route from Zhongshan to Dome A in this
study (SP1 to SP20, solid short blue line; Table 1).

964


Figure 3. The full profiles of NO_3^- concentrations for snowpits collected on the traverse from the coast to Dome A, East Antarctica (SP1 is closest the coast; SP20 the furthest inland; see Figure 2). The details on sampling of the snowpits refer to Table 1. The numbers in parentheses in each panel denote the annual snow accumulation rates (kg m⁻² a⁻¹). Note that the scales of x-axes for the snowpits SP1 – SP9 and SP10 – SP20 are different.


Figure 4. Mean concentrations of NO_3^- for the entire snowpit depth (in square), the uppermost layer covering one-year snow accumulation (in diamond) and the bottom layer covering a full annual cycle of deposition (archived NO_3^- concentration, $C_{archived}$, in triangle).

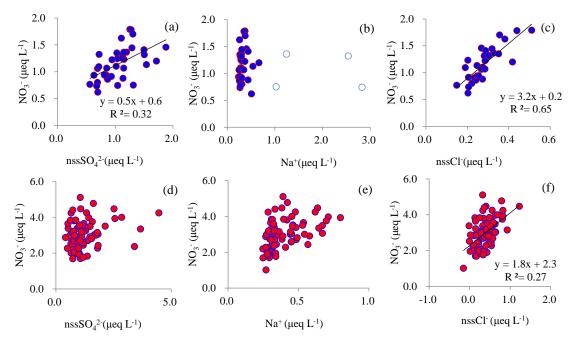
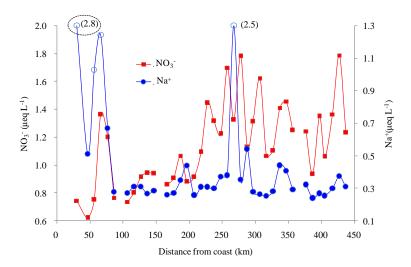


Figure 5. The relationships amongst snow accumulation rate, the archived concentration ($C_{archived}$), and flux of NO₃⁻ in coastal (top row, (a), (b) and (c)) and inland (bottom row, (d), (e) and (f)) Antarctica. In panel (d), the linear fit in black line (y = -44.5x + 2.1) includes the full data set, while the linear equation in red (y = -27.7x + 1.5) was obtained by excluding two cases (open circles) with snow accumulation rate larger than 100 kg m⁻² a⁻¹ (see the main text). The flux values are the product of $C_{archived}$ of NO₃⁻ and snow accumulation rate, namely the archived flux. Least squares regressions are noted with solid lines and are significant at p < 0.01. Error bars represent one standard deviation (1 σ).



990Figure 6. The relationships between NO_3^- concentration and inverse snow accumulation rate in surface991snow in coastal (panel (a)) and inland (panel (b)) Antarctica. Least squares regressions are noted with992solid line and are significant at p < 0.01.

Figure 7. Relationships between NO₃⁻ and co-existing major ions in surface snow in coastal (top row, (a), (b) and (c)) and inland (bottom row, (d), (e) and (f)) Antarctica. Least squares regressions are noted with solid line and are significant at p < 0.01. The 4 samples with high Na⁺ concentrations are denoted by blue open circles (b), the same as those in Figure 8 (the blue open circles). Note that the 4 samples were excluded in the plot of NO₃⁻ vs. nssCl⁻ (c).

1001

Figure 8. Concentrations of NO_3^- and Na^+ in surface snow samples on the coast. Four samples with high Na^+ concentrations are denoted by open circles, corresponding to those in Fig. 7b. Note that Na^+ concentrations in two samples, 2.5 and 2.8 µeq L⁻¹ in parentheses, are above the maximum value of the secondary *y*-axis (Na^+ concentration). The sample in the dashed ellipse, with Na^+ concentration of 2.8 µeq L⁻¹, is the fresh snowfall.

1009