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Reviewer	#2	
	
We	thank	the	Reviewer	for	the	second	evaluation	of	our	manuscript.	
		
(1)	Page	5,	Line	14-17:	Regarding	the	assigned	value	of	sea	ice	concentration	data.	I	don’t	
really	understand	the	argument	used	to	justify	your	50%	sea	ice	concentration	data	error	
when	you	say	that	you	‘verified	the	sensitivity’	of	your	results	by	comparing	the	‘results	of	
the	sea	ice	assimilation’	between	constant	50%	errors	and	spatially	and	temporally-varying	
errors	(from	OSI-SAF?).	If	sea	ice	concentration	misfits	were	the	dominant	(or	only)	term	in	
the	cost	function	then	you	could	probably	even	use	much	higher	concentration	errors	and	
end	up	with	similar	reductions	of	the	cost	function.	So	that	exercise	wouldn’t	verify	the	
correctness	of	the	SIC	prior	error.	A	key	aspect	of	the	sea	ice	concentration	prior	error	that	
seems	to	be	missing	in	this	paper	is	that	the	prior	errors	assigned	to	the	data	are	central	for	
determining	whether	your	final	state	estimate	is	consistent	with	the	data.	The	statistics	of	
the	distribution	of	the	model-data	misfits	of	the	state	estimate	should	be	consistent	with	
the	prior	data	error	statistics,	if	they	aren’t	then	one	needs	to	offer	explanations.	
	
When	you	use	a	50%	SIC	error	you	are	essentially	saying	that	you	would	accept	a	
distribution	of	SIC	model-data	misfits	with	a	standard	deviation	of	0.5.	Now,	you	might	
have	a	good	argument	for	why	you	think	your	particular	model	would	not	be	able	to	do	
better	than	that,	but	I	don’t	see	any	such	argument.	I	think	a	0.5	error	is	very	large	if	you	
consider	all	nonzero	SIC	points	because	so	much	of	the	Arctic	has	SIC	near	1	for	so	much	of	
the	year.	In	winter	in	the	central	Arctic,	both	model	and	data	are	going	to	be	so	close	that	
the	RMSE	errors	are	going	to	be	very	low,	probably	much	lower	than	0.5.	Also,	as	far	as	I	
can	tell	there	is	no	comparison	of	the	SIC	prior	errors	and	the	model-data	residual	statistics	
before	and	after	the	optimization.	
	
Our	 argument	 was	 not	 that	 the	 50%	 error	 is	 correct,	 but	 that	 the	 size	 of	 the	 error	 is	
unimportant	for	the	result,	at	least	for	the	tested	range	of	errors.	This	does	not	necessarily	
hold	 for	much	 larger	 errors;	 at	 some	 point	 the	 error	will	matter	 because	 ocean	 data	will	
become	the	dominant	factor	in	the	cost	function.	
	
There	are	two	roles	of	the	error:	one	is	consistency,	the	other	the	dependency	of	the	result	
on	 the	error.	Typically,	 the	 latter	 is	 less	 critical	because	 results	of	 variational	methods	are	
known	to	be	relatively	 robust	against	changes	 in	errors.	This	 is	what	we	have	verified.	For	
the	discussion	of	the	results,	the	best	error	estimates	should	be	taken	into	account.	It	is	not	
so	relevant	whether	the	prior	would	have	been	consistent	with	the	data	given	a	50%	error.		
Relevant	 is	 instead	 if	 the	 final	RMS	agrees	with	the	available	error	estimate.	But	we	agree	
that	this	is	a	valuable	piece	of	information,	not	only	for	those	that	use	the	synthesis	product	
but	also	for	those	that	generate	the	data.	
	
We	add	the	following	paragraph	to	the	text:	
	
“In	order	to	test	the	consistency	of	the	estimate	with	the	observations	and	the	uncertainties	
we	 compare	 the	 spatial	 distribution	 of	 monthly	 mean	 sea	 ice	 concentration	 absolute	
differences	before	and	after	data	assimilation	to	the	maps	of	spatial	distribution	of	monthly	
mean	total	standard	error	in	the	ESA	SICCI	sea	ice	concentration	product	([ESA	SICCI	,	2013]).	
The	 latter	 provide	 daily	 spatially	 varying	 estimates	 of	 sea	 ice	 concentration	 errors.	 The	
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absolute	differences	after	assimilation	correspond	well	to	the	total	standard	error	spatially	
and	by	value	with	only	 few	spots	along	the	edges	with	very	high	absolute	differences	 (not	
shown).”	
	
We	show	an	example	of	such	a	comparison	for	September	2005	in	the	figure	below	only	in	
the	response	to	Reviewers.		
	

	
Fig.	 1	 Absolute	 differences	 of	 monthly	 mean	 sea	 ice	 concentration	 between	 model	 and	
observations	 before	 (iteration	 0)	 and	 after	 data	 assimilation	 (iteration	 3).	 Also	 shown	 are	
mean	 total	 standard	 error	 of	 the	 ESA-SICCI	 Sea-Ice	 product	 (https://icdc.cen.uni-
hamburg.de/1/projekte/esa-cci-sea-ice-ecv0.html).	
	
You	should	probably	show	a	distribution	of	the	SIC	residuals	before	and	after	the	
optimization	and	compare	the	standard	deviations	of	those	residuals	against	each	other	and	
against	the	prior	error.	With	the	0.5	value	that	you	assumed,	you	may	find	that	you	have	
formally	achieved	consistency	with	the	data	at	iteration	0,	or	you	may	find	that	you	achieve	
it	after	your	iterations,	or	you	may	find	that	you	have	not	achieved	it.	The	RMSE	tables	
offered	are	not	sufficient	because	according	to	the	text	they	include	‘every	grid	location’,	
which	would	include	points	where	SIC	in	both	the	model	and	the	data	are	always	both	0.	
	
I	suggest	that	for	each	day	separately	you	include	only	those	points	where	the	model	OR	
the	data	have	nonzero	sea	ice.	If,	before	the	assimilation,	the	model-data	residuals	RMSE	
each	day	are	<	0.5	then	you	are	already	formally	within	your	data	prior	errors	and	there	is	
no	apparent	need	to	do	data	assimilation.	If	SIC	model-data	residual	RMSEs	are	higher	than	
0.5	at	iteration	0	then	you	have	to	determine	how	close	to	0.5	they	get	after	the	
assimilation.	That’s	the	point	of	the	SIC	prior	error	that	is	missing	here.	The	SIC	prior	error	
defines	a	target	for	the	model-data	residuals	that	the	state	estimate	is	trying	to	achieve.	
	
The	RMSE	tables	contain	sums	of	absolute	differences	for	every	grid	point	and	every	month.	
Since	 it	 is	 a	 sum,	 there	 is	 no	artificial	 decrease	 in	 the	RMSE	happening,	 as	 implied	by	 the	
Reviewer,	 due	 to	 the	 fact	 that	 when	 both	model	 and	 data	 are	 zero	 there	 is	 no	 value	 to	
participate	 in	 the	 sum.	 It	 turns	 out	 that	 the	 term	 RMSE	 used	 in	 this	 context	 is	 confusing	
(since	 actually	 there	 is	 no	 mean	 involved)	 and	 we	 have	 renamed	 RMSE	 to	 the	 “sum	 of	
absolute	differences	(SoAD)”	throughout	the	text.	
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(2)	 Page	 5	 line	 22:	 The	 1%	 criteria	 that	 you	 used	 to	 stop	 iterating	 is	 not	 indicative	 of	
modeldata	 consistency,	 it’s	 indicative	 of	 a	 slowdown	 of	 the	 cost	 function	 reduction.	 Since	
only	 a	 few	 years	 were	 considered,	 please	mention	 then	 number	 of	 iterations	 required	 for	
each	 year	 to	 get	 to	 the	 1%	 threshold	 as	 that	 information	 might	 be	 useful	 for	 future	
researchers.	
	
We	added	the	following	text:	
“(it	is	3	iterations	for	2000,	2003,	2004,	2005,	2006	and	2007,	4	iterations	for	2002	and	2008	
and	5	iterations	for	2001)”	
	
You	should	also	probably	show	the	goodness	of	fit	of	your	estimated	state	before	and	after	
the	data	assimilation	compare	with	the	prior	error,	especially	with	respect	to	sea	ice	
concentration	since	that	is	the	focus	of	the	paper.	See	comment	above.	
	
The	answer	to	this	point	is	provided	in	the	comment	above.		
	
Technical	Corrections	
1.	Page	4,	line	9:	should	be	‘ice-tethered	profiler’	data.	Also	include	a	reference	to	ITP	data	
here.	
	
The	references	to	Toole	et	al.	(2011)	and	Krishfield	et	al.	(2008)	were	added.	
	
2.	Page	5,	line	10:	write	out	standard	deviation	instead	of	STD.	Also,	the	standard	
deviation	of	the	NCEP	fields	over	which	time	period?	
	
The	text	was	changed	to:	
“…	standard	deviation	of	the	NCEP	fields	for	the	1948–2008	time	period…”	
	
3.	Page	7,	line	12.	You	probably	mean	‘since	a	perfect	total	SIA	or	SIE’	instead	of	‘SIC	or	
SIE’.	
	
Yes,	thank	you	for	spotting	this.	Changed	accordingly.	
	
4.	Your	doi	for	Detlef’s	2016	paper	is	still	incorrect.	It	should	be	DOI:	10.1146/annurevmarine-	
122414-034113	Remove	the	ncbi.nlm.nih.gov/pubmed	link.	
	
We	 have	 removed	 the	 PubMed	 link	 and	 the	 DOI	 has	 been	 now	 corrected	 to	 DOI:	
10.1146/annurev-marine-122414-034113.			
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Reviewer	#3	
	
We	thank	the	Reviewer	for	evaluation	of	our	manuscript.	
	
Page	3,	line	25:	change	“Paremeterization”	to	Parameterization”.	
	
Corrected.	
	
Page	4,	line	15:	
You	define	!	as	the	first	guess	initial	condition.	The	way	the	cost	function	is	written,	it	would	
seem	that	you	would	like	!	to	become	as	small	as	possible	to	reduce	the	cost	function.	I	think	
you	should	define	!	as	the	difference	between	the	first	guess	initial	condition	and	the	model	
state	at	the	beginning	of	the	assimilation	window:	!	=	"#	−	"(0),	where	"#	 is	the	first	guess	
(the	background)	of	the	model	state	at	the	beginning	of	the	assimilation	window.	It	should	
also	 be	mentioned	 that	 the	model	 states	 at	 times	 $	 >	 0	 are	 not	 control	 variables	 but	 are	
dictated	by	the	strong	constraint	"($)	=	%("(0)),	where	%	represents	the	forward	model.	
	
A	similar	comment	applies	to	the	term	with	&':	&'	is	defined	as	the	mean	atmospheric	state.	
I	don’t	believe	you	want	to	make	&'	as	small	as	possible	to	reduce	the	cost	function.	Instead,	
you	should	define	&'	as	the	difference	between	the	first	guess	mean	atmospheric	state	and	
an	optimized	version.	
	
Again,	for	the	last	term	in	equation	(1),	same	comment	applies.	
	
That	 is	 correct.	 The	 differences	 to	 the	 priors	 are	 entering	 the	 cost	 function.	 The	 text	was	
changed	accordingly:	
	
“v	 is	 the	 difference	 between	 the	 first	 guess	 initial	 condition	 and	 the	 model	 state	 at	 the	
beginning	of	the	assimilation	period	(only	for	the	first	year),	um	is	the	difference	between	the	
first	guess	time	mean	atmospheric	state	and	the	optimized	mean	atmospheric	state,	ua(t)	is	
the	 difference	 between	 the	 first	 guess	 time-varying	 atmospheric	 state	 and	 the	 optimized	
time-varying	atmospheric	state.”	
	
Page	8,	line	13:	I	believe	SAT	refers	to	surface	atmospheric	temperature	but	it	has	not	been	
defined	to	this	point.	
	
We	changed	the	sentence	to:	
	
“Positive	surface	atmospheric	temperature	(SAT)	corrections…”	
	
Page	9,	 line	 10:	 Please	define	 the	 sea	 ice	 thickness	 you	are	 using.	 Is	 it	 the	 average	or	 the	
effective	ice	thickness?	The	average	sea	ice	thickness	is	defined	as	the	volume	of	ice	divided	
by	the	sea	ice	area.	The	effective	ice	thickness	is	defined	as	the	volume	of	ice	divided	by	the	
grid	cell	area.	These	2	quantities	are	related	like	this:	
	
)!*+),*	-.*	$�-./0*11	=*22*.$-!*	-.*	$�-./0*11/1*)	-.*	.40.*0$+)$-40	
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In	light	of	this,	make	sure	the	comparison	between	ICESat	ice	thickness	and	the	model	output	
is	done	appropriately.	
	
The	thickness	the	ICESat	group	provides	is	the	average	thickness.	The	nominal	model	output	
is	 an	 effective	 thickness,	 but	 we	 have	 converted	 it	 to	 the	 average	 thickness,	 so	 that	 the	
comparison	is	consistent.		
	
Page	 10,	 line	 10:	 “In	 June,	 considerable	 temperature	 differences	 cover	 a	 much	 smaller	
area…”.	Do	you	mean	smaller	than	in	September?	Please	clarify	the	sentence.	
	
We	modified	this	part	of	the	sentence,	now	reading	as	follows:	
	
“In	 June,	 considerable	 temperature	 differences	 cover	 a	 much	 smaller	 area	 compared	 to	
September”	
	
Page	11,	line	4:	I	guess	the	“forward	simulation”	here	means	the	model	run	before	the	data	
assimilation,	as	 it	 is	specified	 later	on	the	same	page	on	 line	19.	 Is	that	correct?	 If	possible	
clarify	this	in	the	text.	
	
There	 is	 a	definition	of	 “forward	 run”	 in	an	earlier	paragraph,	which	we	have	 renamed	 to	
“forward	 simulation”	 for	 consistency.	We	also	added	an	additional	explanation	 to	 the	 line	
the	Reviewer	is	referring	to,	now	the	sentence	reading:	
	
“However,	episodically,	significant	changes	can	be	observed	(for	example	in	summer	2008)	
when	modifications	in	the	throughflows	across	Fram	Strait	are	noticed,	which	are	about	60%	
larger	than	in	the	forward	simulation	without	data	assimilation.”	
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Abstract. Satellite sea ice concentrations (SIC), together with several ocean parameters, are assimilated into a regional Arctic

coupled ocean-sea ice model covering the period 2000-2008 using the adjoint method. There is substantial improvement in the

representation of the SIC spatial distribution, in particular with respect to the position of the ice edge and to the concentrations

in the central parts of the Arctic Ocean during summer months. Seasonal cycles of total Arctic sea ice area show an overall

improvement. During summer months, values of sea ice extent (SIE) integrated over the model domain become underestimated5

compared to observations, however the root-mean-square difference
✿✿✿✿✿✿✿

absolute
✿✿✿✿✿✿✿✿✿

differences
✿

of mean SIE to the data is
✿✿

are reduced

in nearly all months and years. Along with the SIC, the sea ice thickness fields also become closer to observations, providing

added-value by the assimilation. Very sparse ocean data in the Arctic, corresponding to a very small contribution to the cost

function, prevent sizable improvements of assimilated ocean variables, with the exception of the sea surface temperature.

1 Introduction10

The Arctic region is expected to experience a dramatic anthropogenic temperature increase over the years to come (IPCC,

Stocker et al. (2014)). A major decline in Arctic sea ice is already observed (Kwok and Rothrock, 2009; Comiso et al., 2008)

and climate change projections suggest that, due to rising temperatures, a complete disappearance of summer sea ice could

occur as soon as 2050 (Overland and Wang, 2013). Obtaining an improved understanding of the changing Arctic Ocean, its

transport properties of heat, freshwater as well as carbon and nutrients, and its interaction with sea ice and the overlying15

atmosphere is therefore of utmost importance.

Despite recent improvements in observing capabilities (Lee et al., 2010), the Arctic Ocean remains one of the least explored

areas of the World Ocean. This is due to the harsh environmental conditions of the region, but also due to logistical and political

difficulties in maintaining sustained Arctic-wide, ideally autonomous, ocean observations. Fortunately, many polar-orbiting

satellites obtain important ocean and sea ice parameters over the sub-Arctic region, such as sea surface height (SSH), sea surface20

temperature (SST), ocean color and sea surface salinity (SSS). However, over sea ice covered regions satellite measurements

of the ocean surface are limited. To enhance our insight into the Arctic environment a joint analysis of observational efforts is

therefore required. However, to understand large scale circulation processes in the Arctic Ocean the community will have to

rely on numerical ocean circulation models due to the continued substantial under-sampling of the Arctic under sea ice cover.
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The representation of the Arctic Ocean circulation in existing ocean models considerably improved during the last 10 years,

to the point that today many models reasonably well reproduce variability of SSH (Koldunov et al., 2014), while for the

components of the freshwater balance the picture is mixed (Jahn et al., 2012) and for circulation and water masses models

show significant discrepancies (Proshutinsky et al., 2011).5

One method to further increase the resemblance between models and available observations is data assimilation. The models

with data assimilation can be used to draw conclusions about variations in Arctic Ocean parameters on decadal scales, and to

reveal mechanisms which drive changes in Arctic circulation.

Stammer et al. (2016) described the state of ocean data assimilation in the context of climate research. As described there,

ocean data assimilation became a mature field for the ice-free ocean. However, assimilation in coupled ocean-sea ice or fully10

coupled climate models is still at its infancy and needs considerable attention. This also includes the use of sea ice parameters

to constrain coupled ocean-sea ice models and to understand the coupling between sea ice and the underlying ocean and the

atmosphere.

Chevallier et al. (2016) recently reported results from the ORA-IP inter-comparison project for Arctic sea ice parameters

using global ocean-sea ice reanalyses with and without assimilation of sea ice data. They found good agreement in the recon-15

structed concentration but a large spread in sea ice thickness due to biases related to the sea ice model components.

The approaches to the sea ice assimilation are similar to the way ocean variables are assimilated in ocean models and range

from nudging (e.g. Lindsay and Zhang (2006); Tietsche et al. (2013)) to the use of ensemble Kalman filter ( e.g. Lisæter et al.

(2003); Xie et al. (2016)). The sea ice sensitivity study of Koldunov et al. (2013) was among the first prerequisites to a full

data assimilation attempt in the Arctic with the adjoint method. The authors looked at the sensitivity of sea ice parameters20

to external atmospheric forcing parameters (see also Kauker et al. (2009)). The former study revealed the impact of spring

atmospheric temperatures on summer sea ice concentration and extent. The study of Kauker et al. (2009) underlined that wind

stress changes are important for changing summer sea ice thickness.

More recently, Fenty et al. (2015) studied the impact of assimilating sea ice concentration (and ocean) data into a global,

eddy permitting ocean circulation model using the adjoint method. In that study the circulation for the year 2004 was recon-25

structed. By comparing a setup with and without assimilation of sea ice concentration, the authors demonstrate that sea ice

concentration data reduce model misfits in the Arctic with respect to upper ocean stratification and reduces ICESat-derived

Arctic ice thickness errors.

The present study builds on the work of Fenty et al. (2015) and advances it by performing a multi-year data assimilation for

the coupled Arctic Ocean-sea ice system. To be computationally feasible, the study is based on a regional Arctic configuration,30

nested laterally into a North Atlantic-Arctic solution (Serra et al., 2010). The goal of the study is to investigate the changes

in the Arctic during the period 2000 - 2008. This period is characterized by significant changes in the Arctic Ocean and by

increased amounts of Arctic observations. This makes it a good test period for the assimilation system and can provide first

scientific applications. At the same time, the consistency of the assimilated EUMETSAT sea ice data (OSI-SAF, 2015) with

the used sea ice model is being tested, as are its impact on the estimate of the ocean circulation and unobserved ice parameters35

such as sea ice thickness.
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The remaining paper is structured as follows: after an introduction to the model configuration and the assimilation method

in Section 2, the impact of the assimilation on the sea ice concentration is discussed in Section 3. Section 4 focuses on how the

sea ice state is adjusted by changing the control variables and Section 5 summarizes the impact on the ocean state and the sea

ice thickness. Concluding remarks follow in Section 6.5

2 Methods

Our study is based on a regional configuration of the MITgcm coupled ocean-sea ice model (Marshall et al., 1997) and the

respective ECCO adjoint framework. The model set-up, the data assimilation and the optimization results are described in the

following subsections.

2.1 Model set-up10

The model domain covers the northern North Atlantic and the Arctic Ocean (Fig. 1) with the model grid being curvilinear and

a subset of the 16-km resolution Atlantic-Arctic model (ATL06) reported in (Serra et al., 2010). The model uses z-coordinates

and has 50 levels, with resolution varying from 10 meters in the top layers of the water column to 550 meters in the deep parts

of the ocean. The bathymetry is based on the ETOPO2 database (Smith, 1997) with no artificial deepening or widening of the

Nordic Seas passages being applied.15

As atmospheric forcing, the model uses the atmospheric state from the 6-hourly NCEP R1 reanalysis (Kalnay et al., 1996),

including 2-meters air temperature, precipitation rate, 2-meters specific humidity, downward shortwave radiation flux, net

shortwave radiation flux, downward longwave radiation flux, 10-meters zonal wind component and 10-meters meridional

wind component. The surface fluxes of heat, freshwater and momentum are derived via bulk formulas. At the open southern

boundary, roughly at 48◦ N in the Atlantic, results from a 60-year long integration of the ATL06 model are used. The ATL0620

was in turn forced laterally at 33◦ S by a 1◦ resolution global solution of the MITgcm forced by the same NCEP data set (see

(Serra et al., 2010) for details). At the northern boundary a barotropic net inflow of 0.9 Sv into the Arctic is prescribed at Bering

Strait, balancing the corresponding outflow through the southern boundary. An annual averaged river run-off (Fekete et al.,

1999) is applied in the North Atlantic, while seasonally varying run-off is used for the Arctic rivers.

The MITgcm offers a wide variety of modules that can simulate different aspects of the unresolved ocean physics. For the25

vertical mixing parameterization we use the K-Profile Paremeterization
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Parameterization (KPP) scheme of (Large et al., 1994).

The model is operated in a hydrostatic configuration with an implicit free surface. The sea ice component is based on a Hibler-

type (Hibler, 1979, 1980) viscous-plastic dynamic-thermodynamic sea ice model. The thermodynamic part of the model is

the so-called zero-layer formulation following Semtner (1976) with snow cover as in Zhang et al. (1998). The temperature

profile in the ice is assumed to be linear, with constant ice conductivity. Such a formulation implies that the sea ice does not30

store heat, and, as a result, the seasonal variability of sea ice is exaggerated (Semtner, 1984). To reduce this effect we use the

sub-grid scale heat flux parameterization following Hibler (1984). Moreover, we use the viscous-plastic rheology scheme of

Hibler (1979) with an extended line successive over-relaxation (LSOR) method (Zhang and Hibler, 1997). A comparison of
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the effect of different rheology schemes in MITgcm is provided by Losch et al. (2010). Recently, Nguyen et al. (2011) applied

the coupled MITgcm in a regional Arctic Ocean study and reported values for many model parameters used in our study.

2.2 Adjoint data assimilation approach

Similar to the work of Fenty et al. (2015), our assimilation also employs the ECCO adjoint methodology to bring the coupled5

sea ice-ocean general circulation model into consistency with assimilated data and prior uncertainties. The particular imple-

mentation used here builds on the set-up of the GECCO2 synthesis (Köhl, 2015) but was extended to facilitate the additional

assimilation of sea ice parameters. A complete list of parameters assimilated and their sources are presented in Table 1. The

collection of hydrographic observational data in the Arctic Ocean used in the present work is not comprehensive and does

not include, for example, ice-tethered profile data
✿✿✿✿✿✿

profiler
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Toole et al., 2011; Krishfield et al., 2008). In the present pilot10

study we decided to stick to two well-structured data sets available at the time we have started our efforts.

While using the adjoint method, an uncertainty-weighted sum of squares of model-data misfits is minimized in an iterative

fashion using the gradient of the cost function with respect to a number of control variables. The cost function J is defined as

follows:

15

J =

tf∑

t=1

[y(t)−E(t)x(t)]TR(t)−1[y(t)−E(t)x(t)]+

vTP (0)−1v+ uT

mQ−1

m um+

tf−1∑

t=0

ua(t)
TQa(t)

−1ua(t) (1)

where y(t) is a vector of assimilated data in time t, x(t) is a vector of the model state, E(t) is a matrix which maps the model

state to the assimilated data, v is a
✿✿

the
✿✿✿✿✿✿✿✿✿

difference
✿✿✿✿✿✿✿

between
✿✿✿

the
✿

first guess initial condition
✿✿✿

and
✿✿✿

the
✿✿✿✿✿

model
✿✿✿✿

state
✿✿

at
✿✿✿

the
✿✿✿✿✿✿✿✿✿

beginning

✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿

period
✿✿✿✿

(only
✿✿✿

for
✿✿✿

the
✿✿✿✿

first
✿✿✿✿✿

year), um is a
✿✿✿

the
✿✿✿✿✿✿✿✿

difference
✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿

first
✿✿✿✿✿

guess
✿✿✿✿

time
✿

mean atmospheric state20

and
✿✿

the
✿✿✿✿✿✿✿✿✿

optimized
✿✿✿✿✿

mean
✿✿✿✿✿✿✿✿✿✿

atmospheric
✿✿✿✿✿

state,
✿

ua(t) is a
✿✿✿

the
✿✿✿✿✿✿✿✿✿

difference
✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿

first
✿✿✿✿✿

guess
✿

time-varying atmospheric state

✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿

optimized
✿✿✿✿✿✿✿✿✿✿✿

time-varying
✿✿✿✿✿✿✿✿✿✿

atmospheric
✿✿✿✿✿

state. Additional weights R(t)−1, P (0)−1, Q−1
m and Qa(t)−1 control the relative

contribution of different terms in the cost function. More detailed description of the cost function and optimization procedure

can be found in Fenty et al. (2015).

The MITgcm is suitable for the automatic generation of adjoint code by the Transformation of Algorithms in FORTRAN25

(TAF) source-to-source translator (Giering and Kaminski, 1998; Giering et al., 2005). Koldunov et al. (2013) used the MITgcm

and its adjoint to perform an analysis of the Arctic-wide adjoint-based sea ice sensitivities to atmospheric forcing.

Here we use a version of the MITgcm with an improved adjoint of a thermodynamic ice model (Fenty and Heimbach, 2013a,

b). The adjoint model was modified here similarly to Köhl and Stammer (2008) to exclude KPP modules
✿✿✿✿✿✿

module
✿

and increase

diffusivity values compared to the forward run. This is done to avoid exponentially growing adjoint variables. The sea ice30

module was active in the adjoint integration, but the part of the sea ice dynamics which treats rheology was switched off,

so that the sea ice model was in a free drift configuration. This approach led to a reduced (approximate) adjoint producing
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smoother adjoint gradients. These gradients can still be successfully used to improve the large scale state of the model (see

Köhl and Willebrand (2002) and Köhl and Stammer (2008) for more details). Similar simplifications of the adjoint model were

used by Fenty et al. (2015) and Liu et al. (2012) provided an evaluation of the effect of modifications in the parameterizations

on the adjoint. They confirm mostly small changes, although regionally some patterns of the gradients may shift. Since the

gradients are only a means to find the cost function minimum and the forward code (and thus the minimum itself) is unmodified,

changes to the gradient may lead to lower performance in finding the minimum but not to different states once the minimum is5

found.

In contrast to Köhl (2015), additional control variables are optimized and the frequency of the updates is enhanced to once

per 3 days in order to reflect shorter time scales of sea ice variability. The final list of control variables is: surface (2m) air

temperature, surface (2m) specific humidity, surface (10m) zonal and meridional wind velocity, precipitation rate, downward

shortwave radiation, and initial temperature and salinity for the first year of assimilation. For the atmospheric control variables,10

uncertainties were specified as the maximum of the STD
✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

deviation
✿

of the NCEP fields
✿✿✿

for
✿✿✿✿✿✿✿✿✿

1948-2008
✿✿✿✿

time
✿✿✿✿✿

period
✿

and

the errors for the mean components of air temperature, humidity, precipitation, downward shortwave radiation and wind were

specified as 1◦ C, 0.001 kg/kg, 1.5 x 10−8 mm/s, 20 W/m2 and 2 m/s, respectively. For the downward shortwave radiation both

mean and time varying parts were set to 20 W/m2.

We employ the same uncertainty weights for hydrographic and satellite data as Köhl (2015), while for sea ice concentration15

we specify a constant error of 50%. We verified the sensitivity of our results by using space-time varying sea ice uncertainty

estimates as they became available, as well as different values of a constant error. Results of the sea ice assimilation with

variable uncertainties were very similar to the ones with a constant error value of 50%.

The data assimilation is performed in one year chunks. The use of one year segments is related to technical reasons; we are

not able to get useful sensitivities for the time period longer than a year for all years of our 2000-2008 assimilation period. We20

were successful in completing a 2-year assimilation at one occasion (2005-2004), but the results for sea ice area and thickness

were not noticeably different from the 1-year chunk assimilation.

Each of the iterative cost function reductions is performed until the cost function differs by less than 1% in two consecutive

iterations. The cost is dominated by SIC and SST data, which easily respond to the surface controls, and the adjoint method

quickly reduced the misfits of those data, so that the number of iterations was usually less than five
✿✿

(it
✿

is
✿✿

3
✿✿✿✿✿✿✿✿

iterations
✿✿✿

for
✿✿✿✿✿

2000,25

✿✿✿✿✿

2003,
✿✿✿✿✿

2004,
✿✿✿✿✿

2005,
✿✿✿✿

2006
✿✿✿✿

and
✿✿✿✿✿

2007,
✿

4
✿✿✿✿✿✿✿✿

iterations
✿✿✿

for
✿✿✿✿✿

2002
✿✿✿

and
✿✿✿✿✿

2008
✿✿✿

and
✿✿

5
✿✿✿✿✿✿✿✿

iterations
✿✿✿

for
✿✿✿✿✿

2001). After the first year assimilation,

we move to the next year using the final state of the previous year’s successful iteration as initial conditions. Therefore, the

iteration termed 0 in the following makes already use of an improved initial condition from the assimilation in the previous

year, and is thus not equivalent to a free run starting from climatology. For the impact on the ocean circulation, we consider

also the free run to demonstrate the impact of changing the initial conditions by assimilating data during the preceding year.30

Fig. 2 shows the percentage decrease in model-data differences. The red color indicates reduction in total model-data differ-

ence (FC), while other colors indicate the reduction of the differences for individual variables. Negative values mean that there

is an increase in model-data difference for that variable.
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The largest total reduction (about 16%) is obtained for the year 2008, while the smallest (about 2%) is obtained for the year

2005. The average reduction for all years is about 9%. The strongest cost reductions for individual variables is obtained for

the sea surface temperature (SST) and sea ice area (SIA), with an overall average of about 23% and 26%, respectively. The

least successful cost reduction is obtained for the mean dynamic topography (MDT), with many years in which the model-data

differences for this variable slightly increased. In 2004 the cost reduction of sea ice area was about 30%, less than that reported

by Fenty et al. (2015) (49%), which may partly be explained by differences in the first guess solution.5

Taking into account differences in the amount of sea ice concentration and sea surface temperature data compared to the

amount of hydrography data, it is not surprising that most of the contributions to the total reduction of the cost function are

from SIC and SST. Hence most of the improvements can be expected to happen in these fields, while changes in the state of

the ocean is expected to be small.

In the following we concentrate mainly on results related to changes of the sea ice conditions, with only a brief discussion10

of ocean state changes later on.

3 Sea ice concentration changes

Fig. 3 shows in the top two rows the sea ice concentration for the winter time period (March of the year 2005) from satellite

and from model runs, before and after data assimilation, together with the changes of the latter two relative to observations.

Since most of the Arctic Ocean is covered by sea ice with high concentrations, the largest improvements are in the position of15

the ice edge. Most noticeable is the decrease in the SIC along the east coast of Greenland after data assimilation. During the

initial run of the model, there is a tongue of the sea ice extending towards the open ocean. After data assimilation the tongue

did not disappear completely, however, it declined considerably.

During the summer period (September 2005), shown in the bottom two rows of Fig. 3, there are improvements both in the

sea ice edge and in the SIC of the interior sea ice field. Initially, the sea ice edge was not very far from observations, but after20

data assimilation the match between model and data is improved. The SIC in the central parts of the Arctic Ocean increased

and became closer to the satellite data. A direct comparison to the results by Fenty et al. (2015) is hindered by the fact that

differences less than 15% are blanked out in their study and by the different years analyzed.

In
✿✿✿✿

order
✿✿

to
✿✿✿✿

test
✿✿

the
✿✿✿✿✿✿✿✿✿✿

consistency
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

estimate
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

uncertainties
✿✿✿

we
✿✿✿✿✿✿✿✿

compare
✿✿

the
✿✿✿✿✿✿

spatial
✿✿✿✿✿✿✿✿✿✿

distribution

✿✿

of
✿✿✿✿✿✿✿

monthly
✿✿✿✿✿

mean
✿✿✿

sea
✿✿

ice
✿✿✿✿✿✿✿✿✿✿✿✿

concentration
✿✿✿✿✿✿✿

absolute
✿✿✿✿✿✿✿✿✿

differences
✿✿✿✿✿✿

before
✿✿✿

and
✿✿✿✿

after
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿

to
✿✿✿

the
✿✿✿✿

maps
✿✿

of
✿✿✿✿✿✿

spatial
✿✿✿✿✿✿✿✿✿✿

distribution25

✿✿

of
✿✿✿✿✿✿✿

monthly
✿✿✿✿✿

mean
✿✿✿✿

total
✿✿✿✿✿✿✿

standard
✿✿✿✿

error
✿✿

in
✿✿✿

the
✿✿✿✿✿

ESA
✿✿✿✿✿

SICCI
✿✿✿

sea
✿✿✿

ice
✿✿✿✿✿✿✿✿✿✿✿

concentration
✿✿✿✿✿✿✿

product
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

((ESA SICCI, 2013)).
✿✿✿✿

The
✿✿✿✿

latter
✿✿✿✿✿✿✿

provide

✿✿✿✿

daily
✿✿✿✿✿✿✿

spatially
✿✿✿✿✿✿✿

varying
✿✿✿✿✿✿✿✿

estimates
✿✿

of
✿✿✿✿

sea
✿✿✿

ice
✿✿✿✿✿✿✿✿✿✿✿

concentration
✿✿✿✿✿✿

errors.
✿✿✿✿

The
✿✿✿✿✿✿✿

absolute
✿✿✿✿✿✿✿✿✿✿

differences
✿✿✿✿

after
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿✿✿✿✿

correspond
✿✿✿✿

well

✿✿

to
✿✿✿

the
✿✿✿✿

total
✿✿✿✿✿✿✿

standard
✿✿✿✿

error
✿✿✿✿✿✿✿✿

spatially
✿✿✿

and
✿✿✿

by
✿✿✿✿✿

value
✿✿✿✿

with
✿✿✿✿

only
✿✿✿

few
✿✿✿✿✿

spots
✿✿✿✿✿

along
✿✿✿

the
✿✿✿✿✿

edges
✿✿✿✿

with
✿✿✿✿

very
✿✿✿✿

high
✿✿✿✿✿✿✿✿

absolute
✿✿✿✿✿✿✿✿✿

differences
✿✿✿✿

(not

✿✿✿✿✿✿

shown).

✿✿

In contrast to 2005, identifying changes in the SIC for March 2007 (Fig. 4) is more challenging. Practically all the differences30

between simulations and satellite data are along the ice edge and there seems to be not much change between the initial state

of the model and the state after assimilation. For example, the noticeable negative anomaly around Franz Joseph Land is not

6



developed further after SIC assimilation. This particular negative SIC anomaly is most probably dynamical in nature, and can

not be handled properly by the simplified ice dynamics scheme (free drift) used in the adjoint model to calculate changes of

the model parameters. The spatial distribution of SIC during September 2007 (Fig. 4) already bears a good resemblance to

the satellite data before the assimilation. Improvements are mostly visible in the central parts of the Arctic Ocean, where the

too low SIC is increased. The ice edge also became closer to observations, but the amount of sea ice in the Amerasian basin

remains larger compared to observations. In this region the SIC in the unconstrained run is high (with also thicker sea ice),5

which is not easy to remove by thermodynamic corrections of the forcing and, due to the high SIC and thickness, not easy to

move by changes in wind forcing. This possibly indicates some limitations of the approach, where the corrections mostly come

from the thermodynamic forcing and the assimilation period is short.

The seasonal cycle of sea ice area (SIA) and sea ice extent (SIE) are shown in Fig. 5, again for years 2005 and 2007.

Results for SIA for both years show that values of SIA in general are getting closer to satellite observations as a result of the10

SIC assimilation. One would expect that, close to the beginning of the assimilation period (1st of January), corrections of the

atmospheric forcing did not have enough time to considerably influence sea ice parameters. This is true for SIA in 2007, when

sizable differences between initial and last iterations only first appear in May. However, SIA in 2005 gets considerably closer

to observations already in February, indicating that atmospheric corrections actually can affect sea ice parameters relatively

fast even during winter.15

For both years, SIA shows overall improvement during the whole year; but this is not the case for the SIE. In 2005 the SIE

good match between initial iteration and satellite data during summer months disappears after assimilation, with considerable

underestimation of SIE. In 2007 there is an overall SIE improvement after the assimilation, but there are again months with

a considerable SIE underestimation. Both metrics suffer from the inability to guarantee that improvements in this metric also

lead to an overall improved match in the spatial sea ice coverage, since a perfect total SIC
✿✿✿✿

SIA or SIE evolution may still20

correspond to considerable differences to the data in their regional distribution. Chances of having SIE distribution close to

observations with quite different spatial shape of the sea ice field are very high. This calls for changing the common practice of

model evaluation by only comparing their ability to simulate present day SIE without considering the sea ice spatial distribution

(e.g. Dukhovskoy et al. (2015)).

With respect to the model performance, two better metrics are the sum of the RMS errors (RMSE
✿✿✿✿✿✿✿

absolute
✿✿✿✿✿✿✿✿✿✿

differences25

✿✿✿✿✿✿

(SoAD) for SIA and SIE, which at least to some extent consider differences in spatial distribution by penalizing positive and

negative differences at every grid point. Monthly values of the SIA RMSE
✿✿✿✿✿

SoAD
✿

before assimilation, after assimilation and

the respective differences between the two (in percent) are shown in Fig. 6. Before assimilation, largest RMSE
✿✿✿✿✿

SoAD appear

during summer months (> 2x106 km2), while in other seasons they are about 1.5x106 km2. Interesting to note, values of

RMSE
✿✿✿✿✿

SoAD
✿

in March and September are quite similar, despite the large differences in ice cover in the two months. One of30

the possible reasons is that location of the ice edge in those extreme months is relatively stable compared to spring and fall

when the ice pack is contracting and expanding. After the assimilation the most notable improvements also occur for summer

months, but with the addition of September. After the assimilation, March values show only about 10% improvement, while

September values have about 25% improvement on average. There is no clear indication that assimilation of SIC on the yearly
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basis gradually improves the simulated sea ice, due to, for instance, better initial conditions in January. For some months the

decrease in SIA RMSE
✿✿✿✿✿

SoAD
✿

after assimilation can be as little as 1%, although it is always getting smaller. The same is not

the case for the SIE RMSE
✿✿✿✿✿

SoAD.5

As expected, SIE RMSE
✿✿✿✿✿

SoAD
✿

values (Fig. 7) are larger, with a maximum in summer and September before the data

assimilation. Assimilation is most effective for a reduction of SIE RMSE
✿✿✿✿✿

SoAD
✿

in September (about 25% on average). After

the assimilation October becomes, in addition to summer months, one of the months with relatively large SIE RMSE
✿✿✿✿✿

SoAD

differences. October is also a month when (during 5 out of 9 years) after assimilation the SIE RMSE
✿✿✿✿✿

SoAD
✿

increased. The SIE

RMSE
✿✿✿✿✿

SoAD, similarly to the SIA RMSE
✿✿✿✿✿

SoAD, do not show any obvious tendency from the first year to the last.10

4 Control variables

As mentioned in Section 2.2, the model is brought into consistency with observations by adjusting a number of control vari-

ables. The strength and spatial distribution of the adjustments carry important information about the way the optimization

procedure changes the forcing and the initial conditions in order to bring the state of the model closer to the observed state.

Figure 8 shows the area-mean temporal variation of the corrections to several control variables over the year 2005 in absolute15

values and normalized by the uncertainties. Also shown are the spatial distribution of the corrections for the month when their

strength is at its maximum.

As expected, there are strong changes in the surface atmospheric temperature. Its modification is probably the easiest way

to change the sea ice concentration by increasing temperature when/where a reduction of SIC is required and vice-versa. The

spatial distribution of corrections in 2005 (Fig. 8, top row, left column) compares very well to the difference between first20

guess and satellite SIC data in the central Arctic (Fig. 3). In order to increase SIC in the Eurasian Basin, the optimization

reduces the surface atmospheric temperature in June by about 2 degrees in this region on average, reaching 3 degrees in some

places. Positive SAT
✿✿✿✿✿✿

surface
✿✿✿✿✿✿✿✿✿✿

atmospheric
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿

(SAT)
✿

corrections over the Arctic shelf seas helps to reduce extra sea ice

generated there by the model during summer months (not shown).

The corrections to the downward shortwave radiation (Fig. 8, second row) show temporal variations and a spatial distribution25

similar to the SAT corrections, but the magnitudes are quite small. Corrections to the zonal and meridional wind components

(Fig. 8, third and last rows) are on average quite small in absolute values, but locally can reach 10 m/s. The wind corrections

are mainly concentrated along the shore and summer ice edge and, contrary to the SAT corrections, it is difficult to associate

them to some particular large-scale sea ice change.

Dimensional values of the corrections do not directly provide information about the relative importance of changes in the30

controls for bringing the model into consistency with observations. However, due to the relatively small number of iterations,

we can use values of the corrections normalized by uncertainties as a reasonable measure of the relative importance of changes

in control parameters. Spatial distributions and monthly means of absolute values of normalized corrections for the year 2005

are shown in Fig. 8.
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Wind corrections seem to play integrally a larger role, with a maximum in May. This agrees well with results of (Kauker et al.,

2009), who used an adjoint sensitivity analysis to determine the relative contribution of different atmospheric and ocean fields

to the September 2007 sea ice minimum and found that the May-June wind conditions are one of the main factors in setting up

extremely low sea ice conditions in Summer 2007. The maximum contribution of air temperature corrections occurs in June

and it is about a factor of five smaller than the contribution of the wind corrections. However, using free drift in the adjoint5

biases the sensitivities towards larger sensitivities of sea ice to wind changes. Since measuring the impact by the normalized

corrections relies on the assumption of correct sensitivities, the results may be also biased to too large an impact by the wind.

Given the absence of proper sea ice dynamics in the adjoint model (only free drift is used) and lack of many important

processes in the forward model (such as tides or waves), the question remains to what extent corrections to control variables

reflect deficiencies in the forcing fields or a compensation to the sea ice model or sea ice data deficiencies, particularly since10

in the Arctic the NCEP reanalysis seems to perform well near the surface (Jakobson et al., 2012). For example, temperatures

decreasing over areas with high SIC during summer months in order to grow ice and temperatures increasing over low SIC

areas, could be an attempt of the assimilation system to fix problems associated with the sea ice movement. But it could

equally also point to problems of the correct attribution of sea ice concentrations from satellite data. In both cases, corrections

to atmospheric control variables will not improve the quality of the original atmospheric forcing, but on the contrary may make15

it worse.

5 Improvements in sea ice thickness and ocean state

The adjoint assimilation leads to dynamically consistent model solutions, which along with directly assimilated variables may

considerably improve variables of the simulation for which no observations are available. In case of SIC assimilation, one

obvious candidate for improvement is the sea ice thickness (SIT). We also consider changes in the ocean state which result20

from the combined effect of assimilating ocean parameters and indirectly of the SIC assimilation, due to the coupled nature of

the assimilation procedure and the forward model.

5.1 Sea ice thickness

Changes in SIT as a result of SIC assimilation and comparisons of the former with satellite data are shown in Fig. 9. The

satellite ice thickness data are obtained from ICESat campaigns (Kwok et al., 2007), distributed on a 25-km grid and available25

from the NASA Jet Propulsion Laboratory (http://rkwok.jpl.nasa.gov/icesat/index.html). ICEsat sea ice thickness estimates

are considerably larger than those in the simulations, especially in the Canadian sector of the Arctic Ocean. One should note

that the uncertainty for this observational data is quite large (just better than 0.7 m, Kwok et al. (2007)), while the spatial

distribution of the thickness is probably realistic (Kwok and Cunningham, 2008).

The ice in October-November during 2005 became thicker in the Eurasian Basin of the Arctic Ocean after assimilation and

in general became closer to the observed thickness distribution. The thickness increase is considerable, reaching 0.5 m in some

places. The shape of the region with the largest thickness increase in the Eurasian Basin resembles the shape of the September
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SIC distribution (Fig. 3) and because of its similarity in pattern it is probably a result of the control variable’s corrections

that aim to thermodynamically increase SIC in this region. Results for October-November 2007 are similar, with improved5

thickness along the continental shelf of the Eurasian Basin. However, thickness increase is not as strong as for 2005, reaching

only about 0.3 m. A general tendency of these improvements is an increase in thickness in the central Arctic and the Canadian

Basin, while regions with thin ice over the shelf seas tend to decrease in thickness. This tendency was also shown by Fenty et al.

(2015) for the year 2004.

To summarize, the visual comparison with available satellite data hint to a general improvement of the SIT spatial distribu-10

tion.

5.2 Ocean changes

Local changes of the SIC are caused by corrected atmospheric conditions (see above), which in the coupled system will also

affect near-surface ocean parameters. To some extent changes can also come about through change in the ocean circulation

and we want to investigate therefore how large those changes are and to what extent they could contribute to the sea ice15

improvements.

Fig. 10 shows differences in temperature and salinity between the initial and final iterations of the assimilation system for

June and September of year 2005. The month of June is chosen because corrections to thermodynamic control variables during

this month are largest (see above in Section 4). The sea surface temperature differences are mostly positive along the ice edge,

where the model produces too much ice in the initial iteration (Fig. 3), and lower in magnitude in the central part of the Arctic20

Ocean. In June, considerable temperature differences cover a much smaller area
✿✿✿✿✿✿✿✿

compared
✿✿

to
✿✿✿✿✿✿✿✿✿

September, since most of the

shelf seas are still covered by high concentrations of sea ice and most of the additional energy resulting from the correction to

thermodynamic control variables is spent directly in the sea ice melting.

The surface salinity (Fig. 10, right column) shows an increase in the Eurasian Basin, caused by additional sea ice production

(or less melting). There is a decrease of salinity around the sea ice edge due to melting of excessive sea ice formed in the initial25

iteration. In September, however, there is a pronounced increase in salinity in most of the Arctic shelf seas. This might be a

result of the local increase in sea ice production in areas which become free of ice due to the summer corrections (e.g. Laptev

Sea), but still have quite negative temperatures in the original forcing which are not corrected in September (corrections in

September are quite small) at the onset of the freezing period.

Due to the relatively short assimilation periods (1 year) and to the extremely low amount of vertical temperature/salinity30

profile observations, improvements in the vertical distribution of temperature and salinity after 9 years of assimilation are quite

small. Nevertheless, the positive bias in the Atlantic Water layer temperature of the Eurasian Basin, which is characteristic for

the forward run, has been slightly reduced (not shown). On the other hand, changes in the upper part of the water column due

to sea ice corrections, although hardly penetrating deeper than the first 50 meters, may influence integral fluxes at the borders

of the Arctic Ocean.

We have calculated volume, heat and freshwater fluxes (Table 2) through the main passages of the Arctic Ocean (except

for Bering Strait, where fluxes are largely prescribed in the model by the boundary conditions). Along with the initial and
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final iterations, results for a no-assimilation forward run
✿✿✿✿✿✿✿✿✿

simulation were analyzed in order to remove the effect of changing

the initial conditions at the beginning of each assimilation year. These may lead to changes of long-term variability and may5

affect the fluxes towards the end of the assimilation period. We also show mean fluxes for August-September of year 2005

and compare them to the results of Tsubouchi et al. (2012), who applied an inverse model to data obtained in summer 2005 to

calculate net fluxes of volume, heat and freshwater around the Arctic Ocean boundary.

Differences in the total mean volume flux are quite small for all passages. This is probably due to the fact that the volume

flux is mostly controlled by the wind stress, which means that the corrections of the control variables discussed above do not10

contribute considerably to changes in the ocean circulation. This is expected since the amount of sea ice concentration data is

much larger than the number of hydrographic observations in the Arctic Ocean, so that the assimilation system tries to change

control variables in a way that will have larger impact on the sea ice. However, episodically, significant changes can be observed

(for example in summer 2008) when modifications in the throughflows at
✿✿✿✿✿

across Fram Strait are noticed, which are about 60%

larger than in the forward simulation
✿✿✿✿✿✿

without
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿

assimilation (Fig. 11a).15

Differences in the heat flux (Fig. 11b) at Fram and Davis Straits can be episodically relatively large, but they do not show

any particular tendency and may be related to the local heating or cooling in the vicinity of the sections. Table 2 summarizes

the mean differences for the analyzed passages and, although hardly visible in the time series (not shown), heat flux differences

for the St. Anna Trough are the largest on average, reducing the heat export from the Arctic Ocean by about 80%.

The freshwater flux differences (Fig. 11c) are most visible in the Fram Strait time series, but positive and negative differences20

remain comparable to the forward run and compensate each other, such that on average the relative difference is only about 3%.

Large relative differences again occur for the St. Anna Trough (Table 2), which is located in an area with strong atmospheric

corrections during most of the years.

Considering Tsubouchi et al. (2012) to be a good approximation of observed values in August-September 2005, it is hard to

definitely conclude if ocean fluxes become better or worse after the assimilation (Table 2). Some values, such as the volume25

flux through Davis Strait and the Barents Sea Opening, or the freshwater flux in the Fram and Davis Straits, have changed and

became closer to the values of Tsubouchi et al. (2012). Other values moved even further away from their estimates.

From the combined analysis of Fig. 11 and Table 2 one can conclude that, while on average most of the transports are hardly

affected by the assimilation, during some periods relative large differences between the simulations with assimilation and the

forward run without assimilation can be seen and may reach 60-100% for major straits.30

6 Concluding remarks

Results from a multi-year data assimilation attempt based on a coupled Arctic Ocean-sea ice system were presented. The

largest improvements relative to simulations without data assimilation were seen for the sea ice concentration (SIC) and sea

surface temperature. Most of the improvements in the SIC happened during summer months and manifest themselves in a more

realistic position of the sea ice edge and in SIC values closer to observations in the central Arctic.
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The seasonal cycle of the monthly mean sea ice area (SIA) shows an overall improvement after assimilation, while sea

ice extent (SIE) becomes worse during some months. The later fact demonstrates that the total mean SIE and SIA are not

good measures for the model success in simulating sea ice, particularly considering the obvious improvements in spatial5

sea ice distribution. In order to obtain more meaningful estimates of the sea ice improvements, we consider sums of the

root-mean-squared error (RMSE
✿✿✿✿✿✿

absolute
✿✿✿✿✿✿✿✿✿✿

differences
✿✿✿✿✿✿

(SoAD) for SIA and SIE. The largest reduction of the RMSE
✿✿✿✿✿

SoAD

happened during the summer months.

An obvious suggestion for improving the sea ice estimation is to consider larger assimilation periods or even best to use a

single assimilation window. By this, data from later years may influence the corrections and the state of all preceding years.10

However, a long memory of the system seems to be not very evident in the assimilation. We have assimilated data in yearly

chunks and one could expect that RMSE
✿✿✿✿✿

SoAD
✿

between observations and initial simulations (before assimilation) would

gradually improve due to better initial conditions, at least over the first few years. However, we do not observe this effect in

our experiments.

The comparison to available but limited sea ice thickness observations shows that SIC assimilation reveals some improve-15

ments in sea ice thickness (SIT), despite these observations not being directly assimilated. The amount of assimilated ocean

observations in the water column of the Arctic Ocean is almost negligible compared to the amount of SIC data. However,

the ocean state is affected indirectly by SIC assimilation, for example due to the freshwater fluxes related to the additional

melting or freezing and by changes in the ocean exposure to the atmosphere caused by changes in SIC. The transports of ocean

properties do not change on average after the assimilation, but episodically they can be quite different from the corresponding

transports in simulations without assimilation. The latter can still be important for local process studies or model validation

against observations that are limited in time.

With the use of the adjoint assimilation technique, we produced a model simulation that is considerably closer to observations

and at the same time dynamically consistent. This data can be used for further understanding of the reasons and consequences5

of changes in the Arctic Ocean.
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Table 1. Datasets used in the assimilation procedure.

Dataset Source

Mean Dynamic Topography MDT from Technical University of Denmark (Knudsen et al., 2011;

Knudsen and Andersen, 2013; Cheng et al., 2014)

Monthly SST Remote Sensing Systems [CIT]

Sea Level Anomalies TOPEX/Poseidon, ERS-1,2 and Envisat, AVISO [CIT]

EN3 hydrographic data Ingleby and Huddleston (2007)

NISE hydrographic data Nilsen et al. (2008)

Sea ice concentration OSI-SAF (2015)
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Table 2. Mean values of different fluxes through Arctic Ocean passages.

Parameter and passage Forward After

assimilation

Difference

in %

Forward

2005

After

assimilation

2005

Tsubouchi et

al., 2012

Volume flux (Sv)

Fram St. -3.12 -3.12 -0.02 -4.0 -4.49 -1.6 ± 3.9

Davis St. -0.50 -0.55 4.72 0.44 0.03 -3.1 ± 0.7

Barents Sea Op. 2.78 2.81 0.88 3.5 3.6 3.6 ± 1.1

St. Anna Tr. -2.01 -2.01 0.18

Heat flux (TW)

Fram St. 38.76 38.62 -0.36 41.5 39.9 62 ± 17

Davis St. 7.94 7.69 -3.12 8.6 6.3 28 ± 3

Barents Sea Op. 83.10 84.07 1.17 111.8 115.8 86 ± 19

St. Anna Tr. 1.02 0.20 -80.13

Freshwater flux (mSv)

Fram St. -113.50 -109.80 -3.20 -173.0 -141.0 -70.0 ± 40

Davis St. -25.60 -27.27 6.50 13.5 -11.3 -119 ± 14

Barents Sea Op. -21.81 -22.37 2.57 -22.5 -22.0 -31 ± 13

St. Anna Tr. 6.84 8.44 23.32
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Figure 1. Model domain with bathymetry.
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Figure 2. Total cost reduction and individual contributions to the reduction from different assimilated variables. During the first two years

SST assimilation is not performed (no data).
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Figure 3. Spatial distribution of sea ice concentration (SIC) for the year 2005 (year of the local sea ice maximum) during March (first

row) and September (third row). Assimilated satellite data (left column), model results from the run without corrections (middle column)

and model results during the last assimilation iteration (right column) are shown. The second and fourth rows correspond to the differences

between the model solutions and the observations.
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Figure 4. Same as Fig. 3, but for year 2007 (the year of the overall minimum sea ice.)
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Figure 5. Monthly mean sea ice area (left) and extent (right) for the years 2005 (top) and 2007 (bottom). Assimilated satellite data is shown

in blue, model solution without corrections is shown in green and the result from the last iteration is shown in red.
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Figure 6. Sum of the sea ice area root-mean-square error
✿✿✿✿✿✿

absolute
✿✿✿✿✿✿✿✿

differences (RMSE
✿✿✿✿

SoAD)(, compared to assimilated sea ice at every grid

location) ,
✿

for every month (in 10
6 km2), before assimilation (top), after assimilation (middle) and the percent difference between the two

(bottom). Positive differences correspond to a decrease of the RMSE and vice-versa
✿✿✿✿✿

SoAD.
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Figure 7. Same as Fig. 6, but for the sea ice extent.
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Figure 8. Corrections for different surface forcing variables: spatial distribution (left) and spatial distribution scaled by the uncertainty

(middle) for the month with the largest absolute value of corrections in 2005. Also shown is the monthly climatology for the sea ice area

mean corrections (right column) averaged over the area north of 66.5◦ N (top panels for each variable) and the average of absolute values

scaled by the uncertainties (lower panel for each variable). Corrections are shown for June 2005 2-m air temperature (first row), June 2005

downward shortwave radiation (second row), June 2005 zonal component of the wind (third row) and May 2005 meridional component of

the wind (fourth row).
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Figure 9. Sea ice thickness in October-November for years 2005 (top row) and 2007 (bottom row). Left column presents satellite data

(ICESat, Kwok data); middle column are model results before assimilation (first iteration); right column corresponds to model results after

assimilation (last iteration).
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Figure 10. Differences in ocean surface temperature (left column) and salinity (right column) between first guess and last iteration for June

2005 (top row) and September 2005 (bottom row).
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Figure 11. Fluxes through the Fram and Davis Straits of (a) volume, (b) heat and (c) freshwater. Positive fluxes are into the Arctic Ocean.

Results are shown for the forward run (red), for the run before assimilation (blue) and for the run after assimilation (green).
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