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General comments 
 
During the additional round of review, the authors have made several changes to the first               
revised version of the manuscript including: 
 

● A new Crocus simulation driven by AROME-MetCoop including a modified precipitation           
phase based on the high-resolution post-processed temperature data. This new          
modification brings large improvements in terms of error statistics for the simulation of             
snow depth with Crocus driven by AROME-MetCoop 

● Large parts of the conclusion and the discussion have been rewritten accordingly.  
 
These changes have improved the quality of the manuscript and the new simulation nicely              
illustrates the necessity to include an adjustment of precipitation phase in complex terrain when              
carrying a simulation with a snowpack scheme running at higher resolution that the original              
atmospheric forcing. Based on this modification, I recommend this paper to be accepted for              
publication in TC. I mentioned below a few specific comments that the authors should take into                
account prior to publication.  
 
Author response: Thank you very much for reviewing our paper again. We are very grateful for                
all your comments and suggestions during this process, and we are very happy that our paper is                 
now accepted with minor revisions. We will reply to your specific comments below, which we               
have numbered for easier reference. 
 
Thanks again for all your help along the way.  
Kind regards, on behalf of all authors, 
Hanneke Luijting 
 
Specific comments  
 
Note: The numbering of the lines is based on the revised version of the paper in track-change                 
mode 
 

1. P4 L21: Masson et al (2013) would be a more appropriate reference for the list of                
different snowpack schemes in SURFEX.  
 
Author response: ​We have added the reference to Masson et al (2013) where we              
mention the three snow schemes available in SURFEX (P4, L13 and L19). We have also               
added a reference to the D95 snow scheme (Douville et al, 1995).  

 



2. P4 L30: add precipitation phase in the list of weather variables.  
Author response: We have added precipitation phase in the list of weather variables.             
New sentence: “Combining observations and NWP data for important weather variables           
(temperature, precipitation and precipitation phase) as driving data for the snow           
simulations should better represent the actual observed weather conditions.” 

 
3. P 14 Figure 4: the quality of the fonts and the lines on this figure is poor compared to                   

other figures in the paper such as Fig. 3 or Fig. 8 (which is very similar to Fig. 4). It would                     
be good to produce a new figure easier to read.  

 
Author response: Figure 4 has been improved, the better quality of the lines and the               
fonts makes it easier to read now. Thank you for your suggestion. 

 
4. P26–P27: the comparison between the simulations with and without the correction of            

precipitation phase is quite interesting. Could the authors includes the results in terms of              
bias and RMSE on snow depth to quantify the improvement obtained when considering             
the adjustment of precipitation phase? I guess these values correspond to the ones             
removed from Table 2 and 3.  

 
Author response: We have added the following sentence to section 4.2: “The bias in              
snow depth improved from +42 cm (using raw AROME-MetCoOp precipitation) to +20            
cm (using the terrain-adjusted AROME-MetCoOp precipitation), and the RMSE improved          
from 68 cm (raw) to 56 cm (terrain-adjusted).” 

 
5. P 30 L6: the term “significant” may not be appropriate since the authors did not the                

statistical significance of the differences between the 2 simulations.  
 
Author response: You are right. We have changed the sentence to read “This is an               
improvement as it reduces the overestimation by AROME-Crocus, but only to some            
degree.” 

 
6. Conclusion P31 L 4-9: for the results obtained with GridObs-Crocus, it would be good to               

make the clear distinction between (i) the underestimation of snow accumulation at            
high-elevation and (ii) the tendency of the model to underestimate snow melt. According             
to me, the sentence “during the melting season the snow cover melted away too fast”               
can suggest that snow melt is overestimated in GridObs-Crocus which leads to a snow              
cover that vanish too early. The authors should consider rewriting this sentence. The             
same comments apply to the Abstract (P 1, L15-20) and to the discussion (P25, L 4-14). 

 
Author response: you are right, this could be misinterpreted We have rewritten this             
conclusion bullet point to: 
 



- AROME-Crocus provides the best representation of the spatial distribution of          
snow cover, particularly during the melting season. In GridObs-Crocus the spatial           
snow cover distribution is captured during winter, but underestimation of snow           
depth at high elevations (due to the low elevation bias in the gridded observation              
dataset) is likely causing the snow cover to decrease too soon during the melt              
season, leading to unrealistically little snow by the end of the season. 

 
The paragraph in the discussion chapter has been changed to: 

 
“The model validation was carried out using both snow measurements at individual            
weather stations and MODIS satellite images. Using several data sources to validate            
simulations is important as these two sources supplement each other. Stations give point             
validations with daily time series, while the satellite images provide images of the snow              
cover for an entire area for cloud free days. Even though the GridObs-Crocus simulation              
provides reasonable results at individual stations, the MODIS images show that the            
snow cover disappears too fast, particularly late in the snow melt season. This may              
indicate that the gridded interpolated observations of temperature and precipitation (the           
forcing data) are not representing the terrain variability in the study area sufficiently well.              
The western region is dominated by terrain with steep gradients, which requires a higher              
density of weather stations representing the full range of terrain elevations compared to             
smooth landscape areas. As described in Section 2.2, there is a low elevation bias in the                
national observational network with too few stations in areas above 900 masl. This             
increases the uncertainty of the precipitation and temperature estimates in the           
mountainous regions. The quality of the gridded data are obviously highest for locations             
closest to the stations, providing better results in those areas. An underestimation of the              
snow depth at high elevations would explain the underestimated snow cover during the             
melt season.” 
 
Finally, we have removed the following sentence from the abstract: “The snow cover             
melts away too fast, leading to unrealistically little snow by the end of the season” and                
replaced it by: 
 
“Underestimation of snow depth at high elevations (due to the low elevation bias in the               
gridded observation dataset) is likely causing the snow cover to decrease too soon             
during the melt season, leading to unrealistically little snow by the end of the season.” 
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Abstract. In Norway, thirty percent of the annual precipitation falls as snow. Knowledge of the snow reservoir is therefore

important for energy production and water resource management. The land surface model SURFEX with the detailed snowpack

scheme Crocus (SURFEX/Crocus) has been run with a grid spacing of 1 km over an area in southern Norway for two years (01

September 2014 - 31 August 2016). Experiments were carried out using two different forcing data sets: 1) hourly forecasts from

the operational weather forecast model AROME MetCoOp (2.5 km grid spacing) including post-processed temperature (5005

m grid spacing) and wind, and 2) gridded hourly observations of temperature and precipitation (1 km grid spacing) combined

with meteorological forecasts from AROME MetCoOp for the remaining weather variables required by SURFEX/Crocus. We

present an evaluation of the modeled snow depth and snow cover, as compared to 30 point observations of snow depth and

to MODIS satellite images of the snow-covered area. The evaluation focuses on snow accumulation and snow melt. Both

experiments are capable of simulating the snow pack over the two winter seasons, but there is an overestimation of snow depth10

when using meteorological forecasts from AROME MetCoOp (bias of 20 cm and RMSE of 56 cm), although the snow-covered

area throughout the melt season is better represented by this experiment. The errors, when using AROME MetCoOp as forcing,

accumulate over the snow season. When using gridded observations, the simulation of snow depth is significantly improved

(the bias for this experiment is 7 cm and RMSE 28 cm), but the spatial snow cover distribution is not well captured during the

melting season. The snow cover melts away too fast
::::::::::::::
Underestimation

::
of

::::
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:::::
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::
at

::::
high

:::::::::
elevations

::::
(due
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cover
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to
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too
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soon

::::::
during

:::
the

::::
melt

::::::
season, leading to

unrealistically little snow by the end of the season. Our results show that forcing data consisting of post-processed NWP data

(observations assimilated into the raw NWP weather predictions) are most promising for snow simulations, when larger regions

are evaluated. Post-processed NWP data provide a more representative spatial representation for both high mountains and

lowlands, compared to interpolated observations. There is however an underestimation of snow ablation in both experiments.20

This is generally due to the absence of wind-induced erosion of snow in the SURFEX/Crocus model, underestimated snow

melt and biases in the forcing data.
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1 Introduction

Snow is a key element in the hydrological cycle. Seasonal snow covers large areas of the Northern Hemisphere and the Arctic.

In these areas the snow cover extent in spring has reduced more rapidly the past 40 years than over the past 90 years (Brown

and Robinson, 2011; Brown et al., 2017). The largest declines in snow cover extent and duration are observed in Arctic coastal

areas, e.g. in Scandinavia (Rasmus et al., 2015; Brown et al., 2017). In Norway there is a general trend towards a later start5

and an earlier end of the snow season, although there are large annual variabilities (Hanssen-Bauer et al., 2015, 2017). Trends

in snow depth may vary with elevation, as observed for some Norwegian regions (Skaugen et al., 2012; Dyrrdal et al., 2013).

Information about seasonal changes in snow duration and amounts are important for many societal applications and for Arctic

ecosystem changes. An overview of changes in snow and impacts due to these changes, is provided by Bokhorst et al. (2016).

In Norway 30% of the annual precipitation falls as snow (Saloranta, 2012). Observations show that changes in the winter10

climate over the past 50 years, and particularly since 2000, give more winter warming and rainfall events (Vikhamar-Schuler

et al., 2016; Kivinen et al., 2017). This, in turn, affects the internal snow structure giving e.g. more wet snow conditions and

ground-ice layering (Johansson et al., 2011; Vikhamar-Schuler et al., 2013). Updated information on the daily local snow

properties (e.g. depth, SWE, density profile, crystal structure etc) and snowmelt in mountainous and lowland areas is very

useful for many applications, notably local flood prediction, hydropower production planning, snow avalanche prediction,15

tourism and traffic flow management. Typical information needed for these applications are daily forecasts of snow properties

and snow melt (for the next days), but depending on the application, also knowledge of snow conditions for the past winter(s),

last month(s), last week(s), past 3 days and yesterday.

A wide range of empirically and physically based snow models have been developed and reported in the literature, see e.g.

Magnusson et al. (2015). Models differ in several ways e.g. the parameterization and simplification of snow processes, the20

spatial and temporal resolution or the need for input data of various weather elements. The need for input data is therefore

usually larger and more detailed for physically based models than for the empirically based models. Empirical models often

need calibration. Several snow model intercomparison projects have also been performed, e.g. Etchevers et al. (2004) and

Essery et al. (2013). These studies show that no single model always performs best, and there is no clear link between model

complexity and performance. However, physically-based models, which includes prognostics of snow density and albedo, tend25

to perform better (Essery et al., 2013).

In Norway, both the national operational flood forecasting and hydropower companies use the HBV model for hydrological

forecasting, which includes an empirical degree day model for snow simulations (Bergstrøm, 1976; Sælthun, 1996; Ruan and

Langsholt, 2017). Snow maps of depth, water equivalent, snow melt, snow wetness and skiing conditions are also produced

operationally on a daily basis and published at www.seNorge.no and www.xgeo.no (Saloranta, 2016), and these maps are used30

by the national snow avalanche service (Barfod et al., 2013; Engeset, 2013). Both these applications use gridded near real-time

observations of temperature and precipitation (Mohr, 2008; Lussana et al., 2018a).

Another type of forcing data for snow models are numerical weather forecasts (NWP) from atmospheric models. NWP data

provides all the basic environmental variables required by physically-based snowpack models at hourly time steps (e.g. air
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temperature, relative humidity, wind speed, precipitation rate, incoming short and longwave radiation). Using sub-daily (e.g.

hourly) data in snow modeling should contribute to improved representation of snow melt processes (e.g. diurnal freeze/thaw

cycles) and precipitation phase. SNOWPACK (Bartelt and Lehning, 2002; Lehning et al., 2002), SURFEX/ISBA/Crocus (Vion-

net et al., 2012) and JULES (Best et al., 2011) are examples of models with multi-layer snow schemes of different complexity

aiming to simulate the surface energy balance and the internal layering of the snowpack. SNOWPACK and Crocus are used5

in the operational snow avalanche service in Switzerland and France, respectively (Fierz et al., 2013; Lafaysse et al., 2017).

Many studies show how high resolution NWP data are very valuable in driving these snow models, see e.g. Bellaire et al.

(2011, 2013); Horton et al. (2015); Vionnet et al. (2016); Quéno et al. (2016). NWP data have also been used as driving data in

hydrometeorological models (Carrera et al., 2010, e.g.).

For a point location in the Columbia Mountains, Western Canada, Bellaire et al. (2011, 2013) used 15 km resolution weather10

forecasts from the NWP Global Environmental Multiscale Model (GEM) to force the SNOWPACK model. This study was

later extended to a gridded area in the same region by Horton et al. (2015) who forced the SNOWPACK model using 2.5 km

resolution NWP data from the Limited Area Model version of GEM (GEM-LAM) model. The use of NWP data as precipitation

forcing for snow models was analysed and discussed by Schirmer and Jamieson (2015). They compared two NWP datasets

(GEM: 15 km and GEM-LAM: 2.5 km spatial resolution) over complex mountainous terrain during winter time, and found15

that the highest resolution dataset performed best in terms of precipitation forecasts. Bernier et al. (2011) used a downscaling

technique to account for local terrain effects on the surface temperatures not resolved by the low-resolution NWP model.

With higher spatial resolution of the NWP models, the orographic precipitation is better reproduced. In the French Alps, high-

resolution forecasts (2.5 km) from the AROME NWP model were used to drive Crocus (Vionnet et al., 2016). A similar study

using the same AROME NWP model was carried out for the French and the Spanish Pyrenees by Quéno et al. (2016). Both20

these studies showed that high-resolution NWP data represents a very useful and promising data source for snow models to

produce snow maps. However, the authors point out some limitations of using only NWP data. Terrain effects are not well

enough accounted for on a kilometric scale, whereas future development of sub-kilometric scale NWP data might improve

e.g. terrain effects on the incoming solar radiation. Combining NWP data with other data sources (e.g. observations, radar)

might improve the forcing data, particularly the precipitation fields. Redistribution of snow due to wind is another difficult25

issue in mountainous areas. Running snow models with ensemble based forecasts is a promising method to account for these

uncertainties (Vernay et al., 2015b; Lafaysse et al., 2017).

Weather forecasting models are presently evolving fast, and they include more and more detailed parametrization of land

surface processes connected to snow and soil. SURFEX (Surface Externaliseé) (Masson et al., 2013) is an example of a land

surface model, which can be run both inline as part of an atmospheric weather forecast model, for example AROME MetCoOp30

(Müller et al., 2017), or offline as a stand-alone model. At the Norwegian Meteorological Institute (MET Norway), the AROME

MetCoOp model is run operationally to provide short-term weather forecasts covering large parts of the Nordic region (Müller

et al., 2017).

Data assimilation methodologies for snow are presently likewise evolving fast, see e.g. Carrera et al. (2015). Snow anal-

ysis incorporating in situ observations, satellite data, and estimates from NWP-driven physical snowpack models is an al-35
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ternative to NWP-driven offline runs. In Norway, observed snow depth at weather stations are daily assimilated into the

AROME MetCoOp model, in order to improve the predicted surface air temperature. However, the MetCoOp model uses

the most simple snow scheme (D95
:
,
::::::::::::::::::
Douville et al. (1995)) of the three snow schemes implemented in the SURFEX model

(Boone and Etchevers, 2001)
::::::::::::::::::::::::::::::::::::::::
(Boone and Etchevers, 2001; Masson et al., 2013). The D95 scheme models the snowpack as a

single layer, with two prognostic variables: SWE and snow density. For many of the above mentioned applications, infor-5

mation of other snow properties such as internal layering as well as the density, grain size, temperature, wetness etc. of the

different layers are of high interest. This is not provided by the D95 snow scheme.

In this study we therefore evaluate the performance of the SURFEX model, using the Crocus snow scheme (Vionnet

et al., 2012) for Norwegian snow conditions. Crocus is the most advanced snow scheme implemented in the SURFEX model

(Boone and Etchevers, 2001)
::::::::::::::::::::::::::::::::::::::::
(Boone and Etchevers, 2001; Masson et al., 2013). SURFEX/Crocus has not previously been run10

in a gridded stand alone version for regions in Norway (as a 2D study). However, the model has earlier been tested for single

points (1D study) with observations from weather stations and NWP data (Vikhamar-Schuler et al., 2011). Our study is carried

out as part of several research projects within hydropower and flood forecasting. The domain was chosen to cover mountains

in southern Norway and to include a cross-section from west to east that crosses the watershed in this region. This domain

includes catchment areas that are of high interest to hydropower companies.15

The aim of our study is to test the performance and the benefit of different gridded forcing datasets as input to the SUR-

FEX/Crocus model, and validate the simulated snow amounts and snow melt patterns in the selected domain. The originality

of our work is linked to the unique combination of using both raw weather predictions, post-processed weather predictions

and gridded observations, which we expect should provide an improved performance of the snow simulations compared to e.g.

using only raw weather predictions. Combining observations and NWP data for important weather variables (temperatureand20

precipitation
:
,
::::::::::
precipitation

::::
and

::::::::::
precipitation

:::::
phase) as driving data for the snow simulations should better represent the actual

observed weather conditions. Experiments were performed by applying two different data sets from the winters 2014/2015 and

2015/1016 as forcing to the SURFEX/Crocus model: 1) Predictions from the AROME MetCoOp model with a grid spacing

of 2.5 km (Müller et al., 2017), where both the temperature and the wind data were improved by post-processing algorithms,

and 2) Gridded observations of precipitation and temperature (GridObs) with a grid spacing of 1 km (Lussana et al., 2018b, a).25

Both data sets have hourly temporal resolution, and are discussed in detail in section 2.3.

Although AROME-SURFEX/Crocus has previously been used over the southern European mountain chains in the French

Alps (46◦N, 9◦E) and the French/Spanish Pyrenees (42◦N, 1◦E) (Vionnet et al., 2016; Quéno et al., 2016), neither of our two

datasets described above have been used as forcing for SURFEX/Crocus for Norwegian mountains and lowland regions before.

Our study area is located in Northern Europe at 61◦N, 8◦E, which is at least 15 degrees further north. According to the Köppen-30

Geiger climate classification system (Köppen, 1936), the climate in South-Norway is different from the Pyrenees, while the

climate classes are partly the same for South-Norway and the Alps. However, these coarse climate classes generally account

for average temperature and precipitation in an area, and do not fully account for the differences in probability distribution

functions describing the regional climate variability (e.g. precipitation intensities, frequencies and extremes) in these moun-

tainous areas. A west-east transect crossing the mountain chain in South Norway comprises a climatic transect from maritime,35
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alpine to more continental climate. Snow conditions and stratigraphy vary regionally as outlined by e.g. Sturm et al. (1995),

who defined six snow classes, of which at least two classes are inside our domain (maritime and alpine). The SURFEX/Crocus

snow model may therefore perform differently in individual regions. Our study contributes to a development which can pro-

duce new supplementary snow information (including snow stratigraphy) and thereby may contribute to the development of

a future system for daily snow mapping. The performance of the SURFEX/Crocus model is also compared with three other5

snow models including the seNorge model in a separate study by Skaugen et al. (2018), a study which also shows that there is

no "best" snow model.

2 Model setup and data sets

2.1 The SURFEX/Crocus model

The model used in this study is the detailed snowpack model Crocus (Brun et al., 1992; Vionnet et al., 2012) coupled with the10

ISBA land surface model within the SURFEX (Surface Externaliseé) interface (Masson et al., 2013). We applied the ISBA-DIF

multi-layer soil scheme (Boone et al., 2000; Habets et al., 2003), which uses a diffusive approach for modeling the heat and

moisture transport in the soil. The soil was divided into 14 layers, of which the thickness of the individual layers increases with

the soil depth. The bottom depth of the lowest layer was 12 m. The HSWD (Harmonized World Soil Database) 1 km resolution

database for soil texture (FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012) was used for the soil properties.15

The snowpack scheme Crocus models the physical properties of up to 50 dynamic layers within the snowpack, as well as

the underlying ground. Once the snowpack reaches a threshold of 1 kg m-2 SWE, the fractional snow cover over a grid point is

assumed to be 1. The SURFEX/Crocus model can be run in stand-alone (or offline) mode, or fully coupled to an atmospheric

model.

For this study, the SURFEX/Crocus model was used in an offline mode, on a 0.01◦ grid (approximately 1 km), with a 520

minute internal time step and output every hour. The orography was taken from GTOPO30 global digital elevation model

(DEM) from the U.S. Geological Survey, which has a grid spacing of 1 km. The transport of snow by wind is not simulated.

The SURFEX/Crocus model was run for two winter seasons: from 1 September 2014 until 31 August 2016. These dates were

chosen because the hydrological year starts on 1 September, and at that time there is normally no snow in the mountains. In

this study, we start a new simulation on 1 September, with no snow present, and with default values for soil properties, for both25

2014/2015 and 2015/2016. The default soil temperature is 11.9 ◦C for the uppermost surface soil layer for 0 m.a.s.l. (sea-level

height). The soil temperature is reduced with increasing terrain elevation using a lapse rate of 0.65 ◦C per 100 m, leading to a

surface soil temperature of 1.3 ◦C at 1000 m.a.s.l.. We estimate these surface soil values to be representative of the September

climate in our study area. Higher temperatures in the deepest soil layers may however represent an uncertain heat contribution

for the snow modeling. This effect should be similar for all the experiments though, since the initialization is the same.30
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Figure 1. Map showing the domain over which the SURFEX/Crocus model was run on the right (map data: Google), with on the left a map

showing the elevation over the SURFEX/Crocus model domain, and the locations of the 30 observations used in this paper (indicated by blue

and red dots). The blue dots indicate the 6 stations used in Fig. 4: BA = Balestrand Brannstasjon, HA = Haukedal, HE = Hemsedal II, ES =

Espedalen, BH = Bakko i Hol and MI = Midtstova.

2.2 The study area

Figure 1 shows the domain over which the SURFEX/Crocus model was run, and the elevation over the model domain. The

domain covers nearly 20.000 km2 (111 x 175 km), and contains 100 x 330 grid points. As mentioned in the introduction, the

study area was chosen to cover the mountains in southern Norway and to include a cross-section from west to east that crosses

the watershed in this region, as well as to include several catchment areas that are of interest to hydropower companies. The5

domain covers elevations from 0 masl. along fjords up to the highest mountain in Norway (2468 masl.). Therefore, the area

includes different vegetation zones, ranging from high mountains above the tree line, sparsely forested and densely forested

areas. This makes it a challenging area for snow modeling.

Due to the watershed and the prevailing weather patterns, there is a large gradient in precipitation amount over the domain.

The far western parts of the domain receive on average around 1500 mm of precipitation during a winter season, while the10

eastern parts only receive 100-300 mm (Hanssen-Bauer et al., 2015). The western part of the domain has a maritime climate

while the eastern part has a more inland climate, which means the average temperature during winter is higher at the western

part of the domain (around or just below 0 ◦Celsius), compared to the eastern side (around -10 ◦Celsius) (Hanssen-Bauer et al.,

2015). This means the gradient in average snowfall amount is not as large as the gradient in precipitation amount, but the

western part of the domain still receives significantly more snow than the eastern part (Hanssen-Bauer et al., 2015).15
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AROME-Crocus GridObs-Crocus

Air temperature [K] AROME-MetCoOp post-processed Gridded observations

Specific humidity [kg kg-1] AROME-MetCoOp AROME-MetCoOp

Wind speed [m s-1] AROME-MetCoOp post-processed AROME-MetCoOp

Wind direction [degrees] AROME-MetCoOp AROME-MetCoOp

Incoming direct shortwave radiation [W m-2] AROME-MetCoOp AROME-MetCoOp

Incoming longwave radiation [W m-2] AROME-MetCoOp AROME-MetCoOp

Surface pressure [Pa] AROME-MetCoOp AROME-MetCoOp

Rainfall rate [kg m-2 s-1] AROME-MetCoOp post-processed1 Gridded observations2

Snowfall rate [kg m-2 s-1] AROME-MetCoOp post-processed1 Gridded observations2

Table 1. Description of the forcing data sets used in the two experiments: 1) AROME-Crocus; and 2) GridObs-Crocus. The rainfall rate and

snowfall rate have been derived from the total precipitation by using a threshold temperature of +0.5 ◦Celsius, using the temperature from 1:

the post-processed AROME-MetCoOp temperature and 2: the gridded observations of temperature.

2.3 Forcing data sets

The SURFEX/Crocus model requires atmospheric forcing. For this study, we have used two different sets of forcing data.

Table 1 shows an overview of which variables the SURFEX/Crocus model requires and the different sources used in the

two experiments: 1) AROME-Crocus and; 2) GridObs-Crocus. AROME-Crocus uses both raw and post-processed forecasts

from the AROME MetCoOp model (described below in section 2.3.1) while GridObs-Crocus uses a combination of gridded5

observations of precipitation and temperature, described in section 2.3.2. All forcing data have hourly temporal resolution.

2.3.1 Numerical weather forecasts (AROME-MetCoOp)

AROME MetCoOp is a high-resolution, non-hydrostatic, convective-scale weather prediction model operated by a bilateral

cooperative effort [Meteorological Cooperation on Operational Numerical Weather Prediction (MetCoOp)] between the Nor-

wegian Meteorological Institute and the Swedish Meteorological and Hydrological Institute (Müller et al., 2017), operational10

since March 2014. The core of the model is based on the convection-permitting Applications of Research to Operations at

Mesoscale (AROME) model developed by Météo-France (Seity et al., 2011). It has been modified and updated to suit advanced

high-resolution weather forecasts over the Nordic regions, see Müller et al. (2017) for details. The horizontal grid spacing is

2.5 km and the domain covers the Nordic countries. The atmosphere is divided into 65 vertical levels, with the first level at

approximately 12.5 m height. Atmosphere–surface interactions and surface–soil processes are described by SURFEX (Masson15

et al. 2013). The fluxes computed by SURFEX at the atmosphere–surface interface serve as the lower boundary conditions for

the atmosphere within AROME MetCoOp. All surface processes are treated as one-dimensional vertical processes.

AROME MetCoOp operates with a 3-hourly update cycling, where initial fields of atmospheric and land surface variables

are corrected with observations through data assimilation. Observations of air temperature, relative air humidity and snow
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depth are used in the surface analysis (Müller et al., 2017). At every main cycle (0000, 0600, 1200, and 1800 UTC) a 66-h

forecast is produced. Forcing for our study is taken from the 4 main cycles, with successive 3-8h lead time (0-8h lead time for

the 0000 UTC cycle, and 3-5h lead time for the 1800 UTC cycle) forecasts combined into a forcing file for each day. These

lead times were chosen to avoid the first hours of a cycle when the model might have spin-up issues, and to make use of all

available cycles with the shortest possible lead time (model error increases with lead time, see for example Homleid and Tveter5

(2016)).

For temperature and wind speed we used statistically post-processed AROME-MetCoOp forecasts to force SURFEX/Crocus,

described by Køltzow (2017). These post-processed weather variables are produced operationally by MET Norway for the

weather forecast website YR (https://www.yr.no/). The temperature grid has a spatial resolution of 500 m, and is produced

using a Kalman filter correction at observation stations (Homleid, 1995). Horizontal interpolation is carried out using decreas-10

ing weights with increasing distance from the station. The temperature is further corrected for terrain elevation, which also

takes into account vertical temperature profiles in inversion situations in winter time. The AROME-MetCoOp wind speed

was statistically post-processed to represent the maximum wind speed at 10 m during the last hour. In addition, correction

factors are applied to the wind speed depending on wind direction and region (Køltzow, 2017). The other variables from the

raw AROME-MetCoOp 2.5 km forecasts were interpolated to 1 km spatial resolution using bilinear interpolation, in order to15

combine the meteorological forecasts with the gridded observations (with a spatial resolution of 1 km) and to run the SUR-

FEX/Crocus model with 1 km grid spacing. The 500 m post-processed AROME-MetCoOp temperature (Køltzow, 2017) was

also interpolated by a bilinear method to 1 km resolution. The spatial interpolation was carried out using the File Interpolation,

Manipulation and EXtraction library (http://fimex.met.no).

SURFEX/Crocus requires a separate snowfall and rainfall rate. A threshold temperature of +0.5◦Celsius was applied for20

determining snowfall or rainfall. This threshold temperature is commonly used for hydrological purposes in Norway (see for

example Skaugen (1998)). The post-processed AROME-MetCoOp temperature was used to compute precipitation phase based

on the total precipitation predicted from the AROME-MetCoOp model. Correct precipitation phase estimation is crucial for

good snow simulations. An additional test was carried out on estimating precipitation phase using the raw AROME-MetCoOp

snowfall and rainfall at 2.5 km resolution. AROME’s own microphysics should provide good precipitation phase estimates,25

but these are most representative at 2.5 km spatial resolution on the model’s own terrain height. In our study area, the terrain

variability is very large, particularly in the western regions where the terrain often rises from 0 masl. at the fjords to more than

1000 masl. over very short distances. In these kind of areas, terrain-adjusted precipitation phase determination is necessary.

The impact on the snow simulations of using these two different ways of estimating precipitation phase are discussed in Section

4.2.30

2.3.2 Gridded observations (GridObs)

In an earlier study by Vikhamar-Schuler et al. (2011) , it was shown that snow modeling with the SURFEX/Crocus model has

highest sensitivity to the temperature and precipitation input datasets. Best results were obtained when the model was forced
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with observations of temperature and precipitation, while replacing other input parameters with meteorological forecast data

did not increase errors notably.

Hourly gridded observations of temperature and precipitation are available on a 1 km grid over Norway. This dataset uses

all measurements available in MET Norway’s Climate database (Frost, 2018). The station distribution is uneven, with more

stations in the southern part of Norway and a sparser network in the north and in the mountains. There is a low elevation bias,5

where most stations are located at lower elevations (e.g. valley bottoms) and few stations are located above 1000 m.a.s.l. (Lus-

sana et al., 2018a). The hourly precipitation values have been obtained by using a two-step procedure. The spatial interpolation

method described by Lussana et al. (2018a) has been applied independently to daily and hourly precipitation totals. This method

is built on classical methods (such as optimal interpolation and successive-correction schemes) and (spatial) scale-separation

using geographical coordinates and elevation as complimentary information in the interpolation. It is based on iterating a sta-10

tistical interpolation scheme over a decreasing sequence of spatial scales, from synoptic to kilometer scale. Further details can

be found in Lussana et al. (2018a). The daily precipitation totals have been disaggregated to an hourly time with a procedure

similar to the one described by Vormoor and Skaugen (2013). The two-step procedure has been implemented so that the final

hourly product can benefit from the more accurate daily quantitative estimates that are based on a denser network of stations,

if compared to the hourly ones. The method to obtain hourly temperature values is described in Lussana et al. (2018b), while15

the resulting temperature dataset is described and evaluated in Lussana et al. (2016).

The resulting gridded temperature dataset can be regarded as an unbiased estimate of the true temperature both at grid points

and at station locations. Only for the most extreme negative values (temperatures below -30 ◦Celsius) there is a systematic

warm bias of about 1 ◦Celsius (Lussana et al., 2016, 2018b). For precipitation, Lussana et al. (2018a) found that the precision

of the estimates (at grid points) is about ±20%, but there is a systematic underestimation of precipitation in data-sparse areas20

and for intense precipitation.

The first version of these gridded data sets (called seNorge v1.0) included a correction factor for precipitation at individual

stations due to undercatch (Lussana et al., 2018a). However, these correction factors were evaluated and found unrealistic in

the mountains, giving too much precipitation (Saloranta, 2012). In the next version of these gridded datasets (seNorge v.2.0),

all undercatch correction factors were removed, and interpolation was based on uncorrected precipitation. For the same reason,25

the hourly gridded dataset used in this study does not contain any correction for precipitation undercatch.

The number of stations included in the gridded dataset varies over time. The numbers of stations within the SURFEX/Crocus

domain are: 20-30 stations for hourly precipitation, 90-100 stations for daily precipitation and 70-100 stations for temperature.

Stations just outside the domain are included in this estimate as they are used in the interpolation and are therefore part of the

gridded dataset used in this study.30

Snowfall and rainfall rate was estimated assuming rain/snow separation at +0.5 ◦ Celsius (using the gridded observations of

temperature available on the same grid), the same threshold as used in the AROME-MetCoOp forcing dataset.
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Figure 2. Distribution of elevation for the 30 snow depth stations used in this study (in blue, on left axis), and of the grid points in the

SURFEX domain (in red, on right axis).

2.4 Validation data set

We use two different data sets to validate the results from both experiments: point observations of snow depth and snow cover

maps derived from MODIS satellite images.

2.4.1 Snow depth observations

Observations of daily snow depth from 30 stations were selected for verification of the model results (see Fig. 1 for their5

locations within the domain). Nearly all stations (25 out of 30) are official meteorological stations run by the Norwegian

Meteorological Institute, while a few stations are owned by other institutions (municipalities, energy producing companies and

Bane Nor, the state-owned company responsible for the Norwegian national railway infrastructure). Data from all stations are

freely available from the climate database of the Norwegian Meteorological Institute (Frost, 2018). All stations measure daily

snow depth, nearly all (29 out of 30) measure precipitation, and 9 stations also measure air temperature. The stations were10

selected based on the availability of snow depth observations between 1 September 2014 and 31 August 2016. The locations

of the stations are reasonably well distributed over the domain (see Fig. 1) and their elevations range between 14 and 1162

meters above sea level. Figure 2 shows the elevation distribution of all stations used in this study. Along with the distribution of

elevations of grid points in the SURFEX domain, Fig. 2 shows a typical issue of low elevation bias in the observing network of

the Norwegian Meteorological Institute, also illustrated in Lussana et al. (2018a). Stations are located at elevations that seldom15

exceed 1000 m.
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A nearest neighbor method was used to evaluate the SURFEX/Crocus experiments with the surface snow depth observations.

In a domain with deep valleys and high mountains, it is difficult to match the exact elevation of the weather stations with

the nearest grid point in the SURFEX/Crocus experiments. As there were only 30 stations with high quality snow depth

observations in the domain, it was decided not to filter out stations based on these elevation differences. The influence of

elevation differences in the evaluation is discussed in section 4.1.5

Daily snow depth observations taken at 06 UTC have been used for direct comparison to snow depth from the SUR-

FEX/Crocus simulations. The observations were also used to calculate the start, length and end of the snow season, to compare

against model results. The length of the snow season is defined as the number of days with more than 5 cm snow during a year.

The 5 cm threshold was also used by Vionnet et al. (2016), although they used continuous snow on the ground as an additional

condition. The start of the snow season is defined as the first day with more than 5 cm of snow, and the end of the snow season10

as the day after the last day with more than 5 cm of snow.

2.4.2 MODIS snow cover images

MODIS (Moderate Resolution Imaging Spectroradiometer; http://modis.gsfc.nasa.gov/) snow cover images (Hall and Riggs,

2007; Klein and Stroeve, 2002) with a resolution of 500 m were available and processed for the melt season of the 2014-2015

winter. The same method as described by Lussana et al. (2018a) and Skaugen et al. (2018) was used to obtain estimates of15

the daily snow-cover extent over the domain: the MODIS images were converted to snow-covered area (SCA) on a scale from

0-100% coverage using a method based on the Norwegian linear reflectance to snow cover algorithm (NLR) (Solberg et al.,

2006). The input to the NLR algorithm is the normalized difference snow index signal (NDSI- signal) (Salomonson and Appel,

2004).

The MODIS images were used for visual and quantitative comparison of the snow melt pattern from satellite images and20

from both SURFEX/Crocus experiments. For this purpose, four dates with cloud free conditions were selected throughout the

melt season: 15 March 2015, 20 April 2015, 15 May 2015 and 04 July 2015.

3 Results

3.1 Snow depth

A density scatter plot of daily observed and simulated snow depth for both experiments and the two winter seasons 2014/1525

and 2015/16 is shown in Fig. 3. Zero snow depth pairs were excluded. GridObs-Crocus is in reasonably good agreement with

the observations (R2=0.78), although there are cases of over- and underestimation of around 100 cm, while AROME-Crocus

shows significantly more variability and overestimation of snow depth (R2=0.52). To investigate the snow depth at individual

stations over a range of station altitudes in more detail, Fig. 4 shows snow depth plots for six locations: two located below 400

m, two located between 500 and 900 m, and two above 900 m (which in our study area means they are located above the tree30

line). For the location of these six stations within the domain, see Fig. 1 in which they are indicated with blue dots. These six

11
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Figure 3. Scatter density plot of daily observed and simulated snow depth (cm) for AROME-Crocus (left) and for GridObs-Crocus (right)

for the 30 snow depth stations, from 01 September 2014 to 31 August 2016. The density ranges from low in blue to high in red.

stations show that AROME-Crocus overestimates the snow depth for the highest altitudes (Bakko i Hol and Midtstova, which

are both situated above 900 masl.), while it underestimates the snow depth for the lowest stations (Balestrand and Haukedal).

The two lowest stations are located in the western part of the study area where terrain gradients are very steep.

The snow depth from GridObs-Crocus is closer to the observed snow depth, but at times underestimates the snow depth

(most notably for the first winter season at Haukedal (329 masl.) and Midtstova (1162 masl.)). Episodes when the snow depth5

decreases during the winter season (apart from snow melt in spring) are not always well captured by the SURFEX/Crocus

experiments, and this issue is partly responsible for the overestimation of snow depth.

The results for Hemsedal II (604 masl., see Fig. 4) are of particular interest, as this is the only station measuring snow depth

but not precipitation (and therefore not part of the gridded observation dataset used as input for GridObs-Crocus). GridObs-10

Crocus overestimates the snow depth at Hemsedal II, but slightly less than AROME-Crocus does. The bias in snow depth at

Hemsedal II for the two seasons combined is 25 cm for GridObs-Crocus and 29 cm for AROME-Crocus. When compared to

the bias (7 cm for GridObs-Crocus and 20 cm for AROME-Crocus) for all stations for the two seasons combined, it shows that

Hemsedal II performs slightly worse than most stations in AROME-Crocus. For GridObs-Crocus, the bias at Hemsedal II is

significantly larger than for most other stations. The fact that GridObs-Crocus outperforms AROME-Crocus even at a station15
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Figure 4. Observed and simulated snow depth (cm) at the location of six weather stations during the two winter seasons 2014-2016 (01

September 2014 - 31 August 2016) : 1) GridObs-Crocus (blue); 2) AROME-Crocus (red) and 3) observations (black). The elevation (in

masl.) of the station is indicated above each plot, with in parentheses the elevation of the grid point in SURFEX/Crocus. The location of the

six stations within the domain is indicated by blue dots in Fig. 1.
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2014-2015 2015-2016

Observed GridObs Bias AROME Bias Observed GridObs Bias AROME Bias

Snow depth (cm) - +4 +23 - +9 +17

Length snow season (days) 151 +11 +17 137 +8 -2

Date start of snow season (days) 15 November -2 -2 15 November +2 +12

Date end of snow season (days) 02 May -3 +7 25 April +2 -3

Date max snow (days) 30 January +13 +17 22 February +13 +7

Max snow (cm) 112 0 +17 88 +9 +18

Table 2. Bias in snow depth, length of snow season (defined as number of days with more than 5 cm snow depth), start of snow season

(defined as first day with more than 5 cm snow), end of snow season (defined as the day after the last day with more than 5 cm snow),

the date for the maximum snow depth and the maximum snow depth. The two snow seasons run from 01 September 2014 to 31 August

2016. A negative bias in days means a too early date for the start/end/max snow, and a positive bias in days means a later date compared to

observations. GridObs-Crocus is abbreviated to GridObs and AROME-Crocus to AROME.

that is not part of the gridded observation dataset is interesting.

The strong overestimation at Midtstova (see Fig. 4) by AROME-Crocus can be explained by the fact that Midtstova is located

in an area with systematic and relatively large overestimation of precipitation in AROME-MetCoOp. In addition, AROME-

MetCoOp underestimates the temperature by about 2 degrees in this area during winter. This can be seen in verification reports5

of the AROME MetCoOp model, for example in Homleid and Tveter (2016). In the forcing data for Midtstova we find a bias of

-1.5 degrees for AROME-Crocus, compared to -0.8 degrees for GridObs-Crocus. This bias is larger than the overall bias for all

nine stations measuring temperature: -0.5 degree for AROME-Crocus and -0.2 degree for GridObs-Crocus. During the snow

accumulation season the temperature at Midtstova is mostly well below freezing level. There are a few episodes each winter

with temperatures just above zero, where the underestimated temperature in AROME-MetCoOp means the precipitation during10

those episodes comes as snow instead of rain, but these do not add up to large amounts. Midtstova is also a high-mountain

station, which is very exposed to strong wind. Redistribution of snow due to wind is not captured in the SURFEX/Crocus

model. GridObs-Crocus shows much more realistic results for Midtstova, although there is an underestimation during the

first part of the 2014-2015 winter. From 27 October 2014 until 26 January 2015, the precipitation sensor at Midtstova was

out of order, and the forcing from GridObs-Crocus for Midtstova will therefore be represented by interpolated values from15

surrounding stations, which might explain the underestimation.

An evaluation of the precipitation forcing data for AROME-Crocus and GridObs-Crocus for the 30 weather stations reveals

that the AROME-Crocus forcing has about 40% more rain and 20% more snow compared to GridObs-Crocus. The differences

are largest for the stations above 800 meter, which often receive about 50% more snow. This can clearly be seen for Bakko i

Hol and Midtstova in Fig. 4.20
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RMSE 2014-2015 2015-2016

GridObs AROME GridObs AROME

Snow depth (cm) 29 62 27 49

Length snow season (days) 25 32 21 24

Date start of snow season (days) 10 13 5 23

Date end of snow season (days) 15 22 12 17

Date max snow (days) 31 34 24 16

Max snow (cm) 30 61 28 53

Table 3. RMSE for snow depth, length of snow season, start of snow season, end of snow season, the date for the maximum snow depth

and the maximum snow depth. The two snow seasons run from 01 September 2014 to 31 August 2016. GridObs-Crocus is abbreviated to

GridObs and AROME-Crocus to AROME.

Table 2 summarizes the bias over all stations for the two winter seasons (01 September 2014 - 31 August 2015 and 01

September 2015 - 31 August 2016). The bias was calculated as the mean of the differences between simulated and observed

snow depth, and only for the days where there is snow present in the observations or at least one of the experiments. GridObs-

Crocus shows a significantly smaller bias (4 and 9 cm) compared to AROME-Crocus (23 and 17 cm). The maximum observed

snow depth is on average 112 cm for 2014-2015 and 88 cm for 2015-2016. GridObs-Crocus shows a very small bias (0 and 95

cm respectively), while AROME-Crocus overestimates the mean maximum snow depth by 17-18 cm. Table 3 summarizes the

RMSE over all stations for the two winter seasons. The RMSE values are larger for AROME-Crocus (compared to GridObs-

Crocus) for nearly all variables, except for the date of maximum snow depth for 2015-2016.

As snow depth accumulates over the winter season, a missed (or under/over estimated) snow event can influence the re-

mainder of the season. It can therefore be useful to look at daily snow depth variations instead, as was also done by Quéno10

et al. (2016) and Schirmer and Jamieson (2015). Figure 5 shows the categorical frequency distribution of the daily change

in snow depth for six accumulation categories, five decrease categories and one category centered around zero accumulation,

on a logarithmic scale. The first two accumulation categories (up to 10 cm) are overestimated in both GridObs-Crocus and

AROME-Crocus. The strongest observed increase category (>40 cm) as well as the strongest decrease category (< -20 cm) are

not represented in either of the SURFEX/Crocus experiments.15

SURFEX/Crocus in stand-alone mode does not account for wind-induced snow redistribution, which can be a large contrib-

utor to strong decreases in snow depth. Figure 4 showed that episodes of a decrease in snow depth (not including the snow

melt at the end of the season) were not always captured well by the models, and it could be that blowing snow is the cause of

this. Following Quéno et al. (2016), two diagnostics have been applied to look into this issue: blowing snow days and melting20

snow days. Blowing snow days are defined as days during which the wind speed (at a height of 10 m) during the past 24

hours (between 06 and 06 UTC, as this is when snow depth measurements are made) exceeds 8 m s-1, while the snow surface
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Figure 5. Categorical frequency distribution of daily changes in snow depth for observations (in black), GridObs-Crocus (in blue) and

AROME-Crocus (in red), for all stations during 01 September 2014 - 31 August 2016. The y axis is on a logarithmic scale.

temperature is below 0 ◦Celsius (since only dry snow can be blown away). The temperature of the snow surface is taken from

the SURFEX/Crocus output for 12 UTC each day. The wind speed is taken from AROME-MetCoOp, which is used as forcing

in both SURFEX/Crocus experiments. The modeled wind speed is used because only 6 out of 30 stations used in this study

observe wind speed. When comparing the forecasted maximum wind speed from AROME-MetCoOp with the observed max-

imum wind speed from these 6 stations, we find a slight overestimation by AROME-MetCoOp (a bias of 0.3 m/s). Blowing5

snow days and non-blowing snow days are correctly identified in 94% of all days, with a hit rate of 0.86 and a false alarm rate

of 0.04. This shows that the modeled wind speed can be used to determine blowing snow days. The wind threshold of 8 m s-1

for dry snow transport is taken from Li and Pomeroy (1997). Figure 6 shows the cumulated amount of the daily changes in

snow depth for 5 categories of decreasing snow depth for blowing snow days and for all days where the snow depth decreases,

for observations and for GridObs-Crocus, as well as the percentage of snow depth loss due to blowing snow. The cumulated10

amount of snow decrease is underestimated for nearly all categories. For the strongest decreasing rate (more than 20 cm),

the observations indicate that 51% of the decrease in snow is caused by blowing snow. This category is not represented by

GridObs-Crocus. For GridObs-Crocus, blowing snow days only contribute to the smallest decrease categories. In total (over

all categories), blowing snow days contribute to 17% of the cumulated decrease in snow depth in the observations, while this
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Figure 6. Cumulated daily change in snow depth for observations (in black), GridObs-Crocus (in blue) for all stations during 01 September

2014 - 31 August 2016, for blowing snow days (solid lines) and all days with decreasing snow depth (dashed lines). The columns show the

percentage of snow loss that is caused by blowing snow, for observations (black) and GridObs-Crocus (blue).

amounts to 10% in GridObs-Crocus.

Melting snow days are defined as days when the simulated surface temperature of the snow is 0 ◦Celsius. Figure 7 is

similar to Fig. 6, but for melting snow days. For GridObs-Crocus, melting snow is the main responsible factor contributing to

a decrease in snow depth. The largest decrease category is not represented by GridObs-Crocus, but for the other categories,5

melting snow is responsible for 57 - 100% of the decrease in snow depth. This is not surprising as SURFEX/Crocus does not

represent blowing snow, so decrease in snow depth is caused by either snow melt or other processes such as snow compaction.

The cumulated daily changes in snow depth for melting snow days as well as all days with a decrease in snow depth are

underestimated by GridObs-Crocus for all categories except the smallest one (less than 5 cm loss in snow depth). This shows

there is a general underestimation of snow ablation, as well as an underestimation of snow melt in GridObs-Crocus. The same10

goes for AROME-Crocus (not shown).

SURFEX/Crocus does have an option to run with sublimation in case of snowdrift. This option has been tested for two

stations from Fig. 4: Midtstova and Hemsedal II. In this experiment, SURFEX/Crocus was run twice in 1D mode for these 2

locations: one experiment with identical settings as AROME-Crocus, and one nearly identical with the exception of the option

for sublimation in case of snowdrift (AROME-Crocus+BS). The results are shown in Fig. 8. For both locations, the snow depth15
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Figure 7. Cumulated daily changes in snow depth for observations (in black), GridObs-Crocus (in blue) for all stations during 01 September

2014 - 31 August 2016, for melting snow days (solid lines) and all days with decreasing snow depth (dashed lines). The columns show the

percentage of snow loss that is caused by melting snow, for observations (black) and GridObs-Crocus (blue).

in AROME-Crocus+BS is decreased, as expected. For both locations, this is an improvement. The bias in AROME-Crocus was

+13 cm for Hemsedal II, which has improved to +5 cm in AROME-Crocus+BS. For Midtstova, AROME-Crocus significantly

overestimates the snow depth (bias: +104 cm), this is improved in the AROME-Crocus+BS experiment (+83 cm), although

the overestimation is still very large. The length of the snow season is reduced by a few days for both stations and both years,

similar to the results found in Brun et al. (2013). However, for Midtstova, using blowing snow sublimation does not improve5

the AROME-Crocus experiment to the extent that it performs equally well as GridObs-Crocus.

3.2 Characteristics of the snow season

Statistics for the snow season duration are shown for the two snow seasons 2014/2015 and 2015/2016 in Table 2. The length

of the snow season is defined as the number of days with more than 5 cm snow during a season. For GridObs-Crocus, the

length of the snow season is overestimated by 8-11 days (see table 2), while AROME-Crocus overestimates the length of the10

snow season by 17 days in 2014-2015 and underestimates by only 2 days in 2015-2016. The same positive bias as found for

AROME-Crocus in the 2014-2015 season was found by Vionnet et al. (2016). One possible explanation of this bias is the fact

that the SURFEX/Crocus model assumes a uniform snow cover from the moment snow is present on the ground, and therefore

shows less variability in snow cover compared to observations. In observations, there is often a period where the snow cover
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Figure 8. Observed and simulated snow depth (cm) at the location of Hemsedal II and Midtstova during the two winter seasons 2014-2016

(01 September 2014 - 31 August 2016) : 1) AROME-Crocus 1D experiment (blue); 2) AROME-Crocus+BS 1D experiment with sublimation

loss during blowing snow events (red) and 3) observations (black).

fluctuates - for example thinning to below 5 cm after the first snow has fallen and before a continuous snow cover has been

established for the winter season. AROME-Crocus predicts the length of the 2015/2016 season really well though.

The start of the snow season is defined as the first day with more than 5 cm of snow, and the end of the snow season as the

day after the last day with more than 5 cm of snow. A negative bias in the start of the snow season means a too early start,

while a positive bias means a too late start of the snow season. GridObs-Crocus has a bias of only two days (negative for the5

first winter and positive for the second winter) for the start of the snow season, while the snow season starts up to 12 days too

late in AROME-Crocus during the second year (the first year has a bias of -2 days). The season ends on average in late April

or early May. In GridObs-Crocus, the season ends 3 days early during the first year, and 2 days late during the second year. In

AROME-Crocus, this is 7 days late and 3 days early respectively. The observed maximum snow depth occurs on average at the

end of January during the first year, and late February in the second year. Both experiments show a later date for the maximum10

snow depth.

Figure 9 show the distribution of the bias in the start and end of the snow season, as well as the date of maximum snow

depth, for all 30 stations and for two winter seasons. Most stations show a bias near zero (between -5 and +5 days) for the start

of the snow season. In AROME-Crocus, the snow season sometimes starts much too late. The bias for the end of the snow15
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Figure 9. Distribution of the bias in start of snow season (top), end of snow season (middle) and date of maximum snow depth (bottom), for

all 30 stations and for 2 winter seasons.
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Jaccard Index GridObs-Crocus AROME-Crocus

15 March 2015 0.92 0.99

20 April 2015 0.82 0.93

15 May 2015 0.65 0.79

04 July 2015 0.19 0.63

Table 4. Jaccard index for the snow covered areas shown in Fig. 10. A score of 1 means the image perfectly matches the MODIS image, a

score of 0 means there is no overlap between the image from the experiment compared to the MODIS image.

season shows that GridObs-Crocus often ends the snow season too early while AROME-Crocus tends to end the season too

late. The bias for the date of the maximum snow depth of the season is mostly around zero for most stations and both models,

but there are some outliers especially towards the strong positive bias. This is due to stations like for example Midtstova in Fig.

4, where the maximum observed snow depth occurs rather early in the season, while both experiments show a maximum much

later in the season.5

3.3 Snow-cover pattern

Figure 10 shows the spatial pattern of snow cover over the SURFEX/Crocus domain compared to MODIS data over the same

area. The snow covered area is shown at different dates throughout the snow melt season: 15 March, 20 April, 15 May and

04 July 2015. On 15 March 2015, nearly the whole area is covered with snow. The only exceptions are areas right besides

the fjords (white areas) in the west (well captured by both experiments), and at the bottom of valleys in the east (not captured10

by the SURFEX/Crocus experiments). On 20 April 2015, the snow has clearly started to melt in the valleys to the east. This

is captured well by AROME-Crocus, while GridObs-Crocus shows too little snow around the valleys in the southeast of the

domain. By 15 May 2015, a lot of snow had disappeared in the eastern part of the domain, while the western part has not

changed much from the previous month. The average date for the end of the snow season for all the 30 weather stations for

the 2014-2015 season was 02 May 2015 (see table 2), but the dates of the end of the snow season for individual stations range15

from 18 February (Fresvik, 32 masl.) until 05 July (Midtstova, 1162 masl.). Again, AROME-Crocus captures the snow cover

pattern better than GridObs-Crocus. By 04 July 2015, the snow cover is limited to areas with higher elevation. AROME-Crocus

captures the spatial pattern of snow cover very well. In GridObs-Crocus, nearly all snow has melted now, and the snow-covered

area is underestimated. Earlier it was shown (in Fig. 9) that GridObs-Crocus has a negative bias (too early) for the end of the

snow season for the 30 snow depth stations, while AROME-Crocus has a positive bias (too late). As discussed previously,20

the differences between the snowfall amounts from the two precipitation forcing datasets are largest for the highest parts of

the domain, where AROME-Crocus receives about 50% more snow compared to GridObs-Crocus. This explains why the

differences between GridObs-Crocus and AROME-Crocus in Fig. 10 are also largest in this area (especially by the end of the

snow season on 04 July).
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Figure 10. Snow covered area (where cyan is snow, red is no snow, and white is missing data or water surfaces) for GridObs-Crocus (left

column), AROME-Crocus (middle column) and from MODIS satellite images (right column), for (rows from top to bottom): 15 March 2015,

20 April 2015, 15 May 2015 and 04 July 2015.
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Table 4 shows the Jaccard indices for the images from Fig. 10. The Jaccard index was also used by for example Quéno

et al. (2016). It is a similarity index applied to the snow cover images which were remapped onto the same grid (which means

that the snow cover from the MODIS images used to calculate the Jaccard index has a lower resolution than the one shown

in Fig. 10). The Jaccard index is calculated as J(X,Y ) = |X ∩Y |/|X ∪Y |, where X and Y are the simulated and observed

snow cover, respectively. The number of grid points that are snow-covered in both SURFEX/Crocus and in the MODIS image5

is divided by the total amount of snow-covered grid points (in either SURFEX/Crocus or MODIS). When the Jaccard index

equals 1, there is a perfect match between snow-covered grid points, and when the Jaccard index equals 0, there is no match

at all. Table 4 shows that AROME-Crocus consistently has higher Jaccard indices compared to GridObs-Crocus. The indices

decrease (for both experiments) during the melt season.

4 Discussion10

Although both experiments are capable of simulating the snow pack over the two winter seasons, the two simulations provide

different results regarding the snow depth and the spatial snow-covered area. There is an overestimation of snow depth in

the AROME-Crocus experiment, even though the snow-covered area throughout the melt season is better represented by

this experiment. When using gridded observations (GridObs-Crocus), the simulation of snow depth is significantly improved,

while the spatial distribution of the snow cover is highly underestimated, particularly late in the snow-melt season. There is an15

underestimation of snow ablation in both experiments, which is due to a combination of the absence of wind-induced erosion of

snow and underestimation of snow melt in SURFEX/Crocus, and biases in the forcing data. Possible causes for these different

results are further discussed below, by focusing on the quality of the model validation, the forcing data set and the snowpack

model.

4.1 Quality of the model validation20

The model validation was carried out using both snow measurements at individual weather stations and MODIS satellite

images. Using several data sources to validate simulations is important as these two sources supplement each other. Stations

give point validations with daily time series, while the satellite images provide images of the snow cover for an entire area for

cloud free days. Even though the GridObs-Crocus simulation provides reasonable results at individual stations, the MODIS

images show that the snow cover melts much
::::::::
disappears

:
too fast, particularly late in the snow melt season. This may indicate25

that the gridded interpolated observations of temperature and precipitation (the forcing data) are not representing the terrain

variability in the study area sufficiently well. The western region is dominated by terrain with steep gradients, which requires

a higher density of weather stations representing the full range of terrain elevations compared to smooth landscape areas. As

described in Section 2.2
::
2.2, there is a low elevation bias in the national observational network with too few stations in areas

above 900 masl. This increases the uncertainty of the precipitation and temperature estimates in the mountainous regions. The30

quality of the gridded data are obviously highest for locations closest to the stations, providing better results in those areas.
:::
An

:::::::::::::
underestimation

::
of

:::
the

:::::
snow

:::::
depth

::
at

::::
high

::::::::
elevations

::::::
would

::::::
explain

:::
the

:::::::::::::
underestimated

::::
snow

:::::
cover

::::::
during

:::
the

::::
melt

::::::
season.

:
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Figure 11. Differences between station elevation and the height of the station in the SURFEX/Crocus model.

Nearly all (29) of the 30 stations that measure snow depth also measure precipitation (7 measure hourly precipitation, while

22 measure daily precipitation), which means the observed precipitation from these stations are used in the gridded observations

dataset used to force GridObs-Crocus. Only 9 out of the 30 stations also measure temperature. Although precipitation is not

directly related to snow depth, and temperature also plays an important role, it could still be argued that the GridObs-Crocus

results are best in the locations of the observations that are included in the gridded dataset used to force SURFEX/Crocus. The5

only station that was not part of the gridded precipitation dataset is Hemsedal II. The bias for GridObs-Crocus at Hemsedal II is

25 cm, which is larger than the overall bias for all stations (7 cm), but the RMSE is about the same (27 cm for Hemsedal II and

28 cm for all stations). Although this shows that the performance of a station not included in the gridded precipitation dataset is

about the same as the performance of stations that are part of this dataset, one station is not enough to draw conclusions about

the entire domain.10

The representativity of a station location is sensitive to the terrain variability. The orography used in the SURFEX/Crocus

experiments has a resolution of 1 km, leading to differences between the actual station height and the average height used for

the center of the 1 km grid cell in SURFEX/Crocus. Figure 11 shows the distribution of those differences for all 30 stations.

The average bias is 79 m. Most stations are placed at higher elevations in the model as compared to their actual elevation, but

it should also be kept in mind that a grid point in SURFEX/Crocus describes a larger area (and range of elevation) compared to15

the actual observations. Especially in the mountainous region in the west of the domain (see Fig. 1), with high mountains, steep

slopes and deep valleys, there may be large differences in height within a distance range of 1 km. In Section 4.2 the sensitivity

of terrain effects on precipitation phase computations is discussed.

4.2 Quality of the forcing data sets

Raleigh et al. (2015) showed that snow simulations are more sensitive to biases in forcing data than random errors, and that20

precipitation bias is the most important factor. There is a negative bias in the gridded precipitation used in GridObs-Crocus

(Lussana et al., 2018a), especially for data-sparse areas (e.g. high-mountainous areas) and for intense precipitation. Missing
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episodes of intense snowfall would explain part of the underestimation of the snow depth in GridObs-Crocus. There are plans

to improve the gridded observations of precipitation by adjusting the solid precipitation to account for the wind undercatch, and

by post-processing of the predicted precipitation fields to adjust for bias (Lussana et al., 2018a). Forecasts from the AROME-

MetCoOp model are known to overestimate the occurrence of precipitation events of less than 10 mm (Müller et al., 2017), and

Fig. 5 showed that AROME-Crocus overestimated daily changes in snow depth up to 15 cm. An evaluation of the accumulated5

snowfall from the two forcing datasets showed that snowfall amounts in AROME-Crocus are about 20% higher compared to

GridObs-Crocus, and even more ( 50%) for stations at altitudes above 800 masl.

To test the sensitivity of terrain effects on precipitation phase and on the snow depth simulations in regions with steep

topography, we compared two methods for determining precipitation phase from the AROME-MetCoOp forecasts. First, pre-

cipitation phase was determined as already presented in our AROME-Crocus experiment (by using the post-processed air tem-10

perature as a threshold temperature, see Table 1), and second, using the raw AROME-MetCoOp snowfall and rainfall forecasts

computed by the atmospheric model’s own microphysics. These 2.5 km spatial resolution forecasts were then interpolated to 1

km using standard bilinear interpolation, also described in Section 2.3.1. The comparison revealed that high-resolution terrain

data improved the results by reducing the amount of snow, particularly in low-altitude areas near steep terrain gradients.
:::
The

:::
bias

::
in

:::::
snow

:::::
depth

::::::::
improved

::::
from

::::
+42

:::
cm

::::::
(using

:::
raw

::::::::::::::::
AROME-MetCoOp

::::::::::::
precipitation)

::
to

:::
+20

:::
cm

::::::
(using

:::
the

:::::::::::::
terrain-adjusted15

::::::::::::::::
AROME-MetCoOp

::::::::::::
precipitation),

:::
and

:::
the

::::::
RMSE

::::::::
improved

:::::
from

:::
68

:::
cm

::::
(raw)

:::
to

::
56

:::
cm

:::::::::::::::
(terrain-adjusted).

:
Figure 12 shows

the fraction of snowfall compared to the total precipitation for both methods, for the first winter season. It is clear that using the

terrain-adjusted AROME precipitation results in a better representation of the terrain in the domain, as many features are lost

in the coarser resolution raw AROME precipitation. Figure 13 illustrates the differences in the computed snowfall from the two

methods as a function of elevation and longitude. The west-east transect from steep terrain (including fjords and mountains) in20

the west to smoother terrain in the east is clearly illustrated, with largest differences in the western part of the domain. In these

areas a more realistic precipitation phase (rainfall) was more frequently computed than when using the raw AROME-MetCoOp

precipitation phase. This emphasizes the importance of terrain-adjusting the forcing data from NWP models for obtaining more

correct precipitation phases.

Precipitation phase in both AROME-Crocus and GridObs-Crocus was determined using a fixed threshold temperature of 0.525
◦Celsius to distinguish between rainfall and snowfall. This simplification represents an uncertainty which could result in some

actual snow events characterized as rainfall, and to a lesser extent the other way around. Future studies could focus on studying

alternative ways to determine the precipitation phase by better exploiting the microphysics of the NWP model. Generally,

our experiments show that highest potential for obtaining good snow simulations for larger regions lies in improving the

forcing data, and particularly by improving the raw NWP data by post-processing techniques. The use of gridded interpolated30

observations alone, as was tested in GridObs-Crocus, displays some limits for snow-cover mapping over larger regions. There

is a large potential to improve NWP forcing by combining different data sources, e.g. assimilation of various observations

(weather station data, precipitation radars etc.).

Sauter and Obleitner (2015) investigated the sensitivity of SURFEX/Crocus snowpack modeling on Svalbard (Arctic Nor-

way) to input parameters, and found that for higher elevations (in the accumulation zone), precipitation and radiation are the35
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Figure 12. The fraction of accumulated snowfall from total accumulated precipitation computed for the period 01 September 2014 to 31

May 2015 . Rainfall and snowfall are computed using: 1. Raw AROME-MetCoOp snowfall and rainfall forecasts at 2.5 km spatial resolution

interpolated to 1 km (top); and 2. a threshold temperature of +0.5 ◦Celsius, using the temperature from the 1 km post-processed AROME-

MetCoOp temperature (the terrain adjusted AROME-Crocus experiment presented in Table 1, bottom).
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Figure 13. Differences in computed snowfall from two different methods as a function of elevation and longitude. The precipitation phase

determination methods are the same as described in Figure 12. Negative (red) values indicate less snowfall and thus increased rainfall with

the terrain-adjusted precipitation phase determination, positive (blue) values indicate more snowfall (decreased rainfall).

key factors in the evolution of the snowpack and contribute most to the model uncertainty. At lower elevations, precipitation

was less important but factors such as wind speed or surface roughness increased in importance. Quéno et al. (2017) used

satellite products of incoming solar and longwave radiation to force the SURFEX/Crocus model, however they concluded that

improved meteorological forcing does not always lead to more accurate snowpack simulations, due to error compensations

within the atmospheric forcing and the snowpack model.5

4.3 Quality of the snowpack model

The SURFEX/Crocus model assumes a uniform snow cover when SWE reaches the relatively low threshold of 1 kg m-2. The

SURFEX/Crocus model was originally developed for use in high alpine regions, where there is not a lot of vegetation. In those

areas, the assumption of the uniform snow cover is realistic, as there is no interaction with vegetation, but for areas covered with

forest and closer to sea level this could lead to an overestimation of the snow cover. When the snow cover is overestimated, the10
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albedo will be too high and this will slow down the snow melt at the end of the season. This might explain the underestimated

snow melt in both experiments.

The SURFEX/Crocus model grid is a collection of independent grid points with no transport of snow or other variables

between grid points. It is therefore not possible to simulate the redistribution of snow by wind. It can be argued that with

a resolution of approximately 1 km, the drifting snow would anyway be redistributed within the area of a grid point and not5

transported to neighboring grid points. Vionnet et al. (2014) showed that for explicit simulation of wind-induced snow transport

a spatial resolution of less than 50 meters is required. This is currently not a feasible option for snowpack simulations over

larger domains. There is an option in the SURFEX/Crocus model to calculate the rate of sublimation in case of snowdrift,

which results in a loss of snow. This option was tested for two stations in his study, using the AROME-Crocus forcing dataset.

As expected, this resulted in a decrease in snow depth and a decrease in season length. This is an improvement as it reduces10

the overestimation by AROME-Crocus, but the results are not a significant improvement
:::
only

::
to
:::::
some

::::::
degree.

Figure 5 showed that both SURFEX/Crocus experiments underestimate the melting of snow, further supplemented by Fig.

7 for the GridObs-Crocus experiment. Underestimated melting was also found by Quéno et al. (2016, 2017) and Vionnet et al.

(2016), and complementary studies are needed to investigate the cause of this issue.

Lafaysse et al. (2017) developed an ensemble snowpack model using SURFEX/Crocus called ESCROC (Ensemble System15

Crocus) to address modeling errors. They found that by using optimal members they were able to explain more than half

of the simulation errors, and those ensembles have a significantly better predictive power than the classical deterministic

approach. For future work, it would be interesting to use ESCROC and investigate the effect of different physical settings

of SURFEX/Crocus. In addition, since November 2016, AROME-MetCoOp is run as an ensemble with 10 members, called

MEPS (MetCoOp Ensemble Prediction System). This means that an ensemble of meteorological forcing is another possible20

direction for future work. Vernay et al. (2015a) used the 35 members of the ensemble prediction system based on the French

NWP model ARPEGE as forcing to the SURFEX/Crocus model. The results indicated that accounting for the uncertainty in

meteorological forecast significantly improves the skill and the usefulness of the model chain.

5 Conclusions

In this study we have evaluated the performance of the SURFEX/Crocus snow model for a region in South Norway cov-25

ering both steep terrain gradients with fjords and high-mountain areas in the western parts as well as smoother terrain in

the eastern parts. The experiments tested different types and combinations of forcing data (raw numerical weather predic-

tions, post-processed weather predictions and gridded observations): 1. AROME-Crocus, which used weather forecasts from

the AROME-MetCoOp model, including post-processed air temperature and wind speed, and 2. GridObs-Crocus, which used

gridded observations of temperature and precipitation combined with meteorological forecasts from AROME-MetCoOp. Snow30

simulations were carried out for two years (01 September 2014 - 31 August 2016). The main findings are as follows:

– GridObs-Crocus provides the best estimates of the snow depth at individual stations with bias of 7 cm and RMSE of 28

cm. AROME-Crocus has a bias of 20 cm and RMSE of 56 cm.

28



– AROME-Crocus provides the best representation of the spatial distribution of snow cover, particularly during the melting

season. In GridObs-Crocus the spatial snow cover distribution is captured in
:::::
during winter, but during the melting season

:::::::::::::
underestimation

::
of

:::::
snow

:::::
depth

::
at

::::
high

:::::::::
elevations

::::
(due

::
to
::::

the
:::
low

::::::::
elevation

::::
bias

::
in

:::
the

:::::::
gridded

::::::::::
observation

:::::::
dataset)

::
is

:::::
likely

::::::
causing

:
the snow cover melted away too fast

::
to

:::::::
decrease

:::
too

:::::
soon

:::::
during

:::
the

::::
melt

::::::
season, leading to unrealistically

little snow by the end of the season.5

– Forcing data consisting of post-processed NWP data (observations assimilated into the raw NWP weather predictions) are

most promising for snow simulations, when larger regions are evaluated. Post-processed NWP data (AROME-Crocus)

provide a more representative spatial representation for both high mountains and lowlands compared to interpolated

observations (GridObs-Crocus).

– In regions with steep terrain gradients, terrain-adjustment of precipitation phase is highly important for improving the10

rainfall and snowfall determination when using NWP data.

– Blowing snow (which is not simulated by SURFEX/Crocus) contributes to 17% of all decreases in snow depth, and to

50% of the strongest decreases of more than 20 cm of snow depth loss in a day. Using the option in SURFEX/Crocus of

running with sublimation in case of snowdrift is not enough to address this issue.

To investigate the impact of using gridded observations of temperature and precipitation separately, "leave-one-out" exper-15

iments could be carried out (two extra experiments where one uses only gridded observations of temperature, and one uses

only gridded observations of precipitation, while all other variables come from AROME-MetCoOp). Using the multi-physical

ensemble system ESCROC (Ensemble System Crocus), and/or an ensemble of meteorological forcing would be an another

interesting topic for future work. Finally, when using AROME-MetCoOp as forcing data for running SURFEX/Crocus at a

resolution higher than 2.5 km, terrain adjustment routines should be applied to the generation of forcing data. In this study20

we accounted for local terrain effects, by using post-processed AROME-MetCoOp temperature and wind, but this could be

extended to other variables.

The findings in this study have improved our understanding of regional snow modeling in Norway, which is important

for not only water resource planning and flood forecasting, but also for impact studies related to climate change and winter

climate. Running the SURFEX/Crocus model in gridded version for Norwegian conditions using a combination of data sources25

(raw and post-processed weather predictions and observations) is very promising. The result from this study is very valuable

information which may be used for future development of a system for daily snow mapping in Norway.

Data availability. Snow depth and meteorological variables from the stations used in this study are freely available through https://frost.

met.no/ (Frost, 2018). AROME-MetCoOp forecasts are available through http://thredds.met.no/thredds/metno.html. The gridded dataset of

temperature and precipitation is available at http://thredds.met.no/thredds/catalog/metusers/senorge2/seNorge2/archive/catalog.html. Hourly30

temperature and precipitation data is available from 2010 up to the present day. For daily temperature and precipitation data, the archive goes

back to 1957 and can be downloaded at http://doi.org/10.5281/zenodo.845733. The data are also shown on the web-portals www.senorge.no
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and www.xgeo.no (both in Norwegian only). The SURFEX-Crocus simulations for both experiments can be made available for research

purposes by contacting the authors.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. The authors are grateful for the funding of this study by the Research Council of Norway through the project "Better

SNOW models for prediction of natural hazards and HydropOWer applications" (SNOWHOW), led by Thomas Skaugen at the Norwegian5

Water Resources and Energy Directorate (NVE). We would like to thank our fellow participants in the SNOWHOW project for invaluable

help and discussions: Thomas Skaugen, Tuomo Saloranta (NVE), Karsten Müller (NVE), Kjetil Melvold (NVE) and Sjur Kolberg (SINTEF).

In addition, we would like to thank Tuomo Saloranta for providing the processed MODIS images, and Cristian Lussana (MET Norway) for

valuable help and discussions. We are also very grateful to two anonymous reviewers, for their time, effort and very helpful suggestions,

which resulted in a greatly improved paper.10

30

www.xgeo.no


References

Barfod, E., Müller, K., Saloranta, T., Andersen, J., Orthe, N., Wartianien, A., Humstad, T., Myrabø, S., and Engeset, R.: The expert tool

XGEO and its applications in the Norwegian Avalanche Forecasting Service, in: International Snow Science Workshop Grenoble, October

07-11, 2013, Chamonix Mont-Blanc, France, 2013.

Bartelt, P. and Lehning, M.: A physical SNOWPACK model for the Swiss avalanche warning: Part I: numerical model, Cold Regions Science5

and Technology, 35, 123 – 145, http://www.sciencedirect.com/science/article/pii/S0165232X02000745, 2002.

Bellaire, S., Jamieson, J. B., and Fierz, C.: Forcing the snow-cover model SNOWPACK with forecasted weather data, The Cryosphere, 5,

1115–1125, https://doi.org/10.5194/tc-5-1115-2011, https://www.the-cryosphere.net/5/1115/2011/, 2011.

Bellaire, S., Jamieson, J. B., and Fierz, C.: Corrigendum to "Forcing the snow-cover model SNOWPACK with forecasted weather data"

published in The Cryosphere, 5, 1115-1125, 2011, The Cryosphere, 7, 511–513, https://doi.org/10.5194/tc-7-511-2013, https://www.10

the-cryosphere.net/7/511/2013/, 2013.

Bergstrøm, S.: Development and application of a conceptual runoff model for Scandinavian catchments, SMHI report RH07, Swedish

Meteorological and Hydrological Institute, Norrköping, Sweden, 1976.

Bernier, N. B., Bélair, S., Bilodeau, B., and Tong, L.: Near-surface and land surface forecast system of the Vancouver 2010 Winter Olympic

and Paralympic Games, Journal of Hydrometeorology, 12, 508–530, 2011.15

Best, M., Pryor, M., Clark, D., Rooney, G., Essery, R., Ménard, C., Edwards, J., Hendry, M., Porson, A., Gedney, N., et al.: The Joint UK

Land Environment Simulator (JULES), model description–Part 1: energy and water fluxes, Geoscientific Model Development, 4, 677–699,

2011.

Bokhorst, S., Pedersen, S. H., Brucker, L., Anisimov, O., Bjerke, J. W., Brown, R. D., Ehrich, D., Essery, R. L. H., Heilig, A., Ingvander, S.,

Johansson, C., Johansson, M., Jónsdóttir, I. S., Inga, N., Luojus, K., Macelloni, G., Mariash, H., McLennan, D., Rosqvist, G. N., Sato, A.,20

Savela, H., Schneebeli, M., Sokolov, A., Sokratov, S. A., Terzago, S., Vikhamar-Schuler, D., Williamson, S., Qiu, Y., and Callaghan, T. V.:

Changing Arctic snow cover: A review of recent developments and assessment of future needs for observations, modelling, and impacts,

Ambio, 45, 516–537, https://doi.org/10.1007/s13280-016-0770-0, https://doi.org/10.1007/s13280-016-0770-0, 2016.

Boone, A. and Etchevers, P.: An inter-comparison of three snow schemes of varying complexity coupled to the same land-surface model:

Local scale evaluation at an Alpine site, Journal of Hydrometeorology, 2, 374–394, 2001.25

Boone, A., Masson, V., Meyers, T., and Noilhan, J.: The Influence of the Inclusion of Soil Freezing on Simulations by

a Soil–Vegetation–Atmosphere Transfer Scheme, Journal of Applied Meteorology, 39, 1544–1569, https://doi.org/10.1175/1520-

0450(2000)039<1544:TIOTIO>2.0.CO;2, https://doi.org/10.1175/1520-0450(2000)039<1544:TIOTIO>2.0.CO;2, 2000.

Brown, R., Vikhamar-Schuler, D., Bulygina, O., Derksen, C., Luojus, K., Mudryk, L., Wang, L., and Yang, D.: Arctic terrestrial snow cover.

Chapter 3, in: Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017, pp. 25–64, Arctic Monitoring and Assessment Programme30

(AMAP), Oslo, Norway, 2017.

Brown, R. D. and Robinson, D. A.: Northern Hemisphere spring snow cover variability and change over 1922-2010 including an assessment

of uncertainty, The Cryosphere, 5, 219–229, https://doi.org/10.5194/tc-5-219-2011, https://www.the-cryosphere.net/5/219/2011/, 2011.

Brun, E., David, P., Sudul, M., and Brunot, G.: A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting,

Journal of Glaciology, 38, 13–22, https://doi.org/10.3189/S0022143000009552, 1992.35

31

http://www.sciencedirect.com/science/article/pii/S0165232X02000745
https://doi.org/10.5194/tc-5-1115-2011
https://www.the-cryosphere.net/5/1115/2011/
https://doi.org/10.5194/tc-7-511-2013
https://www.the-cryosphere.net/7/511/2013/
https://www.the-cryosphere.net/7/511/2013/
https://www.the-cryosphere.net/7/511/2013/
https://doi.org/10.1007/s13280-016-0770-0
https://doi.org/10.1007/s13280-016-0770-0
https://doi.org/10.1175/1520-0450(2000)039%3C1544:TIOTIO%3E2.0.CO;2
https://doi.org/10.1175/1520-0450(2000)039%3C1544:TIOTIO%3E2.0.CO;2
https://doi.org/10.1175/1520-0450(2000)039%3C1544:TIOTIO%3E2.0.CO;2
https://doi.org/10.1175/1520-0450(2000)039<1544:TIOTIO>2.0.CO;2
https://doi.org/10.5194/tc-5-219-2011
https://www.the-cryosphere.net/5/219/2011/
https://doi.org/10.3189/S0022143000009552


Brun, E., Vionnet, V., Boone, A., Decharme, B., Peings, Y., Valette, R., Karbou, F., and Morin, S.: Simulation of northern Eurasian local

snow depth, mass and density using a detailed snowpack model and meteorological reanalysis, Journal of Hydrometeorology, 14, 203–219,

https://doi.org/10.1175/JHM-D-12-012.1, https://doi.org/10.1175/JHM-D-12-012.1, 2013.

Carrera, M. L., Bélair, S., Fortin, V., Bilodeau, B., Charpentier, D., and Doré, I.: Evaluation of snowpack simulations over the Canadian

Rockies with an experimental hydrometeorological modeling system, Journal of Hydrometeorology, 11, 1123–1140, 2010.5

Carrera, M. L., Bélair, S., and Bilodeau, B.: The Canadian land data assimilation system (CaLDAS): Description and synthetic evaluation

study, Journal of Hydrometeorology, 16, 1293–1314, 2015.

Douville, H., Royer, J.-F., and Mahfouf, J.-F.: A new snow parameterization for the Météo-France climate model. Part2: Validation in a 3-D

GCM experiment, Climate Dynamics, 12, 37–52, 1995.

Dyrrdal, A. V., Saloranta, T., Skaugen, T., and Stranden, H. B.: Changes in snow depth in Norway during the period 1961-2010, Hydrology10

Research, 44, 169–179, 2013.

Engeset, R.: National Avalanche Warning Service for Norway. -Established 2013, in: International Snow Science Workshop Grenoble,

October 07-11, 2013, Chamonix Mont-Blanc, France, 2013.

Essery, R., Morin, S., Lejeune, Y., and Ménard, C. B.: A comparison of 1701 snow models using observations from an alpine site, Advances in

Water Resources, 55, 131 – 148, https://doi.org/http://dx.doi.org/10.1016/j.advwatres.2012.07.013, http://www.sciencedirect.com/science/15

article/pii/S0309170812002011, snow–Atmosphere Interactions and Hydrological Consequences, 2013.

Etchevers, P., Martin, E., Brown, R., Fierz, C., Lejeune, Y., Bazile, E., Boone, A., Dai, Y., Essery, R., Fernandez, A., Gusev, Y., Jordan,

R., Koren, V., Kowalcyzk, E., Nasonova, N., Pyles, R., Schlosser, A., Shmakin, A., Smirnova, T., Strasser, U., Verseghy, D., Yamazaki,

T., and Yang, Z.: Validation of the energy budget of an alpine snowpack simulated by several snow models (SnowMIP project), Annals

of Glaciology, 38, 150–158, https://doi.org/10.3189/172756404781814825, International Symposium on Snow and Avalanches, Davos,20

Switzerland, 2-6 June, 2003, 2004.

FAO/IIASA/ISRIC/ISS-CAS/JRC: Harmonized World Soil Database (version 1.2), Tech. rep., FAO, Rome, Italy and IIASA, Laxenburg,

Austria, 2012.

Fierz, C., Bavay, M., Wever, N., and Lehning, M.: SNOWPACK: where do we stand today?, in: International Snow Science Workshop,

EPFL-TALK-197625, 2013.25

Frost: Free access to MET Norway’s archive of historical weather and climate data, https://frost.met.no// ( Last visited: 16 May 2018), 2018.

Habets, F., Boone, A., and Noilhan, J.: Simulation of a Scandinavian basin using the diffusion transfer version of ISBA, Global and Planetary

Change, 38, 137 – 149, https://doi.org/https://doi.org/10.1016/S0921-8181(03)00016-X, http://www.sciencedirect.com/science/article/pii/

S092181810300016X, project for Intercomparison of Land-surface Parameterization Schemes, Phase 2(e), 2003.

Hall, D. K. and Riggs, G. A.: Accuracy assessment of the MODIS snow products, Hydrological Processes, 21, 1534–1547,30

https://doi.org/10.1002/hyp.6715, http://dx.doi.org/10.1002/hyp.6715, 2007.

Hanssen-Bauer, I., Førland, E. J., Haddeland, I., Hisdal, H., Mayer, S., Nesje, A., Nilsen, J., Sandven, S., Sandø, A., Sorteberg, A., and

Ådlandsvik, B.: Klima i Norge 2100. Kunnskapsgrunnlag for klimatilpasning oppdatert i 2015, Tech. Rep. 2, Norsk klimaservicesenter,

https://cms.met.no/site/2/klimaservicesenteret/klima-i-norge-2100/_attachment/10990, 2015.

Hanssen-Bauer, I., Førland, E. J., Haddeland, I., Hisdal, H., Lawrence, D., Mayer, S., Nesje, A., Nilsen, J., Sandven, S., Sandø, A., Sorteberg,35

A., and Ådlandsvik, B.: Climate in Norway 2100. – A knowledge base for climate adaptation, Tech. Rep. 1, Norwegian Climate Service

Centre, 2017.

32

https://doi.org/10.1175/JHM-D-12-012.1
https://doi.org/10.1175/JHM-D-12-012.1
https://doi.org/http://dx.doi.org/10.1016/j.advwatres.2012.07.013
http://www.sciencedirect.com/science/article/pii/S0309170812002011
http://www.sciencedirect.com/science/article/pii/S0309170812002011
http://www.sciencedirect.com/science/article/pii/S0309170812002011
https://doi.org/10.3189/172756404781814825
https://doi.org/https://doi.org/10.1016/S0921-8181(03)00016-X
http://www.sciencedirect.com/science/article/pii/S092181810300016X
http://www.sciencedirect.com/science/article/pii/S092181810300016X
http://www.sciencedirect.com/science/article/pii/S092181810300016X
https://doi.org/10.1002/hyp.6715
http://dx.doi.org/10.1002/hyp.6715
https://cms.met.no/site/2/klimaservicesenteret/klima-i-norge-2100/_attachment/10990


Homleid, M.: Diurnal corrections of short-term surface temperature forecasts using the Kalman filter, Weather and Forecasting, 4, 689–707,

1995.

Homleid, M. and Tveter, F. T.: Verification of Operational Weather Prediction Models December 2015 to February 2016, Met.no report 18,

Norwegian Meteorological Institute, Oslo, Norway, https://www.met.no/publikasjoner/met-info/met-info-2016/_/attachment/download/

a541f975-ff95-4a38-aa4c-d47c70264ebe:11d67cb5abaffca7686fea6be5ef3b00437f9ea2/MET-info-20-2016.pdf, 2016.5

Horton, S., Schirmer, M., and Jamieson, B.: Meteorological, elevation, and slope effects on surface hoar formation, The Cryosphere, 9,

1523–1533, 2015.

Johansson, C., Pohjola, V., Jonasson, C., and Callaghan, T.: Multi-decadal changes in snow characteristics in sub-Arctic Sweden, Ambio, 40,

566–574, 2011.

Kivinen, S., Rasmus, S., Jylhä, K., and Laapas, M.: Long-Term Climate Trends and Extreme Events in Northern Fennoscandia (1914–2013),10

2017, https://doi.org/10.3390/cli5010016, 2017.

Klein, A. G. and Stroeve, J.: Development and validation of a snow albedo algorithm for the MODIS instrument, Annals of Glaciology, 34,

45–52, https://doi.org/10.3189/172756402781817662, 2002.

Køltzow, M.: MetCoOp Ensemble Prediction System (MEPS), Norwegian Meteorological Institute, Oslo, Norway, https://drive.google.com/

file/d/0B-SaEtrDE91WWEJoNkJiUm5TNzg/view, 2017.15

Köppen, W.: Das geographische System der Klimate. Handbuch der Klimatologie, vol. 1, Verlag von Gebrüder Borntraeger, Berlin, 1936.

Lafaysse, M., Cluzet, B., Dumont, M., Lejeune, Y., Vionnet, V., and Morin, S.: A multiphysical ensemble system of numerical snow mod-

elling, The Cryosphere, 11, 1173–1198, https://doi.org/10.5194/tc-11-1173-2017, https://www.the-cryosphere.net/11/1173/2017/, 2017.

Lehning, M., Bartelt, P. B., Brown, R. L., Fierz, C., and Satyawali, P.: A physical SNOWPACK model for the Swiss Avalanche Warning

Services. Part II: Snow Microstructure, Cold Regions Science and Technology, 35, 147–167, 2002.20

Li, L. and Pomeroy, J. W.: Estimates of Threshold Wind Speeds for Snow Transport Using Meteorological Data, Journal of Applied Meteo-

rology, 36, 205–213, https://doi.org/10.1175/1520-0450(1997)036<0205:EOTWSF>2.0.CO;2, 1997.

Lussana, C., Tveito, O. E., and Uboldi, F.: senorge v2.0: an observational gridded dataset of temperature for norway, Met.no report 14,

Norwegian Meteorological Institute, Oslo, Norway, 2016.

Lussana, C., Saloranta, T., Skaugen, T., Magnusson, J., Tveito, O. E., and Andersen, J.: seNorge2 daily precipitation, an observational gridded25

dataset over Norway from 1957 to the present day, Earth System Science Data, 10, 235–249, https://doi.org/10.5194/essd-10-235-2018,

https://www.earth-syst-sci-data.net/10/235/2018/, 2018a.

Lussana, C., Tveito, O., and Uboldi, F.: Three-dimensional spatial interpolation of two-meter temperature over Norway, Quarterly Journal of

the Royal Meteorological Society, https://doi.org/10.1002/qj.3208, http://dx.doi.org/10.1002/qj.3208, 2018b.

Magnusson, J., Wever, N., Essery, R., Helbig, N., Winstral, A., and Jonas, T.: Evaluating snow models with varying process representations30

for hydrological applications, Water Resources Research, 51, 2707–2723, https://doi.org/10.1002/2014WR016498, http://dx.doi.org/10.

1002/2014WR016498, 2015.

Masson, V., Le Moigne, P., Martin, E., Faroux, S., Alias, A., Alkama, R., Belamari, S., Barbu, A., Boone, A., Bouyssel, F., Brousseau, P.,

Brun, E., Calvet, J.-C., Carrer, D., Decharme, B., Delire, C., Donier, S., Essaouini, K., Gibelin, A.-L., Giordani, H., Habets, F., Jidane, M.,

Kerdraon, G., Kourzeneva, E., Lafaysse, M., Lafont, S., Lebeaupin Brossier, C., Lemonsu, A., Mahfouf, J.-F., Marguinaud, P., Mokhtari,35

M., Morin, S., Pigeon, G., Salgado, R., Seity, Y., Taillefer, F., Tanguy, G., Tulet, P., Vincendon, B., Vionnet, V., and Voldoire, A.: The

SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes, Geoscientific Model

Development, 6, 929–960, https://doi.org/10.5194/gmd-6-929-2013, https://www.geosci-model-dev.net/6/929/2013/, 2013.

33

https://www.met.no/publikasjoner/met-info/met-info-2016/_/attachment/download/a541f975-ff95-4a38-aa4c-d47c70264ebe:11d67cb5abaffca7686fea6be5ef3b00437f9ea2/MET-info-20-2016.pdf
https://www.met.no/publikasjoner/met-info/met-info-2016/_/attachment/download/a541f975-ff95-4a38-aa4c-d47c70264ebe:11d67cb5abaffca7686fea6be5ef3b00437f9ea2/MET-info-20-2016.pdf
https://www.met.no/publikasjoner/met-info/met-info-2016/_/attachment/download/a541f975-ff95-4a38-aa4c-d47c70264ebe:11d67cb5abaffca7686fea6be5ef3b00437f9ea2/MET-info-20-2016.pdf
https://doi.org/10.3390/cli5010016
https://doi.org/10.3189/172756402781817662
https://drive.google.com/file/d/0B-SaEtrDE91WWEJoNkJiUm5TNzg/view
https://drive.google.com/file/d/0B-SaEtrDE91WWEJoNkJiUm5TNzg/view
https://drive.google.com/file/d/0B-SaEtrDE91WWEJoNkJiUm5TNzg/view
https://doi.org/10.5194/tc-11-1173-2017
https://www.the-cryosphere.net/11/1173/2017/
https://doi.org/10.1175/1520-0450(1997)036%3C0205:EOTWSF%3E2.0.CO;2
https://doi.org/10.5194/essd-10-235-2018
https://www.earth-syst-sci-data.net/10/235/2018/
https://doi.org/10.1002/qj.3208
http://dx.doi.org/10.1002/qj.3208
https://doi.org/10.1002/2014WR016498
http://dx.doi.org/10.1002/2014WR016498
http://dx.doi.org/10.1002/2014WR016498
http://dx.doi.org/10.1002/2014WR016498
https://doi.org/10.5194/gmd-6-929-2013
https://www.geosci-model-dev.net/6/929/2013/


Mohr, M.: New routines for gridding of temperature and precipitation observations for “seNorge.no, Met.no Report 8, Norwegian Meteoro-

logical Institute, Oslo, Norway, 2008.

Müller, M., Homleid, M., Ivarsson, K.-I., Køltzow, M. A. Ø., Lindskog, M., Midtbø, K. H., Andrae, U., Aspelien, T., Berggren, L., Bjørge,

D., Dahlgren, P., Kristiansen, J., Randriamampianina, R., Ridal, M., and Vignes, O.: AROME-MetCoOp: A Nordic Convective-Scale

Operational Weather Prediction Model, Weather and Forecasting, 32, 609–627, https://doi.org/10.1175/WAF-D-16-0099.1, https://doi.5

org/10.1175/WAF-D-16-0099.1, 2017.

Quéno, L., Vionnet, V., Dombrowski-Etchevers, I., Lafaysse, M., Dumont, M., and Karbou, F.: Snowpack modelling in the Pyrenees driven

by kilometric resolution meteorological forecasts, The Cryosphere, 10, 1571–1589, 2016.

Quéno, L., Karbou, F., Vionnet, V., and Dombrowski-Etchevers, I.: Satellite products of incoming solar and longwave radiations used for

snowpack modelling in mountainous terrain, Hydrology and Earth System Sciences Discussions, 2017, 1–33, https://doi.org/10.5194/hess-10

2017-563, https://www.hydrol-earth-syst-sci-discuss.net/hess-2017-563/, 2017.

Raleigh, M. S., Lundquist, J. D., and Clark, M. P.: Exploring the impact of forcing error characteristics on physically based snow simulations

within a global sensitivity analysis framework, Hydrology and Earth System Sciences, 19, 3153–3179, https://doi.org/10.5194/hess-19-

3153-2015, https://www.hydrol-earth-syst-sci.net/19/3153/2015/, 2015.

Rasmus, S., Boelhouwers, J., Briede, A., Brown, I., Falarz, M., Ingvander, S., Jaagus, J., Kitaev, L., Mercer, A., and Rimkus, E.: Recent15

change – Terrestrial cryosphere, in: Second Assessment of Climate Change for the Baltic Sea Basin, edited by Team, T. B. I. A., pp.

117–129, Springer, 2015.

Ruan, G. and Langsholt, E.: Rekalibrering av flomvarslingas HBV-modeller med inndata fra seNorge, versjon 2.0, Tech. Rep. 71, NVE

Report, Oslo, Norway, 2017.

Sælthun, N. R.: The Nordic HBV model, NVE Report No. 7, Norwegian Water Resources and Energy Administration, Oslo, Norway, 1996.20

Salomonson, V. V. and Appel, I.: Estimating fractional snow cover from MODIS using the normalized difference snow index, Remote

Sensing of Environment, 89, 351–360, https://doi.org/10.1016/j.rse.2003.10.016, 2004.

Saloranta, T. M.: Simulating snow maps for Norway: description and statistical evaluation of the seNorge snow model, The Cryosphere, 6,

1323–1337, https://doi.org/10.5194/tc-6-1323-2012, https://www.the-cryosphere.net/6/1323/2012/, 2012.

Saloranta, T. M.: Operational snow mapping with simplified data assimilation using the seNorge snow model, Journal of Hydrology, 538,25

314–325, https://doi.org/10.1016/j.jhydrol.2016.03.061, 2016.

Sauter, T. and Obleitner, F.: Assessing the uncertainty of glacier mass-balance simulations in the European Arctic based on variance decompo-

sition, Geoscientific Model Development, 8, 3911–3928, https://doi.org/10.5194/gmd-8-3911-2015, https://www.geosci-model-dev.net/8/

3911/2015/, 2015.

Schirmer, M. and Jamieson, B.: Verification of analysed and forecasted winter precipitation in complex terrain, The Cryosphere, 9, 587–601,30

https://doi.org/10.5194/tc-9-587-2015, https://www.the-cryosphere.net/9/587/2015/, 2015.

Seity, Y., Brousseau, P., Malardel, S., Hello, G., Bénard, P., Bouttier, F., Lac, C., and Masson, V.: The AROME-France convective-scale

operational model, Monthly Weather Review, 139, 976–991, https://doi.org/10.1175/2010MWR3425.1, 2011.

Skaugen, T.: Studie av skilletemperatur for snø ved hjelp av samlokalisert snøpute, nedbør- og temperaturdata., 1998.

Skaugen, T., Stranden, H. B., and Saloranta, T.: Trends in snow water equivalent in Norway (1931-2009), Hydrology Research, 43, 489–499,35

2012.

Skaugen, T., Luijting, H., Vikhamar-Schuler, D., Müller, K., Stranden, H., and Saloranta, T.: In search of operational snow model structures

for the future - comparing four snow models for 17 catchments in Norway, Hydrology Research (accepted 03-05-2018), 2018.

34

https://doi.org/10.1175/WAF-D-16-0099.1
https://doi.org/10.1175/WAF-D-16-0099.1
https://doi.org/10.1175/WAF-D-16-0099.1
https://doi.org/10.1175/WAF-D-16-0099.1
https://doi.org/10.5194/hess-2017-563
https://doi.org/10.5194/hess-2017-563
https://doi.org/10.5194/hess-2017-563
https://www.hydrol-earth-syst-sci-discuss.net/hess-2017-563/
https://doi.org/10.5194/hess-19-3153-2015
https://doi.org/10.5194/hess-19-3153-2015
https://doi.org/10.5194/hess-19-3153-2015
https://www.hydrol-earth-syst-sci.net/19/3153/2015/
https://doi.org/10.1016/j.rse.2003.10.016
https://doi.org/10.5194/tc-6-1323-2012
https://www.the-cryosphere.net/6/1323/2012/
https://doi.org/10.1016/j.jhydrol.2016.03.061
https://doi.org/10.5194/gmd-8-3911-2015
https://www.geosci-model-dev.net/8/3911/2015/
https://www.geosci-model-dev.net/8/3911/2015/
https://www.geosci-model-dev.net/8/3911/2015/
https://doi.org/10.5194/tc-9-587-2015
https://www.the-cryosphere.net/9/587/2015/
https://doi.org/10.1175/2010MWR3425.1


Solberg, R., Amlien, J., and Koren, H.: A review of optical snow cover algorithms. Norwegian Computing, Tech. Rep. SAMBA/40/06,

Norwegian Computing Center, Oslo, Norway, 2006.

Sturm, M., Holmgren, J., and Liston, G. E.: A seasonal snow cover classification system for local to global applications, Journal of Climate,

8, 1261–1283, 1995.

Vernay, M., Lafaysse, M., Mérindol, L., Giraud, G., and Morin, S.: Ensemble forecasting of snowpack conditions and avalanche hazard,5

Cold Regions Science and Technology, 120, 251 – 262, https://doi.org/https://doi.org/10.1016/j.coldregions.2015.04.010, http://www.

sciencedirect.com/science/article/pii/S0165232X15000981, 2015a.

Vernay, M., Lafaysse, M., Mérindol, L., Giraud, G., and Morin, S.: Ensemble forecasting of snowpack conditions and avalanche hazard,

Cold Regions Science and Technology, 120, 251 – 262, https://doi.org/https://doi.org/10.1016/j.coldregions.2015.04.010, http://www.

sciencedirect.com/science/article/pii/S0165232X15000981, 2015b.10

Vikhamar-Schuler, D., Müller, K., and Engen-Skaugen, T.: Snow modeling using SURFEX with the CROCUS snow scheme, Met.no report 7,

Norwegian Meteorological Institute, Oslo, Norway, 2011.

Vikhamar-Schuler, D., Hanssen-Bauer, I., Schuler, T. V., Mathiesen, S. D., and Lehning, M.: Use of a multilayer snow model to assess

grazing conditions for reindeer, Annals of Glaciology, 54, 214–226, https://doi.org/10.3189/2013AoG62A306, 2013.

Vikhamar-Schuler, D., Isaksen, K., Haugen, J. E., Tømmervik, H., Luks, B., Schuler, T. V., and Bjerke, J. W.: Changes in winter warming15

events in the Nordic Arctic Region, Journal of Climate, https://doi.org/http://dx.doi.org/10.1175/JCLI-D-15-0763.1, 2016.

Vionnet, V., Brun, E., Morin, S., Boone, A., Faroux, S., Le Moigne, P., Martin, E., and Willemet, J.-M.: The detailed snowpack scheme

Crocus and its implementation in SURFEX v7.2, Geoscientific Model Development, 5, 773–791, https://doi.org/10.5194/gmd-5-773-

2012, https://www.geosci-model-dev.net/5/773/2012/, 2012.

Vionnet, V., Martin, E., Masson, V., Guyomarc’h, G., Naaim-Bouvet, F., Prokop, A., Durand, Y., and Lac, C.: Simulation of wind-induced20

snow transport and sublimation in alpine terrain using a fully coupled snowpack/atmosphere model, The Cryosphere, 8, 395–415,

https://doi.org/10.5194/tc-8-395-2014, https://www.the-cryosphere.net/8/395/2014/, 2014.

Vionnet, V., Dombrowski-Etchevers, I., Lafaysse, M., Quéno, L., Seity, Y., and Bazile, E.: Numerical Weather Forecasts at Kilometer Scale

in the French Alps: Evaluation and Application for Snowpack Modeling, Journal of Hydrometeorology, 17, 2591–2614, 2016.

Vormoor, K. and Skaugen, T.: Temporal Disaggregation of Daily Temperature and Precipitation Grid Data for Norway, Journal of Hydrom-25

eteorology, 14, 989–999, https://doi.org/10.1175/JHM-D-12-0139.1, https://doi.org/10.1175/JHM-D-12-0139.1, 2013.

35

https://doi.org/https://doi.org/10.1016/j.coldregions.2015.04.010
http://www.sciencedirect.com/science/article/pii/S0165232X15000981
http://www.sciencedirect.com/science/article/pii/S0165232X15000981
http://www.sciencedirect.com/science/article/pii/S0165232X15000981
https://doi.org/https://doi.org/10.1016/j.coldregions.2015.04.010
http://www.sciencedirect.com/science/article/pii/S0165232X15000981
http://www.sciencedirect.com/science/article/pii/S0165232X15000981
http://www.sciencedirect.com/science/article/pii/S0165232X15000981
https://doi.org/10.3189/2013AoG62A306
https://doi.org/http://dx.doi.org/10.1175/JCLI-D-15-0763.1
https://doi.org/10.5194/gmd-5-773-2012
https://doi.org/10.5194/gmd-5-773-2012
https://doi.org/10.5194/gmd-5-773-2012
https://www.geosci-model-dev.net/5/773/2012/
https://doi.org/10.5194/tc-8-395-2014
https://www.the-cryosphere.net/8/395/2014/
https://doi.org/10.1175/JHM-D-12-0139.1
https://doi.org/10.1175/JHM-D-12-0139.1

