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Abstract. Stable isotope ratios δ18O and δD in polar ice provide a wealth of information about past climate evolution. Snow-pit

studies allow us to relate observed weather and climate conditions to the measured isotope variations in the snow. They therefore

offer the possibility to test our understanding of how isotope signals are formed and stored in firn and ice. As δ18O and δD in the

snowfall are strongly correlated to air temperature, isotopes in the near-surface snow are thought to record the seasonal cycle at

a given site. Accordingly, the number of seasonal cycles observed over a given depth should depend on the accumulation rate of5

snow. However, snow-pit studies from different accumulation conditions in East Antarctica reported similar isotopic variability

and comparable apparent cycles in the δ18O and δD profiles with typical wavelengths of ∼ 20cm. These observations are

unexpected as the accumulation rates strongly differ between the sites, ranging from 20 to 80mm w.e. yr−1 (∼ 6–21cm of

snow per year). Various mechanism have been proposed to explain the isotopic variations individually at each site; however,

none of these is consistent with the similarity of the different profiles independent of the local accumulation conditions.10

Here, we systematically analyse the properties and origins of δ18O and δD variations in high-resolution firn profiles from

eight East Antarctic sites. First, we confirm the suggested cycle length (mean distance between peaks) of ∼ 20cm by counting

the isotopic maxima. Spectral analysis further shows a strong similarity between the sites but indicates no dominant periodic

features. Furthermore, the apparent cycle length increases with depth for most East Antarctic sites, which is inconsistent with

burial and compression of a regular seasonal cycle. We show that these results can be explained by isotopic diffusion acting on15

a noise-dominated isotope signal. The firn diffusion length is rather stable across the Antarctic Plateau and thus leads to similar

power spectral densities of the isotopic variations. This in turn implies a similar distance between isotopic maxima in the firn

profiles.

Our results explain a large set of observations discussed in the literature, providing a simple explanation for the interpretation

of apparent cycles in shallow isotope records, without invoking complex mechanisms. Finally, the results underline previous20

suggestions that isotope signals in single ice cores from low-accumulation regions have a small signal-to-noise ratio and thus

likely do not allow the reconstruction of interannual to decadal climate variations.

1



1 Introduction

Stable isotope δ18O and δD records from ice cores can be used to infer past local temperature variations (Dansgaard, 1964)

and as such are an important climate proxy at interannual to glacial–interglacial timescales (Jouzel et al., 2007; Johnsen et al.,

2001). The ice thickness and accumulation rate affects the temporal scale and resolution of the climate reconstructions that can

be obtained from a given ice core. In central East Antarctica, low accumulation rates and deep ice cores allow climate recon-5

structions to be made that cover the last 800 000 years (EPICA community members, 2004), while the higher accumulation

rates in coastal areas allow for higher resolution reconstructions in which the seasonal climate signal can be recovered from the

ice isotopic composition (Morgan, 1985; Masson-Delmotte et al., 2003; van Ommen and Morgan, 1997; Küttel et al., 2012).

High-resolution isotope data, thought to correspond to sub-annual variations, are now routinely measured at deep ice-core

sites (Gkinis et al., 2011); however, it is unclear to what extent isotope signals on timescales shorter than multidecadal can be10

interpreted as indicating climate (Ekaykin et al., 2002; Baroni et al., 2011; Pol et al., 2014; Münch et al., 2016), especially

for the low-accumulation regions that are typical on the Antarctic Plateau (< 100mm w.e. yr−1). As the link is complex be-

tween isotopic composition and the climatic conditions creating them (Jouzel et al., 1997), numerous studies have sampled

the upper metres of firn in order to compare the isotopic variations with instrumental climate data (Masson-Delmotte et al.,

2008; Fernandoy et al., 2010; Steen-Larsen et al., 2014). Many of these have reported oscillations in snow-pit records from the15

Antarctic Plateau, including those at Vostok, Dome C (EDC), Dome A, Dome F (DF), South Pole (SP) and Kohnen Station at

the EPICA Dronning Maud Land drilling site (EDML) (Jouzel et al., 1983; Petit et al., 1982; Ekaykin et al., 2002; Hoshina

et al., 2014, 2016; Münch et al., 2016). Interestingly, despite the very different accumulation rates at these sites, which range

from 6 to 21 cm of snow per year, their isotope profiles appear to have very similar peak-to-peak distances (Fig 1), and a recent

systematic counting effort of isotopic maxima in firn profiles (Casado et al., 2017) suggested a characteristic wavelength of20

15–25cm across all analysed East Antarctic sites.

For sites such as EDML and South Pole, their apparent cycle lengths match well with their annual snow layer thicknesses

and consequently their cycles have been explained as reflecting seasonal climate variation (Oerter et al., 2004; Münch et al.,

2016; Jouzel et al., 1983; Whitlow et al., 1992). However, this explanation is not consistent with the same cycle length being

observed at lower accumulation sites, where the annual snow layer thickness is often less than 10 cm (Petit et al., 1982).25

Instead, a range of alternative explanations have been proposed for the oscillations at individual sites. At Vostok, Ekaykin

et al. (2002) attributed the oscillations to horizontally moving dunes (Frezzotti et al., 2002) leading to isotopic cycles during

burial. However, similar cycles are found at core sites with different dune features, wind speeds and accumulation rates, and

thus a varying speed of dune movement and burial. At EDC, Petit et al. (1982) explained the mismatch between seasonal

and isotopic cycles as being due to missing years resulting from the combined effects of successive precipitation-free months,30

erosion associated with blowing snow, and firn diffusion. In a multi-site study, Hoshina et al. (2014, 2016) suggested that the

multi-year oscillations could be formed by the combination of variable accumulation and post-depositional modifications, such

as ventilation. Finally, the coarse sampling resolution in some studies (5 cm or longer) would not resolve the seasonal cycle,

but similar characteristics were found for profiles sampled at a range of resolutions (Ekaykin et al., 2002). Thus, none of the
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Figure 1. Example isotope profiles from EDML and EDC. Both profiles are visually similar despite the differing time periods covered,

∼ 10 yr for EDML and ∼ 25 yr for EDC, and annual snow layer thicknesses, ∼ 21 cm for EDML and ∼ 8 cm for EDC. Also shown is

an example of the automatic estimation of isotopic cycle length. Red and black dots show the identified maxima and minima. The short

horizontal lines underneath these dots indicate the ±6cm region a maximum (minimum) must be above (below) to be identified as an

extremum. The longer black and red horizontal lines at the bottom of the figure indicate the identified distances between subsequent maxima

or minima. For more examples of isotope profiles see Casado et al. (2017).

existing interpretations explain why the apparent observed cycles are so similar across sites and largely independent of the

accumulation rate and related climatic conditions.
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Figure 2. Location of the sampling sites used in this study (solid squares). The 2500m a.s.l. elevation contour is marked by a grey line,

colours indicate the annual mean surface air temperature (Nicolas and Bromwich, 2014).

Here we combine a statistical analysis of isotope profiles from eight Antarctic Plateau sites with theoretical considerations

and numerical simulations of the firn signal. We suggest that the presence of apparent cycles in the firn, and their largely

invariant length, can be explained by a combination of deposition-related noise in the surface isotope signal and isotopic

diffusion (Johnsen et al., 2000), which is rather constant across the Antarctic Plateau.

2 Data and Methods5

We first introduce the data set and the method used to compare the power spectral density of observed isotope profiles with

those from a null model of diffused noise. We then provide an analytic solution for the expected distance between isotopic

maxima (‘cycle length’) and a method to estimate this cycle length from the observed firn profiles. Finally we provide a

minimal numerical forward model for the isotopic variations.

2.1 Data10

We analyse data from eight sites on the Antarctic Plateau, for which vertical isotope profiles of δ18O or δD are available with

lengths of at least 2m and minimum resolutions of 3.5cm per sample (Fig. 2 and Table 1). We focus our analysis on the upper

4m of firn within which cycles have been described and interpreted. For the South Pole and EDML, a combination of snow-pit

and shallow firn-core data allows us to extend the analysis down to a snow depth of 18m. All records have been published
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(Table 1), except those for EDML for which we use 22 3.4m deep profiles sampled from snow trenches (T15) as described

and partly analysed in Münch et al. (2017), together with new isotope data from the firn cores B41 and B50. These two cores

were drilled close to Kohnen Station in 2012/13, approximately 1 km apart (Alfred-Wegener-Institut Helmholtz-Zentrum für

Polar- und Meeresforschung, 2016). Isotope ratios were analysed at a resolution of 3cm, using a laser instrument at the Alfred

Wegener Institute (AWI) in Bremerhaven and following the protocol described in Masson-Delmotte et al. (2015).5

2.2 Spectral analysis

Spectra are estimated using Thomson’s multitaper method with three windows (Percival and Walden, 1993). The depth pro-

files are linearly detrended before analysis. For profiles with non-equidistant sampling, the data is interpolated to the lowest

resolution after low-pass filtering to avoid aliasing effects as described in Laepple and Huybers (2013). In the case of multiple

profiles at a single site we show the mean of the individual spectra.10

Significance testing of the power spectral density is performed against a null hypothesis of noise affected by firn diffusion.

More specifically, we assume the sum of white (temporally independent) noise subject to isotopic diffusion with a depth-

dependent diffusion length and additive white measurement noise. The diffusion length is calculated using the site-specific

accumulation rates as well as temperature and density profiles as described in Section 2.5. There is no simple closed form

expression for the power spectrum of a diffused signal under varying diffusion lengths. We thus resort to a Monte Carlo15

procedure by simulating diffused white noise profiles on a 2 mm resolution, resampling them to the actual resolution of the

observed profiles to include the effect of discrete sampling, adding measurement noise and then estimating the spectra on these

surrogate data sets using the same method as for the observed profiles. The variance of the diffused white noise signal and the

measurement noise are free parameters and are chosen to minimise the root mean square deviation of the observed and the

null-hypothesis spectrum. Finally, we scale the null-hypothesis spectrum by the 95% quantiles of a χ2 distribution to obtain20

critical significance levels. These mark the range of spectral power expected if the time series were diffused noise. This level

has to be overcome for a peak to be locally (thus at a given frequency) significant. The degrees of freedom (DOF) of the

χ2 distribution are the product of the DOF from the spectral estimator and the effective number of independent profiles. We

assume independence between profiles for all sites except for the EDML trench data. For this data set consisting of 22 nearby

profiles that were sampled in a single season, we assume five effective degrees of freedom.25

2.3 Rice’s formula for the expected number of local extrema

The ‘wiggliness’ of time series, assuming a stationary random process, is determined by the first moments of the spectral den-

sity. This relationship known as Rice’s formula (Rice, 1944, 1945) was shown to have important implications for interpreting

paleoclimate records (Wunsch, 2006) and can be used to derive the expected number µ of local extrema (maxima and minima)

per unit time. Specifically, for a stationary Gaussian process (e.g. Lindgren, 2012), µ is30

µmax = µmin =
1

2π

√
Ω4

Ω2
, (1)

where Ω2 and Ω4 denote the second and the fourth moment of the spectral density of the Gaussian process.

5



Ta
bl

e
1.

Su
m

m
ar

y
of

th
e

dr
ill

in
g

an
d

sn
ow

-p
it

si
te

s
us

ed
in

th
is

st
ud

y.
Fo

re
ac

h
si

te
w

e
lis

tl
at

itu
de

,l
on

gi
tu

de
an

d
el

ev
at

io
n

ab
ov

e
se

a
le

ve
l;

fo
re

ac
h

co
rr

es
po

nd
in

g

re
co

rd
its

na
m

e,
th

e
an

al
ys

ed
de

pt
h,

sa
m

pl
in

g
re

so
lu

tio
n,

m
ea

su
re

d
pr

ox
y

an
d

or
ig

in
al

da
ta

re
fe

re
nc

e.
So

m
e

pr
ofi

le
s

ha
ve

si
ng

le
m

is
si

ng
m

ea
su

re
m

en
ts

th
at

ar
e

no
t

in
cl

ud
ed

in
th

e
pr

ov
id

ed
sa

m
pl

in
g

re
so

lu
tio

n.
T

he
35

m
is

si
ng
δ1

8
O

sa
m

pl
es

in
D

C
ox

y8
0

w
er

e
fil

le
d

by
lin

ea
rr

eg
re

ss
io

n
to
δD

.F
or

SP
,δ
D

w
as

co
nv

er
te

d
to
δ1

8
O

us
in

g
a

sl
op

e
of

8
to

ge
ta

co
m

pl
et

e
δ1

8
O

da
ta

se
t.

Si
te

L
at

.
L

on
.

E
le

va
tio

n
N

am
e

D
ep

th
R

es
ol

ut
io

n
Pr

ox
y

R
ef

er
en

ce

°N
°E

m
a.

s.
l.

m
cm

Vo
st

ok
−
7
8
.5

1
0
6
.8

3
4
8
8

V
K

14
2
.5

2
δ1

8
O

,δ
D

E
ka

yk
in

et
al

.(
20

02
)

ST
61

3
.1

2
δ1

8
O

,δ
D

E
ka

yk
in

et
al

.(
20

02
)

ST
73

3
.1

2
δ1

8
O

,δ
D

E
ka

yk
in

et
al

.(
20

02
)

ST
30

3
2
.0

–3
.5

δ1
8
O

,δ
D

E
ka

yk
in

et
al

.(
20

02
)

V
K

56
3

3
δ1

8
O

,δ
D

To
uz

ea
u

et
al

.(
20

16
)

E
D

C
−
7
5
.1

1
2
3
.3

3
2
3
3

D
C

ox
y5

2
1

–2
δ1

8
O
† ,δ
D

C
as

ad
o

et
al

.(
20

17
)

D
C

ox
y8

0
2
.5

3
.3

–3
.6

δ1
8
O

,δ
D

C
as

ad
o

et
al

.(
20

17
)

V
an

is
h1

2
2

3
δ1

8
O

,δ
D

To
uz

ea
u

et
al

.(
20

16
)

D
F

−
7
7
.3

3
9
.7

3
8
1
0

D
F

4
2

δ1
8
O

,δ
D

H
os

hi
na

et
al

.(
20

14
)

D
K

−
7
6
.8

3
1
.8

3
7
3
3

D
K

2
2

δ1
8
O

,δ
D

H
os

hi
na

et
al

.(
20

14
)

S2
−
7
6
.3

1
2
0
.0

3
2
2
9

S2
3

2
.9

–3
.0

δ1
8
O

,δ
D

To
uz

ea
u

et
al

.(
20

16
)

M
P

−
7
4
.0

4
3
.0

3
6
5
6

M
P

4
2

δ1
8
O

,δ
D

H
os

hi
na

et
al

.(
20

14
)

E
D

M
L

−
7
5
.0

0
.1

2
8
9
2

T
15

(2
2

pr
ofi

le
s)

3
.4

2
.2

–3
.0

δ1
8
O

,δ
D

M
ün

ch
et

al
.(

20
17

)+
th

is
st

ud
y

B
41

1
2

?
2

δ1
8
O

,δ
D

th
is

st
ud

y

B
50

1
2

?
2

δ1
8
O

,δ
D

th
is

st
ud

y

SP
−
9
0
.0

0
.0

2
8
3
5

SP
78

P
1
0

2
δ1

8
O
‡ ,δ
D

Jo
uz

el
et

al
.(

19
83

)

SP
78

C
1
7
.9
?
?

1
.9

–2
.5

δD
Jo

uz
el

et
al

.(
19

83
)

SP
92

6
0
.9

–1
.4

δ1
8
O

W
hi

tlo
w

et
al

.(
19

92
)

?
To

p
3

m
re

m
ov

ed
fr

om
an

al
ys

is
du

e
to

ba
d

co
re

qu
al

ity
.
?
?

N
o

da
ta

av
ai

la
bl

e
fo

r
fir

st
9
.6

m
.

†
In

co
m

pl
et

e.
M

is
si

ng
va

lu
es

lin
ea

rl
y

in
te

rp
ol

at
ed

.
‡

O
nl

y
0

–4
.9

m
de

pt
h.

6



A diffused white noise process has the power spectral density P0 exp(−ω2σ2) (van der Wel et al., 2015a), where P0 is the

total power of the undiffused white noise, σ the diffusion length and ω angular frequency. The second and fourth moments are

Ω2 =
√
π
4 σ
−3 and Ω4 = 3

√
π

8 σ−5. Thus, from Eq. (1) the average difference between two maxima is

∆zmax = 1/µmax = 2π

√
2

3
σ , (2)

hence a linear function of the diffusion length σ – a remarkably simple relationship.5

2.4 Automatic estimation of the isotopic cycle length and amplitude

To investigate the isotopic variations in a way similar to visual cycle counting (Casado et al., 2017), we use an automatic

procedure to identify the minima and maxima in isotope profiles. For the sake of simplicity we call the typical distance between

subsequent maxima (or minima) cycle length, noting that this does not imply a periodicity that would appear as a peak in the

power spectrum.10

To improve robustness against measurement noise, we define a local maximum (or minimum) as that value of a profile which

is above (or below) all other values within a window of ±6cm centred at the given point. This naturally limits the minimum

possible cycle length to 6cm; however, as the accumulation rates at our sites vary from 6–21cm of snow per year, we expect

that most cycles are longer than this and the results are thus insensitive to this choice. Since we apply the same method to the

observations as well as to the simulations, their intercomparison is unbiased.15

We determine all local extrema for each observed or simulated profile in the described manner and record the distances

between subsequent extrema (i.e., the distances between two neighbouring maxima as well as between two neighbouring

minima) as a function of depth (midpoint of depth between the two extrema, Fig. 1). We sort the recorded distances (cycle

lengths) into depth range bins, e.g. 1.5–2m depth, forming a distribution of distances for each specific bin. For the simulations,

and also for several of our study sites, multiple profiles are available, allowing a better estimate of the cycle length as a function20

of depth to be made by binning the distances from multiple profiles together. The bin width is chosen as a trade-off between

maximising the resolution and minimising the variance of the estimation. Specifically, we choose 1m for sites with one or two

profiles (S2, DF, SK, MP, SP, EDML below 3.4m snow depth) and 0.5m for sites with more than two profiles (EDC, Vostok

and EDML above 3.4m snow depth). For the resulting distributions, we report the mean and two standard errors (2× se). To

estimate the standard error, we assume independence of the profiles except for EDML, where we assume five effective degrees25

of freedom as in the spectral analysis.

2.5 Minimal forward model for vertical isotope profiles

As a tool to understand the observations, we construct the following minimalistic model to simulate artificial isotope profiles

in the upper metres of Antarctic firn. We approximate the local climate conditions by the local near-surface air temperatures,

Tair(t), and assume that these shape the isotope signal of freshly formed snow, δ18Osnow(t). Subsequently, the snow is trans-30

ported to the surface by precipitation where it is redistributed and mixed by wind, giving rise to the surface isotope signal

δ18Osurface(t). Finally, the surface signal is buried in the firn column which is accompanied by diffusional smoothing of the
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Figure 3. Estimated diffusion lengths for the different sites. The diffusion lengths for δ18O (right scale) are shown against depth. Also shown

are the implied cycle lengths (left scale) assuming diffused white noise. For most sites, the mean cycle lengths in the top 4m (triangles) are

around 20cm.

signal and densification of the layers (Münch et al., 2017). Analysing a snow pit or firn core during this process then represents

a snapshot of the firn isotope signal δ18Ofirn(z). We describe the process here for δ18O but the analogous approach also applies

to δD. We will now discuss these steps in detail.

On monthly to multidecadal timescales, the local temperatures in Antarctica are dominated by the seasonal cycle. At our

studied sites, the seasonal cycle explains more than 90% of the variance in the temperature evolution of the last decades5

(ERA-interim reanalysis, Dee et al., 2011) when evaluated on a monthly resolution and considering the first two harmonics

of the seasonal cycle (Table 2). We therefore approximate the local climate conditions by parameterising the seasonal cycle in

temperature as

Tair (t) = T0 +A1 cos(ωt+φ1) +A2 cos(2ωt+φ2) + εT . (3)

Here, ω is angular frequency, t time, T0 annual mean temperature, and A1, A2 and φ1, φ2 denote amplitude and phase of10

the first two harmonics of the seasonal cycle and εT the remaining temperature variability. We estimate the parameters from

temperature observations of nearby automatic weather stations (Table 2). For our study sites, φ1 and φ2 are small (< 5°) and

are for simplicity set to zero. For converting the near-surface air temperatures into oxygen isotope ratios, we use the mean

8



Antarctic spatial slope of β = 0.8‰ °C−1 (Masson-Delmotte et al., 2008),

δ18Osnow (t) = βTair (t) + εδ, (4)

where εδ reflects the isotopic variability not captured by the linear relationship. We neglect the intercept of the calibration since

the absolute isotope values have no influence on the results of our analyses and note that our results, except for the spectral

comparison (Fig. 8), are independent of the amplitudes and thus the choice of the calibration. A strong temporal relationship5

has been confirmed between the seasonal cycle of local temperature and the stable isotope ratios measured in precipitation

samples (Eq. 4) at several sites in East Antactica (Fujita and Abe, 2006; Touzeau et al., 2016; Stenni et al., 2016) although the

estimated slopes vary from 0.3–1‰ °C−1 between sites.

Going from the isotope signal in the snow to the surface signal, the variability of the seasonal cycle is affected by aliasing due

to precipitation intermittency (Helsen et al., 2005; Sime et al., 2009; Laepple et al., 2011; Persson et al., 2011), by redistribution10

of snow (Fisher et al., 1985; Münch et al., 2016; Laepple et al., 2016), and by interannual variation in the accumulation rate

and the accumulation seasonality (Cuffey and Steig, 1998). We note that exchange between atmospheric water vapour and

the snow might further influence δ18Osurface (Steen-Larsen et al., 2014; Touzeau et al., 2016; Casado et al., 2017) and we

do not account for these effects. However, even in this case, the variations in δ18Osurface might still follow the temperature

variations. To a first approximation, precipitation intermittency, snow redistribution and interannual accumulation variability15

do not affect the total variance of the input signal but rather mainly redistribute its energy across frequencies, similar to the

effect of aliasing (Kirchner, 2005). Thus, to simplify matters, we describe the combination of these processes together with εT

and εδ by temporally independent (= white) noise, and set the variance of the total surface signal (seasonal cycle + noise) to

the variance of the original seasonal cycle in the snow (Eq. 4). The choice of white noise is the simplest option here and the

results are not sensitive to this assumption (Appendix A).20

Our model for the isotopic surface signal then is

δ18Osurface (t) = β
(

(1− ξ)1/2Tair (t) + ξ1/2σTairε(t)
)
, (5)

where σTair is the standard deviation of the seasonal cycle in temperature (Eq. 3), and ε(t) are independent normally distributed

random variables (white noise) with zero mean and standard deviation = 1. The parameter 0 ≤ ξ ≤ 1 determines the fraction of

noise in the surface signal: ξ = 1 representing the case of pure noise (completely reshuffled seasonal cycle) and ξ = 0 the case25

of a fully preserved seasonal cycle.

The model also includes one implicit parameter, the resolution at which we evaluate the variance of the noise ε(t). This

is required as, in contrast to the seasonal cycle, white noise is not a band-limited signal. Descriptively, the parameter ε(t)

represents the smallest spatial scale on which isotopic variations are possible. We assume 1 cm here, thus implying the complete

mixing of any variations occurring on smaller spatial scales.30

Finally, the burial of the surface snow transfers the surface signal time series into the depth profile δ18Ofirn(z). We approxi-

mate this process assuming a constant accumulation rate given by the present-day observations (Table 2) as the intra-seasonal

and interannual variations in accumulation are already included in ε(t). During burial, the isotope signal is influenced by den-

sification, layer thinning by ice flow and isotopic diffusion. Thinning of the layers is negligible in the top metres analysed here
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and therefore neglected in our analysis. Densification is modelled using the Herron-Langway model (Herron and Langway,

1980) assuming constant surface density and temperature for each site which are set to the modern observations (Table 2). The

results are not sensitive to these simplifications since the overall effect of densification is small in the top metres of firn.

The effect of firn diffusion on the original isotope signal δ18Osurface is modelled as the convolution with a Gaussian kernel

(Johnsen et al., 2000) which leads to an overall smoothing of the input signal. The amount of smoothing is governed by the5

width of the convolution kernel given by the diffusion length σ, which is sensitive to ambient temperature, pressure and the

density of the firn (Whillans and Grootes, 1985). We treat the dependency on density according to Gkinis et al. (2014), with

diffusivity after Johnsen et al. (2000). The temperature dependency of the diffusion length is highly nonlinear, with warmer

temperatures leading to a stronger change. Thus, the seasonal cycle in firn temperature in the top metres increases the effective

diffusion length. To approximate this effect, we follow the approach of Simonsen et al. (2011). We model the seasonal cycle in10

firn temperature according to the general heat transfer equation, driven by surface temperatures for constant thermal diffusivity

and negligible heat advection (e.g. Paterson, 1994). We then calculate the diffusion length for parcels starting in every month of

the year and compute the average diffusion length over all parcel trajectories. For the sake of simplicity, we assume a constant

density for the firn temperature modelling, which is set to the observed surface densities (Table 2).

The resulting effective diffusion lengths for our study sites are shown in Fig. (3). Interestingly, the combined effect of lower15

accumulation rates and colder temperatures largely compensate each other, leading to a rather constant diffusion length across

the Antarctic Plateau.

3 Results

3.1 Spectral analysis of the isotope profiles

Despite originating from very different accumulation conditions, the power spectra of δ18O are remarkably similar across all20

analysed profiles (Fig. 4). The similarity of the diffused white noise null plus measurement noise spectra (blue shading) and

the actual power spectra (black) suggests that the shape of the spectra are dominated by diffusion. Most sites show spectra

fully consistent with diffused white noise and do not show a significant periodicity at any frequency, including frequencies

corresponding to ∼ 20 cm (vertical grey dashed line). DF shows some significant deviation at the metre scale, corresponding to

multidecadal variations. DF, MP, EDML and South Pole (SP) show locally significant peaks at frequencies close to the annual25

snow layer thickness (vertical red dashed line). However, even for these sites, the energy potentially related to the seasonal

cycle is small, especially considering that the presumably driving temperature signal is dominated by the seasonal cycle.

3.2 Theoretical and observed cycle length in isotope profiles

The similarity of the power spectra between different sites, their similarity to the spectrum of diffused noise, and the lack of

evidence for periodic oscillations suggests that the apparent cycles might be independent of periodic variations in the climate30

signal and instead represent a property of diffused noise. We note that ‘noise’ here just describes isotopic variations that are

10



Table 2. Meteorological conditions and model parameters at the study sites. Listed are the annual mean temperature (T0), amplitude of

the first two harmonics of the seasonal cycle (A1, A2), annual mass accumulation rate (ḃ), firn surface density (ρ0), average atmospheric

pressure (P0) and fraction of variance in ERA-interim monthly surface temperature explained by the seasonal cycle alone (Fseas). If borehole

temperature measurements exist, we use the 10m firn temperature for T0 instead of air temperature observations, as they provide a more

accurate estimate of the relevant temperature for the diffusion. If no temperature observation exists, the temperature from the nearest site was

used by adding the temperature anomaly between the sites from reanalysis data (Dee et al., 2011).

Site T0 A1 A2 ḃ ρ0 P0 Fseas

°C °C °C kg m−2 yr−1 kg m−3 mbar %

Vostoka −57.0 16.7 6.6 21 350 624 97

S2b −55.1 17.4 6.3 21 350 642 97

EDCc −54.9 17.4 6.3 27 350 642 95

DFd −57.3 16.4 6.6 27.3 350 592 95

DKe −53.1 16.7 6.6 35.5 368 592 94

MPf −48.6 15.5 6.6 40.9 372 592 93

EDMLg −44.5 13.2 4.9 72 345 677 93

SPh −50.8 15.7 6.4 80.0 350 682 95

a Ekaykin et al. (2002); Lefebvre et al. (2012).
b Touzeau et al. (2016), A1, A2 and P0 adapted from EDC. c Touzeau et al. (2016).
d Kameda et al. (2008). e Hoshina et al. (2014), A1, A2 and P0 adapted from DF.
f Hoshina et al. (2014), A1, A2 and P0 adapted from DF.
g EPICA community members (2006). h Casey et al. (2014).

largely independent in time and thus exhibit a largely timescale-invariant (‘white’) power spectrum. This does neither imply

a non-climatic nor negate a climatic origin of these variations. The expected cycle length for a diffused white noise signal is

given by Rice’s formula (Eq. 2), and equals ∼ 5 times the diffusion length. This represents the limiting case where all initially

climate-related isotopic variations would be reshuffled by precipitation intermittency and redistribution, leading to completely

uncorrelated isotopic variations at the snow surface. Using the calculated diffusion lengths for the upper 4m of firn gives, for5

δ18O, expected mean cycle lengths from 15 (SP) to 22cm (Vostok and EDC), which are similar to those observed in isotope

profiles by manual counting (Casado et al., 2017).

For a more quantitative comparison, we analyse the cycle lengths from measured δ18O and δD profiles using automated

counting and compare them with the theoretical predictions from Rice’s formula (Fig. 5). We compare here the depth range

1–4m (or the maximum profile depth) as counting cycles in the topmost metre is more uncertain since the cycle length is a10

strong function of depth. The comparison confirms the qualitative results and even shows a similarity between the variations

in the observed and predicted cycle lengths (R= 0.63, p= 0.06). For most sites, δ18O profiles show a larger cycle length
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Figure 4. Power spectra of the firn δ18O variations in the firn profiles. The null hypothesis of diffused white noise (blue) and the corre-

sponding critical significance threshold values (shaded blue) are shown. For each site, the frequency corresponding to the annual snow layer

thickness is shown as a vertical red dashed line, the frequency corresponding to 20 cm is shown as a vertical grey dashed line.

than δD, which is expected since the diffusion length for δ18O is slightly (∼ 10%) larger, although this is largely within the

uncertainties of the estimates.

This similarity between observed cycle lengths and those predicted from diffused white noise is surprising, as we have not

yet included any climate signal, such as the seasonal cycle, in our analysis. To better understand the combined influence on the

firn signal of noise, the seasonal cycle and the diffusion process, we now analyse the extent to which simulated firn profiles5

depend on the input signal.

3.3 Illustrative examples of the cycle length - depth dependency

In contrast to the diffusion length which is a function of snow depth, the climate signal should be largely invariant over time

and thus, in first order, independent of the depth. Therefore, investigating the depth dependency of the cycle length in isotopic

profies should provide us with additional insights about the origin of the variations.10
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the maximum depth for shallower snow pits). Results are shown separately for δD and δ18O except for SP where a combined value is used

since here δD and δ18O are not available from the same profiles. The expected cycle length is directly derived from the diffusion length

assuming a pure white noise surface signal. Note that cycle lengths are larger than the one provided in Fig. 3 as the first metre is excluded

from this analysis.

To understand the depth dependency of the cycle length, as well as of the signal amplitudes, we provide three examples of

simulated depth profiles (A–C) illustrating the effect of firn diffusion and noise (Fig. 6) using the environmental and deposi-

tional conditions of the EDML site (Table 2).

(A) We assume a purely periodic surface isotope signal, such as the seasonal cycle (ξ = 0; Fig. 6A). The cycle length,

measured in snow depth units, is determined by the input signal and decreases slowly with depth due to densification. In5

the specific case of EDML, the cycle length is approximately 21cm which is determined by the local accumulation rate of

∼ 72mm w.e. yr−1 and a firn density of 345kg m−3. Diffusion attenuates the initial amplitude A0 of the signal with depth

(Fig. 6A, middle) according to A=A0 exp
(
− 1

2ω
2σ2
)

(Johnsen et al., 2000).

(B) We assume that the input signal is white noise (ξ = 1; Fig. 6B). Possible mechanisms for such a signal would be

precipitation intermittency and snow redistribution having completely reshuffled the initial seasonal signal. In this case, the10

expected cycle length is proportional to the diffusion length as predicted by Rice’s formula and thus monotonically increases

with depth. For the simulated conditions, this increase is larger than the decrease from layer thinning due to densification. The

observed cycle length for a given simulation (grey dots) follows this expectation but its variability is much larger, compared
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to case (A), given that we now observe a stochastic instead of a deterministic periodic signal. The amplitude of the signal, as

measured for example by the peak-to-peak distances, decreases near the surface and then remains largely constant. This can

be heuristically understood by considering the two compensating effects: For a given cycle length or frequency ω, diffusion

reduces the amplitude as exp
(
− 1

2ω
2σ2
)
. For a constant cycle length, the increasing σ with depth thus leads to an amplitude

reduction. However, since the effective cycle length increases proportional to σ, both contributions cancel and lead to a constant5

amplitude. For the investigated case, the cycle length again is around 20cm in the top 4m but here it is determined, in contrast

to (A), only by the diffusion length and is not set by the input surface signal.

(C) Finally we consider a mixture of cases (A) and (B), assuming that the input signal is equally partitioned (in variance)

between white noise and periodic signal (ξ = 0.5; Fig. 6C). In the top ∼ 6m, the seasonal cycle dominates the diffused signal.

Then, as the amplitude of the periodic cycle is reduced, while the diffusion length increases, the diffused noise comes into play10

and starts to dominate the signal. The observed cycle length of isotopic maxima in this specific simulation (grey dots) thus is a

mixture of cases (A) and (B), first following the annual layer thickness before transitioning to the random distances set by the

properties of the diffused noise. The expected cycle length (blue line), which corresponds to the mean cycle length obtained

from averaging across multiple sites or across some metres of the profile, decreases in the top 5m but then increases smoothly

further down in the profile. If one counted the maxima of the isotope profile (red dots), one would reliably count the periodic15

signal in the upper part of the core before one would start to occasionally miss some maxima (black dots) that would otherwise

be there without noise, resulting in an under-counting of the seasonal cycle in the lower part of the core.

3.4 Predicted and observed depth dependency of the cycle length

These examples (Fig. 6) demonstrate that very different input signals (pure noise or pure seasonal cycle) can create similar

mean cycle lengths in the top metres of the firn, but that they show a distinct depth dependency. We therefore estimate cycle20

lengths as a function of snow depth for all our East Antarctic study sites (Fig. 7), in an attempt to distinguish between these two

cases. We focus on sites for which multiple isotope profiles are available (Vostok, EDC, EDML and SP) as they allow better

estimates of the variability, however, qualitatively similar results are obtained for all sites (Appendix B: Fig. 10). These results

are compared to those estimated from artificial profiles simulated for different noise fractions of the input signal, ranging from

the pure seasonal cycle case (ξ = 0) to pure white noise (ξ = 1). As a reference, we additionally show the analytical result25

(black dashed line) for the cycle length of diffused white noise according to Rice’s formula (Eq. 2).

At all sites except SP, an increase in the estimated cycle length (grey bars) is observed with depth (Fig. 7, left column). This

behaviour is well reproduced by simulations that assume a high noise fraction (≥ 50%). For all but the SP site, the observed

cycle length also follows the theoretical prediction for a pure white noise signal (black dashed line). This behaviour is in strong

contrast to the cycle length in the 0%-noise case (yellow) which decreases with depth due to the thinning of the annual layer30

thickness by densification.

For the very low-accumulation sites, Vostok and EDC, a small noise fraction already (10%) leads to the “diffused noise”

behaviour below a depth of 0.5m (Vostok), or 1m (EDC), since the seasonal cycle is already strongly damped by diffusion in

the first metre. Thus, in these cases, just analysing the behaviour of the cycle length does not strongly constrain the fraction of
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noise vs. seasonal cycle of the surface isotope signal. In contrast, for EDML, the larger annual layer thickness and the stronger

diffusion caused by the warmer temperatures lead to strongly diverging behaviour of the expected cycle lengths dependent

on the ratio of noise to seasonal signal in the input. Interestingly, even at this relatively high-accumulation site, the observed

cycle length increases and follows that expected and shown for simulations that assume a high noise fraction (90 or 100%).

In contrast, a decreasing cycle length would be expected for densification of a pure, noise-free, seasonal signal. For SP, the5

smaller diffusion length relative to EDML results in a weaker dependency of the expected cycle lengths on the input signal.

The observed cycle length is rather constant and thus lies in between the cases of 0 and 90% noise.

In summary, the presented evidence suggests that, with the exception of SP, diffused noise is the dominant source of the

apparent cycles at the studied sites.

3.5 Simulated and observed profiles and power spectra for EDML and Vostok10

As a visual test of our finding, we compare the depth profiles and power spectra of simulated and observed example profiles for

the two representative sites EDML (72mm w.e. yr−1 accumulation) and Vostok (21mm w.e. yr−1 accumulation) (Fig. 8). We

analyse noise fractions of 5% (seasonally dominated) and 90% (noise-dominated). The first represents the expected case for a
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perfect temperature proxy (perfect linear isotope-to-temperature relationship, no precipitation intermittency or redistribution,

constant accumulation) as the seasonal cycle explains roughly 95% of the total temperature variance over the last decades

(Table 2). The second case represents the noise fraction that creates realistic cycle lengths and amplitudes compared to the

observations (Fig. 7). For each site, a single isotope profile is shown but similar results are obtained for any of the profiles.

We first analyse the low (5%) noise case (Fig. 8, top row). For EDML, the effect of diffusion on the amplitude of the5

seasonally dominated signal is moderate and only leads to a reduction in amplitude of about 50% in the top 3.5m. For Vostok,

the annual layer thickness is much smaller and the diffusion therefore already destroys most of the seasonal signal in the top half

metre, leaving only a very small diffused signal. For both sites, the diffused signal looks very much unlike the observed isotope

profiles (third row). For EDML, the diffused signal (top row) is very regular, whereas the observed profile (third row) shows

strong interannual variations. For Vostok, the amplitude of the simulated diffused signal is much smaller than the observed10

amplitude of the profile.

In contrast, the high (90%) noise cases (second row) share, for both sites, many properties with the observations. While we

do not expect any correlation between the simulated and observed profiles, since the simulated profiles are by construction

largely random, the amplitude, interannual variations and cycle lengths are all similar.

These findings are confirmed by comparing the power spectra of the simulations and observations. As shown earlier (Fig. 4)15

the observations show a broadband spectrum with no clear periodicity. For EDML, the power spectrum of the low (5%) noise

simulation (Fig. 8, bottom row) shows clear peaks at the periods corresponding to the annual and biannual layer thickness.

The broadening of the peaks arises from the varying layer thickness due to densification. In the frequency range outside the

peaks, the power spectral density, which is a measure of the timescale-dependent variance of the signal, is about one order of

magnitude lower than observed. In contrast, the simulations of the high-noise case result in a power spectrum that is nearly20

indistinguishable from the observations. For Vostok, a similar behaviour is observed. Here, the annual peak corresponding to

the layer thickness of the seasonally dominated signal is smaller, since it is strongly damped by diffusion. Again, the variance

outside the peak is much too small compared to the observations, whereas the noise-dominated signal has a power spectrum

nearly indistinguishable from the observations.

4 Discussion and Summary25

Stable isotope ratios in firn are usually interpreted as temperature proxy. Therefore, to a first approximation, vertical isotopic

variations in a snow pit should reflect the temperature variations. The naive expectation is thus that a 3 m deep profile containing

25 years and 25 seasonal cycles of climate should look very different from a 3 m profile at a higher accumulation site that only

contains 10 years of temperature variations. However, our results show that this is not the case for many low-accumulation (<

100 mm w.e. yr−1) sites on the Antarctic Plateau, whose isotope profiles appear remarkably similar (Fig. 1), and this similarity30

is not limited to the time series but also applies to the power spectra which are largely indistinguishable between the sites

(Fig. 4). The visual similarity of the isotope profiles is further confirmed by systematically analysing the ‘cycle length’ between

isotopic maxima or minima (Fig. 5).
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To explain these findings, we constructed a simple forward model for isotope signals in firn cores, similar to the ice-core

proxy system model of Dee et al. (2015) or the ‘virtual-ice-core model’ of van der Wel et al. (2011). Our model, driven by

a mixture of the seasonal cycle and white noise as input, allows the simulation of realistic isotope profiles in terms of power

spectral density, amplitude and cycle length (Fig. 8). Importantly, to obtain realistic simulations of the observed firn profiles, we

had to assume a high noise level in the input signal that represents the temporal variations of stable isotope ratios at the surface5

(Figs. 7 and 8). Such a high noise level is consistent with the effect of precipitation intermittency (Helsen et al., 2005; Sime

et al., 2009; Persson et al., 2011) and the stratigraphic noise caused by the redistribution of snow (Fisher et al., 1985; Laepple

et al., 2016; Münch et al., 2016). Both mechanisms distort the original signal and thereby redistribute the energy from the

seasonal periodic cycle to largely uncorrelated variations. In theses cases the statistical properties, especially the power spectra

of the isotope profiles, are mainly determined by isotopic diffusion, which is rather constant on the Antarctic Plateau (Fig. 3).10

In turn, similar power spectra imply a similar characteristic spacing between maxima or minima, a fundamental property of

stochastic processes known as Rice’s formula (Rice, 1944, 1945).

We applied Rice’s formula to the problem of isotopic variations and showed that, assuming a white noise signal before

diffusion, the expected spacing between isotopic maxima or minima (‘cycle length’) is ∼ 5 times the diffusion length (Eq. 2)

and thus on the order of 15–25 cm in the top metres of Antarctic firn. It is important to emphasise that such a characteristic15

spacing of minima or maxima does not imply a periodic deterministic signal that would appear as a peak in the power spectrum,

as it is also the property of purely stochastic variations.

While in instrumental climate observations, a deterministic cycle (e.g. variations driven by the seasonal cycle) would be

clearly distinguishable from the realisation of a purely stochastic process, this is less clear for snow pits or firn cores. Here,

intra-seasonal and interannual changes in accumulation distort the seasonal cycle (Cuffey and Steig, 1998), and might therefore20

smooth out potential periodic peaks in the power spectrum. However, we further showed that the depth dependency of the cycle

length allows discrimination between a deterministic signal (e.g. the seasonal cycle) and a stochastic signal affected by isotopic

diffusion. The first case leads to a decrease in cycle length with depth, by thinning of the annual layers due to densification,

while the latter leads to an increase in cycle length with depth due to the increasing diffusion length (Fig.s 6 and 7).

Defining noise as deviations from the surface isotope signal that are unexplained by the local temperature time series, the25

depth dependency of the cycle length and amplitude suggests a significant proportion of noise in the surface isotope signal

at all analysed sites (Fig. 7). While missing knowledge concerning the properties (i.e., the spectral shape) of the noise before

diffusion impedes quantitative estimates, with the exception of South Pole, a noise level of 50–90% of the total variance seems

realistic for all sites analysed in this study. For South Pole, the result suggests a noise level of 10–50%. These noise fractions

are estimated from snow pits of several metres length and evaluated on the centimetre scale. They therefore correspond to30

variations from sub-annual to decadal timescales.

This assertion may seem particularly troubling for the EDML site, as here the accumulation rate, as determined from snow

stakes or volcanic markers in firn cores, corresponds to an annual layer thickness of ∼ 20cm of snow, and the cycles were

usually interpreted as annual cycles (Oerter et al., 2004). In contrast, our study suggests that, at least below a depth of 3m,

the isotopic ‘cycles’ in single profiles or cores are not dominated by the seasonal signal but rather by diffused noise (Fig. 7),35
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leading to the observed increase in cycle length with depth. While challenging the earlier interpretation of the variations,

the new finding is consistent with the high stratigraphic noise level (50% variance) independently estimated by comparing

horizontal and vertical variability in snow trenches (Münch et al., 2016), and the low reproducability between nearby firn cores

in this region (Karlöf et al., 2006).

For the three sites along the East Antarctic Divide analysed here (DF, MP, DK) and later an extended set of sites, Hoshina5

et al. (2014, 2016) interpreted the multiyear cycles as the result of variable accumulation rates in combination with post-

depositional changes at the surface, such as ventilation or condensation-sublimation effects. Both studies further argued for

several significant periodic cycles in partly the same firn profiles. This interpretation differs from our finding of no significant

periodicities in the power spectra of these sites (Fig. 4). In contrast to our study, Hoshina et al. (2014, 2016) tested the spectral

peaks against undiffused white noise. We argue that this null hypothesis will always lead to spurious significant peaks in firn10

profiles (Appendix C) as the true background spectrum is modified by diffusion and is therefore not appropriate. For Vostok,

Ekaykin et al. (2002) argued that the spatial dune structure results in temporal isotope variations after burial leading to the

cycles. For EDC, Petit et al. (1982) discussed the potential of missing months on the isotope record, due to precipitation

intermittency and erosion as well as firn diffusion, to create the structure of the isotopic variations. All four studies propose

mechansisms that distort or destroy the regular seasonal cycle of stable isotope ratios and thus create noise in the isotopic15

record. However, we argue that not these processes but rather the diffusion sets the first-order spectral structure of the signal,

including the observed ‘cycle length’, and that this explains the similarity across sites.

At first sight, our results seem to contradict the finding that firn-core isotope profiles are significantly correlated with im-

purities such as Na+ (Hoshina et al., 2014, 2016), especially in very low-accumulation regions. However, such a relationship

is expected if the initial surface signals of isotopes and impurities are correlated, and if this correlation is not limited to high-20

frequency variations. For example, if both the isotopes in snowfall and the impurities show a seasonal cycle, and both are

deposited and redistributed together (i.e., wet deposition of impurities), this will result in correlated surface signals. For the

typical variability of observed impurity profiles, this correlation is partly preserved even after diffusion (Appendix A: Fig. 9).

Similar noise levels in the isotope and impurity signals at the surface, caused by common deposition and redistribution

processes, would also imply that little or no seasonality is preserved in the impurity records at those sites for which we find25

a high noise level. This is consistent with the missing seasonality in the impurity signal at sites with very low accumulation

(Hoshina et al., 2014, 2016) but less clear for EDML where a seasonal cycle in impurities seems to be preserved (Sommer

et al., 2000). The latter either suggests that at EDML the surface seasonality of the impurity signal is stronger than that of the

isotope signal, that both atmospheric signals are corrupted differently on their way to the snow, or that the noise level is on the

lower side of our estimates.30

Our result also has implications for estimating isotopic diffusion and for the usage of layer counting. Assuming a white noise

input signal, the observed cycle length is proportional to the diffusion length (Eq. 2). The agreement between the observed and

simulated cycle length (Fig. 7), and the observed spectra and diffused noise spectra (Fig. 8), thus provides some confirmation

of the classical diffusion model (Johnsen et al., 2000). Recently it has been argued that the diffusion model of Johnsen et al.
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(2000) overestimates diffusion lengths in the top metres of the firn, at least in Greenland (van der Wel et al., 2015b). Focusing

on the same data set might potentially allow this to be formally tested but this is beyond the scope of this study.

Our findings further support the assumption of an initially white spectrum as it is used in isotopic diffusion studies (e.g.,

Gkinis et al., 2014), since the white-noise assumption for the surface signal allows a good reproduction of the observed power

spectra (Fig. 4) and of the observed cycle lengths (Fig. 7).5

We showed that the level of noise in the input signal also determines the depth dependency of the amplitude of the variations.

The boundary case of a diffused pure seasonal cycle leads to an exponential decrease of amplitude with depth (Johnsen et al.,

2000), whereas a diffused white noise signal results in a slower decrease of the peak-to-peak amplitude (Fig.s 6. All isotope

signals in snow or firn will be noise-affected, due to stratigraphic noise (Fisher et al., 1985; Laepple et al., 2016; Münch et al.,

2016) and precipitation intermittency (Helsen et al., 2005; Sime et al., 2009; Persson et al., 2011). Therefore, estimates of the10

diffusion strength based on analysing the decay of the seasonal cycle amplitude by measuring the peak-to-peak amplitude in

the time domain (Cuffey and Steig, 1998) might be biased low if they do not account for the noise. Related to this issue, our

results also underline the fact that layer counting in isotope profiles should only be performed after undiffusing the isotope

signal (Cuffey and Steig, 1998), or using non-diffused parameters such as impurities. Our results suggest that layers in the

deeper parts of the firn could be systematically missed by simply counting the local extrema in isotope profiles (Fig. 6), leading15

to age models that are biased towards ‘younger’ ages.

The combination of isotopic diffusion with strong variability at the surface that is not directly related to temperature, also

limits the effective resolution of climate signals that can be obtained by analysing firn-core isotopic records. While the problem

of diffusion could be overcome by undiffusing the signal (Cuffey and Steig, 1998), this procedure also inflates the noise.

Therefore, methods to reduce the noise by averaging across cores (Münch et al., 2016), or the use of other parameters, have to20

be employed when aiming for high-resolution climate reconstructions at low-accumulation sites.

5 Conclusions

We provide an explanation of why snow pits across different sites in East Antarctica show visually similar variations in stable

isotope ratios δ18O and δD. We argue that the similar power spectra and apparent cycles of around 20cm in near-surface

isotope profiles are the result of a seasonal cycle in isotopes, noise, for example from precipitation intermittency, and diffusion.25

The near constancy of the diffusion length across many ice-coring sites (Fig. 3) explains why the structure and cycle length

is largely independent of the accumulation conditions. At some sites, such as EDML, the cycle length implied by the isotopic

diffusion coincides with the annual snow layer thickness in the upper metres of the firn. This calls for a careful consideration

of the effects of noise and diffusion when interpreting isotopic variations.

Our hypothesis does not exclude the existence of a climatic signal in the isotope time series, as any low-frequency surface30

signal would still be preserved in the diffusion process, and thus does not question the relevance of stable isotope ratios as a

palaeo-temperature proxy. However, in particular for low-accumulation areas we show that the typical spacing of extrema in

isotope profiles can be explained without invoking multidecadal climate changes or other climate-related hypotheses.
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Our results underline previous findings that δ18O and δD signals in low-accumulation regions have a small signal-to-noise

ratio. Therefore, methods to reduce the noise such as averaging across cores have to be employed when aiming for high-

resolution climate reconstructions. Finally, systematically analysing the spectral shape of isotopic variability and not just the

potential periodicities and cycles might be a promising way forward to quantitativly understand the isotopic variability in polar

firn cores (Fig. 8).5

6 Data availability

The snow trench (T15) isotope data is available in the PANGAEA repository doi:10.1594/PANGAEA.876639. The snow-pit

and firn-core isotope data used are available in the PANGAEA repository doi:10.1594/ADDEDINPROOFREADING.

7 Appendix A: Sensitivity to the input signal

Our previous calculations assumed an isotope surface signal that is a mixture of a seasonal cycle and uncorrelated (white)10

noise. While uncorrelated noise is the simplest hypothesis, it is likely that the surface signal exhibits more structure. Potential

processes that lead to autocorrelation include precipitation events that deposit several centimetres of snow with similar isotopic

composition, as well as mixing and redistribution by wind drift that might vertically homogenise the snow surface.

Unfortunately, the surface isotope signal before diffusion is largely unknown. To obtain a reasonable surrogate for the

power spectrum of the surface isotope signal, we therefore resort to observed major ion profiles. This is motivated by the fact15

that, assuming an atmospheric source, wet deposited impurities are also influenced by precipitation intermittency and snow

redistribution, and might therefore show a similar variability structure as the isotope signal at the surface. However, in contrast

to the isotopic composition, impurities are not affected by diffusion and therefore the variability in measured impurity firn

profiles should in a first approximation reflect the temporal surface variability.

Interestingly, major ion profiles in snow pits (e.g. Hoshina et al., 2014, 2016) are clearly distinguishable from white noise.20

This suggests that at least some correlated structure is preserved or created in the depositional process.

To test the effect of autocorrelated noise in the input signal on the resulting cycle length, we simulate profiles assuming three

different input signals: (1) white noise, (2) white noise subject to a 5cm mixing (low-pass filtered with a finite response filter

with cutoff frequency 1/10m−1), and (3) noise constructed with a similar temporal structure as observed impurity profiles,

acting as a surrogate for the isotopic surface variability. For the latter, we estimate the mean power spectrum of the 4m long25

Na+ impurity profiles of DF and MP (Hoshina et al., 2014), and generate new random time series from this spectrum.

The results (Fig. 9) show that although the input signal strongly differs, the diffused signal is very similar. The resulting

cycle lengths for the white noise and the mixed white noise inputs are identical, and both close to the theoretical expectation

(dashed line). The cycle length of the impurity-based simulation is slightly higher (∼ 3cm offset).

We note that while the cycle length is similar the correlation between the input and the diffused signal is larger for the more30

structured input signals as a larger fraction of low-frequency variability is preserved after diffusion.
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Figure 9. Sensitivity of the cycle length to the temporal correlation structure of the assumed input signal. Thin lines show the undiffused

signal, thick coloured lines the signal after diffusion. The correlation between the undiffused and the diffused signals are provided in the

panels. For the more structured signals (mixed white noise and variability mimicking impurities), a larger fraction of the signal is preserved,

leading to higher correlations. The resulting cycle length (right panel, coloured lines) is only weakly dependent on the input signal and is

close to the theoretical result for white noise (Rice’s formula, dashed line).

8 Appendix B: Observed and simulated cycle lengths for the sites with one (single) available profile

In the main text, we showed the observed and simulated cycle length statistics for the sites with multiple profiles (Fig. 7), as

they allow a better estimation of the cycle length. The four remaining sites with single profiles (Fig. 10) also show cycle lengths

consistent with the high noise level simulations.

The depth dependency of the cycle length is less clear which is likely caused by the large estimation uncertainty. In addition,5

MP shows a systematically smaller observed cycle length than the simulations. Potential reasons could be either uncertainties

in the isotopic data set (independent noise leads to more minima and maxima and thus a smaller cycle length) or our choice of

climatic parameters (accumulation rate, firn temperature).

9 Appendix C: Spurious significance when using a white noise null hypothesis

To demonstrate the effect of a white noise null hypothesis on the spectral analysis of oxygen/hydrogen isotope ratios in snow10

and firn, we simulate random δ18O profiles using our minimal forward model. To mimic Hoshina et al. (2014), we use the site

parameters for DF and a pure white noise (ξ = 1) input signal that is subject to the site-specific densification and diffusion. The

final data are averaged to 3 cm to mimic a typical sampling interval. We estimate the power spectrum using a raw periodogram

and show the p= 0.05 significance level of a white noise null hypothesis. For all three realisations of purely random firn

profiles, the spectra show energy well above the white noise significance level (Fig. 11). This demonstrates the need for using15

a null hypothesis that accounts for the isotopic diffusion.
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