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Abstract: We evaluated distributed and semi-distributed modeling approaches to 14 

simulating the spatial and temporal evolution of snow and ice over an extended 15 

mountain catchment, using the Crocus snowpack model. The distributed approach 16 

simulated the snowpack dynamics on a 250-m grid, enabling inclusion of terrain 17 

shadowing effects. The semi-distributed approach simulated the snowpack dynamics for 18 

discrete topographic classes characterized by elevation range, aspect, and slope. This 19 

provided a categorical simulation that was subsequently spatially re-projected over the 20 

250-m grid used for the distributed simulations. The study area (the upper Arve 21 

catchment, western Alps, France) is characterized by complex topography, including 22 

steep slopes, an extensive glaciated area, and snow cover throughout the year. 23 

Simulations were carried out for the period 1989–2015 using the SAFRAN 24 

meteorological forcing system. The simulations were compared and evaluated using 25 

four observation datasets including point snow depth measurements, seasonal and 26 

annual glacier surface mass balance, snow covered area evolution based on optical 27 

satellite imagerysensors, and the annual equilibrium-line altitude of glacier zones, 28 

derived from satellite images. The results showed that in both approaches the Crocus 29 

snowpack model effectively accurately reproduced the snowpack distribution over the 30 

study period. Slightly better results were obtained using the distributed approach. The 31 

improvement is statistically significant mainly because it includesed the effects of 32 

shadows and terrain characteristics (local values of aspect, slope and elevation for each 33 

grid cell). However, the minor improvement observed with a much higher 34 

computational time does not justify the recommendation of this approach for all 35 
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applications; as long as distributed simulations are not combined with new data 36 

assimilation techniques and higher-resolution meteorological inputs. 37 

Key words: snowpack simulation, distributed, semi-distributed, mountain areas, 38 

glacierized catchments 39 

1. Introduction 40 

The dynamics of the accumulation and melting of snow and ice in mountain areas has 41 

major effects on the timing and level of discharge from rivers in downstream areas. 42 

One-sixth of the Earth’s population depends directly on the water supply from snow and 43 

ice melt in mountain areas (Barnett et al., 2005). Thus, significant research effort has 44 

been applied to the study of snow and ice dynamics in these regions (Egli and Jonas, 45 

2009; Lehning et al., 2011; López-Moreno et al., 2013; McCreight et al., 2012), with 46 

particular focus on mountain hydrology (DeBeer and Pomeroy, 2009; López-Moreno 47 

and García-Ruiz, 2004; Oreiller et al., 2014; Viviroli et al., 2007). The snowpack 48 

dynamics and its spatial extent also control many mountain processes, including soil 49 

erosion (Meusburger et al., 2014), plant survival (Wipf et al., 2009), and the glacier 50 

surface mass balance (López-Moreno et al., 2016; Réveillet et al., 2017; Sold et al., 51 

2013). 52 

Some of the most dangerous natural hazards in mountain areas are also directly related 53 

to the distribution of the snowpack and ice, and their evolution over time. This is the 54 

case for snow avalanches (Schweizer et al., 2008), and floods in mountain rivers and 55 

downstream areas (Gaál et al., 2015). To enable anticipation of the occurrence of snow-56 

related hazards and to reduce the threat to populations and infrastructure (Berghuijs et 57 

al., 2016; Tacnet et al., 2014); various models have been developed to reproduce and 58 

forecast the evolution of the snowpack on a daily or sub-daily basis. 59 

Detailed snowpack models (Bartelt and Lehning, 2002; Vionnet et al., 2012) are 60 

increasingly coupled with hydrological models to forecast river discharges, and this 61 

depends on reliable simulation of snow and ice melting (Avanzi et al., 2016; Braun et 62 

al., 1994; Lehning et al., 2006). The more accurate the information on snowpack 63 

dynamics, the better will be the discharge forecasts based on hydrological models. 64 

However, the spatio-temporal distribution of the snowpack is highly variable in 65 

mountain areas (López-Moreno et al., 2011, 2013; Scipión et al., 2013; Seidel et al., 66 

2016), and the runoff from mountain catchments depends on many interrelated 67 

processes that are highly variable in space and time, including infiltration, surface 68 
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runoff, groundwater recharge, freezing of soil, and the snowpack distribution (Seyfried 69 

and Wilcox, 1995). For example, in areas where snow persists throughout the year the 70 

snowpack dynamics has a major impact on groundwater storage (Hood and Hayashi, 71 

2015). Finally, snowpack models are also combined with other models and techniques 72 

to forecast avalanche hazards (Bartelt and Lehning, 2002; Durand et al., 1999). 73 

Reproducing snowpack dynamics in heterogeneous mountain areas remains 74 

challenging. Some snowpack processes, including wind-induced redistribution and 75 

small scale topographic control on the snow distribution (Mott et al., 2010; Revuelto et 76 

al., 2016a; Schirmer et al., 2011; Trujillo et al., 2007; Vionnet et al., 20143) have not 77 

yet been fully integrated into numerical snowpack models which can be used 78 

operationally. Moreover, the additive nature of snowpack dynamics involves 79 

discrepancies between observed and simulated snowpacks, which can accumulate over 80 

the simulation period (e.g., Raleigh et al., 2015). 81 

The various approaches available for running snowpack simulations range from 82 

punctual simulations (snowpack dynamics simulated for a particular location having 83 

specific characteristics) to semi-distributed and distributed approaches that simulate 84 

snow dynamics over broad areas. 85 

The semi-distributed approach, based on an unstructured grid design, involves 86 

simulating the snowpack evolution over areas defined using discrete values for 87 

topographic variables including altitude, aspect, and slope (Fiddes and Gruber, 2012, 88 

2014); . The French numerical chain S2M (SAFRAN-SURFEX-MEPRA; Lafaysse et 89 

al., 2013), simulates the snowpack evolution using a semi-distributed approach. In this 90 

chain the SURFEX/ISBA-Crocus snowpack model (Vionnet et al., 2012; hereafter 91 

referred to as Crocus) is applied over a semi-distributed discretization of the French 92 

mountain ranges to diagnose the avalanche hazard for various topographic classes. 93 

Semi-distributed hydrological simulations are also widely used, which involves 94 

discretizing catchments into hydrologic response units (HRU), with the flow 95 

contribution from the HRUs being routed and compounded into an overall catchment 96 

discharge (Nester et al., 2012; Pomeroy et al., 2012). This simulation method is also 97 

applied to river discharge forecasting in mountain areas, with the output of semi-98 

distributed snowpack simulations used as inputs to the hydrological models (Braun et 99 

al., 1994). 100 
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The other modeling approach to simulating snowpack dynamics over extended areas is 101 

distributed simulations. This method involves simulation of the temporal evolution of 102 

environmental variables (e.g., snowpack or other hydrological variables) over a gridded 103 

representation of the terrain. In this approach the terrain is not discretized in classes; 104 

rather, it explicitly considers the characteristics (e.g. elevation, slope, aspect) for each 105 

pixel when simulating its snowpack evolution. Both approaches (distributed and semi-106 

distributed) have advantages and disadvantages, particularly the lower computing 107 

resource requirements of semi-distributed simulations, and the more accurate terrain 108 

representation of distributed simulations. Some snowpack processes cannot be 109 

accurately reproduced using the semi-distributed approach, including wind-induced 110 

snow redistribution, small scale topographic control of precipitation, and terrain 111 

shadowing effects (Grünewald et al., 2010; Revuelto et al., 2014; Vionnet et al., 2014). 112 

However, evaluating the performance of these simulation approaches depends on the 113 

intended use of the simulations (Carpenter and Georgakakos, 2006; Orth et al., 2015). 114 

Similarly, the results obtained will depend on the spatial scale and the quality of the 115 

meteorological forcing model, and whether it is distributed or semi-distributed (Queno 116 

et al.; 2016; Vionnet et al., 2016).  117 

Many studies have compared the performance of hydrological models based on 118 

distributed and semi-distributed approaches in reproducing streamflow dynamics for 119 

alpine watersheds (Grusson et al., 2015; Kling and Nachtnebel, 2009; Li et al., 2015), 120 

but none have directly analyzed and compared representation of the spatio-temporal 121 

evolution of the snowpack using these simulation approaches. This is significant 122 

because direct implementation of the most promising advances in simulation requires 123 

the useareis mainly considered for of distributed simulations. This is the case for 124 

assimilation of satellite data (Charrois et al., 2016; Dumont et al., 2012a; Thirel et al., 125 

2013); the inclusion of small scale processes in simulations, including snow 126 

redistribution by wind (Schirmer et al., 2011; Vionnet et al., 2014); and gravitational or 127 

topographic controls on snow movements (Bernhardt and Schulz, 2010; Christen et al., 128 

2010; Revuelto et al., 2016a). Semi-distributed simulations may also allow the 129 

implementation of satellite data assimilation techniques (Mary et al, 2013) but would 130 

require specific routines for aggregating observations and they would reduce potential 131 

benefits of high resolution satellite observations. Similarly, blowing snow can be 132 

simulated in the semi-distributed approach (MacDonald et al., 2009, Vionnet et al., 133 
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2018). Vionnet et al., (2018) show that strong assumptions on the topography are 134 

necessary to transport snow mass from one aspect to another (virtual ridge between 135 

opposite aspect classes for any elevation band). In MacDonald et al., (2009), the model 136 

parametrization requires a discretization of the study site based on a strong knowledge 137 

of the area from previous works (McCartney et al., 2006, Pomeroy et al., 1999, 2006). 138 

Thus, the transferability of these results to large domains for which detailed information 139 

on the landscape features is not available is questionable.  140 

Thus, comparison of distributed and semi-distributed simulations is needed to evaluate 141 

potential improvements, based on similar simulation setups (including the same study 142 

period and area, meteorological forcing, and simulation initialization). The newest 143 

meteorological models provide high spatial resolution information on the evolution of 144 

atmospheric variables (Seity et al., 2010); this is an improvement that distributed 145 

snowpack simulations can fully incorporate.  146 

Recent studies have assessed the impact of high-resolution atmospheric forcing from the 147 

Numerical Weather Prediction system AROME (Seity et al., 2010) on distributed 148 

snowpack simulations with Crocus. Queno et al., (2016) and Vionnet et al., (2016) 149 

compared simulations at a 2.5 km spatial resolution forced by AROME forecasts or by 150 

SAFRAN reanalysis (Durand et al., 2009a). These works demonstrated that the 151 

geographical patterns simulated by the AROME-Crocus model chain are realistic and 152 

more detailed than the SAFRAN-Crocus model chain over large areas (the Pyrenees and 153 

French Alps). Nevertheless these studies also exhibit some significant biases in 154 

meteorological and snow variables with the AROME-Crocus chain which do not 155 

assimilate any meteorological observation, in particular precipitation. As a result, 156 

Queno et al., (2016) and Vionnet et al., (2016) exhibit a better skill of snowpack 157 

simulations when SAFRAN is used as forcing. They conclude that the potential of the 158 

high spatial resolution atmospheric forcing from the NWP system will be more 159 

beneficial in snowpack simulations with the development of a high-resolution 160 

distributed analysis combining observations and AROME forecast and the development 161 

of downscaling methods to fill the gap between their kilometric resolution and the 162 

resolution required to capture the variability of slopes and aspects in alpine 163 

environments. 164 

Moreover the impact of topographic effects on snowpack simulations (implemented in 165 

the snowpack model) has not yet been assessed in detail. At present, the implementation 166 
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of terrain shadowing effects on Crocus snowpack model (achieved in distributed 167 

simulations) has not been analyzed in complex alpine terrain. This way, itIt is therefore 168 

necessary to compare distributed and semi-distributed snowpack simulations with a 169 

spatial resolution that enables a detailed representation of alpine terrain. In this regard, 170 

Tthis study provides a comprehensive evaluation of semi-distributed and distributed 171 

snowpack simulations for a mountain catchment, using the Crocus snowpack model 172 

(Brun et al., 1992; Vionnet et al., 2012) over a long time period. With the purpose of by 173 

one side using the longest time period with a suitable meteorological forcing  in 174 

mountain areas and by the other side taking benefit from data assimilation of 175 

meteorological variables along the snow season, the SAFRAN re-analysis (Durand et 176 

al., 2009a, 2009b) was selected as the meteorological forcing. The SAFRAN re-analysis 177 

(Durand et al., 2009a, 2009b) was selected as the meteorological forcing since it is 178 

available over a long period of time and assimilates meteorological observations over 179 

mountain areas.  180 

 181 

The final products of both simulations are 250 m gridded snowpack distribution 182 

mapsdatasets. This spatial resolution was selected because it renders a sufficient slopes 183 

sufficiently well to  representation  to describe small valleys with significant shadowing 184 

effects. It will also allow to exploreing snow mechanical stability in future avalanche 185 

hazard forecasting applications. Indeed (note the impact of broader resolutions imply a 186 

too strong smoothing of terrain to representation) slopes steep enough for avalanche 187 

release. The 250 m grid cell size of the simulations also enables a direct comparison 188 

with optical satellite products at the same spatial resolution. Additionally, using 189 

SAFRAN as meteorological forcing allows to  This study provided a comprehensive 190 

evaluation of semi-distributed and distributed snowpack simulations for a mountain 191 

catchment, using the Crocus snowpack model (Brun et al., 1992; Vionnet et al., 2012).  192 

We firstly assessed the ability of the model to simulate the snowpack evolution at a 193 

local scale for specific stations having continuous snow observation data. For these 194 

stations, the punctual simulations accounted for local topographic characteristics. These 195 

punctual simulations enabled initial analysis of the capacity of the model to 196 

subsequently evaluate the distributed and semi-distributed approaches to simulating the 197 

snowpack dynamics over a broader area, using the same meteorological forcing. The 198 

simulation results obtained using the distributed and semi-distributed approaches were 199 
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compared with observations for the snow covered area based on MODIS satellite 200 

sensors, the glacier surface mass balance (winter, summer, and annual), and the glacier 201 

equilibrium-line altitude derived from satellite images (Landsat, SPOT, and ASTER). 202 

This enabled assessment of the use of distributed simulations for analysis of snow and 203 

ice dynamics. The simulations were based on data for the upper Arve catchment (French 204 

Alps) for the 26 years from 1989 to 2015.  205 

This way, tThe SAFRAN-Crocus simulations shown in this work enable a complete 206 

evaluation of model performance in highly heterogeneous mountain terrain over a study 207 

period that captures all possible climatologies within the study area. Moreover the effect 208 

of using distributed simulations is compared with results obtained with semi-distributed 209 

simulations which nowadays are operationally exploited, showing the interest or not of 210 

changing the modelling apporaroach. Such evaluation also aims atpretends to showing 211 

the pros and contras of simulating snowpack evolution over large mountain areas with 212 

different techniques that offer substantial flexibility on terms of their set-up and ion 213 

terms of the computational requirements.    214 
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2. Study area 215 

The upper Arve catchment is located in the western Alps, France, between the northeast 216 

slopes of the Mont Blanc massif and the southwest slopes of the Aiguilles Rouges 217 

massif. The catchment extends from the headwaters of the Arve River to the town of 218 

Chamonix (Fig. 1), and includes major tributaries carrying melt water from three 219 

glaciated areas (Arveyron de la Mer de Glace, Arveyron d’Argentière, and Bisme du 220 

Tour) to the main river. The upper Arve catchment covers 205 km2 and has a high 221 

degree of topographic heterogeneity, with steep slopes in some areas, and gentle slopes 222 

on large glaciated areas and at the lower elevation zones of the valley, which is a typical 223 

U-shaped glacial valley. Elevation ranges from 1020 to 4225 m.a.s.l., with 65% of the 224 

surface area above 2000 m.a.s.l. Glaciers cover 33% of the area (Gardent et al., 2014), 225 

and 22% is covered by forests, mainly in the lower elevation areas. The water discharge 226 

regime is strongly dependent on the snow melt dynamics during spring and early 227 

summer, with the major contribution of melt water from glacierized areas occurring 228 

during late summer and autumn; this is termed a nivo-glacial regime of river discharge 229 

(Viani et al., submitted). The Mont Blanc and Aiguilles Rouges massifs are also highly 230 

spatially heterogeneous, having various slopes and aspects over a wide range of 231 

elevations in glaciated and non-glaciated areas; this affects the spatio-temporal 232 

evolution of snow and ice. 233 

The area is one subject to severe flood hazards. This is a consequence of the steepness 234 

of the terrain, which results in a rapid hydrological response to precipitation, the 235 

typically rapid meteorological changes that occur in this mountain area (mainly 236 

associated with convective episodes during spring and summer), and the high 237 

population densities and infrastructure in the bottom of the valley.  238 
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3. Methods 239 

3.1. Simulation setup 240 

We used the Crocus snowpack model to simulate the temporal evolution of snow and 241 

ice in the upper Arve catchment. Crocus is a multilayer model that simulates snowpack 242 

evolution based on the energy and mass exchanges between the various snow layers 243 

within the snowpack, and between the snowpack and its interface with the atmosphere 244 

and the soil (i.e. the top and bottom of the snow column). The maximum number of 245 

layers in Crocus is set to 50. Crocus is implemented in the externalized surface model 246 

SURFEX (Vionnet et al., 2012). Within SURFEX (Masson et al., 2013), Crocus is 247 

coupled to the multilayer land surface model ISBA-DIF (Interaction between Soil, 248 

Biosphere and Atmosphere; diffusion version; Decharme et al., 2011). 249 

The meteorological forcing required to drive the temporal evolution of the simulations 250 

was obtained from the SAFRAN meteorological analysis system (Durand et al., 1993). 251 

This provides the atmospheric variables needed to run ISBA-Crocus, including air 252 

temperature, specific humidity, long wave radiation, direct and diffuse short wave 253 

radiation, wind speed, and precipitation phase and rate. SAFRAN was specifically 254 

developed to provide meteorological forcing for mountain areas at a suitable elevational 255 

resolution. The SAFRAN analysis combines observational data obtained from 256 

automatic weather stations with manual observations with the guess from the global 257 

numerical weather prediction system ARPEGE (Courtier and Thépaut, 1994). We used 258 

SAFRAN re-analysis, which benefitted from meteorological observations not available 259 

in real time (Durand et al., 2009a, 2009b). This analysis system can provide outputs for 260 

punctual simulations, or semi-distributed outputs. In the first case the analysis is 261 

performed directly for the elevations of the stations involved, while in the second case 262 

the analysis is performed for 300-m elevation bands. In both cases the spatial extent of 263 

the analysis is approximately 1000 km². These regions (known as “massifs”) were 264 

defined by Durand et al. (1993) who took climatic homogeneity into account. In this 265 

study the SAFRAN analysis was only used for that part of the Mont Blanc “massif” 266 

which covers the entire study catchment. Particularly, this “massif”  has an extension of 267 

580 km2, so when taking into account the extension of the study area, it is covered a 268 

36% of the “massif” extension- SAFRAN and SURFEX/ISBA-Crocus (hereafter 269 

SAFRAN-Crocus) are used in avalanche hazard forecasting in France, using the S2M 270 
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chain (Lafaysse et al., 2013); this takes account of the altitude, aspect, and slope classes 271 

(semi-distributed simulation). 272 

 273 

3.2. Punctual, semi-distributed, and distributed approaches 274 

The temporal evolution of snow and ice was simulated using punctual, semi-distributed, 275 

and distributed approaches, based on the same meteorological forcing. Despite here in 276 

after these three approaches beingare described individually and also their results are 277 

presented in different sub-sections, wethe reader must bear in mind that these are based 278 

oin the same simulation setup.  279 

Punctual simulation 280 

Punctual snowpack simulations were performed for the five Météo-France stations 281 

within the study area, based on the elevation, slope, and aspect for each station. 282 

Punctual simulations included a topographic mask from a 50-m digital elevation model 283 

(DEM) to account for any terrain shadowing effect on simulation of the incoming 284 

shortwave radiation (provided by the SAFRAN meteorological model). 285 

Semi-distributed simulation 286 

Snow and ice semi-distributed simulations were carried out based on the topographic 287 

classes of the SAFRAN model (300-m elevation bands from 900 m.a.s.l. to 4100 288 

m.a.s.l) for eight aspect classes (north, northeast, east, southeast, south, southwest, west, 289 

and northwest) and two slope values (20° and 40°). For each elevation band a 290 

simulation over flat terrain (no aspect classification) was also carried out. These 291 

topographic classes are the same as those used for avalanche forecasting (Lafaysse et 292 

al., 2013). To consider snow and ice evolution on glacierized and non-glacierized areas, 293 

two distinct simulations were run for all terrain classes, one involving a given thickness 294 

of ice to initialize the simulation, and another initialized using bare ground (see section 295 

3.3). 296 

In a final stage the snowpack semi-distributed simulations ( which have an unstructured 297 

grid design) were assigned or re-projected onto the pixels of the study area DEM (the 298 

same DEM used for distributed simulations; 250x250 m grid size). The pixels were 299 

categorized according to the semi-distributed terrain classes: slopes from 0 to 10° were 300 

considered flat, those from 11 to 30° were assigned to the 20° slope class, and those > 301 

30.1° were assigned to the 40° class. From this categorization of the DEM the snowpack 302 

simulation outputs were assigned to each terrain class for all time steps. Thereby, for 303 
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each time step a snow and ice distribution map was generated that spatially distributed 304 

the semi-distributed snowpack simulation obtained for the various terrain classes. This 305 

enabled comparison of the two approaches based on the same observation dataset. 306 

Distributed simulation 307 

The distributed snowpack simulations were performed in a DEM having a 250 x 250 m 308 

grid spacing and covering the 205 km2 of the study area. As SAFRAN reanalysis 309 

provides semi-distributed outputs, the meteorological forcing at hourly time steps was 310 

spatially distributed over the 250-m grid DEM using specific routines that accounted for 311 

the elevation and aspect  of each grid cell., For each cell of the 250-m grid, the 312 

spatialization of meteorological variables from the 300-m elevation bands of SAFRAN 313 

is based on a linear interpolation between the two closest elevation bands. Only one 314 

SAFRAN aspect class is considered for each pixel (nearest-neighbour technique for the 315 

aspect) .(Vionnet et al., 2016). Therefore, the meteorological input data are similar for 316 

all simulations: only minor differences occurred because elevations differences (< 300 317 

m) may impact meteorological forcing variables.   318 

The distributed Crocus simulations included the elevation, aspect, slope, soil, and land 319 

cover characteristics for each pixel (the last two obtained from ECOCLIMAP-320 

II/Europe; Faroux et al., 2013) to simulate the evolution of the snowpack (snow and 321 

ice). A routine to account for the topographic shadowing effect of short wave radiation 322 

(Revuelto et al., 2016a) was included in the distributed simulations. The inclusion of 323 

particular pixel features and topographic shadowing is the main difference between the 324 

semi-distributed and distributed methods. Figure 2 shows a schematic representation of 325 

distributed and semi-distributed simulation approaches. 326 

3.3. Simulation initialization 327 

Snowpack simulations were run for the period 1989–2015. However, the ISBA ground 328 

state (including temperature and soil humidity) must be initialized to accurately 329 

reproduce the evolution of the snowpack. A spin-up simulation for the 1988–89 snow 330 

year (1 August 1988 to 31 July 1989) was repeated iteratively 10 times, to ensure a 331 

realistic ground state when launching simulations. 332 

Similarly, to adequately replicate the snow and ice evolution over glacierized areas a 333 

glacier initialization was performed. Thus, for the simulations a sufficiently thick ice 334 

layer (several tens of meters) was incorporated beneath the snow layers to ensure glacier 335 

presence during each season in the glacierized areas. As Crocus is a multilayer 336 
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snowpack model that simulates the energy and mass interchanges between the various 337 

snowpack layers, it also enables simulation of the glacier surface mass balance (Dumont 338 

et al., 2012a; Gerbaux et al., 2005; Lejeune et al., 2013). Glacierized areas were 339 

initialized at the beginning of each snow season (1 August) using a 40-m ice thickness 340 

(if the total ice thickness was less than this value), which ensured that it was present for 341 

the entire snow season (from 1 August of one year to 31 July of the next year). Thus, 342 

the six deepest Crocus layers were initialized with a density value of 917 kg/m3 and a 343 

temperature of 273.16 K (the Crocus default density and temperature values for ice, and 344 

representative of temperate glaciers). The thickness of these layers progressively 345 

transitioned from a shallow thickness for the upper layer (0.01 m) to thicker layers in 346 

the deepest part of the ice (with a 5-fold difference factor between one layer and the one 347 

above); this resulted in a total ice thickness of 39.06 m. The ice initialization was also 348 

performed during the spin-up of soil to reproduce the ground state over glaciarized 349 

areas. The extent of glacierized areas was based on the most recent data on their surface 350 

area, inventoried in 2012 (Rabatel et al., 2013). Although other historic surface 351 

inventories of glacierized areas within the upper Arve catchment were available (1986 352 

and 2003; Gardent et al., 2014), the most recent inventory was used for simplicity 353 

because the change in the glacierized surface area between the inventoried dates 354 

represents less than a 1% of the total study surface area. 355 

3.4 Evaluation strategy 356 

The availability of direct snow and ice observations for mountain areas is limited. 357 

Broadly, when the time between observations is short, the spatial extent is limited and 358 

oppositely, when large areas are observed, the temporal frequency is low. Consequently, 359 

evaluation of the performance of a model in reproducing the snowpack evolution is 360 

difficult because of a lack of information. Although we did not evaluate a hydrological 361 

model in this study, the “observation scale” defined by Blöschl and Sivapalan (1995) 362 

aided assessment of the representativeness of the available observations. The 363 

observation scale is defined by: i) the spatial/temporal extent (coverage) of a dataset; ii) 364 

the spacing (space and time resolution) between samples; and iii) the integration volume 365 

(time) of a sample (also known as support). These three criteria can rarely be optimized 366 

simultaneously. Hanzer et al. (2016) introduced a representation to depict the suitability 367 

of an observation dataset to evaluate model performance. To evaluate the simulations in 368 

this study we used four datasets based on: in situ snow depth from Météo-France 369 
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stations; the snow covered area (SCA) from MODIS images; the punctual glacier 370 

surface mass balance (SMB); and the glacier equilibrium-line altitude (ELA) from 371 

Landsat/SPOT/ASTER. Based on the radar charts presented by Hanzer et al. (2016), 372 

shown in their Figure 5, the information available for our study matches four of the 373 

datasets exploited in their study (Snow Depth, MODIS, Landsat and Glacier mass 374 

balance). These four datasets cover almost the full radar chart space (“optimal” 375 

validation dataset), thus providing almost a full evaluation of the simulation 376 

performance.  377 

The analyses presented below enabled us to draw conclusions about the impact of the 378 

methods used on the various spatio-temporal scales considered, also enabling an overall 379 

evaluation of the simulation platform.  380 

The four datasets used in evaluation of the simulations are described belowallowed 381 

performing a multi-criteria evaluation of the simulations with all observations available 382 

within the study area. However Nnot all simulations (punctual, semi-distributed, and 383 

distributed) were evaluated using all four observation datasets. The punctual snow depth 384 

simulations only provided a preliminary evaluation of the simulation setup in terms of 385 

reproducing the temporal snowpack evolution, so only punctual snow depth 386 

observations were used in the evaluation of this simulation approach. The three other 387 

datasets (SCA, and glacier SMB and ELA) were used in evaluating the semi-distributed 388 

and distributed simulations, as these datasets had the appropriate spatial and temporal 389 

extents needed to assess the performance of these two approaches. 390 

Punctual snow depth observations 391 

The Météo-France observation network has 5 stations in the study area (Fig. 1), located 392 

at different elevations. Some of these stations acquired data during all snow seasons 393 

throughout the entire study period, including at Nivose Aiguilles Rouges (2365 m.a.s.l.), 394 

Chamonix (1025 m.a.s.l.), and Le Tour (1470 m.a.s.l.). Other stations were installed 395 

later, and provided observational data since the 1994–95 snow season (Lognan station; 396 

1970 m.a.s.l) and since the 2003–04 snow season (La Flegere station; 1850 m.a.s.l.). At 397 

these stations the temporal evolution of the snow depth was observed at daily or sub-398 

daily time intervals, and these data were used to evaluate SAFRAN-Crocus in non-399 

glacierized areas during winter and spring (periods with snow presence). 400 

Snow cover area based on the MODIS sensor 401 

i) Evolution of the snow covered area  402 
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Many studies have demonstrated the usefulness of MODIS images for snow cover 403 

mapping in mountain areas (Gascoin et al., 2015; Klein and Barnett, 2003; Parajka and 404 

Blöschl, 2008). The MODIS mission database provides long temporal coverage (the 405 

mission was launched in 2000, and obtains daily images), so enabled a comparison 406 

between the simulated and observed snow cover evolution for 14 snow seasons (out of 407 

the 26) simulated on an almost daily basis (comparisons were limited by cloud cover in 408 

the study area). Sub-pixel snow monitoring of the snow cover at 250-m spatial 409 

resolution was performed using MODImLab software (which is based on Dumont et al., 410 

2012b; Sirguey et al., 2009). Multispectral fusion between MOD02HKM (500 m; bands 411 

3–7) and MOD02QKM (bands 1 and 2) (Sirguey et al., 2008), enabled this software to 412 

generate images at 250 × 250 m spatial resolution to derive various snow–ice products. 413 

We used the unmixing_wholesnow (UWS, Sirguey 2016) product, as it has been shown 414 

to outperform other snow–ice products for assessing evolution of the SCA (spectral 415 

unmixing technique in Charrois et al., 2013). We also considered the cloudiness product 416 

in MODImLab to determine the proportion of the catchment affected by cloud cover. 417 

Generation of the UWS and cloudiness products in MODImLab software was based on 418 

the same DEM used for the snowpack simulations. This ensured a direct match between 419 

of observation and simulation pixels. To avoid errors related to cloud presence in the 420 

study area, only days having cloud cover representing < 20% of the total surface area 421 

were considered in the analysis. 422 

The Different UWS thresholds for considering a pixel to be snow covered wasere 423 

setested. The UWS values used in the sensibility test were 0.25, 0.35 and 0.45 to 0.35 424 

(i.e., fractional snow cover > 35%; Charrois et al., 2013; Dedieu et al., 2016). Similarly, 425 

Tthree snow depth threshold values (0.10, 0.15, and 0.20 m (Gascoin et al., 2015; 426 

Quéno et al., 2016) were examined to consider a pixel as snow covered in the 427 

simulations on the sensibility test. Since snowpack simulations on forested areas (sub-428 

canopy snowpack simulations not implemented in the simulations) and also satellite 429 

observations could have important deviations from real snowpack evolution; Tthe SCA 430 

evolution in forested areas was not evaluated, and these areas were masked in the 431 

analysis. 432 

The temporal evolution of the snow covered area (SCA) within the study area predicted 433 

by each simulation approach (semi-distributed and distributed) was analyzed in terms of 434 

the root mean squared error (RMSE), the mean absolute error (MAE), and R2 for 435 
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comparisons between simulations and observations. Despite the study period being is 436 

long in terms of snow observations, it only  spans over a 14 year time period. Thus, to 437 

assess whether the results obtained with distributed and semi-distributed simulations are 438 

significantly different, the uncertainty of the scores was quantified by a bootstrap 439 

approach.a t-student test has been applied. From the annual SCA database, a 100 440 

bootstrap sample of 100 members was obtained by random sampling with replacement 441 

of the different years of observations. This bootstrapping was exploitedused to compute 442 

the standard deviation of each score, considered as a random variable.  Thus, the scores 443 

samples of the semi-distributed and distributed simulations can be compared by a t-444 

student test.  445 

The temporal evolution of the SCA for specific snow seasons was also analyzed to 446 

assess the difference between observations and simulations in different time periods. 447 

Error metrics obtained on these particular snow seasons were compared to average 448 

values from the bootstrapped sample. The SCA evolution in forested areas was not 449 

evaluated, and these areas were masked in the analysis. 450 

ii) Evaluation of spatial similarity 451 

The spatial similarity between the observed and simulated SCA was evaluated for each 452 

simulation approach based on two similarity metrics: the Jaccard index (J), and the 453 

average symmetric surface distance (ASSD). As the grid cells coincided because the 454 

simulations and observations were based on the same DEM, we were able to obtain 455 

binary maps of snow presence from the simulated and observed maps, using the 456 

thresholds established. 457 

The Jaccard index is the ratio of the intersection between the observed (O) and the 458 

simulated (S) SCA and the union of O and S (Equation 1). The index values range from 459 

0 to 1, with a value of 1 representing a perfect match between the observed and 460 

simulated SCA. 461 

 � =
|�∩�|

|�∪�|
  (1) 462 

The ASSD is complementary to J, as it evaluates the distance between the boundaries of 463 

the observed and simulated SCA. ASSD is based in the modified directed Hausdroff 464 

distance between boundaries (Dubuisson and Jain, 1994; see Quéno et al., 2016 and 465 

Sirguey et al., 2009 for more details). The ASSD unit is meters, and the smaller the 466 

distance the better the match between surface boundaries. The Jaccard index and ASSD 467 

were calculated for the 2001–02 to the 2014–15 snow seasons. To assess the 468 
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performance of the two SCA simulation approaches for specific periods, the 2006–07 469 

and 2007–08 snow seasons (both of which were characterized by low average levels of 470 

snow accumulation) and the 2011–12 and 2012–13 snow seasons (characterized by high 471 

levels of snow accumulation) were analyzed for both the accumulation period (January, 472 

February, and March; JFM) and the melt period (May, June, and July; MJJ). 473 

Glacier surface mass balance 474 

Glaciers located in the Mer de Glace and Argentière sub-catchments have been 475 

monitored, in a sufficient number of measurement locations for our analysis, since 1995 476 

by the French Service National d’Observation GLACIOCLIM. During this period field 477 

data were obtained twice per year, during the maximum (end April–May) and minimum 478 

(around October) snow accumulation periods. These data enabled calculation of the 479 

SMB for summer (SSMB; annual difference between the maximum and minimum 480 

acquisitions), winter (WSMB; annual difference between the minimum of the previous 481 

year and the maximum acquisitions), and annually (ASMB; year to year differences in 482 

the minimum acquisitions) at each individual point of the network (Fig. 3). The 483 

observation procedure involved use of glaciological methods (Cuffey and Paterson, 484 

2010) to retrieve the surface mass balance for the various time periods (SSMB, WSMB, 485 

and ASMB). Stakes (markers over the glaciers) are set up in both accumulation and 486 

ablation areas throughout the glaciers, and so reflect the evolution of the various zones 487 

of the glaciers. The spatial distribution of the stakes is shown in Figure 3. For further 488 

information on the methods for SMB data collection, see Réveillet et al. (2017). 489 

The observations of SMB for the various time periods at more than 65 locations 490 

encompassing different glaciers enabled assessment of the snow and ice evolution over 491 

glacierized areas, as these measurements included snow and ice ablation (SSMB) and 492 

snow accumulation (WSMB) periods. Thus, the simulated SMB for the same 493 

observation periods and locations were computed based on Crocus results. With this 494 

information, a linear regression and RMSE, MAE and R2 coefficient were computed for 495 

each sub-basin for the three periods, and these were used to measure the performance of 496 

the modeling approaches. Similarly to the SCA evaluation,  the significance of the 497 

differences between both simulation approaches is assessed with a bootstrap method 498 

based on the resampling of the 20 available years, in the observations.  499 

FinallyT the simulated (distributed and semi-distributed) and observed temporal 500 

evolutions of the SMBs were compared based on the SAFRAN elevation bands (the 501 
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average and standard deviation for all points within each band were calculated). To 502 

assess any elevational dependence of the SMB, the seasonal evolution of the observed 503 

and simulated SSMB, WSMB, and ASMB were compared for two snow seasons having 504 

opposite characteristics (high and low levels of snow accumulation) for the Mer de 505 

Glace glacier, which had a large gradient for assessing elevational dependence. 506 

Glacier equilibrium-line altitude 507 

The glacier equilibrium-line altitude (ELA) is the annual maximum elevation of the 508 

snow–ice transition over glacierized areas. Since 1984 the temporal evolution of the 509 

ELA for the five largest glaciers in the study area has been monitored using various 510 

satellite sensors (Rabatel et al., 2013, 2016). Data on the inter-annual evolution of the 511 

ELA for the Tour, Argentière, and Mer de Glace glaciers (and its main tributaries, the 512 

Leschaux and Talèfre glaciers) was available for the entire study period 513 

Images from Landsat 4TM, 5TM, 7 ETM+, SPOT 1–5, and ASTER were used to obtain 514 

the ELA for the study period. The spatial resolution of these images ranges from 2.5 to 515 

30 m. The method of snow line delineation using multispectral images combining 516 

green, near-infrared, and short-wave infrared bands has been fully described by Rabatel 517 

et al. (2012). The satellite acquisition date depends on various factors including the 518 

availability of satellite images for the study area and cloud presence, but images 519 

obtained during the period of minimum snow accumulation (late August to early 520 

October) were used to obtain the ELA. Thus, the simulated ELA was obtained for the 521 

same dates as the satellite acquisitions. Because of the difference in the spatial 522 

resolution of the simulation (250 m) and satellite observations (≤ 30m), the average and 523 

standard deviations of the ELA were compared.   524 
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4. Results 525 

4.1. Punctual snow depth  526 

The observed and simulated snow depth evolution for the 2007–08 and 2012–13 snow 527 

seasons (low and high average snow accumulation years, respectively) for the five 528 

stations are shown in Figure 4. The snow depth evolution shows the capacity of the 529 

SAFRAN-Crocus model chain to reproduce the temporal evolution at locations having 530 

differing topographic characteristics. 531 

It is important to note that the results shown in Figure 4 indicate the capacity of the 532 

simulations to reproduce snow depth dynamics at specific points having well known 533 

topographic characteristics. Punctual simulations include the impact of surrounding 534 

topography on incident solar radiation (terrain shadowing masks). Additionally, the 535 

meteorological forcing was taken at the station elevation (SAFRAN forcing not yet 536 

discretized on elevation bands). Nevertheless, the spatial scale of the meteorological 537 

forcing was that of the Mont Blanc SAFRAN massif. Therefore the spatial variability of 538 

solid/liquid precipitation within the massif is not taken into account.  539 

Some snow accumulation events were underestimated or overestimated in the 540 

SAFRAN-Crocus simulation, evident in discrepancies between the simulated and 541 

observed snow depths, including for the Le Tour (overestimation) and La Flégère 542 

(underestimation) stations for the 2007–08 snow season. Despite these discrepancies 543 

resulting from meteorological forcing, the simulated evolution of the snow depth shows 544 

a goodcorrect temporal timing.appeared reliable, in particular during melt periods. 545 

Table 1 shows the RMSE and bias errors between observations and simulations at the 546 

five stations. There was a high level of variability between the errors for the various 547 

stations, mainly because all local effects were not included in the simulations. It is 548 

noteworthy that the number of observations available and the time periods (which could 549 

have marked differences on total seasonal snow accumulation) affected the significance 550 

of the RMSE and bias for the various stations (Table 1). The RMSE values ranged from 551 

20.8 to 66.6 cm and the bias ranged from –19.1 to 49.4 cm. These values are small 552 

relative to the total snowpack thickness (snow depth observations were commonly > 553 

200 cm, and in some cases exceeded 300 cm). However, for the Aiguilles Rouges 554 

station the RMSE and bias estimates were higher than for the other stations. This may 555 

be because this station is exposed to major wind-induced snow transport episodes that 556 

were not accounted for in the simulation. In addition to these events, this station is also 557 
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affected by forecasting errors related to the meteorological forcing, such as the large 558 

underestimation for the first snowfall in 2007–08. 559 

4.2. Snow Cover Area evaluation  560 

Figure 5 shows an example of the SCA obtained using the UWS product for 24 July 561 

2008, and the corresponding simulated snow depth determined using the distributed 562 

approach. This date was selected because it was a cloud-free day with high elevation 563 

areas covered by snow. 564 

Table 2 shows the SCA simulation results estimated based on 0.1, 0.15 and 0.2 m snow 565 

depth thresholds compared with the observed various UWS (0.35 thresholds tested)s, 566 

for the 2008–09 and 2009–10 snow seasons (average snow accumulations) and for both 567 

spatialization approaches. This table shows that the evaluation metrics are only slightly 568 

sensitive to the choice of these thresholds and that for every threshold and metrics the 569 

ranking of the two approaches remains the same. In light of the sensibility test se 570 

results, we selected a 0.15 m snow depth simulation threshold for the simulations and 571 

0.35 SCA threshold for MODImLab UWS product for classifying a pixel as snow-572 

covered deciding whether a pixel was snow covered. 573 

 i) Evolution of the snow covered area  574 

The results of simulation of the SCA in the study area for 10 of the 14 snow seasons 575 

(for ease of visualization) based on MODIS data are shown in Figure 6. This figure 576 

shows that both approaches were able to reproduce the SCA evolution based on MODIS 577 

images. During winter and early spring, when large areas of the catchment are covered 578 

with snow, there was a high degree of consistency between the observations, and 579 

simulations based on each approach. In contrast, during summer and early autumn, 580 

when snow is only present at high elevations and on preferential accumulation areas, 581 

there was less consistency between observations and simulations, particularly for the 582 

semi-distributed simulations. 583 

Figure 7 shows the SCA evolution for four non-consecutive snow seasons, two having 584 

low levels of snow accumulation (2006–07 and 2007–08 seasons) and two having high 585 

levels of snow accumulation (2011–12 and 2012–13 seasons). In winter the simulation 586 

slightly overestimated the SCA compared with observations, but during summer and 587 

autumn the simulations underestimated the SCA. However, the distributed simulations 588 

most closely reproduced the observed SCA (Table 3). In all four seasons the semi-589 
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distributed simulations generated larger underestimates of the SCA during summer and 590 

early autumn. 591 

Using the terrain aspect classification for semi-distributed simulations it is possible to 592 

evaluate the impact of terrain shadowing effects. From the eight orientation classes we 593 

identified two main groups: those having a northern aspect (N, NW, NE) and those 594 

having a southern aspect (S, SE, SW). Figure 8 shows the observed and simulated SCA 595 

evolution for high and low snow accumulation seasons in relation to these two terrain 596 

classes. The variability in the SCA was well captured for both aspects by both the semi-597 

distributed and distributed simulations. Moreover, The SCA temporal evolution shows 598 

that overall the simulation underestimated the SCA, during late spring and summer in 599 

northern aspects. For southern aspects, simulation of the SCA evolution was poorer 600 

during winter. 601 

Error estimates for the SCA simulated for the whole study site and for in relation to the 602 

north and south aspects (Tables 3, 4 and 5) were lower for the distributed simulations 603 

compared with the satellite observations. RMSE and MAE standard deviations obtained 604 

from the bootstrapping (Table 3) are lower than the difference between scores for both 605 

approaches. The p-values for these two error metrics are lower than 0.01 and thus the 606 

null hypothesis is rejected with a 99% confidence interval interval and the skills of 607 

distributed and semi-distributed simulations are not statistically equivalent Conversely 608 

the R2 standard deviation of the SCA is high compared to the difference between the 609 

scores of both approaches. As a result, the high p-value indicated (in this case above 610 

0.05) that the null hypothesis should be accepted and that these scores are not 611 

statistically different between both approaches. R2, MAE and RMSE average values for 612 

high (2006-2008 snow seasons, Table 4) and low (2011-2013 snow seasons, Table 5) 613 

levels of snow accumulation also show the better capacity of distributed simulations to 614 

reproduce SCA evolution. Tthe t-student test has demonstrated that RMSE and MAE 615 

results for both approaches are not statistically equivalent and that for all 616 

aspectssorientations and periods, the distributed simulations presents lower errors; . 617 

wWe can conclude that this latter approach significantly better reproduce the SCA 618 

evolution.  619 

The differences in the error metrics (RMSE and MAE) between distributed and semi-620 

distributed simulations are significant for both, north and south aspects but higher for 621 

north aspect. However, it must be highlighted that for the whole catchment and for any 622 
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aspect, the null hypothesis can be accepted based on the R2 value between distributed 623 

and semi-distributed approaches. This means that the added value of the distributed 624 

approach is not visible on this criterion. Moreover, the SCA temporal evolution shown 625 

in Figure 8 shows that overall the simulation underestimated the SCA, during late 626 

spring and summer in northern aspects. For southern aspects, simulation of the SCA 627 

evolution was poorer during winter. 628 

 629 

ii) Evaluation of the spatial similarity 630 

The spatial similarity between the observed and simulated SCA is exemplified in the 631 

temporal evolution of the Jaccard index and ASSD. Table 6 shows the average values 632 

for J and ASSD for the entire study period and for the 2006–07 and 2007–08 snow 633 

seasons (low levels of snow accumulation) and the 2011–12 and 2012–13 snow seasons 634 

(high levels of snow accumulation). 635 

The higher scores found during seasons having high levels of snow accumulation were 636 

expected because of the larger areas covered by snow. Figure 9 shows the temporal 637 

evolution of the Jaccard index and ASSD for high and low level snow accumulation 638 

seasons. Although the Ddifference between the distributed and semi-distributed 639 

simulations was almost unappreciablelow for most dates ,and only  during late melting 640 

(August-September) the Jaccard index values for the distributed simulations were 641 

slightly betterhigher (higher J index and lower ASSD). This shows that except for some 642 

particular time periods differences in the spatial similarity with the observed SCA with 643 

both simulation approaches are minor., showing a greater capacity for simulating the 644 

SCA (Table 6). Similarly, ASSD values were lower for distributed simulations, which 645 

showed reduced distances between the limits of snow free and snow covered areas. The 646 

differences between the two approaches are also evident in the average values shown in 647 

Table 6. 648 

The performance of the simulations appeared to differ between periods of maximum 649 

and minimum snow accumulation (Fig. 9). Table 7 shows the average Jaccard and 650 

ASSD index values obtained for the JFM and MJJ periods for the four snow seasons 651 

analyzed in detail (high and low level snow accumulation seasons). Again, a minor 652 

improvement The better performance of distributed simulations was a result of better 653 

reproduction of the SCA evolution, and their ability to on captureing betterthe spatial 654 

patterns in heterogeneous mountain terrain is obtained with distributed snowpack 655 
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simulations. Not surprisingly, the values in Table 7 also show higher scores for both 656 

simulations during winter and early spring, when the SCA was high. 657 

 658 

4.3. Glacier surface mass balance 659 

Analysis of the glacier surface mass balance enabled assessment of the effectiveness of 660 

simulations of the seasonal and annual evolution of snow and ice on glacier surfaces. 661 

Figures 10 and 11 show the simulated and observed temporal evolution of the surface 662 

mass balance for the 300-m elevation bands. These show good agreement between 663 

observations and simulations with respect to year-to-year SMB variability. During 664 

winter the snow accumulation at high elevations was underestimated. For elevations 665 

above 2700 m.a.s.l. a higher positive glacier SMB was observed, and the difference 666 

between the observed and simulated SMB increased at higher elevations. During 667 

summer, when solid precipitation has no or marginal influence in low elevation areas 668 

and little influence at higher elevations, the observed and simulated SMB values were 669 

similar for elevations above 2100 m.a.s.l. for the Mer de Glace glacier, and above 2400 670 

m.a.s.l. for the Argentière glacier. Nevertheless, in high elevation areas the SSMB 671 

deviation was also underestimated on the simulations. This was probably because of the 672 

lower level of snow accumulation simulated during winter (using SAFRAN model) 673 

which induces an earlier complete melting of snow in the simulation in low elevations. 674 

This is presumably because of more rapid melting of ice insulated from solar radiation 675 

by the snow layers above, and because of the impact of variations in wind speed or long 676 

wave radiation on the simulation. 677 

Combination of the simulated WSMB and SSMB produced an ASMB that 678 

underestimated snow accumulation at high elevations (> 3000 m.a.s.l.) and melting at 679 

low elevations (2400 m.a.s.l. for the Argentière glacier, and < 2400 m.a.s.l. for the Mer 680 

de Glace glacier). Thus, the glacier ASMB included summer and winter variations, 681 

which in some cases negated each other. The contrasting performance of the simulations 682 

in reproducing the SMB between high and low elevations is clearly illustrated in Figure 683 

12. This shows the altitudinal dependence of the SMB for two snow seasons, one 684 

having a low level of snow accumulation and the other a high level. The simulated 685 

SSMB, WSMB, and ASMB values for both approaches underestimated the observed 686 

values at both low (higher negative loss of water equivalents observed) and high (lower 687 

positive loss of water equivalents observed) elevation areas. Nevertheless, the SMB 688 
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simulations at intermediate elevations correctly reproduce the observed values, and the 689 

temporal evolution of the SMB for the 20 years (Figs 10 and 11) was well reproduced 690 

by the simulations. 691 

The performance of simulations in reproducing glacier SMB must take account of the 692 

areal extent at differing elevations.  Elevations > 3000 m.a.s.l. represent 37% and 52% 693 

of the surface areas of the Argentière and Mer de Glace glaciers, respectively. The 694 

Argentière glacier has < 10% of its surface area below 2400 m.a.s.l., and the Mer de 695 

Glace glacier has < 7% below 2100 m.a.s.l. These relative extents of glacierized surface 696 

area show that for large areas of the glaciers the SMB was accurately reproduced by the 697 

simulations. However, for large glacierized areas there were marked differences 698 

between the observations and simulations; although the year-to-year evolution was 699 

accurately reproduced, this demonstrates the need to improve simulation methods. 700 

In general, the distributed simulation values for the SMB were slightly closer to the 701 

observed SMB values than were those from the semi-distributed simulations.  702 

Table 8 shows RMSE, MAE and R2 means and standard deviations obtained from the 703 

100-member bootstrap sample. For most of the error metrics, the standard deviations are 704 

lower than score differences and the p-values are low enough to reject null hypothesis. 705 

This way results obtained with both simulation approaches are statistically different. In  706 

winter, the SMB simulations show similar results. For both glaciers, lower RMSE and 707 

MAE are obtained for distributed simulations and better R2 for semi-distributed 708 

simulations. Oppositely during summer all scores show better results for the distributed 709 

approach. The annual SMB also exhibit better results for distributed simulations.  shows 710 

that the RMSE values were lower for the distributed simulations and the R2 values were 711 

higher for most periods in both glacierized areas. However, the WSMB simulations 712 

obtained using the semi-distributed approach were slightly better at reproducing the 713 

SMB. 714 

 715 

4.4. Glacier Equilibrium Line Altitude 716 

The temporal evolution of the ELA for the five largest glaciers in the study area is 717 

shown in Figure 13. Overall, and dDespite differences in the spatial resolutions of 718 

simulations and observations of ELA, the ability of the simulations were able to capture 719 

the temporal evolution of the ELA changes during the 26 years of the study was 720 

satisfactory, with lower variations found for distributed simulations for most seasonsFor 721 
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most of the years and glaciers simulated, ELA values derived from the distributed 722 

approach were closer to thoese observed. However, for certain years, more precise 723 

results were obtained with semi-distributed simulations. 724 

Table 9 shows the average absolute differences between observations and simulations 725 

and the linear adjustments for the five glaciers. These results show a systematic positive 726 

bias on the simulated ELA which is consistent with the summer underestimation 727 

revealed by the previous tests.  728 
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5. Discussion 729 

5.1. Overview of SAFRAN-Crocus performance 730 

The observation dataset used in this study enabled multilevel multi-criteria spatio-731 

temporal validation of the performance of snowpack simulations at the scale of a large 732 

alpine catchment. The analysis of the results of semi-distributed and distributed 733 

simulations provided a holistic evaluation of the snow and ice dynamics in the study 734 

area. Overall, the SAFRAN-Crocus simulations have shown a good capability on 735 

reproducing the temporal evolution and spatial variability of snow and ice during the 736 

study period. 737 

The simulations were evaluated using snow depth data from five Météo-France stations. 738 

Their ability to reproduce a bulk variable such as snow depth suggests that the main 739 

simulation processes were satisfactory, especially those related to the various 740 

components of the energy and mass balance. These findings are consistent with 741 

previous evaluations of the SAFRAN-Crocus system (Durand et al., 2009a; Lafaysse et 742 

al., 2013).  743 

Crocus simulates the energy and mass exchanges with soil and atmosphere and also 744 

within the snowpack layers, but it does not simulate small scale topographic effects on 745 

snow depth distribution (Revuelto et al., 2016a). Given the fact that the final objective 746 

of this study is to compare two simulation approaches and that, one of them, would not 747 

allow an appropriate parametrization of topographic control on snow distribution (semi-748 

distributed approach), we have not considered novel approaches for distributing snow 749 

based on terrain parameters (Cristera et al., 2017, Helbig et al., 2015), which may also 750 

require a higher spatial resolution for accounting topographic effect on snow 751 

distribution (Deems et al., 2006, Trujillo et al., 2007). Hence, we decided to simulate 752 

snowpack evolution inwith a spatial scale in which satellite observations were available 753 

over a long time period with a suitable temporal resolution, whatich lead to select 250m 754 

spatial resolution simulations (same as MODImLab products). Moreover this spatial 755 

resolution provides an  appropriate representation of slopes for future applications 756 

forecasting snow avalanches with expert systems (MEPRA, Lafaysse et al., 2013). 757 

Distributed information on the snowpack evolution from the MODIS sensor enabled 758 

evaluation of the simulation results on a suitable temporal scale. Although many 759 

MODIS images were discarded because of cloud cover, they demonstrated the capacity 760 

of SAFRAN-Crocus to simulate the spatial distribution of the SCA over time for large 761 
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areas having high spatial heterogeneity. The 14-year time period spanned is longer than 762 

in all previous similar evaluations, and at a higher spatial resolution (Quéno et al., 763 

2016). Evaluation of the spatial similarity between simulations and observations 764 

(Jaccard index and ASSD) showed that the SCA spatial pattern was well reproduced. 765 

The simulated SCA for winter was in close agreement with observations, as most of the 766 

study area was covered by snow. In contrast, during summer the performance of 767 

simulations declined, as evidenced by the increase in ASSD and the decrease in the 768 

Jaccard index. As small scale topographic effects that control snow accumulation on 769 

preferential accumulation areas were not included in the simulations, deviations from 770 

observations would have increased for certain periods, particularly the late melt period. 771 

These processes, which are mainly driven by small topographic features, can be long-772 

lasting during the late melt period (Revuelto et al., 2016b; Sturm and Wagner, 2010). 773 

This was particularity evident in comparisons of the scores for the 2006–07 and 2007–774 

08 periods with those for the 2011–12 and 2012–13 periods (Table 3). The differences 775 

in response may have originated from the higher weight of glacier melt processes in 776 

years with shallow snow depth. For these years, the good capability of the model on 777 

reproducing snow melting is lumped because the snow distribution is not appropriately 778 

simulated. 779 

The availability of observations of the glacier SMB over a long time period provided an 780 

opportunity to evaluate the performance of the simulations in capturing the snow and 781 

ice temporal evolution over a wide range of elevations over glacierized areas. 782 

Contrasting simulation performances were found in the various elevation bands, and 783 

changed with the time period involved (summer, winter, or annual scales). The 784 

performances in simulating the SMB for the Argentière and Mer de Glace glaciers 785 

differed at high and low elevations. Although the observed SMB was always higher 786 

than the simulated one for elevations exceeding 2700 m, the opposite was observed for 787 

areas having elevations below 2100–2400 m. As the temporal variability of solid 788 

precipitation generally explains the temporal variability of the WSMB (Réveillet et al., 789 

2017), it is important to consider differences between simulated and observed solid 790 

precipitation, and how these could affect underestimation of the SMB in simulations. 791 

Studies in the same study area and nearby glaciers suggest that at high elevations the 792 

SAFRAN reanalysis may underestimate solid precipitation at ratios ranging from 1:1.2 793 

at 2000 m.a.s.l. and 1:2.0 at 3200 m.a.s.l., with an average of 1:1.5 at the glacier scale ( 794 
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Gerbaux et al., 2005; Réveillet et al., 2017; Viani et al., submitted). This mainly results 795 

from the lack of precipitation observations at high elevations available for assimilation 796 

into the SAFRAN reanalysis; consequently divergences increase with elevation. Despite 797 

this shortcoming, the simulations captured the inter-annual fluctuation of the WSMB for 798 

all elevation bands. During summer the SMB could be explained by temperature 799 

variability in the two glaciers (Réveillet et al., 2017), thus simulations results are closer 800 

to observations, particularly at higher elevations. In summer, most precipitation is 801 

liquid, and so has little impact on the energy balance of the glaciers (Hock, 2005); this 802 

may explain the improvement in summer simulations for most elevations. 803 

It has recently been shown that Crocus is able to accurately simulate snow albedo 804 

(Réveillet et al., in prep), which is important because of its influence on the surface 805 

mass balance (Essery and Etchevers, 2004; Essery et al., 1999). However, it has been 806 

demonstrated that Crocus results are directly affected by uncertainties in the estimation 807 

of long wave radiation and wind (Réveillet et al., in prep). Such effects may be 808 

significant for elevations where the snow completely melts during summer and do not 809 

insulate ice from the atmosphere during late melt season; this includes the low elevation 810 

areas of glaciers, where high SSMB errors were found. At the annual time scale, glacier 811 

differences between the observed and simulated SMB at high elevations during winter 812 

and at low elevations during summer were reduced because the SMB underestimates for 813 

winter (note these were negative/positive at high/low elevations) were compensated for 814 

by more accurate simulations during summer, and vice versa. Regardless of these errors, 815 

SAFRAN-Crocus was able to replicate the interannual evolution of the SMB. 816 

Additionally, there was a good match between observations and simulations for the 817 

2100–2400 to 3000 m.a.s.l. elevation bands for the Mer de Glace and Argentière 818 

glaciers, respectively; these elevation bands encompassed large proportions of the 819 

glaciers (approximately 40 and 53%, respectively). 820 

For the entire study period the SAFRAN-Crocus simulations effectively reproduced the 821 

observed inter-annual evolution of the study area glacier ELA. However, some 822 

differences were evident, particularly on steeper glaciers, because the high spatial 823 

heterogeneity was not well captured by the simulations. For mid-latitude mountain 824 

glaciers, the annual evolution of the ELA can be considered to be a good proxy for the 825 

glacier surface mass balance (Braithwaite, 1984; Rabatel et al., 2005). Thus, 826 
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observations of the glacier SMB, together with the ELA, provide for a complete 827 

evaluation of glacier temporal evolution. 828 

5.23. Distributed vs. semi-distributed approaches 829 

In this study we performed distributed and semi-distributed snowpack simulations using 830 

the same model and evaluation setup (including ice initialization, meteorological 831 

forcing, projection on the same grid, observation databases). Thus, both approaches 832 

were affected by the same methodological limitations. The simulation results were 833 

consistent with the observed SCA evolution using both approaches. However, better 834 

results were obtained from the distributed simulations, especially during late summer. 835 

Similarly, This was because Tthe energy balance was more accurately simulated in the 836 

distributed approach, as it accounted for terrain shadowing effects on incoming solar 837 

radiation. The distributed simulations also accounted for the specific characteristics of 838 

each pixel rather than categorization based on topographic classes.  839 

The distributedBoth approaches also produced more accuratesimilar SCA  simulations 840 

of the SCA for the various time periods, except particularly during the late melt period, 841 

when deviations from observed values were higher with semi-distributed simulations. 842 

Similarly, spatial similarity evaluation (Jaccard index and ASSD) also showed that the 843 

distributed approach was slightly superior at reproducing the SCA distribution. The 844 

semi-distributed approach better simulated the temporal evolution of the SCA for areas 845 

having a southern aspect, because of terrain shadowing effects in areas having a 846 

northern aspect are not appropriately considered. Oppositely, tit iswas also observed an 847 

improvement on simulation results withwas observed with  distributed simulations he 848 

simulation in northern aspects obtained with the distributed approach is superior 849 

because theseis approach is are able to include terrain shadowing on the simulations. 850 

This wasis because the energy balance wasis more accurately simulated in the 851 

distributed approach, as it accounteds for terrain shadowing effects on incoming solar 852 

radiation. Thereby, for aspectsareas (deep valleys) (northern aspect) and/or time periods 853 

(mainly long time periods since last snowfalls on late summer) for in which the 854 

differences on simulation of the incoming solar radiation has a determinant weight, 855 

differences on snowpack simulation between both approaches are marked.. 856 

Based on the glacier SMB scores and their temporal evolution, we concluded that the 857 

best simulation approach depends on the season involved. Thus, the WSMB evaluation 858 

showed that similar results were obtained using the two methods. In contrast, the 859 
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distributed approach was better at simulating the SSMB. The similar performances of 860 

the semi-distributed and distributed simulations during winter, but the better results for 861 

the distributed simulations for summer resulted in the distributed approach providing 862 

greater accuracy at the annual scale. The rather better results obtained for both glaciers 863 

analyzed for a long time period (ASMB) using the distributed simulations suggests that 864 

this approach is likely to provide more reliable results over longer periods. 865 

The distributed simulation of the ELA generally showed closest agreement with 866 

observations, but for certain years the semi-distributed simulations most accurately 867 

reproduced the observed values. Thus, it is not possible to conclude that one approach 868 

to reproducing the ELA was superior. This uncertainty may be related to the coarse 869 

pixel size, which did not enable the high spatial heterogeneity of the terrain to be 870 

captured. The annual ELA covers a small area of the glaciers (it represents the snow line 871 

limit between snow-free and snow-covered areas), and thus the effect of spatial 872 

heterogeneity is likely to be significant. 873 

Overall, the distributed simulations were slightly better at reproducing observational 874 

data. Thus, distributed simulations, which better represent the spatial heterogeneity of 875 

mountain areas, in general produce more accurate snowpack simulations, and are the 876 

recommended modeling approach. However, depending on the purpose of the 877 

simulations and the accuracy required, other factors must be considered. For instance, 878 

semi-distributed simulations have lower computing resource requirements; in this study, 879 

the distributed approach had computing requirements that were a factor of 100 greater. 880 

The accuracy of semi-distributed simulations in reproducing the snowpack evolution 881 

over large areas makes them useful in many applications. 882 

A good example of an application in which the computational requirements have a 883 

determinant weight are ensemble simulations for projections in several climate 884 

scenarios (e.g. Verfaille et al, 2017). 885 

 886 

5.23. Limitations of the evaluations performedand simulations 887 

Although the observation dataset enabled comprehensive evaluation of the simulations, 888 

it had limitations. First, the discrepancy in spatial scale between the SAFRAN 889 

meteorological analysis and the snow depth observations, and the low number of 890 

stations, limited the interpretation of results in terms of the simulated snow depth. 891 

Differences in the temporal evolution of snow depth between observation and 892 
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simulations were in part associated with the unresolved sub-massif spatial variability in 893 

the level of precipitation, as previously described (Durand et al., 2009a; Lafaysse et al., 894 

2013; Vionnet et al., 2016). In situ observations are also subject to local effects 895 

associated with the topographic control at each site, including exposure to dominant 896 

winds, which markedly affects the snow depth dynamics. Such effects remain difficult 897 

to capture in snowpack modeling (Dadic et al., 2010a; Liston et al., 2007; Revuelto et 898 

al., 2016a; Schirmer et al., 2011; Vionnet et al., 2014), and were not included in the 899 

modeling involved in our study. Similarly other processes such aus lateral heat flux 900 

exchanges amongst grid-cells are not implemented in Crocus snowpack model and thus 901 

could impact the final result of simulations (Harder and Pomeroy 2017). 902 

Discrepancies originating from the snow–rain limit can also influence the snow depth. 903 

Stations at high elevation (Aiguilles Rouges: 2365 m.a.s.l.) are typically not affected by 904 

this phenomenon during winter, as the 0°C isotherm is located at lower elevations. In 905 

contrast, low elevation stations (Le Tour: 1470 m.a.s.l.; Chamonix: 1025 m.a.s.l.) are 906 

potentially affected by differences between the simulated and observed snow–rain limit, 907 

even during winter. In mid-latitude regions including the Alps, elevational shifts in the 908 

0°C isotherm cover a significant variation throughout the year, including the elevations 909 

where each of the stations in this study is located. 910 

data Data on the spatial extent of SCA derived from MODIS images enabled distributed 911 

evaluation of the simulations. However, its usefulness in analysis of the performance of 912 

spatial simulations is limited, as it does not provide information on other snowpack 913 

variables, and imposes restrictions on the spatial resolution. Satellite observations also 914 

involve uncertainty, depending on the routines applied for generating the final product 915 

and the thresholds used to decide whether a pixel area as covered by snow. After a 916 

sensibility test Wwe adopted a 0.35 UWS threshold for considering a pixelas snow 917 

covered in satellite imagery (Charrois et al., 2013; Dedieu et al., 2016). We also 918 

performed an analysis to select the simulated snow depth threshold for considering a 919 

pixel to be snow covered. The 0.15 m threshold selected is consistent with values 920 

reported in previous studies (Gascoin et al., 2015; Quéno et al., 2016). Despite 921 

mountain areas havingve a high spatial heterogeneity which also affects snowpack 922 

distribution, these thresholds enabled a binary representation of snow presence/absence 923 

which finally ensured a consistent SCA evaluation of both simulation approaches.  924 
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The results obtained in this study, i.e. slightly but significantly better skill for the 925 

distributed approach, are sensitive to the choice of the spatial resolution. Using 926 

resolution coarser than 250 m would lead to smaller differences between both 927 

spatialization approaches because the pixel elevations would be less accurate and 928 

because all the shadows would not be resolved. Conversely, higher resolutions may 929 

improve the accuracy of shadowing effects but with computational times which can 930 

become unaffordable for large areas applications. 931 

. Moreover, Iin low elevation areas, where ice is exposed to the atmosphere for longer 932 

periods during the year (snow does not insulate ice from the atmosphere since it has 933 

disappeared), differences in meteorological forcing variables including wind and 934 

temperature can have a marked influence on simulation results (Réveillet et al., 935 

submitted). Similarly, at low elevations the glaciers are usually covered by debris, as is 936 

the case for the Mer de Glace glacier. This was not considered in our simulations, but 937 

differences in the behavior of the snow–ice interface in debris-covered areas could be 938 

expected to affect the simulation results (Lejeune et al., 2013). 939 

In addition to the above issues, satellite products can have errors for specific dates. For 940 

a small number of days during the study period the SCA obtained from MODIS images 941 

did not describe the real extent of snow cover. For these days the SCA did not match the 942 

temporal SCA evolution observed on previous and later dates. Furthermore, days having 943 

the maximum cloud cover allowed in our analysis could have ± 20% SCA variability. 944 

This induces uncertainty in the observation for certain dates which can be greater than 945 

this of the pixel classification as snow covered in the simulations (note the ± 0.05 m 946 

snow depths threshold tested). In addition, pixels classified as snow covered in which 947 

bare soil may have a non-negligible extension (pixels close to the 0.35 UWS threshold) 948 

could introduce discrepancies between observations and simulations, mainly during 949 

summer. 950 

Glacier surface mass balance observations also involve limitations. For instance, 951 

infrequent glacier SMB observations for certain temporal windows limited evaluation of 952 

the simulated SMB. The spatial sampling involved in the glaciological method can also 953 

be a significant source of uncertainty, especially for elevation bands for which there are 954 

a limited number of observations. Additionally, the average SMB obtained for the 955 

elevation bands can lump the high SMB spatial variability that occurs within a specific 956 

band. For most years and all the elevation bands the uncertainty associated with the 957 
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average SMB measurements (± 0.2 m water equivalent; Réveillet et al., 2017) was 958 

exceeded by the uncertainty associated with the observations for each band. This could 959 

have affected the results presented here, indicating that the standard deviations for the 960 

observed SMB values should be retained when analyzing the results of the simulations. 961 

The simulations underestimated the observed SMB for the lowest elevations having 962 

SMB observations, despite the temporal variability being replicated. This may have 963 

been related to errors in precipitation and phase, and in this regard differences in the 964 

snow–rain limit could be important. Additionally, the impact of local effects is more 965 

important at low elevations, as glaciers are more confined in valleys that have very 966 

steep slopes and adjacent high mountains. In low elevation areas, where ice is exposed 967 

to the atmosphere for longer periods during the year (snow does not insulate ice from 968 

the atmosphere since it has disappeared), differences in meteorological forcing variables 969 

including wind and temperature can have a marked influence on simulation results 970 

(Réveillet et al., submitted). Similarly, at low elevations the glaciers are usually covered 971 

by debris, as is the case for the Mer de Glace glacier. This was not considered in our 972 

simulations, but differences in the behavior of the snow–ice interface in debris-covered 973 

areas could be expected to affect the simulation results (Lejeune et al., 2013). 974 

Some issues were also evident in evaluation of the ELA. For the smallest glaciers, a 975 

reduced number of pixels having the 250-m pixel resolution were considered. As the 976 

ELA observations were based on Landsat, SPOT and ASTER satellite images (2.5–30 977 

m resolution) the spatial variability of the simulation made it difficult to identify the 978 

glacier margins. The combination of problems in delimitating glaciated areas over 979 

smaller ice bodies, and the smooth topography characterizing the simulations compared 980 

with real terrain, could cause simulation errors for smaller glaciers. 981 

5.3. Distributed vs. semi-distributed approaches 982 

In this study we performed distributed and semi-distributed snowpack simulations using 983 

the same model and evaluation setup (including ice initialization, meteorological 984 

forcing, projection on the same grid, observation databases). Thus, both approaches 985 

were affected by the same methodological limitations. The simulation results were 986 

consistent with the observed SCA evolution using both approaches. However, better 987 

results were obtained from the distributed simulations, especially during late summer. 988 

The energy balance was more accurately simulated in the distributed approach, as it 989 

accounted for terrain shadowing effects on incoming solar radiation. The distributed 990 
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simulations also accounted for the specific characteristics of each pixel rather than 991 

categorization based on topographic classes. The distributed approach also produced 992 

more accurate simulations of the SCA for the various time periods, particularly during 993 

the late melt period. Similarly, spatial similarity evaluation (Jaccard index and ASSD) 994 

also showed that the distributed approach was slightly superior at reproducing the SCA 995 

distribution. The semi-distributed approach better simulated the temporal evolution of 996 

the SCA for areas having a southern aspect, because of terrain shadowing effects in 997 

areas having a northern aspect are not appropriately considered. Oppositely, the 998 

simulation in northern aspects obtained with the distributed approach is superior 999 

because these are able to include terrain shadowing on the simulations. 1000 

Based on the glacier SMB scores and their temporal evolution, we concluded that the 1001 

best simulation approach depends on the season involved. Thus, the WSMB evaluation 1002 

showed that similar results were obtained using the two methods. In contrast, the 1003 

distributed approach was better at simulating the SSMB. The similar performances of 1004 

the semi-distributed and distributed simulations during winter, but the better results for 1005 

the distributed simulations for summer resulted in the distributed approach providing 1006 

greater accuracy at the annual scale. The better results obtained for both glaciers 1007 

analyzed for a long time period (ASMB) using the distributed simulations suggests that 1008 

this approach is likely to provide more reliable results over longer periods. 1009 

The distributed simulation of the ELA generally showed closest agreement with 1010 

observations, but for certain years the semi-distributed simulations most accurately 1011 

reproduced the observed values. Thus, it is not possible to conclude that one approach 1012 

to reproducing the ELA was superior. This uncertainty may be related to the coarse 1013 

pixel size, which did not enable the high spatial heterogeneity of the terrain to be 1014 

captured. The annual ELA covers a small area of the glaciers (it represents the snow line 1015 

limit between snow-free and snow-covered areas), and thus the effect of spatial 1016 

heterogeneity is likely to be significant. 1017 

Overall, the distributed simulations were better at reproducing observational data. Thus, 1018 

distributed simulations, which better represent the spatial heterogeneity of mountain 1019 

areas, in general produce more accurate snowpack simulations, and are the 1020 

recommended modeling approach. However, depending on the purpose of the 1021 

simulations and the accuracy required, other factors must be considered. For instance, 1022 

semi-distributed simulations have lower computing resource requirements; in this study, 1023 
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the distributed approach had computing requirements that were a factor of 100 greater. 1024 

The accuracy of semi-distributed simulations in reproducing the snowpack evolution 1025 

over large areas makes them useful in many applications. 1026 

5.4. Future perspectives on distributed snowpack simulations  1027 

Simulating the snowpack evolution in mountain areas is challenging. Although 1028 

advances in meteorological/snowpack models and simulation approaches are improving 1029 

the reproduction of observational data, inaccuracies remain. Many studies have 1030 

highlighted the potential to improve snowpack modeling by assimilating observational 1031 

data (Griessinger et al., 2016; Thirel et al., 2013). Satellite data enables the distribution 1032 

of the snowpack over large areas to be determined, and the assimilation of such data 1033 

into snowpack models has been shown to significantly improve the simulation results 1034 

(Charrois et al., 2016). In distributed snowpack simulations almost direct satellite data 1035 

can be assimilated, in contrast to the semi-distributed approach which needs of 1036 

aggregation routines to enable satellite data assimilation losing part of the information 1037 

in this process. Additionally, meteorological forcing models having high spatial 1038 

resolution are improving simulations of the spatial pattern of meteorological variables in 1039 

mountain areas (Schirmer and Jamieson, 2015; Vionnet et al., 2016; Weusthoff et al., 1040 

2010). This will improve snowpack simulations (Förster et al., 2014; Quéno et al., 1041 

2016), even though it is challenging to combine high resolution numerical weather 1042 

prediction models with precipitation measurements assimilation in analysis systems. 1043 

Interest in distributed snowpack simulations will be enhanced when reliable high spatial 1044 

resolution meteorological forcing data are available, as only this simulation approach 1045 

can take full advantage of such data.  1046 

Other approaches halfway between our distributed and semi-distributed snowpack 1047 

simulations are also showing promising results. This is the case of unstructured 1048 

triangular meshes, which allow better capturing horizon- shadows of surrounding 1049 

topography than the semi-distributed approach used in this work. These methods are 1050 

able to improving energy balance simulation results while preserving computational 1051 

costs (Marsh et al., 2012); 1052 

Further research is needed on parameterizing small scale snowpack processes for 1053 

incorporation in modeling, including wind driven snow transport (Dadic et al., 2010b; 1054 

Winstral et al., 2012), avalanche snow redistribution (Bernhardt and Schulz, 2010), and 1055 

topographic control on snow distribution (Revuelto et al.,. 2016a). Inclusion of these 1056 
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processes, together with the incorporation of reliable meteorological forcing and 1057 

satellite data, assimilation will improve the accuracy of snowpack simulations over 1058 

extensive mountain areas.  1059 
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6. Conclusions 1060 

This study provided a detailed assessment of the ability of the SAFRAN-Crocus system 1061 

to simulate the snow and ice dynamics in complex alpine terrain using distributed and 1062 

semi-distributed simulation approaches. The study was undertaken in the upper Arve 1063 

catchment in the western French Alps, with simulations run for the 1989–90 to the 1064 

2014–15 snow seasons. 1065 

A preliminary evaluation of the simulations was completed based on observations of 1066 

snow depth derived from five meteorological stations within the study area. This was 1067 

only performed using punctual snowpack simulations, to provide an initial assessment 1068 

of model performance over non-glaciated terrain. Despite some discrepancies between 1069 

observations and simulations, the model reliably reproduced the snow depth, especially 1070 

during melt periods. 1071 

In regard to the spatial scale of snowpack simulations over extended areas, the semi-1072 

distributed and distributed simulations were compared using the same observation 1073 

datasets, including: (i) the temporal evolution of the snow-covered area based on data 1074 

from the MODIS sensor; (ii) measurements of surface mass balance of glaciers within 1075 

the upper Arve catchment; and (iii) observational data on the annual evolution of the 1076 

equilibrium-line altitude for the various glaciers considered. 1077 

Both simulation methods accurately reproduced the evolution of the SCA during 1078 

accumulation events, as they relied on the same meteorological forcing data. For the 1079 

winter to early spring period, when the study area is almost completely covered by 1080 

snow, there was little difference between the two approaches. However, for the late melt 1081 

period the distributed simulations better reproduced the observations. 1082 

The simulations for low elevations and elevations > 2700 m.a.s.l. underestimated 1083 

(negative underestimation in low elevations and positive in high) the observed SMB. 1084 

Nevertheless, the results of both simulations were in close agreement with observations 1085 

at mid-elevation areas, and adequately reproduced the observed annual SMB at all 1086 

elevations. Overall, the distributed simulations yielded limited better results. 1087 

Based on comparison with ELA data obtained from various satellites at the end of 1088 

summer, the SAFRAN-Crocus accurately reproduced the inter-annual variability of the 1089 

snowpack over glaciated areas. However, differences between observations and 1090 

simulations were evident, particularly for the smallest glacierized areas, where the 1091 

spatial resolution of the simulations did not enable the high spatial variability of the 1092 
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topography to be included. In addition, based on the ELA evaluation, the distributed 1093 

approach was slightly better at reproducing the snowpack dynamics. 1094 

Overall, the results of this study demonstrated that distributed simulations reproduce 1095 

slightly better snowpack dynamics in the alpine terrain of our study area. Distributed 1096 

simulations take into account the specific topographic characteristics of each pixel 1097 

(local values of aspect, slope and elevation) and more importantly the effects of terrain 1098 

shadowing by surrounding areas. Accounting for these two effects over long time 1099 

periods led to statistically significant better results for the distributed approach. 1100 

However the lower computational requirements of semi-distributed simulations together 1101 

with the flexibility on the design and application scale of the simulation make this 1102 

approach also suitable to simulate snowpack evolution.Overall, the results of this study 1103 

demonstrated that distributed simulations were slightly better at reproducing snowpack 1104 

dynamics in the alpine terrain of our study area. Distributed simulations take account of 1105 

the specific topographic characteristics of each pixel and also  more importantly the 1106 

effects of terrain shadowing by surrounding areas. Inclusion of these two effects over 1107 

long time periods led to better results being obtained using the distributed approach. 1108 

Distributed simulations will facilitate incorporation of the latest snowpack modeling 1109 

advances, including assimilation of satellite data and the use of higher spatial resolution 1110 

meteorological forcing models.   1111 
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Figures 1459 
 1460 
Figure 1: Upper Arve catchment study area. The white shaded area shows the extent of 1461 
the glaciers in 2012 (Gardent et al., 2014). The inner maps show various magnifications 1462 
of the Alps and the location of the Arve valley within the mountain range. The red 1463 
points show the position of the five Météo-France stations located in the study area. 1464 

 1465 
 1466 
Figure 2: Schematic representation of the approaches used to account for mountain 1467 
spatial heterogeneity when simulating snowpack dynamics. 1468 
 1469 
Figure 3: Glacier SMB measurement locations for ablation and accumulation areas in 1470 
the Mer de Glace and Argentière glaciers. 1471 
 1472 
Figure 4: Observed (black squares) and simulated (red lines) snow depth evolution for 1473 
the 2007–08 (upper panel) and 2012–13 (bottom panel) snow seasons. The elevations of 1474 
the stations are: Chamonix: 1025 m.a.s.l.; Le Tour: 1470 m.a.s.l.; La Flegere: 1850 1475 
m.a.s.l.; Lognan: 1970 m.a.s.l.; and Aiguilles Rouges: 2365 m.a.s.l. 1476 
 1477 

Figure 5: Spatial distribution of the UWS MODImLab product (equivalent to the SCA 1478 
distribution), and the simulated snow depth obtained using the distributed approach (the 1479 
purple color shows the snow depth values exceeding the 0.15 m threshold) for 24 July 1480 
2008. 1481 

 1482 
Figure 6: Temporal evolution of the SCA (2004–2014) based on semi-distributed and 1483 
distributed simulations and MODIS sensor observations. The vertical bars associated 1484 
with the MODIS observations show the uncertainty associated with cloud presence for 1485 
days having ≤ 20% snow cover. 1486 

 1487 
Figure 7: Observed and simulated SCA evolution for a period of low level snowpack 1488 
accumulation (2006–2008; upper panel) and a period of high level snowpack 1489 
accumulation (2011–2013 lower panel). The vertical bars for the MODIS observations 1490 
show the uncertainty associated with cloud presence for days having ≤ 20% snow cover. 1491 
Red and blue shading for the distributed and semi-distributed SCA simulations show the 1492 
uncertainty associated with various snow depth thresholds for determining whether a 1493 
pixel was snow covered. The lower limit of the shading represents the SCA evolution 1494 
for a 0.1 m threshold, the upper limit of the shading represents a 0.2 m snow depth 1495 
threshold, and the middle line represents a 0.15 m snow depth threshold. 1496 

 1497 
Figure 8: Evolution of the SCA in relation to north and south aspect for the 2006–2008 1498 
(upper panel; low level of snowpack accumulation) and 2011–2013 (lower panel; high 1499 
level of snowpack accumulation) snow seasons. Vertical bars for the MODIS 1500 
observations show the uncertainty associated with cloud presence for days having ≤ 1501 
20% snow cover. Red and blue shading for the distributed and semi-distributed SCA 1502 
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simulations show the uncertainty associated with various snow depth thresholds for 1503 
determining whether a pixel was snow covered. The lower limit of the shading 1504 
represents the SCA evolution for a 0.1 m threshold, the upper limit of the shading 1505 
represents a 0.2 m snow depth threshold, and the middle line represents a 0.15 m snow 1506 
depth threshold. 1507 

 1508 
Figure 9: Jaccard index and ASSD values for low level (2006–07 and 2007–08) and 1509 
high level (2011–12 and 2012–13) snow accumulation seasons. 1510 
 1511 
Figure 10: Temporal evolution of the observed and simulated (semi-distributed and 1512 
distributed) SMB for the Argentière glacier for the four 300-m elevation bands for the 1513 
period 1994–2013. The points show the average observation and simulation values for 1514 
the same measurement locations, and the vertical bars show the standard deviations for 1515 
those values. 1516 

 1517 
Figure 11: Temporal evolution of the observed and simulated (semi-distributed and 1518 
distributed) SMB for the Mer de Glace glacier for the seven 300-m elevations bands for 1519 
the period 1994–2013. The points show the average observation and simulation values 1520 
for the same measurement locations, and the vertical bars show the standard deviations 1521 
for those values. 1522 
 1523 
Figure 12: Altitudinal dependence of the observed and simulated (semi-distributed and 1524 
distributed) SMB for two snow seasons (2007–08: low level snow accumulation; and 1525 
2012–13: high level snow accumulation) at the Mer de Glace glacier. 1526 
 1527 
Figure 13: Observed and simulated evolution of the ELA for the five glaciers during 1528 
the study period, based on the same dates as those for the satellite image acquisition. 1529 
  1530 
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Tables 1531 

 1532 
Table 1: Error statistics (bias and RMSE) between simulated and in situ snow depth 1533 
observations for the five meteorological stations in the study area for periods for which 1534 
observations were available. The locations of the stations are shown in Figure 1. 1535 
 1536 
 1537 

Threshold 
Distributed  approach Semi-Distributed  approach 

R2 RMSE MAE R2 RMSE MAE 
SCA [0,1] SD [m] 

0.25 

0.1 0.803 13.84 9.85 0.790 15.48 10.36 

0.15 0.807 13.75 9.54 0.793 15.04 9.79 

0.2 0.806 13.79 9.60 0.789 16.41 12.05 

0.35 

0.1 0.821 12.64 8.36 0.809 14.31 9.79 

0.15 0.828 12.51 8.24 0.815 13.59 9.60 

0.2 0.815 12.86 8.54 0.811 14.90 10.49 

0.45 

0.1 0.812 13.47 9.33 0.798 15.29 10.47 

0.15 0.813 13.69 9.58 0.805 14.31 9.81 

0.2 0.813 13.38 9.24 0.80 16.29 11.17 

 1538 
Table 2: UWS threshold selection performance for various snow thicknesses selected as 1539 
thresholds for the 2008–09 and 2009–10 snow seasons for distributed and semi-1540 
distributed simulations. Bold values indicate the selected snow depth and SCA 1541 
thresholds. 1542 
 1543 

 1544 

 1545 

 1546 

 1547 

Observatory 
RMSE 
[cm] 

Bias[cm] Period 
Num. Obs. 

Chamonix 23.3 12.1 1983-2015 6704 

Le Tour 29.6 13.0 1985-2015 6323 

Nivose Aiguilles 
Rouges 

66.6 49.4 1983-2015 5902 

La Flegere 45.0 -19.1 2003-2015 1231 

Lognan 20.8 1.9 1994-2015 5964 
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PeriodExpositio
n 

Approac
h 

R2 MAE RMSE 

Entire period 

(2001–
2015)Whole 
catchment 

Semi-
distribute

d 

0.8150.819±0.0
22 

10.4710.40±0.3
9 15.2815.2±0.71 

Distribute
d 

0.8220.821±0.0
21 

8.358.34±0.30 12.6412.6±0.77 

2006–07 to 
2007–

08Norrthht 
Eexpositionaspe

ct 

Semi-
distribute

d 

0.7440.721±0.0
36 

10.75610.09±0.
52 

16.90315.98±0.
88 

Distribute
d 

0.7560.726±0.0
35 

8.747.57±0.38 14.8212.73±0.9
7 

2011–12 to 
2012–13South 

Expositionaspect 

Semi-
distribute

d 

0.8810.858±0.0
18 

11.5610.17±0.3
1 

15.5814.78±0.6
4 

Distribute
d 

0.8950.857±0.0
16 

7.999.83±0.39 11.1013.19±0.7
0 

 1548 
Table 3: R2, MAE and RMSE average and standard deviations values from the 100 1549 
sample bootstrapping for the observed and simulated SCA (based on the distributed and 1550 
semi-distributed approaches) for the entire time period with SCA observation (2001-1551 
2015). Results for the entire study area and for North and South Expositions are 1552 
presented. Error metrics in bold note p-values of the T-student test lower than 0.01 1553 
(99% confidence interval for rejecting null hypothesis). 1554 
 1555 
 1556 
 1557 

Period Approach R2 MAE RMSE 

2006–07 to 
2007–08Whole 

catchment 

Semi-
distributed 

0.744 10.756 16.903 

Distributed 0.756 8.74 14.82 
2011–12 to 

2012–
13Northern 

aspect 

Semi-
distributed 

0.580.881 11.2611.56 18.3615.58 

Distributed 0.590.895 8.617.99 15.6211.10 
Southern 

aspect 
Semi-

distributed 
0.80 10.17 16.48 

Distributed 0.815 10.34 16.21 
 1558 
Table 4: RMSE, MAE and R2 values for the observed and simulated SCA (based on the 1559 
distributed and semi-distributed approaches) for various2006-2008 time periods for the 1560 
whole catchment, Northern aspect (N, NE, NW).and Southern aspect (S, SE, SW).those 1561 
parts of the study area having a northern aspect (N, NE, NW). 1562 
 1563 
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 1564 
Period Approach R2 MAE RMSE 

Whole 
catchmentEntire 

period 

(2001–2015) 

Semi-
distributed 

0.8810.71 11.5610.12 15.5816.04 

Distributed 0.8950.72 7.997.60 11.1012.84 

Northern 
aspect2006–07 

to 2007–08 

Semi-
distributed 

0.820.58 11.3011.26 16.3818.36 

Distributed 0.840.59 7.798.61 11.6915.62 

Southern 
aspect2011–12 

to 2012–13 

Semi-
distributed 

0.9020.82 10.9811.30 15.0916.38 

Distributed 0.9050.84 8.257.79 11.8111.69 

Table 5: RMSE, MAE and R2 values for the observed and simulated SCA (based on the 1565 
distributed and semi-distributed approaches) for various2011-2013 time period for the 1566 
whole catchment, Northern aspect (N, NE, NW).and Southern aspect (S, SE, SW). 1567 
 1568 
 1569 
 1570 

Period Approach Jaccard ASSD 

Entire period 
(2001–2015) 

Semi-
distributed 

0.817 0.912 

Distributed 0.832 0.975 

2006–07 to 
2007–08 

Semi-
distributed 

0.783 0.920 

Distributed 0.801 0.952 

2011–12 to 
2012–13 

Semi-
distributed 

0.826 0.897 

Distributed 0.836 0.952 
Table 6: Average values of the Jaccard index and ASSD values for each simulation 1571 
approach for various time periods. 1572 
 1573 
 1574 
 1575 
 1576 
 1577 
 1578 
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Period Approach Jaccard Index ASSD 
JFM MJJ JFM MJJ 

2006–07 
Semi-

distributed 
0.9535 0.802 0.687 1.152 

Distributed 0.9557 0.823 0.704 1.104 

2007–08 
Semi-

distributed 
0.950 0.793 0.717 1.062 

Distributed 0.951 0.809 0.724 1.043 

2011–12 
Semi-

distributed 
0.968 0.756 0.711 0.983 

Distributed 0.967 0.754 0.734 0.994 

12012–13 
Semi-

distributed 
0.980 0.790 0.199 1.271 

Distributed 0.990 0.799 0.198 1.250 
Table 7: Average values of the Jaccard index and ASSD for each simulation approach 1579 
for the maximum (JFM) and minimum (MJJ) snow accumulation periods. 1580 
  1581 
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 1582 
Glacier Period Approach RMSE MAE R2 

Arg 

WSMB 
Semi-

distributed 0,56±0.0270.53 0,43±0.0220.42 0,54±0.0650.537 
Distributed 0,51±0.0280.52 0,42±0.0230.40 0,50±0.0730.51 

SSMB 
Semi-

distributed 0,96±0.0570.96 0,78±0.0450.78 0,75±0.0310.72 
Distributed 0,77±0.0490.76* 0,62±0.0470.61 0,84±0.0190.84 

ASMB 
Semi-

distributed 1,21±0.0591.21 0,99±0.0550.99 0,72±0.0210.71 
Distributed 1,18±0.0621.05 0,909±0.0540.85 0,71±0.0550.78 

Mdg 

WSMB 
Semi-

distributed 0,73±0.0310.72 0,57±0.0240.56 0,64±0.0410.64 
Distributed 0,76±0.0261.57 0,58±0.0271.15 0,59±0.0450.83 

SSMB 
Semi-

distributed 1,47±0.0931.46 1,18±0.0831.17 0,746±0.0490.75 
Distributed 1,19±0.0691.19 0,86±0.0570.86 0,86±0.0140.86 

ASMB 
Semi-

distributed 1,74±0.0951.72 1,36±0.0751.33 0,76±0.0410.75 
Distributed 1,57±0.0881.57 1,16±0.0691.15 0,838±0.0200.83 

Table 8: R2, MAE and RMSE average and standard deviations values from the 100 1583 
sample bootstrapping for the observed and simulated SMB for Mer de Glace (Mdg) and 1584 
Argentière (Arg) glaciers (based on the distributed and semi-distributed approaches. 1585 
Error metrics in bold note p-values of the T-student test lower than 0.01 (99% 1586 
confidence interval for rejecting null hypothesis). 1587 
RMSE, MAE, R2 values for the slope and intersection in linear adjustments between the 1588 
observed and simulated SMB for Mer de Glace (Mdg) and Argentière (Arg) glaciers. 1589 

 1590 

  1591 
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 1592 

Glacier Approach Avg Dif Std. Dev 
(Differences) 

Slope R2 

Mdg 
Semi-

distributed 

155.11 69.62 0.715 0.420 

Distributed 88.57 48.90 0.869 0.627 

Les 
Semi-

distributed 

158.34 101.84 0.188 0.102 

Distributed 110.73 109.67 0.560 0.586 

Tal 
Semi-

distributed 
105.14 59.25 0.4936 0.2336 

Distributed 80.12 41.87 0.766 0.476 

Tour 
Semi-

distributed 
105.14 59.25 0.339 0.528 

Distributed 84.33 68.71 0.625 0.715 

Arg 
Semi-

distributed 
63.89 42.87 0.270 0.103 

Distributed 54.52 31.85 0.578 0.381 

Table 9: Average differences, standard deviations, slope of the linear adjustment, and 1593 
R2 values for the observed and simulated ELA for Mer de Glace (Mdg), Leschaux 1594 
(Les), Talefre (Tal), Tour and Argntière (Arg) glaciers.  1595 
 1596 


