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Abstract. GPS measurements reveal strong modulation of horizontal ice-shelf and ice-stream flow

at a variety of tidal frequencies, most notably a fortnightly (Msf ) frequency not present in the vertical

tides themselves. Current theories largely fail to explain the strength and prevalence of this signal

over floating ice shelves. We show how well-known nonlinear aspects of ice rheology can give

rise to widespread, long-periodic tidal modulation in ice shelf flow, generated within ice shelves5

themselves through tidal flexure acting at diurnal and semidiurnal frequencies. Using full-Stokes

viscoelastic modelling, we show that inclusion of tidal bending within the model accounts for much

of the observed tidal modulation of ice-shelf flow. Furthermore, our model shows that, in the absence

of vertical tidal forcing, the mean flow of the ice shelf is reduced by almost 30 % for the geometry

that we consider.10

1 Introduction

Ocean tides are known to greatly affect the horizontal flow of both ice shelves and adjoining ice

streams, even far upstream of grounding lines (GLs) (Doake et al., 2002; Brunt et al., 2010; Makin-

son et al., 2012; Legresy et al., 2004; King et al., 2011; Bindschadler et al., 2003b, a; Anandakrish-

nan et al., 2003; Alley, 1997; Gudmundsson, 2006; Marsh et al., 2013; Minchew et al., 2016; Rosier15

et al., 2017a). In some cases the horizontal ice flow responds at a different frequency to the tidal

forcing, for example on the Rutford Ice Stream (RIS) the primary response is at a fortnightly (Msf )

frequency that is not measurable in the vertical tidal motion (Gudmundsson, 2006). More recent

observations have shown that the Msf signal actually increases in strength on the adjoining ice shelf

(Minchew et al., 2016; Rosier et al., 2017a) and also exists on isolated ice shelves which do not have20

large ice streams feeding into them (King et al., 2011; Gudmundsson et al., 2017).
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A multitude of mechanisms have been proposed which could lead to a fortnightly modulation

in ice flow: a nonlinear basal sliding law (Gudmundsson, 2007, 2011; Rosier et al., 2014), tidal

perturbations in subglacial water pressure (Thompson et al., 2014; Rosier et al., 2015), grounding

line migration (Rosier et al., 2014; Robel et al., 2017) and changes in the effective ice-shelf width25

(Minchew et al., 2016). Identifying the mechanism whereby ocean tides generate the observed tidal

modulation in ice flow is important for several reasons. The amplitude of these perturbations is often

a significant fraction of mean flow speed and the perturbations are widespread, impacting ice flow

on a large number of ice streams and several ice shelves. Not knowing the root cause of these tidal

modulations therefore implies a significant lack in our understanding of the forces controlling the30

large scale ice flow of the Antarctic Ice Sheet. Furthermore, there are good reasons to believe that the

tidal response is significantly affected by the rheology of ice or mechanical conditions at the base of

ice streams, or possibly both in combination. Hence, once the mechanism has been fully identified,

one can expect to be able to make inferences about ice rheology and/or basal conditions from obser-

vations of tidal modulations in ice flow. The Filchner-Ronne Ice Shelf (FRIS) is a particularly good35

natural laboratory for obtaining these insights because of the considerable tidal range, which can be

as large as 9 m (Padman et al., 2002).

Previous modelling studies have focused almost exclusively on tidal modulation of ice-stream

flow (Gudmundsson, 2007, 2011; Walker et al., 2012, 2016; Thompson et al., 2014; Rosier et al.,

2014, 2015; Rosier and Gudmundsson, 2016; Sergienko et al., 2009), whereas tidal modulation of40

the flow of ice shelves has received much less attention. This is possibly because it has often been

assumed that theMsf signal observed on ice shelves is driven by processes occurring on neighbouring

ice streams; indeed these make up the bulk of the proposed mechanisms listed above. Now that new

observations show the Msf signal strengthening downstream of GLs (Minchew et al., 2016; Rosier

et al., 2017a) it has become clear that an alternative mechanism is needed which can generate this45

signal, independent of anything occurring on grounded ice (Minchew et al., 2016; Rosier et al.,

2017a; Robel et al., 2017).

Here, we will show how the observed widespread tidal modulation in ice flow can be generated

within ice shelves themselves through tidal flexure. We begin with a description of this simple mech-

anism, which results directly from the well-known nonlinear aspect of the flow law of glacier ice and50

hence does not require an ice stream to act as a source of the observed tidal signals. Then in Sect. 3,

using elastic beam theory, we derive a simple mathematical description of this mechanism that yields

some insights into its importance for various ice-shelf configurations. Finally in Sect. 6, we present

results from a 3-D full-Stokes viscoelastic model of a confined ice shelf, with a similar geometry to

the RIS, that incorporates the new mechanism and is capable of replicating many of the observed55

characteristics of the tidal response of the Ronne Ice Shelf. These results will show that this mecha-

nism has important implications for both the time-varying and mean flow of ice shelves subjected to

strong vertical ocean tides.
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Figure 1. Schematic showing the flexural ice-softening mechanism for a confined shelf, together with the

geometry of the problem described in Sect. 3. The top panel shows the situation with no tidal uplift and the

bottom panel shows how ice flow is enhanced as ice is softened in the shear margins due to flexural stresses

generated by a vertical tidal motion (wa). W denotes ice shelf half width and h is local ice thickness.

2 Flexural ice-softening mechanism

The Filchner-Ronne, Larsen and to a lesser extent Ross Ice Shelves are situated in tidally energetic60

regions, and thereby subjected to large vertical motion at tidal frequencies. By far the largest tidal

amplitudes are in the Weddell Sea region, particularly at the grounding line of large ice streams such

as Rutford and Evans (Padman et al., 2002). In the grounding zone (here defined as a band along the

grounding lines that extends several kilometers into the main shelf) the ice bends to accommodate

these large vertical tidal motions. This bending generates longitudinal and shear stresses within the65

ice which contribute to the effective stress and are strongest near the grounding line during high

and low tide. Since ice is a non-Newtonian shear thinning fluid its effective viscosity will be altered

by these tidal stresses. A schematic showing how vertical tidal motion can lead to a reduction in

effective viscosity of ice shelf shear margins is shown in Fig. 1. This effect, which we will call

’flexural ice-softening’, leads to an increase in ice velocity during high and low tide. We will show70

that this is a direct consequence of the nonlinearity of Glen’s flow law.

Since it is the magnitude of stresses and not their sign that contributes to the effective viscosity,

there is no difference in the flexural ice-softening effect between high and low tide. The only time

that the effective viscosity of an ice shelf subjected to large tides will increase to that of an ice shelf

without tides is when the vertical deflection is small, i.e. between high and low tide or during neap75
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tides. As a consequence there are two other important repercussions for the ice-shelf flow that arise

from this mechanism, aside from the direct increase in velocity at high and low tide. Firstly, the

mean flow of an ice shelf is greater in the presence of large tides because, even at its slowest, it will

be flowing at least as fast as an ice shelf without tides. Secondly, because the change in velocity

(due to flexural ice-softening) during spring tide is larger than during neap tide, the ice-shelf flow80

will be modulated at an Msf period (provided the rheology is nonlinear, as is the case for glacier

ice). Since many large ice shelves are confined on three sides by grounded ice, the bending stresses

are generated along their entire length. This mechanism could therefore explain how the Msf signal

increases in strength downstream of ice stream grounding lines, as evidenced by recent GPS and

satellite observations (Minchew et al., 2016; Rosier et al., 2017a).85

3 Analytical solution for flexural ice-softening

Elastic beam theory provides a useful starting point for evaluating the magnitude of these tidal bend-

ing stresses on an ice shelf and their impact on its effective viscosity. We start from a simple confined

ice shelf whose geometry is invariant across flow (in the y direction) and with a constant ice thick-

ness gradient in the down-flow x direction. The ice shelf is symmetrical about the centerline, which90

is distance W from the two sidewalls at y = 0 and y = 2W (Fig. 1). For this analytical solution we

assume that the portion of the ice shelf that we investigate is sufficiently far from the GL such that

the only bending occurs across-flow. The situation near the main GL of a narrow confined shelf will

be a complex combination of along and across-flow stresses that we shall ignore for now. Deviatoric

stresses are defined as95

τij = σij − δijσkk/3 (1)

where σij are the components of the Cauchy stress tensor, δij is the Kronecker delta and p=−σkk/3
is the isotropic pressure. We use the comma to denote partial derivatives and the summation conven-

tion, in line with standard tensor notation.

We immediately make the simplifying assumptions (motivated by full-Stokes calculations pre-100

sented below) that τxx = τxz = 0, hence τyy =−τzz , σzz =−p−τyy and σxx =−p. Furthermore,

we assume that the only important contributions to τyy and τyz are due to tidal bending. The force

balance equations in x and z reduce to the following form:

−∂xp+ ∂yτxy = 0 (2a)

∂yτyz + ∂zσzz = ρg (2b)105

Note that in this system σzz is not cryostatic, unlike in the shallow shelf and shallow ice approxima-

tions. We are interested in finding an expression for the across-flow variation in downstream velocity,

u(y), for which we need an expression for τxy . As we show in appendix A, τxy is essentially inde-
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pendent of the tidal stresses (as well as x and z) and can be approximated by

τxy = Fd(W − y), (3)110

where Fd = ρg∂xs.

Linear elastic beam theory gives us an expression for the elastic stresses that will arise due to tidal

bending (Robin, 1958). Although strictly derived for an infinitely long ice shelf (or in the orientation

of bending that we consider, infinitely wide), we show in appendix B that the equations in Robin

(1958) provide a good approximation for the geometry that we are interested in. The two contributing115

stresses, related to the bending moment and its derivative, are the across-flow longitudinal bending

stress:

τyy =
−6waρwgz

h3λ2
e−λy [cos(λy)− sin(λy)] (4)

and the across-flow shear bending stress:

τyz =
6ρwgwa
h3λ

e−λy cos(λy)

[
h2

4
− z2

]
, (5)120

where

λ4 =
3ρwg(1− ν2)

Eh3
, (6)

wa is the vertical tidal motion, E is the Young’s modulus of ice, ν is the Poisson’s ratio, h is local

ice thickness and ρw is the density of seawater. The vertical coordinate, z, is defined as the vertical

distance above the neutral axis of the ice shelf, which we assume to be halfway through its thickness.125

At this stage we employ a Maxwell rheological model consisting of a linear elastic spring and a

nonlinear viscous dashpot, whose behaviour is modelled by Glen’s law (Glen, 1955), connected in

series. With this viscoelastic model the total strain is the sum of the viscous and elastic strains and

the stress is equal in the two components. In this way, we can express the horizontal shear strain rate

as130

ėxy =Aτn−1E τxy +
1

2G
τ̇xy (7)

where

G=
E

2(1 + ν)
(8)

and, based on the assumptions given above,

τE ≈
√

τ2yy + τ2xy + τ2yz. (9)135

Motivated both by our findings in the appendix that τ̇xy ≈ 0, and by the fact that this elastic term can

only ever yield a linear response to the tidal forcing, we discard it and focus only on the nonlinear
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viscous response. We are concentrating on the nonlinear response because only this can explain

modulation of horizontal ice-shelf flow at an Msf frequency, given that the Msf constituent is absent

in the vertical tidal forcing.140

By assuming that n= 3, we can separate the velocity into unperturbed and time-varying compo-

nents. Integrating with respect to z and y then gives the depth averaged velocity u as

u(y,t) =
2A

h

( u0︷ ︸︸ ︷
y∫

0

hτxy
3dy+

ulong︷ ︸︸ ︷
y∫

0

hτxy

s∫
b

τ2yy dzdy+

ushear︷ ︸︸ ︷
y∫

0

hτxy

s∫
b

τ2yz dzdy

)
(10)

where s is the surface elevation, b is the bed elevation and τxy is the depth averaged shear stress. We

have split this into the three components, denoted as the unperturbed (u0), long(itudinal) bending145

stress and shear bending stress contributions to ice flow. Evaluating the integrals for each term and

neglecting the overbar since everything is now depth averaged yields:

ulong =
3AFd(ρwgwa)2

2h4λ6

[
e−γ

(
1− 2ξ+ ξ sin(γ) + cos(γ)

[
ξ− 1

2

])
+λW − 1

2

]
(11)

where ξ = λW − γ
2 and γ = 2λy,

ushear =
3AFd(ρwgwa)2

10h2λ4

[
e−γ

(
1− 2ξ− ξ cos(γ) + sin(γ)

[
ξ− 1

2

])
+ 3λW − 1

]
(12)150

and

u0 =
1

2
AF 3

d

(
W 4− (W − y)4

)
. (13)

The shear and across-flow longitudinal components can be combined, such that the total (time-

varying) velocity u= u0 + ∆u. Along the centerline at y =W , the change in velocity due to tides

(∆u) is155

∆u= w2
aB, (14)

where

B =
3AFdρ

2
wg

2

2h2λ2

(
e−γ

[
1

5
− sin(γ)

10
+

1

h2λ2
− cos(γ)

h2λ2

]
+

3λW

5
− 1

3
+

W

h2λ
− 1

2h2λ2

)
(15)

To illustrate the consequences of a typical tidal action for the ice-shelf flow, we assume that the

time-varying sea level wa(t) can be written as the sum of two cosines of amplitude aM2 and aS2 and160

angular frequency ωM2
and ωS2

, i.e.

wa(t) = aM2
cos(ωM2

t) + aS2
cos(ωS2

t). (16)

These two cosines represent the principal lunar (M2) and solar (S2) semidiurnal tides, which dom-

inate in the area of interest. Crucially, because the velocity is a function of tidal deflection squared,
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new frequencies emerge which, if we assume it takes the form of Eq. 16, expands as follows:165

w2
a =

a2M2
+ a2S2

2
+

M4︷ ︸︸ ︷
a2M2

4
cos(2ωM2

t)+

S4︷ ︸︸ ︷
a2S2

4
cos(2ωS2

t)+

MS4︷ ︸︸ ︷
aM2

aS2

2
cos(ωMS4

t)+

Msf︷ ︸︸ ︷
aM2

aS2

2
cos(ωMsf

t), (17)

where ωMsf
= ωS2 −ωM2 and ωMS4

= ωM2 +ωS2 . The four emergent frequencies that we expect

to see are labelled according to their respective tidal constituent names. Depending on the relative170

size of the M2 and S2 vertical tidal forcing, different frequencies will dominate in the horizontal ice

flow response. In the case of the Filchner-Ronne Ice Streams, the amplitude of the S2 constituent is

typically about half that of the M2 constituent. As a result, the S4 frequency will be much smaller

than the other three. In terms of velocities, the amplitudes of the Msf and MS4 components will be

equal, and larger than the M4 component as long as aS2 > aM2/2.175

Several useful results are now easily obtained with Eqs. 17 and 14, for example the amplitude

of the Msf component in ice-shelf velocity is simply (BaM2
aS2

)/2. Integrating with time gives an

expression for displacements, which are more readily measured with in-situ GPS. Once again, the

amplitude of theMsf component in displacements in this case becomes (BaM2
aS2

)/2(ωS2
−ωM2

).

Even more interesting is the result of the first term of Eq. 17, which acts to increase the time-averaged180

ice-shelf velocity (umean). The size of this effect, which we call the nshift is given by

nshift =
B(a2S2

+ a2M2
)

2
, (18)

such that umean = u0 +nshift. Interestingly, within this framework all tidal energy at the original

(vertical) semidiurnal forcing frequencies disappears (as can be seen by squaring the tidal forcing,

Eqs. 16–17). In reality linear elastic effects and changes in damming stresses would be expected to185

produce some response at these frequencies and these terms are included in the 3-D model described

in Section 4. Note that from Eq. 10 onwards these results have been derived under the assumption

that n= 3. For n= 1 bending stresses have no impact on the ice-shelf viscosity and so the Msf flow-

modulation and nshift would be identically equal to zero.

Using the simple set of equations outlined above we can easily explore the parameter space to190

see how the strength of the tidal response changes. Of particular interest is how the nshift leads to an

increase in the mean speed of the ice shelf. In Fig. 2 we show speed-up along the ice shelf medial line

(solid black contour) as a percent of the baseline speed with no tides, i.e. umean/u0 (the parameters

chosen are shown in Table 1). This shows that, for a given tidal amplitude, the nshift effect will be

most strongly felt on a narrow, thin ice shelf. Conversely, the amplitude of the Msf signal in ice shelf195

displacements (dashed contour) is strongest for wide, thick ice shelves. The apparent discrepancy is

because, with all other parameters held constant, a wider ice shelf will flow much faster and so the

increase in speed as a percent of the baseline is much less.
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Figure 2. Contour plot of ice-shelf speed up due to tides, as a percent of the baseline speed, predicted by

the analytical solution in Eq. 18. Speed-up is predicted along the ice shelf medial line using parameter values

given in Table 3. Also shown are contours of the amplitude of the Msf signal in ice-shelf displacements (dashed

contours).

Table 1. Choice of parameters used in Eq. 18 to produce Fig. 2.

Parameter Value Unit

n 3 -

aM2 1 m

aS2 1 m

ρ 910 kg m−3

ρw 1030 kg m−3

g 9.81 m s−2

A 1× 10−24 Pa−3 s−1

ν 0.3 -

E 8× 105 Pa

∂xs 5× 10−4 -

Note that we use a different value of E to obtain bending stresses for analytical solution than in

our full-Stokes model. Using the instantaneous Young’s modulus of 9 GPa (suggested by laboratory200

experiments) would result in bending stresses that are too large. This is because ice behaves vis-

coelastically at tidal frequencies and E is frequency dependent. This behaviour is captured by our

full-Stokes model but since the much simpler elastic beam model does not include this complexity

then instead we treat this value as a tuning parameter and pick a value of E that best matches our

modelled bending stresses, which turns out to be 800 kPa.205
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4 Full-Stokes Model Description

In order to explore the idea of flexural ice-softening in more detail, we undertook modelling ex-

periments on an idealised ice stream/shelf domain using the commercial finite element software

MSC.Marc, which has been used extensively in the past to explore the tidal response of ice streams

(Gudmundsson, 2011; Rosier et al., 2014, 2015; Rosier and Gudmundsson, 2016). The idealised ice210

stream is 28km wide (to match the approximate average width of the RIS) and consists of a 150 km

floating shelf and 80 km grounded ice (Fig. 3). Although data now exists showing tidal modulation

on other ice streams, the RIS lends itself well to an idealised study of this kind because of its rela-

tively simple geometry and because its flow has remained largely unchanged over the measurement

period (Gudmundsson and Jenkins, 2009). Surface and bed slopes of the ice stream and ice-shelf215

portions of the model are approximate averages of the slopes found on RIS, and ice thickness at the

downstream limit of the domain is 1420 m. The model is run forward in time for 60 days in order

to resolve the Msf signal. The grounding line position is fixed and cannot migrate at tidal frequen-

cies, since our focus is only on the effects of tidal bending stresses. We investigate several test cases

(Sect. 5), some of which require a slightly different model set up, which we describe in the relevant220

sections.

4.1 Field Equations

The full-Stokes solver MSC.Marc uses the finite element method in a Lagrangian frame of reference

to solve the field equations:

Dρ

Dt
+ ρvi,i = 0, (19)225

σij,j + fi = 0, (20)

σij −σji = 0, (21)

representing conservation of mass, linear momentum and angular momentum, respectively. In the230

above equations, D/Dt is the material time derivative, vi are the components of velocity, σij are the

components of the stress tensor, ρ is the ice density and fi are the components of the gravity force.

We use a nonlinear Maxwell viscoelastic rheology in a slightly modified form to Eq. 7, which can

be written as

ėij =
1

2G

O
τij +Aτn−1E τij , (22)235

where the full stress tensor contributes to the effective stress, i.e.

τE =
√
τijτji/2 (23)
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and the superscript O denotes the upper-convected time derivative:

O
τij =

D

Dt
τij −

∂vi
∂xk

τkj −
∂vj
∂xk

τik (24)

(Christensen, 1982). We use the same rheological parameters as in Gudmundsson (2011), which240

are found to replicate the behaviour of the more complex Burgers model at tidal frequences, i.e.

E = 4.8GPa and ν = 0.41, where E = 2G(1 + ν) (Shames and Cozzarelli, 1997).

4.2 Boundary Conditions

At the downstream limit of the domain we prescribe the ice shelf stresses:

σxx =−ρg(s− z) +
ρgh

2

(
1− ρ

ρw

)
− pb (25)245

and

τxz =−ρgz
(
∂s

∂x
− 1

2

∂h

∂x

(
1− ρ

ρw

))
(26)

where pb is a buttressing term. A value of 250kPa was chosen for pb, in order to reproduce ice shelf

velocities similar to those observed at the outlet of the RIS. At the upstream boundary we apply the

cryostatic pressure σxx = ρg(s− z). At the ice surface, a stress-free boundary condition of the form250

σijnj = 0 is used, where nj is the outward unit vector normal to the surface.

The ocean pressure normal to the ice ocean interface (pw) is applied as an elastic foundation (see

Gudmundsson 2011 for details). This is exactly equivalent to a normal stress of:

pw =−ρwg(z−wa(t)) (27)

where z is the depth below sea level and wa(t) is the time varying vertical tidal motion (Sect. 5.1).255

Upstream of the grounding line, along the ice-bed interface (green and orange shaded regions in

Figure 3), we use a Weertman style sliding law of the form

u= cτmb (28)

where c is basal slipperiness, τb is the along-bed tangential component of the basal traction and m

is a stress exponent. In all of our experiments we use a nonlinear sliding law with m= 3. Similarly,260

slipperiness values beneath the ice stream are kept fixed in all experiments to a value that approxi-

mately matches the mean flow velocity of the RIS. Beneath the margin, slipperiness is made several

orders of magnitude smaller to restrict ice flow in this portion of the model.

We treat one side of the model ice stream as the medial line, since the problem is symmetrical

(∂yh= 0), meaning we only need to model half of the ice stream with no lateral flow as the appro-265

priate BC. The other side is treated as a grounded sidewall with no-slip, such that u= v = w = 0

(referred to hereafter as the clamped BC). In one of the experiments (n3xy) the constraint on vertical

velocity is removed, as explained in Sect. 5.
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Figure 3. Finite element mesh used in the full-Stokes viscoelastic model (Sect. 4). Note that x and y horizontal

scales have been reduced by factor 10 and 2 respectively.

4.3 Discretization

The model uses 20-node isoparametric hexahedral (brick) elements with a 27-point Gaussian inte-270

gration scheme. These quadratic elements allow accurate representation of stresses and strains with

much fewer numbers of elements than would otherwise be needed when using linear elements. Ele-

ment size varies from a maximum horizontal dimension of ∼2km to a minimum of ∼300m around

the grounding line and in the shear margins. The finite element mesh is unstructured, with a GL that

curves to avoid an unnatural grounding zone corner. The ice is 3 elements thick vertically, resulting275

in 9 integration points through its depth. The model mesh is shown in Fig. 3. The n3xyz simula-

tion (Sect. 5) was repeated with double the horizontal resolution to check if this affected results.

Msf amplitude changed by a maximum of 3%, and ice velocity by a maximum of 2.5%, and so the

default resolution was deemed sufficient.

5 Model Experiments280

We conduct three simple model experiments to investigate the effects of flexural ice-softening within

our model. Model runs are named such that n1 or n3 denotes whether we use a linear or nonlinear

ice rheolgy and xy or xyz signifies which degrees of freedom are clamped on the sidewall boundary.

n3xyz In the first experiment we run the model with nonlinear ice rheology and sidewalls clamped in

x, y and z. This is designed to simulate the ’Rutford’ case whereby the margins are essentially285

stagnant and flexure occurs all along the GL, both where the main body of the ice stream meets

the ocean and downstream of this point along the sides. In order to approximately match the

observed 1m/d flow velocities of the floating portion of RIS we adjust the ice rate factor (A)

uniformly.
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n3xy For the second experiment we run the model as in n3xyz but the sidewalls downstream of290

the GL are not clamped vertically (z direction). With this setup there is no bending along the

sidewalls downstream of the GL, so flexural stresses are only generated in the grounding zone

around x= 0. This experiment is akin to a fast flowing ice-shelf bounded by stagnant floating

ice, as can be found on the floating portion of some fast flowing outlet glaciers.

n1xyz The third experiment uses the same setup and boundary conditions as in n3xyz except that ice295

rheology is made linear, such that n= 1 in Eq. 22. This experiment is done to demonstrate the

difference in response due only to changing n from one to three. In this experiment therefore,

the ice viscosity is not stress-dependent, such that the bending stresses do not cause a reduction

in the effective viscosity of ice. As such, it is not a ‘realistic’ situation (since ice is known to

have a nonlinear rheology) but serves to emphasise that this nonlinearity is the important one300

at play in our model. In order to produce sensible ice-shelf velocities, the rate factor A is

adjusted uniformly so that the background flow-speed (denoted umean in the previous analysis)

is approximately the same as the other experiments.

5.1 Tidal Forcing

The time-varying vertical tidal forcing is implemented as a stress acting normal to the ice shelf base305

(Eq. 27). For all the experiments described above the model is forced with the principal semidiurnal

(M2 , S2 ) and diurnal (O1 , K1 ) tidal constituents, i.e. the four tidal constituents which are gener-

ally largest beneath the Ronne Ice Shelf. Their amplitudes are derived from GPS measurements of

vertical ice-shelf motion 20km downstream from RIS GL (Gudmundsson, 2006). The tidal forcing

is kept intentionally simple to avoid complicating any interpretation of our full-Stokes model results.310

6 Model Results

We now present results from our viscoelastic 3D full-Stokes model of an idealised ice-stream/shelf

system. We begin by examining the modelled response at Msf frequency, since previous models do

not reproduce observations of this nonlinear effect on floating ice shelves. Msf amplitude in hori-

zontal surface ice displacements is shown in plan view for the three experiments in Fig. 4. For the315

n3xyz experiment, which can be thought of as the typical situation for a confined ice shelf subjected

to large vertical tides, Msf amplitude increases continuously downstream of the GL (Fig. 4a). In the

across flow (y) direction the amplitude increases towards the medial line. Also shown are contours

of ice-shelf velocity (u), which increase from 1 m/d upstream of the GL to more than 3 m/d on the

shelf.320

In the n3xy experiment the only change with respect to the n3xyz experiment is to remove the

vertical clamp BC acting along the sidewall of the floating portion of the model. With this change in

sidewall BC the Msf amplitude is similar at the x= 0 GL where bending stresses are still generated.
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Figure 4. Plan view of Msf amplitude in horizontal surface ice displacements, calculated with the full-Stokes

viscoelastic model for the three experiments described in Secion 5. Panel a shows experiment n3xyz, i.e. the

standard case with n= 3 and bending all along the sidewall boundary. Panel b shows experiment n3xy in which

the ice only bends at the x= 0 GL. Panel c shows the n1xyz experiment, for which n= 1 but with the same

BCs as panel a. Dashed black lines are contours of downstream mean surface ice velocity and solid black lines

show the GL position. Note the differences in colour scale between each panel.

Downstream of this region however theMsf amplitude decays rapidly to zero with distance (Fig. 4b),

whereas in the n3xyz experiment the amplitude continues to increase with distance. Ice-velocities on325

the floating shelf are lower than in the n3xyz experiment, and across-flow shear is less pronounced,

such that the ice velocity contours are further apart.

For the n1xyz experiment, (Fig. 4c), where the only change compared to the n3xyz experiment is

to change the value of n from one to three, the Msf response is even more localised to the GL region

and the amplitude is close to zero.330

Other tidal frequencies in the n3xyz experiment that emerge from the frequency doubling (Eq.

17), such as MS4, show very similar spatial patterns to the Msf responses shown in Fig. 4a. In the

n1xyz experiment, these frequencies are completely absent.

Running the standard n3xyz experiment with and without tides reveals how the mean ice-shelf

flow is affected by tidal bending stresses. Averaging over the entire floating portion of the shelf, mean335

velocity is increased by ∼35% when the experiment is run with a vertical tidal forcing equivalent to

that experienced near the RIS GL, as against with no tidal forcing.
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Figure 5. Across-flow transects of depth averaged non-dimensional stress from the full-Stokes viscoelastic

model (Sect. 4) for experiment n3xyz. Profiles are taken 100 km downstream of the GL at high tide (wa = 2m).

The stress scale is given by τij/ρgW∂xs and the length scale by y/W .

To explore the role of flexural stresses in more detail we plot across-flow profiles for each com-

ponent of the deviatoric stress tensor (Fig. 5). Stresses are taken from the n3xyz experiment at

x= 100 km, to avoid the 2-D bending stresses at x= 0, and for a positive vertical tidal deflection of340

2 m. The stress is normalized by the depth-averaged horizontal shear stress at the margin ρgW∂xs,

as predicted by the analysis in Sect. 3 (for the ice-shelf surface slope in the model of 5.4× 10−4 the

stress scale is 67.5 kPa). Distance from the margin is normalized by the ice-shelf half-width (W =

14 km). Surface and bed across-flow bending stresses (τyy) are equal in amplitude but opposite in

sign and so all the stresses are plotted as the depth averages of their absolute values. This is more345

relevant for our purposes, since it is the absolute amplitudes of these stresses, and not their signs,

that impact the effective stress.

Our numerical results show that the contributions of across-flow and shear bending stresses to the

effective stress, and therefore their relative impacts on effective ice viscosity, change significantly

with increasing distance away from the ice-shelf margins. At the margins, both across-flow and shear350

bending stresses contribute about equally to the total effective stress. With increasing distance away

from the margins, both bending stress terms behave as damped cosine waves (Eqs. 4 and 5), however

the resulting ’waveforms’ are phase shifted with respect to one another. This can be seen in Fig. 5,

where τyy shows a clear minimum at a distance of y/W ≈ 0.2 before increasing again, whereas
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Figure 6. Time series of vertical ice displacement at the medial line (a), ice velocity (b), depth averaged ef-

fective stress in the shear margin (d) and depth averaged strain heating rate in the shear margin (e) from the

3D viscoelastic model. All variables are taken 100 km downstream from the main GL. The alternating blue and

white shaded areas each represent one full tidal cycle, starting and ending at high tide.

the minimum for τyz is discernible at y/W ≈ 0.4. As a consequence of this damped behaviour,355

bending stresses are largest near the grounding line but, for this geometry, have very little impact on

effective viscosity along the ice shelf medial line where they have decayed to almost zero (the fact

that τyy term is relatively large at the medial line is a result of ice-shelf spreading, not bending in the

grounding zone). Note that, since λ is a function of ice thickness, the location of the bending stress

minima will shift as the thickness changes.360

At this stage we can briefly evaluate the validity of the assumptions made in Sect. 3. The expres-

sion for the across-flow variation in τxy , given by Eq. 3, varies from the value calculated by our

full-Stokes model by a maximum of 5%. The assumption that τyy ≈−τzz holds near the margin, as

shown in Fig. 5 where the modelled absolute values of these two stresses are approximately equal,

but begins to break down at a distance of W/2 where the τxx becomes increasingly large due to ice365

shelf spreading. Finally, the vertical shear stress (τxz) is approximately zero everywhere apart from

within one ice thickness of the GL, where the effects of neighbouring ice shearing vertically in the

grounded margin are felt. Nevertheless, even in this region τxz contributes less than 2% of the total

effective stress.

Figure 6 shows the phasing of velocity, effective stress and strain heating rates in the model shear370

margin relative to vertical tidal motion (vertical motion is taken along the medial line to show the

undamped tidal amplitude). Strain heating rate is calculated as ėEτE/ρCp, using a specific heat

capacity of 1955.4 J/K (equivalent to an ice temperature of−20◦C, Cuffey and Paterson 2010). This
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shows that modelled ice velocity, effective stress and strain heating are greatest just before high and

low tide, as would be expected from a viscoelastic rheology. Effective stress in the shear margin is375

increased by over 50% during the highest tides of the spring cycle. Strain heating rate in the shear

margin is enhanced by vertical tidal motion and so this mechanism could enhance the shear heating

effect which has been invoked to explain the inferred softness of Ronne Ice Shelf shear margins

(Larour et al., 2005).

7 Discussion380

The analysis of Sect. 3, together with full-Stokes viscoelastic modelling, both suggest that flexural

ice-softening could play an important role in the generation of theMsf signal that is readily observed

across the entire Ronne Ice Shelf (Rosier et al., 2017a). Flexural stresses due to vertical tidal motion

can generate a fortnightly modulation in ice flow along any GL based only on the fact that ice is

non-Newtonian. This mechanism is felt most strongly for a confined ice shelf, where bending occurs385

in the margins along the entire length of the shelf. New observations reveal that the Msf signal is

generally larger on ice shelves than on the adjoining ice streams, and tends to increase in amplitude

in the downstream direction towards the ice front (Minchew et al., 2016; Rosier et al., 2017a). Fur-

thermore, the Msf signal has now been observed to lead in phase on the ice shelf, casting some doubt

on previous mechanisms that acted only on grounded ice (Minchew et al., 2016). Our modelling390

work shows that flexural ice-softening can replicate this phasing and amplification of the Msf signal

downstream of ice stream GLs. Furthermore, these tidal bending stresses will lead to a net speed-up

of the ice shelf.

Two alternative mechanisms have been proposed to explain the Msf amplification on ice shelves,

both reliant on GL migration. Minchew et al. (2016) argues that, if the sidewall GL migrates over a395

tidal cycle, this will lead to a change in the effective width of the ice shelf as proportionally more of

it ungrounds. Observed changes in the distance between the two maxima of lateral shear strain rate

between high and low tide are interpreted as being caused by grounding line migration (Minchew

et al., 2016). An alternative explanation is that flexural ice-softening in the shear margins leads to a

steepening of the across-flow velocity profile at the boundary, thereby shifting the apparent margin400

as defined above. Calculating lateral shear strain rate 100 km downstream of the n3xyz simulation

shows that each peak can shift by ∼500 m over a tidal cycle, leading to an apparent widening of

1 km even though there is no grounding line migration in the model. Alternative evidence of GL

migration does exist in other parts of the FRIS (Brunt et al., 2011) and this mechanism could be

locally important, however, it seems unlikely that it could explain the pervasiveness of theMsf signal405

across the entire shelf, since it is so reliant on local bedrock topography.

A previous modelling study has shown that GL migration is itself a strong nonlinearity which

can generate an Msf response in ice flow (Rosier et al., 2014). Robel et al. (2017) explored this
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tive names.

idea in more detail and suggested that changes in the area which an ice shelf contacts the bed (due

to GL and pinning point migration) is the dominant nonlinearity on RIS leading to the observed410

Msf response. Within their framework, flexural stresses are ignored and the tidally varying ice shelf

strain is a function of competing hydrostatic and buttressing stresses. The Robel et al. (2017) model

was flexible enough to allow for many of the observed aspects of the tidal modulation to be repli-

cated. However, in the absence of a physically motivated model of GL migration, knowledge of the

sub-shelf bathymetry, or even strong evidence for GL migration in the area, the extent to which this415

mechanism plays an important role remains an open one.

The flexural ice-softening mechanism produces a frequency doubling in the response of the ice

shelf; since the marginal ice will be softest just preceding high and low tide. This is evident in the

analysis of Sect. 3, which reveals that ice shelf velocity modulation will be dominantly at M4 and

MS4 frequencies in contrast to the Msf frequency which dominates the displacements. In order to420

check that our 3D viscoelastic model reproduces this behaviour we performed a tidal analysis on

modelled displacement and velocity at the ice stream medial line, 100km downstream from the

GL. Figure 7 shows the results of this tidal analysis as a frequency power spectrum, showing only

constituents with a high signal to noise ratio. Surface horizontal displacements show a dominantly

Msf response, with almost no clear response at other frequencies (Fig. 7a). In the horizontal ice425

velocity (Fig. 7b) the M4 and MS4 frequencies emerge, with similar amplitudes to the Msf in agree-

ment to Eq. 17. Other nonlinear frequencies such as Mf , arising from interaction of the two diurnal

tidal constituents, should be present but are not resolvable with a simulation time of sixty days.

As stated above, alternative mechanisms for generating an Msf signal on floating ice assume that

GL migration is the dominant process. Ice shelf velocities from the viscoelastic model proposed430
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by Robel et al. (2017) (using the parameters selected to match observations on RIS) are dominated

by M2 and S2 frequencies. Since the mechanism is nonlinear, higher frequencies such as M4 and

MS4 are also generated, but in that model are of a lower amplitude than the semidiurnal frequencies.

In order to determine which mechanism is most likely responsible for observations on the RIS,

therefore, we can look at whether short-term ice shelf velocity modulation is dominantly M4 and435

MS4 or M2 and S2 .

Most of our observations of the short-term velocity fluctuations on floating ice come from GPS

units. Tidal analysis of these records is typically done on their measured displacements, rather than

the much noisier velocities calculated from the time derivative of their measured position. By first

fitting a tidal model to GPS measurements of horizontal ice flow downstream of the RIS, and then440

calculating the velocity from this smooth field, we can get a better velocity signal with which to

do further analysis. A convenient measure of the importance of each tidal constituent is the percent

energy (PE) (Codiga and Rear, 2004). Tidal analysis with Utide (Codiga, 2011) of the measured

horizontal ice displacements 20 km downstream of RIS GL show that the Msf signal dominates with

87% of PE, followed by the diurnal and semidiurnal tidal constituents. Analysis of the velocites,445

calculated as described above, reveals that the two largest constituents are MS4 and M4 with 21%

and 11% of PE, respectively. Based on the arguments given above, these results provide compelling

evidence that the flexural ice-softening mechanism is responsible for the majority of the observed

Msf signal on the RIS.

One consequence of not including GL migration in our model is to generate artificially large450

stresses at the GL during high tide, where tidal stresses are acting to lift the ice from the bed but the

clamped boundary condition prevents this from happening. For comparison, stresses were obtained

for a simulation in which the GL was allowed to migrate, forced by a positive two metre tidal

deflection. At the GL node, effective stress was 67% greater in the pinned case, but this effect is

highly localised and depth averaged effective stress at the GL is only 12% greater. If bed geometry455

on RIS is such that the GL can migrate a meaningful distance, our model would slightly overestimate

the reduction in shear margin effective viscosity due to bending stresses at high tide. Our aim here is

to investigate the flexural ice-softening mechanism in isolation and including GL migration would

complicate any interpretation, particularly given the unknown bed geometry of RIS. GL migration

could play a role in generating the Msf signal observed across the Ronne Ice Shelf, depending on460

whether the local bed geometry permits it. That being said, both the simplicity of the flexural ice-

softening mechanism, together with the ease with which it explains many aspects of the observed

tidal modulation in ice-shelf flow, suggest that it is likely to be the primary mechanism at play.

In all our full-Stokes model experiments the Msf signal decays rapidly upstream of the ground-

ing line, contrary to observations which show the signal persists at least ∼80 km upstream of the465

Rutford, Evans and Foundation Ice Stream GLs (Gudmundsson, 2006; Minchew et al., 2016; Rosier

et al., 2017a). Previous studies have proposed that a nonlinear basal sliding law could generate the
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Msf signal on grounded ice (Gudmundsson, 2007, 2011; King et al., 2011; Rosier et al., 2014). The

model presented in this paper also uses a nonlinear sliding law, but when the flexural softening mech-

anism is absent and the nonlinear sliding law is the only mechanism at play (experiment n1xyz) it470

fails to reproduce the observed Msf amplitude and decay length scale (Fig. 4c). Other mechanisms

have been suggested which could promote propagation of this signal far upstream, for example

weakened margins or tidal pressurisation of the subglacial drainage system (Thompson et al., 2014;

Rosier et al., 2015). Since our focus is on the ice-shelf we do not include any of these mechanisms

in this model.475

The flexural softening mechanism which we have described acts in the grounding zone which may

often coincide with a shear margin, a portion of the ice sheet that is complex and remains poorly

understood. Shear margins are typically heavily crevassed due to the intense shear straining, making

them difficult to access and instrument. These crevasses change the effective bulk properties of the

ice, altering the flexural profile compared with undamaged ice (Rosier et al., 2017b). Furthermore,480

repeated straining will alter the ice fabric and make it highly anisotropic (Alley, 1988; Azuma,

1994). In the grounding zone, repeated tidal straining may itself alter the ice fabric, although this has

never been investigated to our knowledge. Finally, lateral and tidal straining will cause strain heating

(Fig. 6d). A consequence is that ice within floating shear margins subjected to large tides may be

warmer as a result of tidal flexure, although the presence of crevasses could lead to a complex depth-485

dependent temperature profile (Harrison et al., 1998; Perol and Rice, 2015). All of the processes

described above will interact with tidal flexure and further modelling is required to evaluate their

effects in detail.

Remote sensing techniques suggest that the amplitude of the Msf signal shows considerable spa-

tial heterogeneity (Minchew et al., 2016). There remains some debate about the correct value for490

the ice rheological exponent n and whether it might vary spatially (Cuffey and Paterson, 2010, and

references therein), although this is often conveniently ignored in modelling studies. Since the am-

plitude of the Msf signal on the ice shelf is highly sensitive to the value of n, further modelling of

this effect might help to provide new insights into ice rheology. For example, it might be that the

observed spatial pattern and magnitude of the Msf effect on the shelf downstream of RIS can only be495

reproduced for certain choices of n, although it would be difficult to separate this from other factors

at play. In the context of the flexural-ice softening mechanism, this heterogeneity could also arise

due to variation in ice properties such as thickness, fabric, damage, etc.

8 Conclusions

We present results from both analytical and full-Stokes models, which show that tidal bending500

stresses in ice-shelf margins can give rise to large scale temporal variations in ice flow. The non-

linear rheology of ice means that, as an ice-shelf bends to accomodate vertical tidal motion, stresses
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generated in the grounding zone reduce the effective viscosity of ice. This leads to modulation of

ice-shelf velocity at a number of frequencies, including the Msf frequency which is readily observed

on many Antarctic ice shelves (King et al., 2011; Minchew et al., 2016; Gudmundsson et al., 2017;505

Rosier et al., 2017a). In addition, the nonlinear response changes the mean flow of the ice shelf when

it is subjected to vertical tidal motion.

This mechanism relies only on the nonlinear rheology of ice and can explain many recent GPS and

satellite observations of tidal effects on ice-shelf flow. By causing an increase in ice velocity twice

during one tidal cycle, it leads to a strong frequency doubling effect which is potentially diagnosable510

from careful measurement of ice-shelf velocity with high temporal resolution and accuracy. Tentative

analysis of GPS measurements from the floating portion of RIS suggest that these characteristic

frequencies can be seen in existing data and that their relative amplitudes match those of our model.

The bending stresses investigated in this study are typically ignored and difficult to incorporate

into large-scale ice-sheet models, however this work shows that these stresses have a role to play in515

the overall flow-regime. Full-Stokes modelling of a tidally energetic region such as the FRIS would

lead to further insights into the importance of this mechanism, its relevance for ice flow models and

possibly even ice rheology.

Appendix A: Derivation of across-flow shear stress

We start from the simplified z-momentum given in Eq. 2b, together with expressions for the bending520

stresses τyy and τyz (Eqs. 4 and 5 respectively). Applying the surface boundary condition σn̂ = 0

we find that

−∂ysτyz(s) +σzz(s) = 0. (A1)

Since τyz = 0 at the surface, this reveals that σzz(s) = 0.

Using this result and integrating the z-momentum (Eq. 2b) from the surface to arbitrary depth z525

we arrive at an expression for p(x,y,z, t):

p= ρg(s− z)− τyy(z)−
s∫
z

∂yτyz dz. (A2)

Inserting this into the x-momentum of Eq. 2a gives

∂yτxy = ρg∂xs− ∂xτyy − ∂x

s∫
z

∂yτyz dz, (A3)

where530

∂xτyy =
9wazh

−5/2∂xh
√
ρwEg√

3(1− ν2)
e−λy

[
sin(λy) + (λy− 1)cos(λy)

]
, (A4)
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∂x

~∫
z

∂yτyz dz =−3

4
ρwgwa∂xh(h− 2z)h−4e−λy

(
2ζ
[
sin(λy) + cos(λy)

]
+λy

[
h2− ζ

]
sin(λy)

)
(A5)

and ζ = z(h+ 2z). Note that the x dependence of Eq. A2 is through the ice thickness h, which also

appears in the expression for λ (Eq. 6). Integrating from the surface to the bed and dividing by ice535

thickness yields the depth averaged across-flow gradient in horizontal shear stress:

∂yτxy = ρg∂xs−
1

h

s∫
b

∂x

s∫
z

∂yτxydz. (A6)

With the boundary condition that τxy is zero at the centerline, we can integrate along y to give an

expression for depth averaged horizontal shear stress, which is

τxy = ρgh∂xs−
3ρwgwa∂xhe

−λyλy sin(λy)

4h
. (A7)540

It turns out that the second term on the R.H.S. of Eq. A7 is much smaller than the other two for

any sensible choice in parameters and so the horizontal shear stress is balanced by the driving stress

term to a very good approximation. Since the geometry along the x direction does not change with

time the only temporal variation in τxy enters through the smaller second term. As such, τ̇xy ≈ 0; a

curious finding given the large changes in centerline velocity but one that is borne out by examination545

of the stresses in our full-Stokes model (Sect. 6).

For a comparison with the idealised system of equations presented above, we take a 2-D slice

through the ice shelf in the full-Stokes model (presented in Sect. 4) and look at the deviatoric stresses.

We take this slice far away from the GL at x= 0 to avoid the additional bending stresses in this

region. The lateral shear stress τxy is found to vary linearly from zero at the medial line to ∼70kPa550

at the margin and is approximately constant with depth (see also Fig 5). Maximum variation in τxy

over a tidal cycle is ∼3%, despite the ice velocity doubling at the medial line. This matches closely

with the profile predicted by Eq A7 using parameters taken from the model. The main discrepancy

in stresses between the full-Stokes model and the simplified system of Eq. 2a is that modelled τxx

becomes relatively large near the medial line, however since this is not the case near the margins,555

where most of the lateral shearing takes place, the approximation appears to not be a bad one.

Appendix B: Analytical solution for double clamped elastic beam

Much of the work on tidal bending of floating ice is based on beam theory, specifically the analysis

of elastic beams on elastic foundations first explored by Hetenyi (1946). The classical solution for

bending of a floating ice tongue was first derived by Robin (1958) and has since been used exten-560

sively in studies of ice flexural process (Holdsworth, 1969, 1977; Lingle et al., 1981; Stephenson,
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1984; Vaughan, 1995; Smith, 1991; Hulbe et al., 2016; Sykes et al., 2009; Rignot, 1998). We will

call this set of equations the long beam model (LBM). The set of boundary conditions (BCs) chosen

in the LBM are as follows:

w = 0

w′ = 0

y = 0
w = wa

w′ = 0

y→∞ (B1)565

where w(y) is the vertical deflection of the neutral axis and wa is the change in sea level due to

tides. The assumption in Eq. B1 that ice is freely floating at the far-field boundary is valid in many

circumstances, however the shelf downstream of RIS is only ∼ 30 km wide and so this set of BCs

might not be appropriate. A better set of BCs for a narrow ice shelf consists of a beam clamped at

both ends, such that570

w = 0

w′ = 0

y = 0
w = 0

w′ = 0

y = 2W (B2)

Starting from the beam equation for a floating ice shelf:

wIV (y) =−12(1− ν2)

Eh3
ρwg(wa(t)−w(y)), (B3)

subject to the BCs in Eq. B2, we arrive at the solution:

w(y,t) = wa(t)
[
1− e−λy (C1 sin(λy) +C2 cos(λy)) + eλy (C3 sin(λy) +C4 cos(λy))

]
, (B4)575

where λ is given in Eq. 6 and the constants C1 to C4 are:

C4 =
1− e2λW (cos(2λW ) + sin(2λW ))

e4λW + 2e2λW sin(2λW )− 1

(B5a)

C2 = 1 +C4

(B5b)

C3 =
e2λW (cos(2λW )− sin(2λW ))− 1

e4λW + 2e2λW sin(2λW )− 1

(B5c)

C1 = 1 +
2tan(2λW )

e4λW tan(2λW ) + tan(2λW ) + e4λW − 1
+C4

(
e4λW + (3e4λW − 1)tan(2λW )− 1

e4λW + (1 + e4λW )tan(2λW )− 1

)
.

(B5d)

580

If the product λW is large (specifically, large in comparison to π) then the hinge zone is narrow

compared to the ice shelf width. In this situation, C1 ≈ C2 ≈ 1 and C3 ≈ C4 ≈ 0, such that Eq. B4

reduces to the LBM solution (Robin, 1958). As it turns out, for the RIS where W ≈14 km, this turns

out to be the case and so the simpler LBM differs only very slightly from the solution given in

Eq. B4. As a result, we can safely use the LBM to approximate bending stresses on the RIS.585
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