
Author response to interactive comments on: “The Arctic sea ice cover of 2016: A year of record low 
highs and higher than expected lows” by A. A. Petty et al.  
 
Reviewer comments are in black, our responses are in blue. 
 
We include a pdf of the new manuscript and a word document highlighting the tracked changes we have 
made based on these comments. 
 
Anonymous Referee #1 Received and published: 15th November 2017 
 
The Arctic sea ice cover displayed some unusual behavior in 2016. This submission explores a number of 
issues associated with this behavior. Part of the paper is devoted to a straight review of the year, while other 
parts delve into more scientific components. I think the mix works well. In a bigger picture it also present a 
detailed analysis and comparison between the main data sets usually used for Arctic ice studies. and how 
the choice of sets can, in some cases, affect the specific of conclusions. The authors present informed and 
careful analyses, and explain the associated uncertainties. 
 
The has a strong potential to contribute substantially to the relevant literature. I suggest revision in accord 
with the points aired below. 
 
We sincerely thank Reviewer #1 for taking the time to review the manuscript and provide these comments. 
See below for the comments and our responses. 
 
Page 2, l 7: As part of this survey include recent analysis of Simmonds 2015 - Comparing and contrasting 
the behaviour of Arctic and Antarctic sea ice over the 35-year period 1979-2013, Ann. Glaciol., 56(69), 18-
28. 
 
The above paper is a useful assessment of Arctic/Antarctic sea ice cover over recent decades, but we're 
unsure what from that paper we are being asked to cite and where this should go in the manuscript (L1, 7 or 
17 don't make sense!). Happy to do this if the reviewers could provide further clarification. 
 
Page 4, line 17: NSIDC have recently released Version 3 of the sea ice data set analyses; see A. Windnagel, 
M. Brandt, F. Fetterer and W. Meier, 2017: Sea Ice Index Version 3 Analysis. NSIDC Special Report 19. 
National Snow and Ice Data Center, 80 pp. https://nsidc.org/sites/nsidc.org/files/files/NSIDC-special-
report-19.pdf. The new version, and the reasons for it, are pertinent to some of the discussion (of 
differences) in the present investigation. Comments should be made (perhaps later) on this matter. 
 
Yes definitely, we were expecting to do this (Walt Meier is a co-author of this paper and the new v3.0 
dataset).  
 
At P4, L17 we have added: ' Note that a new, version 3.0, Sea Ice Index (Fetterer et al., 2017) was released 
by the NSIDC during the discussion phase of this study, as discussed below.' 
 
At P5, L10 we have adapted the discussion to read: 'During the discussion phase of this paper the NSIDC, 
as expected, switched to using this new methodology for their new, version 3.0, Sea Ice Index (Fetterer et 
al., 2017), making a comparison of these different approaches timely. A detailed assessment of the 
differences between the version 2.0 and 3.0 indices are provided in the accompanying NSIDC special 
report (Windnagel et al., 2017).' 
 
At P9, L2 we have added: '(equivalent to the new version 3.0 NSIDC Sea Ice Index)' 
 
 



P 6, ll 21-23: Please to make a few brief words in connection with the use of the (new) MERRA-2 
reanalysis, and how it compares with Version 1 of Rienecker, M. M., et al. (2011), MERRA: NASA’s 
Modern-Era Retrospective Analysis for Research and Applications, J. Climate, 24, 3624–3648. Of 
relevance to the present investigation make mention, in particular, of the assimilation of satellite obs. not 
used in MERRA and the improvement in representations of the cryosphere. 
 
Agreed. We have added the following to the revised manuscript: 'MERRA-2 offers several improvements 
over the original MERRA reanalysis, including: the assimilation of additional satellite observations (e.g. 
space-based observations of aerosols, modern hyperspectral radiance and microwave observations), the use 
of daily sea ice and SST fields (compared to weekly fields in MERRA) and a seasonally varying (instead of 
a constant) surface albedo (Cullather and Bosilovich, 2017)'. 
 
Page 13, lines 27-28: We need some references here and quantification. Suggest referring to Montiel F, 
Squire VA (2017) Modelling wave-induced sea ice break-up in the marginal ice zone. Proceedings of the 
Royal Society A 473: 20170258 doi: 10.1098/rspa.2017.0258 and Kohout AL, Williams MJM, Toyota T, 
Lieser J, Hutchings J (2016) In situ observations of wave-induced sea ice breakup. Deep-Sea Research Part 
II, 131: 22-27 doi: 10.1016/j.dsr2.2015.06.010. 
 
We have added the following references we believe summarize recent evidence regarding storm/wave-
induced sea ice break-up, ocean mixing, and sea ice loss: '(e.g. Zhang et al., 2013, Kohout et al., 2014, 
Kohout et al., 2016, Montiel and Squire 2017)'. We believe an attempt to quantify the direct impact of this 
storm on waves-ocean mixing-sea ice loss to be beyond the scope of this paper (a study in and of itself!). 
 
Anonymous Referee #2 Received and published: 7 December 2017 
 
Petty et al. revisited the unusual 2016 Arctic sea ice conditions by looking at the Arctic sea ice area (SIA) 
and extent (SIE), the compactness (SIA over SIE), the concentration budget (the ice intensification and ice 
divergence), sea surface temperature, and weather conditions. Comparisons were made with the 2000-2015 
climatology. When calculating SIA and SIE, they evaluated the differences caused by different averaging 
methods and retrieval algorithms. They demonstrated that the choice of the averaging method could cause 
differences as large as the choice of retrieval algorithm. Although SIA and SIE differ with averaging 
method and retrieval algorithm, they show in common that the sea ice low anomalies at the start of 2016 
did not translate low anomalies in summer. However, a record low of sea ice compactness was seen in 
summer 2016, which was likely caused by the two cyclones entering the Arctic Ocean in August. The 
location and strength of the cyclones made them not able to melt out the sea ice and create a record low 
summer SIE. 
 
The study has the potential to contribute to the understanding of the unusual behavior of Arctic sea ice in 
2016. I suggest several revisions as follows. 
 
We sincerely thank Reviewer #2 for taking the time to review this manuscript and provide the following 
comments. See below for our responses. 
 
1. L19, P1: Shouldn’t the ‘compactness’ be sea ice area over sea ice extent, not only ‘the estimates of sea 
ice area’? 
 
Agreed, we have changed this to sea ice area over sea ice extent 
 
2. L21, P2: The statement of ‘a new record low September Arctic SIE was not suggested by the SIO in 
2016, despite this strong winter/spring preconditioning’ seems not objective enough without mentioning 
whether these models in SIO could successfully predict the winter/spring preconditioning as strong as 
observed. 
 



We think the reviewer is asking us how well the models 'captured' or 'simulated' the winter/spring 
conditions (rather than predicted) and how that relates to forecasting the summer sea ice extent? This is a 
challenge, as the SIO doesn't necessarily provide information regarding the springtime conditions used to 
drive the individual forecasts. Indeed for the dynamical models, carrying out a thorough assessment of how 
well they are capturing the observed winter/spring conditions before their forecasts are generated would be 
a lot of work (and another study in and of itself). 
 
We have attempted to make it clearer that we are referring to the observed strong winter/spring 
preconditioning by adding 'seen in the observations' at the end of this sentence to make clear we are not 
saying we believe they are necessarily capturing the winter/spring conditions.  
 
3. L30, P3: The study only used Bootstrap SIC data for the year 2016. Is it because the NASA Team data 
was not available? Please clarify. 
 
We do use 2016 NASA Team data (NRT), although we focus more on the Bootstrap data/analysis as 
explained later in the manuscript. We have updated that line to read: 'Note that for 2016 we use the daily 
near real-time (NRT) NASA Team SIC data (Maslanik, J. and J. Stroeve. 1999) and daily Bootstrap SIC 
data (provided courtesy of J. Comiso).' 
 
4. Section 2.2 lacks details of how the ice drift data will be used in the following study. 
 
How the ice drifts are used in the concentration budgets is discussed in the following methodology section. 
We have changed '(methodology discussed in the following section)' to '(methodology discussed in Section 
3)' to make this clearer. 
 
We did also add to Section 2.2 the following: ' The mean 2016 monthly KIMURA ice drifts are shown in 
Figure 1, which are produced by averaging the daily ice drifts within each month.' 
 
5. L1, P8: From the Figure 3, it is very difficult to see the differences in SIE between the NASA Team and 
Bootstrap data. The differences should refer to Table 1 instead. 
 
The 2016 values are also included in Figure 3 though, as in Table 1, so we think this is clear from the figure 
alone. We added the table for those more interested in seeing just the numbers presented alongside each 
other. We hope this is satisfactory. 
 
6. L23, P8: This paragraph seems subjective. Any literature review on quantifying the differences between 
the two products from the perspectives mentioned in this paragraph? 
 
As stated in the data section (2.1), the differences between the two products have been well explored in 
previous studies. Here we wanted to just list a few of the pertinent issues regarding this data the reader may 
be interested in knowing for this study. We have added the following to the end of this paragraph: ' As 
stated earlier (Section 2.1), the differences between the NASA Team and Bootstrap data have been well 
documented (e.g., Comiso et al., 1997; Meier, 2005; Ivanova et al., 2015; Comiso et al., 2017) and we refer 
the reader to these studies for more information regarding the differences between the two algorithms and 
data products.' 
 
7. L3, P8: Suggest replace ‘methodology’ with ‘averaging methodology’, and ‘algorithm’ with ‘retrieval 
algorithm’ for readability. This could apply to the whole paragraph. 
 
Agreed, we have replaced ‘methodology’ with ‘averaging methodology’ throughout the paper and added 
'retrieval algorithm' where appropriate to improve readability. 
 
8. Suggest the authors be more careful with delivering the results. For example, in Line 13, Page 10, 
negative anomalies in the Bering seas are seen in Jan, not obvious in Feb and Mar. And positive anomalies 



in the Labrador Sea and the Sea of Okhotsk are not clear with the black sea ice edge lines. Another example 
is in line 11, Page 11, strong positive anomalies are seen in the Chukchi Sea in both November and 
December, which is not consistent with the statement of ‘the autumn SIC anomalies are mainly negative’. 
 
We think some of this confusion might have come from the fact we are discussing both SIC anomalies 
(Figure 2) and intensification anomalies (Figure 6). We have attempted to make our results clearer by first 
adding in some notes regarding the figures being discussed (e.g. Figure 2), then by adding some 
changes/more detail as recommended, e.g. we added ' the Sea of Okhotsk (in February and March)'. We do 
feel that the Bering Sea SIC anomalies can be seen in all 3 winter months, however, so we kept that as is. 
 
9. Line 26, Page 10: a similar pattern to what pattern? 
 
We have changed this to: ' The April results show similar spatial patterns of SIC anomalies to winter' 
 
10. Section 4.4: All the referred Figure 10 should be Figure 11. 11.  
 
We have updated these to Figure 11.  
 
L24, P14: This sentence is confusing. 
 
We have changed this to: 'Similar to 2012, the median July SIO forecast of September SIE was biased 
high.' 
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Abstract.  

2016 was an interesting year in the Arctic, with record low sea ice at the start of the year, but a summer (September) Arctic 

sea ice extent that was higher than expected by most seasonal forecasts. Here we explore the 2016 Arctic sea ice state in 15 

terms of its monthly sea ice cover, placing this in context of the sea ice conditions observed since 2000. We demonstrate the 

sensitivity of monthly Arctic sea ice extent and area estimates, in terms of their magnitude and annual rankings, to the ice 

concentration input data (using two widely used datasets) and to the averaging methodology used to convert concentration to 

extent (daily or monthly extent calculations). We use estimates of sea ice area over sea ice extent to analyse the relative 

'compactness' of the Arctic sea ice cover, highlighting anomalously low compactness in the summer of 2016 which 20 

contributed to the higher than expected September ice extent. Two cyclones that entered the Arctic Ocean during August 

appear to have driven this low concentration/compactness ice cover, but were not sufficient to cause more widespread melt 

out and a new record low September ice extent. We use concentration budgets to explore the regions and processes 

(thermodynamics/dynamics) contributing to the monthly 2016 extent/area estimates highlighting, amongst other things, rapid 

ice intensification across the central eastern Arctic through September. Two different products show significant early melt 25 

onset across the Arctic Ocean in 2016, including record early melt onset in the North Atlantic sector of the Arctic. Our 

results also show record late 2016 freeze up in the Central Arctic, North Atlantic. and the Alaskan Arctic sector in particular, 

associated with strong sea surface temperature anomalies that appeared shortly after the 2016 minimum (October onwards). 

We explore the implications of this low summer ice compactness for seasonal forecasting, suggesting that sea ice area could 

be a more reliable metric to forecast in this more seasonal, 'New Arctic', sea ice regime.  30 

 



2 
 

1 Introduction 

A dramatic indicator of global climate change is the accelerated loss of Arctic sea ice (Stroeve et al., 2012; Serreze and 

Stroeve, 2015; Notz and Stroeve, 2016). Over the last several decades, Arctic sea ice extent (SIE) has declined across all 

seasons, with the strongest decline observed in September; the end of the summer melt season (e.g. Serreze et al., 2007). 

Indeed the 10 lowest months of September Arctic SIE have all occurred within the last 10 years. Global Climate Models 5 

(GCMs) and observations suggest the Arctic will become ice free in summer sometime during the middle of the century (e.g. 

Stroeve et al., 2012, Notz and Stroeve, 2016, Jahn et al., 2016).  

This ice loss has profound consequences for the Earth system, including impacts on Arctic ecosystems (e.g. Post et al., 2013; 

Meier et al., 2014); potential changes to mid-latitude weather (e.g. Cohen et al., 2014; Screen et al., 2014; Francis et al., 

2015), and human activities in the Arctic. The human impacts in particular have prompted an increased need to improve 10 

Arctic sea ice forecasts on seasonal timescales (e.g. Eicken, 2013). In response to this increased interest in seasonal 

forecasting, the Study of Environmental Arctic Change (SEARCH) has led a grass-roots effort, since 2008, to collect and 

synthesize forecasts of pan-Arctic September SIE from the research community, resulting in an annual Sea Ice Outlook 

(SIO) report, compiled in recent years by the Sea Ice Prediction Network (SIPN). The outcomes of SIPN and the activities of 

the wider Arctic sea ice community are of considerable interest to the media and general public, especially considering the 15 

role of Arctic sea ice as an indicator of global climate change. As such, providing an accurate assessment of the Arctic sea 

ice state, and better communicating sea ice variability/uncertainty is paramount. 

Record high air temperatures and low sea ice were observed in the Arctic winter/spring of 2016, including low/record low 

SIE from January to June, high sea ice and ocean surface temperatures, and a thinner ice pack than recent winters (Boisvert 

et al., 2016, Cullather et al., 2016; Overland and Wang, 2016; Petty et al., 2017; Ricker 2017). This led to heightened 20 

speculation regarding a potential new record low September Arctic SIE. In fact, a new record low September Arctic SIE was 

not suggested by the SIO in 2016, despite this strong winter/spring preconditioning seen in the observations. The median 

July SIO forecast for the 2016 September extent was 4.30 million km2, higher than the record low September Arctic SIE of 

3.63 million km2 which was set in 2012. The median July SIO forecast ended up being 0.42 million km2 below the 'observed' 

SIE, which was reported by the National Snow and Ice Data Center (NSIDC) as 4.72 million km2. The potential importance 25 

of wintertime sea ice preconditioning for summer sea ice is clearly still very uncertain. A similar discussion is emerging this 

year, 2017, as Arctic sea ice tracks close to what was observed in 2012 and 2016 

(http://nsidc.org/arcticseaicenews/2017/07/arctic-ice-extent-near-levels-recorded-in-2012/). 

The summer of 2016 also featured two storms that entered the Arctic, which were implicated in the anomalous behavior 

observed in summer, making the forecasts of September SIE challenging (e.g. Petty et al., 2017). Historically, summers 30 

dominated by low sea level pressure anomalies and increased cyclonic activity within the central Arctic tend to result in less 

sea ice loss due to ice divergence and cooler temperatures (Screen et al., 2011), while summers with high sea level pressure 
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anomalies tend to result in clear skies and warmer air temperatures that enhance ice loss (e.g. Serreze et al., 2016). However, 

there is some suggestion that as the ice cover thins, the response to, or the importance of, summer weather patterns will 

change (e.g. Holland and Stroeve, 2011). In addition, the timing of when cyclonic activity occurs may also play a role in 

how the sea ice cover responds (Serreze et al., 2016). This was discussed briefly in the 2016 SIO post-season report 

(https://www.arcus.org/sipn/sea-ice-outlook/2016/post-season), however a more detailed discussion of the 2016 summer 5 

storms is needed. 

While considerable recent research efforts have focussed on understanding and predicting these rapid summer Arctic sea ice 

declines, the rapid rate of Arctic warming (commonly referred to as Arctic amplification) is, in fact, stronger in autumn, 

winter and spring (e.g. Pithan and Mauritsen, 2014, Cohen et al., 2014). The winter/spring sea ice declines in 2016 suggest 

this warming may be having a more significant impact on sea ice than in previous years, with the autumn of 2016 featuring 10 

anomalously warm SSTs across the Arctic, which likely delayed ice freeze-up and contributed to low SIE in these 

autumn/winter months. The anomalous behaviour observed throughout 2016 motivates a more detailed analysis of the entire 

2016 Arctic sea ice state, especially if the behaviour observed in 2016 becomes commonplace. We also seek to demonstrate 

when and why monthly record low Arctic sea ice states were observed across 2016 as this formed a significant part of the 

discussion surrounding Arctic sea ice throughout the year. We  focus on sea ice cover, not ice thickness/volume, due to the 15 

consistent long-term record available, and its interest to Arctic stakeholders and the sea ice prediction community. The paper 

is organized as follows: Section 2 presents the datasets used in this study; Section 3 discusses the methods employed to 

investigate the ice concentration budgets; Section 4 presents results and discussion from our various analyses; and 

concludary remarks are given in Section 5.  

2 Data  20 

2.1. Sea ice 

We utilize sea ice concentration (SIC) data derived from satellite passive microwave brightness temperature (Tb) 

observations. The Tb observations are obtained from the Defence Meteorological Satellite Program (DMSP) , including the 

Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR, 1978-1987), the DMSP F8, F11 and F13 Special Sensor 

Microwave/Imagers (SSM/Is, 1987-2008), the F17 Special Sensor Microwave Imager/Sounder (SSMIS, 2009 to May 2016) 25 

and the DMSP F18 SSMIS from April 2016 onwards. Significant uncertainties exist in the processing of passive microwave 

Tb for estimating SIC, including challenges associated with low winter open water fractions (e.g., Kwok, 2002), and the 

interpretation of surface melt signatures in the Tb data (several products and their differences are discussed by Ivanova et al., 

2015).  We thus choose to use both the NASA Team (Cavalieri et al., 1996, updated 2017) and Bootstrap (Comiso, 2000, 

updated 2015) SIC datasets, which use different methods for converting Tb to SIC. Note that for the 2016 we use the daily 30 

near real-time (NRT) NASA Team SIC data (Maslanik, J. and J. Stroeve. 1999) and daily Bootstrap SIC data (provided 
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courtesy of J. Comiso). All SIC data are provided on a 25 km x 25 km polar stereographic grid. Due to differences in 

satellite orbit and sensor characteristics, the Tb/SIC data feature a time-varying pole hole depending on the passive 

microwave sensor used, which broadly translates to a pole hole north of 84.5 oN (1979–June 1987), 87.2 oN (July 1987–

December 2007), 89.2 oN (2008 onwards). Differences between the NASA Team and Bootstrap algorithms have been well-

explored (e.g., Comiso et al., 1997; Meier, 2005; Ivanova et al., 2015; Comiso et al., 2017). In general, Bootstrap is less 5 

sensitive to summer surface melt because of the passive microwave channel combination it uses and because it employs 

daily-varying tie points (coefficients for 100% water and 100% ice). These differences can be significant in terms of 

absolute concentration and extent; however, trends and anomalies generally have much smaller differences (Comiso et al., 

2017).  

While the satellite passive microwave record extends back to late 1978, we focus mainly on data from 2000 onwards, to 10 

explore recent changes in the context of the 'New Arctic' – the period broadly covering the recent period of lower Arctic sea 

ice (e.g. Serreze and Stroeve, 2015). We choose to primarily focus our analysis on the Bootstrap data, as it is less affected by 

summer melt, a time of particular focus. However, as noted above, trends and anomalies are more similar between NASA 

Team and Bootstrap and this selection is not thought to substantially change our analysis and conclusions. The raw monthly 

2016 Bootstrap SIC maps are shown in Figure 1, with anomalies relative to the 2000-2015 mean monthly SIC shown in 15 

Figure 2. Anomaly SIC maps using the NASA Team data are shown in Figure S1. 

Monthly indices of Arctic sea ice extent (SIE) and sea ice area (SIA) are produced from the NASA Team SIC data and 

disseminated to the public by the National Snow and Ice Data Center (NSIDC) as the Sea Ice Index (version 2.1, Fetterer et 

al., 2016). Note that a new, version 3.0, Sea Ice Index (Fetterer et al., 2017) was released by the NSIDC during the 

discussion phase of this study, as discussed below. As we wish to explore the differences in SIE from the two algorithms, we 20 

choose to calculate SIE from the raw SIC data, following the methodology of the NSIDC v2.0 Sea Ice Index but applied to 

both NASA Team and Bootstrap SIC data. Briefly, a monthly mean gridded SIC field is generated and a monthly ice flag 

dataset is used to discard grid cells that are thought to be incorrectly characterized as ice. For SIE, all grid cells with a SIC 

greater than 0.15 are set to 1, multiplied by the grid-cell area and summed together. All data within the variable pole hole are 

assumed to be ice covered (SIC=1) and are thus included fully in the SIE calculation. A comparison of our NASA Team SIE 25 

data with the NSIDC Sea Ice Index show small (~0.01-0.05) differences (the 2016 values are given in Table 1), which is 

thought to be due primarily to our use of the daily SIC data, which are then averaged monthly (to be consistent with the 2016 

Bootstrap data that is only available daily), instead of the monthly SIC data for years prior to 2016 (as the NSIDC does). 

This does have a small impact on our SIE rankings (as discussed later). 

For SIA, the NSIDC Sea Ice Index approach is to not 'fill' the pole hole when calculating SIA, meaning the time series is 30 

significantly impacted by the changing size of the pole hole, especially for earlier years in the satellite record. We instead 

apply a mean SIC calculated in a 0.5o halo around the variable pole hole to all grid cells within the pole hole, to crudely limit 
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the bias introduced by the time varying pole hole size. All grid cells with a SIC greater than 0.15 are multiplied by the grid-

cell area (the SIC is kept variable and not set to 1) and summed together. Note that a similar approach was used in the SIO 

2016 post-season report. This approach of 'filling the pole hole' for longer-term analyses is discussed by, for example, 

Olason and Notz, (2014, Appendix A), where they show that this matters more for specific algorithms, e.g. the NASA Team 

algorithm, which has lower SICs in the Central Arctic, but is less important for the higher SIC Bootstrap data.  5 

An arguably more appropriate monthly SIE estimate can be produced by instead using the monthly means of the daily SIEs -  

as opposed to the calculation based on monthly mean SICs, described above (see, for example, Parkinson et al., 1999). As 

this is the approach used to produce the SIE values used and disseminated by scientists at the NASA Goddard Space Flight 

Center (GSFC) Cryospheric Sciences Laboratory (https://neptune.gsfc.nasa.gov/csb/index.php?section=234), we refer to this 

as the GSFC-SIE index. We thus also calculate the SIE (and SIA for consistency) to briefly explore the impact on the 2016 10 

SIE.SIA rankings from this alternative averaging methodology. Note that at the time of writingDuring the discussion phase 

of this paper, the NSIDC, as expected,  are preparing to switchswitched to using this new averaging methodology for their 

new, version 3.0, Sea Ice Index (Fetterer et al., 2017), making a comparison of these different approaches timely. A detailed 

assessment of the differences between the version 2.0 and 3.0 indices are provided in the accompanying NSIDC special 

report (Windnagel et al., 2017). 15 

We also use the monthly Arctic SIA and SIE to produce an estimate of sea ice compactness, which is simply the ratio of the 

total Arctic SIA/SIE (e.g. Comiso and Nishio, 2008, in which the ratio is referred to as concentration). Uncertainty 

surrounding the contribution of summer melt on the concentration estimates (e.g. melt ponds being flagged as open water) 

means less weight should be given to the summer (June-August) SIC and thus SIA and compactness estimates presented 

later. As discussed earlier, this is thought to be less pertinent for the Bootstrap data, which use variable tie points, but is still 20 

likely to be significant. 

2.2. Ice drift 

Following Holland & Kimura (2016, referred to herein as HK2016) we use daily ice drift estimates to investigate the 

monthly concentration budgets of the Arctic sea ice pack (methodology discussed in the following sectionSection 3). The 

drift data are produced from AMSR-E brightness temperatures from January 2003 to September 2011 and AMSR-2 25 

brightness temperatures from July 2012 to December 2016 using a cross-correlation approach (see Kimura et al., 2013 for 

more details). Wintertime (January-March, November-December) ice drifts are derived using 36-GHz channels, while 

summertime drifts (April–October) are derived using 18-GHz channels, to maximize the reliability and coverage of the data. 

The data is provided at a 60 km x 60 km horizontal resolution. The drift data is referred to herein as KIMURA. The mean 

2016 monthly KIMURA ice drifts are shown in Figure 1, which are produced by averaging the daily ice drifts within each 30 

month. Note that we also explored sea ice drift estimates produced by the Centre ERS d’Archivage et de Traitement 
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(CERSAT), part of the Institut Français de Recherché pour l’Exploitation de la Mer (IFREMER) (Girard-Ardhiun and 

Ezraty 2012), however the data had consistently lower coverage than the KIMURA dataset, likely due to the use of a stricter 

ice drift mask, limiting its utility for this study.  

2.3. Melt and freeze onset 

We use the timing of melt onset (MO) and freeze onset (FO) from NASA's Passive Microwave (PMW) MO and FO datasets 5 

from 2000 to 2016, updated from Stroeve et al. (2014) and Markus et al. (2009). We use data regarding the date of 

'continuous' MO, and 'late' FO from the PMW dataset. The continuous MO dates are consistent with the 'Melt Onset' 

transition periods defined by Livingstone et al., (1987). We compare the PMW MO estimates to MO data produced from the 

Advanced Horizontal Range Algorithm (AHRA) Snowmelt Onset on Arctic Sea Ice Version 3 product (Anderson et al., 

2014; Bliss and Anderson, 2014). The AHRA product provides the date of the earliest MO signal, consistent with the start of 10 

the Livingstone et al., (1987) 'Early Melt' season. The AHRA product is comparable to the PMW 'early' MO and is most 

consistent with the PMW 'early' MO, which is not used in this study as the AHRA is thought to be more sensitive to early 

melt transitions. Both PMW and AHRA datasets are based primarily on the sensitivity of Tb to liquid water content in the 

overlying snow cover (see Bliss et al., 2017 for more detailed description of the two products and their differences). We 

explore the MO/FO data within specific Arctic regions (as in Stroeve et al., 2014). We choose to focus our analysis on four 15 

different regions: the Central Arctic; the North Atlantic (defined by the Greenland and Barents seas); the Eastern Arctic 

(defined by the Kara, Laptev and East Siberian seas); and the Alaskan (Bering, Beaufort and Chukchi seas) regions. See 

Figure S2 for maps of these regions. 

2.4. Sea surface temperatures 

We use sea surface temperatures (SSTs) estimates from the National Oceanic and Atmospheric Administration (NOAA) 20 

Optimum Interpolation Sea Surface Temperature (OISST, version 2) data set, which is a daily, high-resolution (0.25o x 

0.25o) dataset derived from a blend of in-situ observations and Advanced Very-High-Resolution Radiometer (AVHRR) 

satellite infrared data (Reynolds et al., 2007). Note that a comparison with ship-based CTD observations found a bias of only 

0.02 oC, but a RMS error of 1.77 oC (Stroh et al., 2015). 

2.5. Atmospheric data 25 

Finally, we use daily sea level pressure and near-surface (10m) air temperature and wind speeds from the Modern-Era 

Retrospective Analysis for Research and Applications, version 2 (MERRA-2) reanalysis (Gelaro et al., 2017) to study the 

atmospheric conditions during the peak of the August 2016 (Aug 6th) and 2012 (Aug 16th) Arctic cyclones. MERRA-2 is a 

global atmospheric reanalysis produced by NASA's Global Modeling and Assimilation Office (GMAO). MERRA-2 offers 

several improvements over the original MERRA reanalysis, including: the assimilation of additional satellite observations 30 
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(e.g. space-based observations of aerosols, modern hyperspectral radiance and microwave observations), the use of daily sea 

ice and SST fields (compared to weekly fields in MERRA) and a seasonally varying (instead of a constant) surface albedo 

(Cullather and Bosilovich, 2017) 

 

3. Methods 5 

To explore the relative contribution of dynamic (e.g. ice export) and thermodynamic (i.e. melting/freezing) processes to 

Arctic sea ice variability, several studies have decomposed the ice concentration (or volume) budgets in either observations 

or model results (e.g., Lindsay and Zhang 2005, Holland et al. 2010, Holland & Kwok 2012, Holland, et al. 2014, Holland 

and Kimura 2016).  Here we use the daily SIC and ice drift data to map the observed dynamic and thermodynamic budgets 

of Arctic SIC, following HK2016. The SIC and ice drift data are re-gridded onto the same 100 km polar stereographic grid 10 

before the budget terms are calculated. A coarser spatial resolution than the drift data is used to reduce noise in the data 

before the flux divergence term is calculated. The drift data are also smoothed using a Gaussian filter (as in Holland and 

Kimura, 2016). The monthly changes in SIC across the Arctic are decomposed into thermodynamics/dynamics (based on Eq. 

1 and 2 in HK2016) as: 

!"
!" + ∇. !! A  = R 15 

where !A/!t represents ice intensification (the change in SIC in a given grid cell over time) and ∇. !! A  represents ice 

flux divergence (the change in SIC in a given grid cell from/to surrounding grid cells). The residual (R) on the right-hand 

side of Eq. 1 represents thermodynamic melting/freezing and mechanical redistribution (e.g. ridging and rafting), which 

should balance the total of intensification and flux divergence. A more detailed discussion of this concentration budget 

methodology is given in HK2016. Note that while it can be useful to separate the ice flux divergence term (change in SIC 20 

driven by dynamics) into advection and divergence terms, and to present the residual as a separate term (as in HK2016), we 

avoid this extra step for simplicity, and instead focus on the ice intensification and flux divergence terms. Ice intensification 

and flux divergence are calculated daily, with intensification as a central difference in time, and flux divergence as the 

central difference in space. Both terms are then summed (monthly) from these quasi-daily estimates within each month. 

While the KIMURA ice drift data record contains gaps due to the AMSR-E/AMSR-2 operating periods (highlighted in the 25 

previous section), we believe the data coverage is sufficient to represent a 'New Arctic' (2000-2015) climatology, from 

which we calculate the monthly 2016 flux divergence anomalies. Note also that the ice drift data are relatively uncertain 

compared to the SIC data, especially around the ice edge, meaning our ice flux divergence estimates are thought to be less 

reliable than the ice intensification estimates.  

4 Results and discussion 30 

4.1 Monthly Arctic sea ice indices in 2016 
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The monthly estimates of Arctic SIE calculated from the NASA Team and Bootstrap SIC data are shown as box and whisker 

plots in Figure 3 (2000-2015, 2016 indices highlighted by crosses). The mean seasonal cycle is clear in both datasets, with 

Arctic sea ice reaching its maximum (minimum) extent in March (September), as expected. The monthly SIE rankings are 

also given in Figure 3, with the NASA Team data indicating record low SIE in all months of the year except for summer 

(July to September). It is interesting to note that the 2016 August and September SIE, the months which have seen the 5 

strongest long-term Arctic sea ice declines, are significantly above the previous monthly record lows, which were both set in 

2012. As discussed earlier, the NSIDC Sea Ice Index SIE values show more significant differences in years prior to 2016 

(albeit still < 0.05 million km2) due, we believe, to the use of monthly SIC data in the NSIDC index, resulting in no record 

low 2016 SIE in March and December in that dataset. As is well established in the literature but worth repeating, record low 

sea ice at the start of the year does not always translate to record low sea ice in summer, with the spring/summer weather 10 

conditions crucial in controlling the magnitude of seasonal ice loss. 

Figure 3 also highlights the differences between the NASA Team and Bootstrap data, with higher SIEs calculated from the 

Bootstrap SIC data, as expected. The monthly SIEs produced from the two SIC products differ by around 0.2 to 0.5 million 

km2. Similar to the NSIDC Sea Ice Index, the Bootstrap results indicate no record low 2016 SIE in March and December. 

The 2016 values are summarized in Table 1, including the values given by the NSIDC Sea Ice Index. Note that other studies 15 

have provided a more in-depth assessment of the SIC algorithm differences (e.g., Comiso et al., 1997; Meier, 2005; Ivanova 

et al., 2015), including their impact on Arctic sea ice trends and variability (e.g. Comiso et al., 2017), so we focus instead on 

comparing the 2016 indices in context of the New Arctic regime (2000 onwards). 

The monthly estimates of Arctic SIA are also shown in Figure 3 (and summarized in Table 1). As discussed earlier, we fill 

the pole hole for SIA using the mean SIC in a 0.5-degree halo around the pole hole (which the NSIDC does not do). The 20 

values of SIA are lower than SIE, as should always be the case, and the differences between the monthly NASA Team and 

Bootstrap SIA indices are larger than SIE, as expected from previous studies comparing SIE and SIA across different 

algorithms (e.g. Comiso et al., 2017). The differences in monthly 2016 SIA calculated from the two SIC datasets are around 

0.5 to 1.5 million km2. The seasonal cycle of record low SIA is similar to SIE - record lows in winter/spring/autumn, but no 

record lows in summer, despite now factoring in the SIC within the ice pack. Similar to the SIE rankings, the choice of 25 

algorithm determines how many monthly records were observed, with Bootstrap showing fewer records than NASA Team, 

in general (mainly at the start of the year). Figure 3 shows that the summer 2016 SIA values were closer to the record low 

values, however. The lack of a record low Bootstrap SIA in October was somewhat surprising considering the record low 

October SIE, implying that the 2016 October SIC was not particularly low compared to the 2000-2015 mean (explored more 

in the following compactness discussion). The November 2016 SIA still produces a clear record low, however, highlighting 30 

the strong intra-seasonal variability in these indices. The record low SIA in December is noteworthy for its strong departure 

from the 2000-2015 spread, especially in the NASA Team data. In general, the 2016 November and December SIA indices 

show the biggest departures from the 2000-2015 distribution. 
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DThe differences between the Bootstrap and NASA Team indices are partly due to the different retrieval algorithms 

methodology (different channel combinations) and parameters (i.e., tie points for pure ice/water surface types). However, 

Tthere are also important differences in post-processing between the products. Both use weather filters to remove false ice in 

open water regions due to wind roughening of the ocean surface and precipitation, but each uses different approaches. 

Likewise, both use different methods to address land-spillover errors – false coastal ice due from mixed land/water in the 5 

sensor footprint. Finally, both products independently conduct a final manual quality-control procedure – removing 

retrievals considered to be in error; because it is manual, there is inherently some subjectivity in this procedure. The 

differences in these post-processing steps can have differing impacts on the SIE and SIA from the two products at different 

times of year. As stated earlier (Section 2.1), the differences between the NASA Team and Bootstrap data have been well 

documented (e.g., Comiso et al., 1997; Meier, 2005; Ivanova et al., 2015; Comiso et al., 2017) and we refer the reader to 10 

these studies for more information regarding the differences between the two algorithms and data products. 

The SIE and SIA indices were also calculated using the monthly means of the daily SIE/SIA values (as opposed to using 

monthly mean SICs), as discussed earlier - the GSFC-SIE index (equivalent to the new version 3.0 NSIDC Sea Ice Index). 

These 2016 results are also summarized in Table 1, with the box and whisker plots shown in Figure S3. The differences just 

due to the different averaging methodology are significant, with SIE around 0.2 to 0.5 million km2 lower across the two 15 

algorithms, and SIA around 0.05 to 0.01 million km2 higher than the indices calculated using monthly SIC. For SIE, the 

choice of averaging methodology results in differences as large as the difference caused by the choice of algorithm. The SIE 

values are lower using this method as the SICs below 0.15 are removed each day (and thus the ice is not given a chance to 

increase to above 0.15 later in the month), increasing the amount of low SIC not included in the SIE calculations. While the 

use of daily means reduces the overall SIE values, it also impacts the rankings significantly, especially for the Bootstrap 20 

data. Now no record low Bootstrap SIE is indicated for January, February and October, but a record low is now indicated for 

December. The only impact on the NASA Team SIE rankings is the removal of the record low in October. The smaller 

impact of SIC averaging on SIA means that this change in averaging methodology only removes the record low October 

NASA Team-derived SIA. In summary, care must be taken when calculating and comparing SIE/SIA, especially for those 

concerned with estimating sea ice rankings and comparing across studies. We continue with the monthly mean SIC derived 25 

indices for the discussion of sea ice compactness below for simplicity. 

Figure 4 shows box and whisker plots of sea ice compactness, C, the ratio of monthly pan-Arctic SIA/SIE. Note that this 

approach was also presented and discussed in the 2016 post-season SIO report. The results demonstrate interesting 

similarities and differences between the two algorithms. The Bootstrap values of C are consistently higher than NASA 

Team, but the seasonal cycle is slightly damped. This was expected considering the low concentration bias in the NASA 30 

Team data, especially in summer. As noted earlier, the passive microwave sensor is sensitive to surface melt (although less 

so for the Bootstrap data) so the June-August data should be considered with caution. Both datasets show record low C in 

September, but unexceptional behavior in January to July, and low C in August. Both also show record low C (although not 
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as extreme as September) in November and December. The wide spread in the NASA Team C values in June may be due to 

the more significant inclusion of melt ponds in the concentration data (e.g. Kern et al., 2016) which peak in coverage 

through June. The extreme record low C index in September 2016 highlights the anomalous behavior of the ice pack in the 

summer of 2016, which we explore in more detail in the following sections. As discussed in the SIO, if the September 2016 

Arctic ice pack had a more average C index, the observed September SIE could have been around 0.5 million km2 lower, 5 

although still not low enough to set a new record low. 

4.2 Budget analysis 

Here we present and discuss the observed monthly sea ice concentration anomalies and concentration budgets, to explore the 

regional drivers of the monthly 2016 Arctic sea ice states.  

4.2.1 Ice concentration and intensification 10 

Figure 5 shows the monthly 2016 ice intensification, !A/!t, estimates, with the ice intensification anomalies shown in 

Figure 6. Note that we show only the results produced using the Bootstrap SIC data for simplicity, but provide maps of the 

raw and anomaly ice intensification estimates produced using the NASA Team data in Figure S4 and S5. Note how the 

NASA Team intensification maps show more variability within the ice pack, especially in summer, which we believe may be 

influenced significantly by the changing surface conditions, hence our choice to focus more on the Bootstrap results. In 15 

general, the seasonal variability in ice intensification is broadly in-line with the results shown in HK2016 (their Figure 4 

shows 2003-2010 seasonal means), including mostly negative intensification in May-July, and positive intensification, in the 

peripheral Arctic seas, in November-January. The monthly maps across the entire year presented here provide further insight 

into the spatial variability of ice intensification (the summer of 2007 is also presented monthly in HK2016).  

As presented earlier, the monthly 2016 SIC maps are shown in Figure 1, with the SIC anomalies (compared to the 2000-20 

2015 mean) shown in Figure 2. Note that Figure 2, 5 and 6 also include the location of the monthly 2016 sea ice edge, 

calculated using the 0.15 SIC contour. We discuss the results below by season and focus primarily on the anomaly maps 

(Figures 2 and 6). 

Winter (January-March): The winter SIC anomalies (Figure 2) show a bimodal pattern of negative anomalies in the Barents, 

Kara and Bering seas, which drove the record low winter SIE/SIA, and positive anomalies in the Labrador Sea and the Sea 25 

of Okhotsk (in February and March). These latter regions appear to have prevented the SIE from reaching even lower record 

values in winter 2016. As discussed in Boisvert et al., (2016), an extreme winter cyclone caused significant sea ice declines 

in the Barents and Kara seas at the start of 2016, followed by a slower increase in SIC through the middle/end of January 

(see their Figure 6a). This low SIC state in the Barents and Kara seas persisted through the winter season. The pattern of 

intensification anomalies (Figure 6) are more variable, and primarily highlight regions adjacent to the ice edge that 30 
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experienced strong increases/decreases in SIC due to the anomalous location of the ice edge during that month. For example, 

while the Bering Sea shows negative SIC anomalies through winter, the intensification (and anomaly) is positive in some 

regions south of the ice edge in March, as the ice advance occurred later than usual in this region. In January we see small 

regions of moderate and positive intensification anomalies in the Barents and Kara seas and the Sea of Okhotsk. The positive 

(negative) intensification anomaly in the Sea of Okhotsk, and to a lesser extent in the Labrador Sea, in January/February 5 

(March) correspond with delayed freeze-up in these more southerly Arctic regions.  

Spring (April-June): The April SIC anomaly results (Figure 2) show a similar spatial patterns of SIC anomalies to winter, 

including persistence of the low SIC state in the Barents and Kara seas. The negative SIC anomaly in the Sea of Okhotsk 

persisted until April, while the Labrador Sea SIC anomaly extended westward into Baffin Bay and Hudson Bay. The Bering 

Sea shows negative (positive) intensification anomalies (Figure 6) in April (May), due to the earlier ice retreat in the region. 10 

The strongest SIC anomalies are observed in the southeastern Beaufort Sea in May and June, which are associated with 

negative intensification anomalies in April, followed by positive intensification anomalies in June (the SIC cannot decline 

any further). Some positive intensification anomalies are present within the Central Arctic, north of the ice edge, 

highlighting some regions where the loss of SIC was slower than normal. Note that we explore the regional melt onset in 

more detail later (Section 4.4). 15 

Summer (July-September): The summer SIC anomaly results (Figure 2) feature interesting spatial patterns of SIC anomalies 

within the central Arctic Ocean, including positive (negative) SIC anomalies in the Laptev and Chukchi (Beaufort and East 

Siberian) seas. The intensification anomalies (Figure 6) instead feature a bimodal temporal pattern of positive (negative) 

intensification anomalies in the Eastern (Western) Central Artic in August (September). The strong positive anomaly in the 

eastern central Arctic appears to have contributed significantly to the lack of a record low 2016 September SIE/SIA. Indeed 20 

a rapid increase in SIC following the daily minimum SIE (recorded on September 10th) was highlighted at the time by the 

NSIDC (http://nsidc.org/arcticseaicenews/2016/10/). It appears that the negative intensification anomalies in August were 

not strong enough to increase SSTs sufficiently to prevent the relatively rapid recovery of the ice pack in this region through 

September. We explore the SST response in Section 4.3.  

Autumn (October-December): The autumn SIC anomaly results (Figure 2)ies are mainly negative, but include some small 25 

regions of positive SIC anomalies in the Laptev Sea (in October) and the Labrador Sea and the Sea of Okhotsk (in 

December). It is interesting to note the similarity in the January and December SIC and anomaly maps (the year started and 

ended in a similar state). The intensification anomalies (and raw fields) through autumn (and also September) appear to be 

generally stronger than in the other seasons. The negative intensification anomalies in October throughout the peripheral 

Arctic seas highlight the delayed October refreeze of the Arctic Ocean in 2016 (we present and discuss freeze onset in the 30 

following section). The negative October intensification anomalies are followed by positive intensification anomalies in 

November, as the sea ice refreeze began later than expected in the Beaufort, Chukchi, East Siberian and southern Kara seas. 
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In December, the lack of refreeze in the Bering and Barents seas are associated with negative intensification anomalies in 

this region, and the significant areas of low SIC ice that remained at the end of the year (Figure 1), contributing to the record 

low SIA index discussed in the previous section. 

We also analyzed anomaly fields prior to 2016, to assess when the SIC anomalies appeared. Maps of the SIC and SST 

anomalies for September to December 2015 are shown in Figure S6. The SIC anomaly maps show that the Barents Sea SIC 5 

anomalies appeared as early as October 2015 and persisted into, and through, 2016. The negative (Sea of Okhotsk) 

anomalies appeared in December 2015, while the positive (Labrador Sea) anomalies appeared in November and persisted 

through December.  

4.2.1 Flux divergence 

An additional driver of the 2016 SIC anomalies is from ice dynamics - the combination of ice divergence/converge and 10 

advection (ice drift combined with spatial gradients in SIC). Figure 7 shows the monthly 2016 ice flux divergence, 

∇. !! A , anomalies. Note that negative values of the flux divergence correspond to 'dynamical' ice loss, and vice versa. 

The winter results show a combination of positive and negative flux divergence anomalies, including some anomalous 

dynamical ice loss in Hudson Bay (in January) and the southeastern Beaufort Sea and Kara Sea (in February), but anomalous 

dynamical ice gain in the seas north of Svalbard (in February and March). Some anomalous dynamical ice loss is indicated 15 

in the southeastern Beaufort Sea in April, potentially helping precondition the region for the strong SIC declines observed in 

May and June. The timing of ice retreat in this region is thought to be increasingly important in controlling the total ice loss 

through summer (e.g. Steele et al., 2015). The maps of ice drift (Figure 1) show this was associated with a strong Beaufort 

Gyre ice circulation, which has been strengthening over recent decades (Petty et al., 2016). No obvious spatial patterns are 

observed in the May-June maps; however the flux divergence anomalies appear stronger in August onwards. The summer 20 

results show a similar (albeit less obvious) bimodal pattern of anomalous dynamical ice loss (gain) in August (September) in 

the central Arctic. The strongest anomalies are observed in October, including strong anomalous dynamical ice gain along 

the Siberian coastline and an associated (but weaker) dynamical ice loss in the northern Beaufort/Chukchi seas. This 

dynamical ice loss from the Beaufort/Chukchi seas appears to have helped drive the record low October SIE as the 

corresponding SIC gains along the Siberian coastline due to this drift circulation could not increase the extent of the sea ice 25 

pack. November and December show in general more regions of anomalous dynamical ice gain than loss, meaning ice 

dynamics are not thought to have been a significant contributor to the record low late autumn sea ice states. 

4.3 The melt season and sea surface temperatures 

Figures 8 and 9 show the Arctic sea ice melt onset (MO) and freeze onset (FO) respectively, from 2000-2016 for four 

different Arctic regions (data described in Section 2, region maps shown in Figure S2). The MO and FO are presented as 30 

anomalies relative to the 2000-2016 mean. Note that Figure 8 shows the MO data from both the NASA PMW and AHRA 
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MO products. In general there is good agreement in the interannual variability between the two MO products, including a 

general trend towards earlier MO throughout the 2000-2016 period. While differences between the AHRA and PMW MO 

are expected (the PMW data used indicate the start of continuous sea ice melt, while the AHRA is capturing the early MO 

period), both MO estimates show positive anomalies (indicating earlier MO) in our four Arctic regions in 2016. Note that as 

we include open water in our calculations (set to a constant of day 61, the earliest MO date) the sensitivity of these regional 5 

means to the coverage of open water is likely to be significant. We decided on this approach, as opposed to simply masking 

the open water, as we wanted to include open water in our calculations to give a more consistent metric of sea ice melt. 

While the interannual variability in the North Atlantic MO anomaly is small, due in part to the low coverage of sea ice in this 

region relative to open water, we do observe an anomalously early MO date in the region in 2016 in both the PMW and 

AHRA data. The AHRA data also indicate an anomalously early 2016 MO date in the Alaskan (Bering, Beaufort, Chukchi 10 

seas) region, although both MO products show that the 2016 Alaskan MO date continues the trend of early MO dates set in 

2014 and 2015. 

The 2016 PMW FO anomalies (Figure 9) show higher interannual variability than the MO data (note the different scales on 

the y-axes). The 2016 results show record late dates in the Central Arctic, North Atlantic and especially the Alaskan regions. 

The Alaskan FO is around 10 days later than the next record high FO, which was set in 2007. The Eastern Arctic FO 2016 15 

anomalies are similar to the highs indicated in 2007, 2011 and 2012, with these results pointing more towards a step-change 

in FO since 2007 (albeit with the potential for earlier FO to return, as indicated in 2013). 

In Figure 10 we show monthly maps of the NOAA SST data, to briefly highlight and explore the link between the 2016 sea 

ice cover, SSTs and MO/FO. In general the SSTs are ~2-3 oC warmer in the North Atlantic and Barents sea regions from 

January onwards. SST anomalies persist throughout the year in the Barents Sea, which peak in the late spring-early autumn, 20 

including small regions of SST anomalies over 5 oC in July in the southern Barents Sea. There is a small relative decrease in 

SST in August, which may be associated with the strong cyclones that entered the Arctic during this time (discussed more in 

the following section). The Kara Sea SST anomalies appear in June and generally persist until October, although they did 

decrease to mean values in August. The SST anomalies start to appear in the southeastern Beaufort Sea in April onwards, 

when we observed the anomalous dynamical ice loss in the region. The June SST anomalies in this region are up to ~5 oC 25 

higher than the mean. The strong temperature anomalies in October and, to a lesser extent, November, in the Barents Sea and 

the Bering/southern Chukchi seas, appear to have been crucial in delaying ice freeze-up. 

As in the SIC anomaly discussion, we also assessed the SST anomalies for several months prior to 2016 (September 2015 

onwards), as shown in Figure S6. These indicate that the Barents Sea SST anomalies appeared as early as September 2015 

and persisted through until 2016. However, these anomalies were not as strong as the September-December SST anomalies 30 

observed in 2016. 

4.4 The summer Arctic cyclones of 2016 
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The previous sections highlighted the summer (August and September) as a particularly interesting time period in the 2016 

Arctic sea ice annual cycle. As discussed by the NSIDC (http://nsidc.org/arcticseaicenews/2016/09/arctic-sea-ice-nears-its-

minimum-extent-for-the-year/) and a more detailed study by Yamagami et al., (2017), August 2016 featured two cyclones 

that entered the Arctic Ocean. The first cyclone was fed by anomalously warm and moist air over the Barents Sea and warm 

air over northwestern Siberia. The cyclone's central pressure dropped to 968 hPa on August 16th, while on August 22nd, a 5 

second storm moved into the central Arctic Ocean along a similar track, and on August 23rd, attained a central pressure of 

970 hPa. Note that the total SIE decline during August 2016 was 2.34 x 106 km2 (based on NASA Team data). The storm 

resulted in strong winds in excess of 22 m/s and waves as high as 4 meters along the ice edge in the East Siberian Sea. 

Waves from strong cyclones act to break up the ice cover and mix SSTs with warmer water below and thus have the 

potential to enhance basal and lateral ice melt (e.g. Zhang et al., 2013, Kohout et al., 2014, Kohout et al., 2016, Montiel and 10 

Squire 2017). The sea level pressure, near-surface winds, near-surface air temperature and temperature anomalies during the 

peak of this storm period using NASA's MERRA-2 reanalysis data are shown in Figure 110. 

It is interesting to compare the impact of these cyclones to "The Great Arctic Cyclone of August 2012" (Simmonds and 

Rudeva, 2012). The sea level pressure, near-surface winds, air temperature and temperature anomaly during the peak of this 

storm are also shown in Figure 110. The 2012 cyclone entered the Arctic Ocean from Siberia in August 6th, and traveled into 15 

the Chukchi Sea. The central pressure dropped to 966 hPa, the lowest recorded during the satellite data record (Simmonds 

and Rudeva, 2012), and remained below 1000 hPa for 10 days. While cyclones are generally associated with cooler 

temperatures and ice divergence, the ice extent dropped by 2.72 x 106 km2 during August 2012 (compared to 2.34 x 106 km 

in 2016), leading to a new record low for the month of September at 3.62 x 106 km2  (Parkinson and Comiso 2013). This was 

the largest amount of ice lost during the month of August since at least 1979, higher than the observed ice loss in August 20 

2016. While a new record low would have likely occurred regardless of the storm (Zhang et al. 2013), the timing of the 

storm (in August rather than in June) and relatively thin ice, resulted in fast removal of ice by increased mixing in the 

oceanic boundary layer and advection of ice into warmer waters (Zhang et al., 2013).  

In contrast to the 2012 August cyclone, which had its main centre of action in the Chukchi Sea, the cyclones in 2016 were 

located at the boundary between relatively thick ice north of the Canadian Archipelago and thinner ice in the East Siberian 25 

Sea, which may also have reduced their impact. The MERRA-2 data shown in Figure 11 suggests the 2012 storm centre 

experienced near surface air temperatures ~2 oC warmer than the 2000-2016 mean, whereas the 2016 storm centre 

experienced temperatures ~2 oC cooler, which could also have contributed to the decreased ice loss in 2016. Such weather 

events are unpredictable on seasonal time scales and will thus always provide some limit to the skill and accuracy of summer 

Arctic sea ice forecasts, as we discuss later. Understanding their potential impact, however, could help us understand how 30 

big this barrier might be, and if it could change in the future. 

4.5 Implications for Arctic sea ice forecasting 

As discussed in Petty et al., (2017), the unconsolidated summer 2016 ice cover posed a challenge for those forecasting Arctic 
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September SIE. Indeed while the forecasts presented in Petty et al., (2017) performed especially well over the last several 

years, the three forecast models utilized in that study (using SIC, MO and simulated melt pond coverage data, see Petty et 

al., 2017 for more details) all failed to accurately forecast the 2016 September Arctic SIE. Similar to 2012, the median July 

SIO forecast of September SIE July SIO median forecast for the 2012 September SIE waswas biased high. 

Here we briefly explore the potential improvements in forecast skill from forecasting September Arctic SIA, as opposed to 5 

SIE, considering the anomalously low compactness of the summer 2016 sea ice cover. We show only the SIC derived 

forecasts, as these produced the most skilful June (seasonal time-scale) forecasts of September SIE, especially when judged 

over recent years (since 2008). As discussed above, we use our own index of September SIA by filling in the variable pole 

hole, which have been used in these updated forecasts (we use the NASA Team data here). Again it is worth noting that for a 

more thorough longer-term assessment, more sophisticated methods may be more appropriate, e.g. interpolating SIC data 10 

across the pole hole (Strong and Golden, 2016). 

The SIC derived forecasts of September SIE and SIA are shown in Figure 12. The SIA forecast skill assessed for the 2008-

2016 forecasts is higher (S=0.64) than the SIE forecast skill (S=0.56), which is largely, but not fully, driven by the improved 

accuracy of the September 2016 SIA forecast. This simple comparison suggests that forecasts of September Arctic SIA 

could be more skilful than forecasts of SIE, especially in years that experience a more unconsolidated (lower compactness) 15 

summer ice cover, as in 2016. Put another way, this suggests it might be easier to predict how much ice there is, compared to 

the distribution/consolidation of the ice pack, as the latter is controlled more by unpredictable summer weather events. We 

hope to explore this more in future work, especially as we move towards stakeholder focussed forecasts of Arctic sea ice 

(e.g. specific regions) and also months other than September. 

Summary 20 

In this study we explored the 2016 Arctic sea ice cover in terms of its monthly SIE and area (SIA), placing this in context of 

the sea ice conditions observed since 2000. We sought to highlight if and when monthly record low sea ice states were 

observed in 2016, and the processes that contributed to this seasonal variability. The monthly 2016 SIE estimates used in the 

study were produced using two widely used daily sea ice concentration (SIC) datasets, the NASA Team and Bootstrap 

datasets, which resulted in differences in monthly SIE of around 0.2 to 0.5 million km2, with Bootstrap consistently higher 25 

than NASA Team, as expected. The monthly Bootstrap SIA estimates, calculated in this study using the daily SIC data and 

filling the pole hole, showed even higher differences (Bootstrap estimates ~0.5 to 1.5 million km2 higher). In general, fewer 

monthly record lows were observed in 2016 when using the Bootstrap SIC data, especially in the early winter months. We 

also demonstrated that calculating monthly SIE/SIA from the monthly average of daily SIE or SIA estimates, instead of 

using monthly SIC data has a significant impact, of similar magnitude to the algorithm difference (differences in SIE of up 30 

to 0.5 million km2), which also had a significant impact on the 2016 rankings (less records in 2016 in the Bootstrap data). 

Despite these differences, no combination of SIC data product or averaging methodology resulted in a record low SIE or SIA 
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in July, August or September of 2016.  

 

We also used the monthly SIA estimates to analyse the relative 'compactness' of the Arctic sea ice cover, the ratio of sea ice 

area over extent, highlighting anomalously/record low ice compactness in the summer of 2016, which helped contribute to 

the higher than forecast September SIE (from Petty et al., 2017 and the forecasts summarized in the 2016 Sea Ice Outlook). 5 

Two cyclones that entered the Arctic Ocean during August appear to have contributed to the low SIC/compactness sea ice 

cover, but were not sufficient to cause more significant melt out and a new record low September SIE. A combination of 

colder temperatures and differences in storm track compared to the summer 2012 Arctic cyclone appear to have reduced the 

resultant ice loss. The implicit detection/inclusion of surface melt in the passive microwave data make the summer SIC 

estimates uncertain, however, especially for the NASA Team data. While the SIE/SIA indices provide a useful tool for 10 

indicating the state of the Arctic sea ice system, care must be taken when considering what these indices mean, and how they 

are calculated. We highlight the conversion of SIC to SIE/SIA as arguably an overlooked issue, to-date, and something 

worth considering as the NSIDC transitions towards this new averaging methodology. Sea ice area, although a more 

uncertain variable, may offer potential benefits for those interested in producing accurate sea ice forecasts.  

 15 

A concentration budget analysis was used to explore the regions and processes (thermodynamics/dynamics) contributing to, 

and indeed responding to the monthly 2016 sea ice conditions. In winter, the low to record low sea ice states were driven by 

low SIC in the Barents, Kara and Bering seas, with the ice intensification anomalies highlighting regions contributing to and 

responding to the anomalous location of the sea ice edge. SIC anomaly maps show that the Barents Sea SIC anomalies 

appeared as early as October 2015 and persisted into, and through, 2016, contributing to the record early melt onset in the 20 

North Atlantic sector of the Arctic Ocean. Strong negative SIC and intensification anomalies, and positive flux divergence 

anomalies, appeared in the southwestern Beaufort Sea in spring. Summer featured interesting bimodal patterns of SIC and 

intensification anomalies, with the strong positive intensification anomaly in the eastern central Arctic through September 

contributing to the lack of a record low 2016 September SIE/SIA. Freeze onset data show record late 2016 freeze up in the 

Central Arctic, North Atlantic and Alaskan Arctic region in particular, associated with strong sea surface temperature 25 

anomalies that appeared shortly after the 2016 minimum (October onwards), contributing to the return of record low 

SIE/SIA through the end of 2016.  

 

The relative role of preconditioning, seasonal atmospheric/ocean forcing, and storm activity in determining the evolution of 

the Arctic sea ice cover is still highly uncertain, and worthy of more attention as we look to increase our ability to predict 30 

and understand the future evolution of the Arctic sea ice pack. 
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Code availability 

After completion of peer review we will be including a link to the Python scripts used to generate the sea ice indices and 

concentration budgets presented in the this study.  

 

Data availability 5 

The sea ice concentration data are made available through the NSIDC, including the 2000-2016 NASA Team 

(http://nsidc.org/data/nsidc-0051) and 2000-2015 Bootstrap 

(http://nsidc.org/data/docs/daac/nsidc0079_bootstrap_seaice.gd.html) data. The 2016 Bootstrap data were provided by J. 

Comiso and will be archived at the NSIDC. The NSIDC Sea Ice Index can be accessed at 

https://nsidc.org/data/seaice_index/. The PMW Melt Onset data are available through NASA’s Cryospheric Sciences 10 

homepage (http://neptune.gsfc.nasa.gov/csb/index.php?section=54), while the AHRA Melt Onset data are made available 

through the NSIDC (http://nsidc.org/data/docs/daac/nsidc0105_arctic_snowmelt_onset_dates.gd.html). The KIMURA drift 

data are available by N. Kimura on request. The sea ice indices and concentration budgets will be made available by the 

author after completion of peer review. 
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Table 1: Monthly 2016 Arctic sea ice extent (SIE) and sea ice area (SIA) calculated using the NASA Team and Bootstrap 
sea ice concentration data, along with the SIE/SIA given by the NSIDC Sea Ice Index (v2.1). The bottom rows (daily data) 
show the values calculated using monthly means of daily SIE/SIA values. Values in bold indicate a new record low. 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

SIE             

Bootstrap 13.83 14.52 14.77 13.95 12.28 10.88 8.71 6.13 5.26 6.91 9.48 12.51 

NASA Team 13.63 14.32 14.52 13.82 12.07 10.60 8.12 5.59 4.71 6.44 9.07 12.08 

NSIDC (NASA Team) 13.64 14.32 14.53 13.83 12.08 10.60 8.13 5.60 4.72 6.45 9.08 12.09 

SIE (daily means)             

Bootstrap 13.62 14.38 14.59 13.72 11.97 10.62 8.28 5.77 4.95 6.39 9.02 11.88 

NASA Team 13.46 14.20 14.39 13.68 11.89 10.34 7.89 5.38 4.48 6.03 8.63 11.46 

SIA             

Bootstrap 12.68 13.35 13.35 12.68 10.89 9.11 6.75 4.39 3.96 5.59 8.15 10.76 

NASA Team 11.70 12.31 12.51 11.92 10.16 8.11 5.26 3.23 2.82 4.29 6.94 9.56 

NSIDC 11.68 12.29 12.48 11.89 10.14 8.09 5.24 3.21 2.81 4.27 6.92 9.54 

SIA (daily means)             

Bootstrap 12.73 13.40 13.58 12.73 10.96 9.16 6.82 4.45 4.00 5.65 8.23 10.81 

NASA Team 11.73 12.34 12.54 11.95 10.21 8.15 5.33 3.30 2.86 4.35 6.99 9.60 
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Figure 1: Monthly 2016 Arctic sea ice concentration using the Bootstrap algorithm, overlaid with the monthly mean 
KIMURA ice drift vectors (every third drift vector shown). The concentrations below 0.15 have been masked. 
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Figure 2: Monthly 2016 sea ice concentration (SIC) anomalies, relative to the 2000-2015 mean, using the Bootstrap 
algorithm. Note that the SIC data north of 86.5 oN is masked due to the pole hole present prior to 2008. The black contour 
indicates the monthly 2016 sea ice edge using a 0.15 SIC contour. 
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Figure 3: Box and whisker plots of observed monthly sea ice extent (SIE) for the period 2000-2015 calculated using the 5 

NASA Team (top), and Bootstrap (bottom) sea ice concentration data. The magenta crosses and the number above the 

brackets (in million km2) denote the monthly 2016 SIE, while the number in brackets gives the rank of the 2016 SIE across 

the 2000-2016 period (1 = a record low in 2016).  
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Figure 4: Arctic sea ice compactness from 2000 to 2015, calculated as the monthly Arctic sea ice area (SIA) over sea ice 

extent (SIE), using the NASA Team (top) and Bootstrap (bottom) data. The magenta crosses and the number above the 10 

brackets denote the monthly 2016 SIA/SIE, while the number in brackets gives the rank of the 2016 compactness across the 

2000-2016 period (1 = a record low in 2016).  
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Figure 5: Monthly 2016 Arctic sea ice intensification estimates, calculated using the daily Bootstrap sea ice concentration 
data. Positive values (red) denote ice gain in a given grid cell. The units are concentration per month. The magenta contour 
indicates the monthly 2016 sea ice edge (0.15 ice concentration contour).  
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Figure 6: Monthly 2016 sea ice intensification anomalies, relative to the 2000-2015 mean, calculated using the daily 
Bootstrap sea ice concentration data. Positive values (red) denote more ice gain in a given grid-cell compared to the mean. 
The units are concentration per month. The black contour indicates the monthly 2016 sea ice edge (0.15 ice concentration 
contour). 5 
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Figure 7: Monthly 2016 flux divergence anomalies, relative to the 2003-2015 mean, calculated using the daily Bootstrap sea 
ice concentration data and Kimura drift data. Positive values (red) denote more ice gain in a given grid-cell compared to the 
mean. The units are concentration per month. The black contour indicates the monthly 2016 sea ice edge (0.15 ice 
concentration contour).  5 
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Figure 8:  Melt onset (MO) date for four different Arctic regions using the NASA PMW late MO data and the AHRA MO 

estimates. All data are presented as anomalies relative to the 2000-2016 mean, with a positive (negative) value and red (blue) 

bars indicating an earlier (later) MO date. The regions (top to bottom) include the: Central Arctic (CA); North Atlantic (NA); 

Eastern Arctic (EA) and Alaskan (AL), regions, shown in Figure S2. 
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Figure 9: Freeze onset date for four different Arctic regions using the NASA PMW late freeze onset estimates. All data are 

presented as anomalies relative to the 2000-2016 mean, with a positive (negative) value and red (blue) bars indicating a later 

(earlier) FO date. The regions (top to bottom) include the: Central Arctic (CA); North Atlantic (NA); Eastern Arctic (EA),  

and Alaskan (AL), regions, shown in Figure S2.  5 
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Figure 10: Monthly 2016 sea surface temperature (SST) anomalies (relative to the 2000-2015 mean) from NOAA's OISST 
dataset. 2016 raw SST shown in Figure S3. Add in SIE line (magenta). The black contour indicates the monthly 2016 sea ice 
edge (15% concentration contour). 
 5 
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Figure 11: Sea level pressure (left), near-surface air temperature (middle) and near-surface air temperature anomaly relative 

to the 2000-2016 mean (right) for the peak summer Arctic storm time periods in 2012 (top, Aug 6th) and 2016 (bottom, Aug 

16th) from NASA's MERRA-2 reanalysis. The black vectors show the 10 m winds. 5 
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Figure 12: Forecasts of monthly sea ice extent (SIE, left) and sea ice area (SIA, right), generated using pan-Arctic NASA 

Team ice concentration data in June, following the spatial weighting forecast methodology described in Petty et al., (2017). 

The bottom panels show the anomalies relative to linear trend persistence. The skill value S = 1 −  (!!"##! /!!"#$! ), where 

!!"## (!!"##) is the root mean squared error of the linear trend persistence anomaly (forecast anomaly), calculated from 2000 5 

to 2016. Note that the vertical lines indicate a one standard deviation confidence interval of the given forecast.  
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