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Abstract: We evaluated distributed and semi-distributed maodelapproaches to
simulating the spatial and temporal evolution obwnand ice over an extended
mountain catchment, using the Crocus snowpack motet distributed approach
simulated the snowpack dynamics on a 250-m grigblemy inclusion of terrain
shadowing effects. The semi-distributed approactukited the snowpack dynamics for
discrete topographic classes characterized by tabeveange, aspect, and slope. This
provided a categorical simulation that was subsetiyispatially re-projected over the
250-m grid used for the distributed simulations.eTétudy area (the upper Arve
catchment, western Alps$-rance) is characterized by complex topographsiuding
steep slopes, an extensive glaciated area, and smwer throughout the vyear.
Simulations were carried out for the period 198%50using the SAFRAN

meteorological forcing system. The simulations weoenparedand evaluatedising

four observation datasets including point snow llepteasurements, seasonal and
annual glacier surface mass balance, snow covearsl evolution based on optical
satellite imagerysensersand the annual equilibrium-line altitude of gkacizones,
derived from satellite images. The results showed in both approaches the Crocus
snowpack modekffectively accuratelyeproduced the snowpack distribution over the
study period. Slightly better results were obtainsdg the distributed approachhe

improvement is statistically significant mainlecause it inclugsedthe effects of

shadows and terrain characterisfilcsal values of aspect, slope and elevation &mhe

agrid cell). However, the minor improvement observed with a muaigher

computational time does not justify the recommeiodatof this approach for all
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applications; as long as distributed simulations apt combined with new data

assimilation techniques and higher-resolution nreleqgical inputs.

Key words: snowpack simulation, distributed, semi-distribytedountain areas,
glacierized catchments

1. Introduction

The dynamics of the accumulation and melting ofwsiaad ice in mountain areas has
major effects on the timing and level of dischafgem rivers in downstream areas.
One-sixth of the Earth’s population depends diyeoti the water supply from snow and
ice melt in mountain areas (Barnettal, 2005). Thus, significant research effort has
been applied to the study of snow and ice dynamidbese regions (Egli and Jonas,
2009; Lehninget al, 2011; Lopez-Morenet al, 2013; McCreighet al, 2012), with
particular focus on mountain hydrology (DeBeer &wmeroy, 2009; Lépez-Moreno
and Garcia-Ruiz, 2004; Oreilleat al, 2014; Viviroli et al, 2007). The snowpack
dynamics and its spatial extent also control mamumain processes, including soill
erosion (Meusburgeet al, 2014), plant survival (Wipét al, 2009), and the glacier
surface mass balance (Lopez-Morestoal, 2016; Réveilletet al, 2017; Soldet al,
2013).

Some of the most dangerous natural hazards in ramuateas are also directly related
to the distribution of the snowpack and ice, angirtlevolution over time. This is the
case for snow avalanches (Schweieeal, 2008), and floods in mountain rivers and
downstream areas (Gagtlal, 2015). To enable anticipation of the occurrencenow-
related hazards and to reduce the threat to pepogaand infrastructure (Berghuigs
al., 2016; Tacnett al, 2014); various models have been developed taodepe and
forecast the evolution of the snowpack on a dailgub-daily basis.

Detailed snowpack models (Bartelt and Lehning, 200®nnet et al, 2012) are
increasingly coupled with hydrological models toemast river discharges, and this
depends on reliable simulation of snow and ice ingel{Avanziet al, 2016; Brauret
al., 1994; Lehninget al, 2006). The more accurate the information on sramkp
dynamics, the better will be the discharge forecdmised on hydrological models.
However, the spatio-temporal distribution of theowpack is highly variable in
mountain areas (Lépez-Moremd al, 2011, 2013; Scipidet al, 2013; Seidekt al,
2016), and the runoff from mountain catchments ddpeon many interrelated

processes that are highly variable in space ane, tincluding infiltration, surface
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runoff, groundwater recharge, freezing of soil, amel snowpack distribution (Seyfried
and Wilcox, 1995). For example, in areas where spewgists throughout the year the
snowpack dynamics has a major impact on groundvsiteage (Hood and Hayashi,
2015). Finally, snowpack models are also combingd wther models and techniques
to forecast avalanche hazards (Bartelt and Leh@@@2; Durancet al, 1999).
Reproducing snowpack dynamics in heterogeneous ftaiounareas remains
challenging. Some snowpack processes, includingdamduced redistribution and
small scale topographic control on the snow distidn (Mott et al., 2010; Revueliet
al., 2016a; Schirmeet al, 2011; Trujilloet al, 2007; Vionnet et al., 2@B) have not
yet been fully integrated into numerical snowpaclodels which can be used
operationally. Moreover, the additive nature of wpack dynamics involves
discrepancies between observed and simulated seck&spahich can accumulate over
the simulation period (e.g., Raleighal, 2015).

The various approaches available for running snokpsimulations range from
punctual simulations (snowpack dynamics simuladaf particular location having
specific characteristics) to semi-distributed anstributed approaches that simulate
snow dynamics over broad areas.

The semi-distributed approactbased on an unstructured grid designvolves

simulating the snowpack evolution over areas ddfinsing discrete values for
topographic variables including altitude, aspeat] alope (Fiddes and Gruber, 2012,
2014); . The French numerical chain S2M (SAFRAN-FERX-MEPRA; Lafaysseet
al., 2013), simulates the snowpack evolution usingraislistributed approach. In this
chain the SURFEX/ISBA-Crocus snowpack model (Vidnat al, 2012; hereafter
referred to as Crocus) is applied over a semiilligied discretization of the French
mountain ranges to diagnose the avalanche hazardaftous topographic classes.
Semi-distributed hydrological simulations are alsadely used, which involves
discretizing catchments into hydrologic responsetsur(HRU), with the flow
contribution from the HRUs being routed and compmmehinto an overall catchment
discharge (Nesteet al, 2012; Pomerot al, 2012). This simulation method is also
applied to river discharge forecasting in mountaneas, with the output of semi-
distributed snowpack simulations used as inputdhéohydrological models (Brauet
al., 1994).
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The other modeling approach to simulating snowpghgkamics over extended areas is
distributed simulations. This method involves siatidn of the temporal evolution of
environmental variables (e.g., snowpack or othelrdipgical variables) over a gridded
representation of the terrain. In this approachtéreain is not discretized in classes;
rather, it explicitly considers the characteristjesy. elevation, slope, aspect) for each
pixel when simulating its snowpack evolution. Baghproaches (distributed and semi-
distributed) have advantages and disadvantagesicytarly the lower computing
resource requirements of semi-distributed simuteticand the more accurate terrain
representation of distributed simulations. Some wgraek processes cannot be
accuratelyreproduced using the semi-distributed approachludmg wind-induced
snow redistribution, small scale topographic cdntod precipitation, and terrain
shadowing effects (Griinewadd al, 2010; Revuelt@t al, 2014; Vionnett al, 2014).
However, evaluating the performance of these sitimnaapproaches depends on the
intended use of the simulations (Carpenter and gaéaikos, 2006; Ortkt al, 2015).
Similarly, the results obtained will depend on #patial scale and the quality of the
meteorological forcing model, and whether it istriligited or semi-distributed (Queno
et al; 2016; Vionnett al, 2016).

Many studies have compared the performance of lhygical models based on
distributed and semi-distributed approaches inagyeing streamflow dynamics for
alpine watersheds (Grussehal, 2015; Kling and Nachtnebel, 2009; &i al, 2015),
but none have directly analyzed and compared reptason of the spatio-temporal
evolution of the snowpack using these simulatiopreaches. This is significant
because direct implementation of the most promisidgances in simulatioreguires
the—usereis mainly considered fer—odistributed simulations. This is the case for
assimilation of satellite data (Charra@sal, 2016; Dumonet al, 2012a; Thirelet al,

2013); the inclusion of small scale processes imukitions, including snow
redistribution by wind (Schirmest al, 2011; Vionnett al, 2014); and gravitational or
topographic controls on snow movements (Bernhardt&chulz, 2010; Christest al,

2010; Revueltoet al, 2016a). Semi-distributed simulations may also allow the

implementation of satellite data assimilation teghrs (Maryet al, 2013) but would

require specific routines for aggregating obseoregiand they would reduce potential

benefits of high resolution satellite observatio®milarly, blowing snow can be

simulated in the semi-distributed approach (MacDodre al., 2009, Vionnetet al,
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2018). Vionnetet al., (2018 show that strong assumptions on the topography are

necessary to transport snow mass from one aspemtdiher (virtual ridge between

opposite aspect classes for any elevation bandlakcDonaldet al., (2009), the model

parametrization requires a discretization of thelgtsite based on a strong knowledge
of the area from previous works (McCartregyal., 2006, Pomeroet al., 1999, 2006).

Thus, the transferability of these results to latgenains for which detailed information

on the landscape features is not available is munetdile.

Recent studies have assessed the impact of high#ties atmospheric forcing from the

Numerical Weather Prediction system AROME (Seityal., 2010) on distributed
snowpack simulations with Crocus. Queabal., (2016) and Vionnegt al, (2016)

compared simulations at a 2.5 km spatial resolutiwoed by AROME forecasts or by
SAFRAN reanalysis (Durancet al., 2009a). These works demonstrated that the

geoqgraphical patterns simulated by the AROME-Cranaslel chain are realistic and

more detailed than the SAFRAN-Crocus model chagr éarge areas (the Pyrenees and

French Alps). Nevertheless these studies also #xkiime significant biases in

meteorological and snow variables with the AROMBEIS chain which do not

assimilate any meteorological observation, in paldir precipitation. As a result,
Quenoet al., (2016) and Vionnekt al., (2016) exhibit a better skill of snowpack

simulations when SAFRAN is used as forcing. Theyobade that the potential of the

high spatial resolution atmospheric forcing frone thhWP system will be more

beneficial in snowpack simulations with the devehemt of a high-resolution

distributed analysis combining observations and M&Eforecast and the development

of downscaling methods to fill the gap between rthd@iometric resolution and the

resolution required to capture the variability oopes and aspects in alpine

environments.

Moreover the impact of topographic effects on snaskpsimulations (implemented in

the snowpack model) has not yet been assessethih é¢ present, the implementation
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of terrain shadowing effects on Crocus snowpack ehddchieved in distributed

simulations) has not been analyzed in complex alpgnrain Fhis-wayitt is therefore

necessary to compare distributed and semi-disgtbgnowpack simulations with a

spatial resolution that enables a detailed reptaien of alpine terrainln this regard,

Fthis study provide a comprehensive evaluation of semi-distributed drstributed
snowpack simulations for a mountain catchment, gusire Crocus snowpack model
(Brunet al, 1992; Vionneet al, 2012)overalongtime periodiith-the purpese-of-by

(Durand et al., 2009a, 2009b) was selected as the meteorologicainf) since it is

available over a long period of time and assimdateeteorological observations over

mountain areas.

The final products of both simulations are 250 gmdded snowpackdistribution

mapsdatasetd his spatial resolution was selected becausenidersa sufficientslopes

sufficiently well to—representation—tiescribe small valleys with significant shadowing

effects. It will also allowto exploreirg snow mechanical stabilityn future avalanche
hazard forecastingpplications Indeed{rete-the-impactabroader resolutionsnply a

too strongsmoothingof terrain to represerstion) slopes se» enough for avalanche

release The 250 m grid cell size of the simulations adsmbles a direct comparison

with optical satellite products at the same spat&dolution. Additionally—using

We firstly assessed the ability of the model todate the snowpack evolution at a
local scale for specific stations having continu@m®w observation data. For these
stations, the punctual simulations accounted foalltopographic characteristics. These
punctual simulations enabled initial analysis ofe tlicapacity of the model to
subsequently evaluate the distributed and senridaliséd approaches to simulating the
snowpack dynamics over a broader area, using time saeteorological forcing. The

simulation results obtained using the distributed aemi-distributed approaches were
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compared with observations for the snow covered drased on MODIS satellite
sensors, the glacier surface mass balance (wsuermer, and annual), and the glacier
equilibrium-line altitude derived from satellite ages (Landsat, SPOT, and ASTER).
This enabled assessment of the use of distributedlaions for analysis of snow and
ice dynamics. The simulations were based on dathéoupper Arve catchment (French
Alps) for the 26 years from 1989 to 2015.

Fhis—way—tThe SAFRAN-Crocus simulations shown in this work [#aaa complete

evaluation of model performance in highly hetereggmrs mountain terrain over a study

period that captures all possible climatologiesimithe study area. Moreover the effect

of using distributed simulations is compared wikults obtained with semi-distributed

simulations which nowadays are operationally exethi showing the interest or not of

changing the modelling approach. Such evaluation alsims atpretends-showng

the pros and contras of simulating snowpack evolution over large mountreas with

different technigues that offer substantial flekiion terms of their set-up anén

terms of the computational requirements.
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2. Study area

The upper Arve catchment is located in the westdps, France, between the northeast
slopes of the Mont Blanc massif and the southwkxgies of the Aiguilles Rouges
massif. The catchment extends from the headwafettsecArve River to the town of
Chamonix (Fig. 1), and includes major tributariemrging melt water from three
glaciated areasAfveyron de la Mer de Glace, Arveyron d’Argentiéaad Bisme du
Tour) to the main river. The upper Arve catchment cev205 knmi and has a high
degree of topographic heterogeneity, with steepesaon some areas, and gentle slopes
on large glaciated areas and at the lower elevaboes of the valley, which is a typical
U-shaped glacial valley. Elevation ranges from 162@225 m.a.s.l., with 65% of the
surface area above 2000 m.a.s.l. Glaciers cover @3¥e area (Gardemwmt al, 2014),
and 22% is covered by forests, mainly in the loeleration areas. The water discharge
regime is strongly dependent on the snow melt dycsrduring spring and early
summer, with the major contribution of melt wateorh glacierized areas occurring
during late summer and autumn; this is termed a-glacial regime of river discharge
(Viani et al, submitted). The Mont Blanc and Aiguilles Rougeassifs are also highly
spatially heterogeneous, having various slopes aspkcts over a wide range of
elevations in glaciated and non-glaciated areags #ifects the spatio-temporal
evolution of snow and ice.

The area is one subject to severe flood hazards.i§la consequence of the steepness
of the terrain, which results in a rapid hydrol@jicesponse to precipitation, the
typically rapid meteorological changes that occor this mountain area (mainly
associated with convective episodes during sprind aummer), and the high

population densities and infrastructure in thedootof the valley.
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3. Methods
3.1. Simulation setup

We used the Crocus snowpack model to simulateetmparal evolution of snow and
ice in the upper Arve catchment. Crocus is a naylél model that simulates snowpack
evolution based on the energy and mass exchangeedrethe various snow layers
within the snowpack, and between the snowpack &nihterface with the atmosphere
and the soil (i.e. the top and bottom of the sn@umn). The maximum number of
layers in Crocus is set to 50. Crocus is implengemtethe externalized surface model
SURFEX (Vionnetet al, 2012). Within SURFEX (Massoat al, 2013), Crocus is
coupled to the multilayer land surface model ISBA=[YInteraction between Saill,
Biosphere and Atmosphere; diffusion version; Decteat al, 2011).

The meteorological forcing required to drive theap®ral evolution of the simulations
was obtained from the SAFRAN meteorological analgsistem (Durandt al, 1993).
This provides the atmospheric variables neededuto IBBA-Crocus, including air
temperature, specific humidity, long wave radiatialirect and diffuse short wave
radiation, wind speed, and precipitation phase etd. SAFRAN was specifically
developed to provide meteorological forcing for m@in areas at a suitable elevational
resolution. The SAFRAN analysis combines observaliodata obtained from
automatic weather stations with manual observatiwitls the guess from the global
numerical weather prediction system ARPEGE (Coudied Thépaut, 1994). We used
SAFRAN re-analysis, which benefitted from meteogidal observations not available
in real time (Durancbt al.,2009a, 2009b). This analysis system can provideuisi for
punctual simulations, or semi-distributed outputs.the first case the analysis is
performed directly for the elevations of the stasionvolved, while in the second case
the analysis is performed for 300-m elevation bahtd$oth cases the spatial extent of
the analysis is approximately 1000 km2. These regitknown as “massifs”) were
defined by Durancet al (1993) who took climatic homogeneity into account this
study the SAFRAN analysis was only used for that pathe Mont Blanc “massif”

which covers the entire study catchmd?drticularly, this‘massif has an extension of

580 knf, so when taking into account the extension ofstuely area, it is covered a
36% of the “massif” extensionSAFRAN and SURFEX/ISBA-Crocus (hereafter
SAFRAN-Crocus) are used in avalanche hazard fotiacasn France, using the S2M
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chain (Lafaysset al, 2013); this takes account of the altitude, aspaad slope classes

(semi-distributed simulation).

3.2. Punctual, semi-distributed, and distributedraaches

The temporal evolution of snow and ice was simdlateing punctual, semi-distributed,

and distributed approaches, based on the same noletgioal forcing.Despitehere-in

after these three approachksingaredescribed individually andlsetheir resultsare

presented in different sub-sectiomgthe reademust bear in mind that these are based

oin the same simulation setup.

Punctual simulation

Punctual snowpack simulations were performed far filke Météo-France stations
within the study area, based on the elevation, eslgnd aspect for each station.
Punctual simulations included a topographic maskfa 50-m digital elevation model
(DEM) to account for any terrain shadowing effect simulation of the incoming

shortwave radiation (provided by the SAFRAN metémgmal model).

Semi-distributed simulation

Snow and ice semi-distributed simulations wereiedrout based on the topographic
classes of the SAFRAN model (300-m elevation bafmdsn 900 m.a.s.l. to 4100
m.a.s.l) for eight aspect classes (north, northeast, southeast, south, southwest, west,
and northwest) and two slope values °(2dhd 40). For each elevation band a
simulation over flat terrain (no aspect classifimal was also carried out. These
topographic classes are the same as those useddlanche forecasting (Lafaysse
al., 2013). To consider snow and ice evolution origlized and non-glacierized areas,
two distinct simulations were run for all terrailagses, one involving a given thickness
of ice to initialize the simulation, and anotheitialized using bare ground (see section
3.3).

In a final stage the snowpack semi-distributed $atnns (-which have an unstructured
grid design)were assigned or re-projected onto the pixels efstindy area DEM (the
same DEM used for distributed simulations; 250x25Qrid size). The pixels were

categorized according to the semi-distributed terciasses: slopes from 0 to°1@ere
considered flat, those from 11 to°3@ere assigned to the 28lope class, and those >
30.1° were assigned to the 46lass. From this categorization of the DEM thevapeck

simulation outputs were assigned to each terraasscfor all time steps. Thereby, for
10
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each time step a snow and ice distribution map gesxerated that spatially distributed
the semi-distributed snowpack simulation obtainadtiie various terrain classes. This
enabled comparison of the two approaches basduemaime observation dataset.

Distributed simulation

The distributed snowpack simulations were perforimeal DEM having a 25@ 250 m

grid spacing and covering the 205 %mf the study area. As SAFRAN reanalysis
provides semi-distributed outputs, the meteorolalgiorcing at hourly time steps was
spatially distributed over the 250-m grid DEM usspgcific routines that accounted for

the elevation and aspeectof each grid celf For each cell of the 250-m grid, the

spatialization of meteorological variables from 8390-m elevation bands of SAFRAN

is based on a linear interpolation between the ¢lesest elevation bands. Only one

SAFRAN aspect class is considered for each pix@h@st-neighbour technique for the

aspect)(Vionnetet al, 2016).Therefore the meteorologicahput dataare similarfor

all simulations only minor differences occurd becauseslevatiors differences(< 300

m) may impact meteorological forcing variahles

The distributed Crocus simulations included theaien, aspect, slope, soil, and land
cover characteristics for each pixel (the last teftained from ECOCLIMAP-
[I/Europe; Farouxet al, 2013) to simulate the evolution of the snowpasko(v and
ice). A routine to account for the topographic shaithg effect of short wave radiation
(Revueltoet al, 2016a) was included in the distributed simulaionhe inclusion of
particular pixel features and topographic shadovisnipe main difference between the
semi-distributed and distributed methods. Figush@ws a schematic representation of
distributed and semi-distributed simulation apphesc

3.3. Simulation initialization

Snowpack simulations were run for the period 198952 However, the ISBA ground
state (including temperature and soil humidity) mbeg initialized to accurately
reproduce the evolution of the snowpack. A spinsumpulation for the 1988—89 snow
year (LAugust 1988 to 31 July 1989) was repeated iterigtit@ times, to ensure a
realistic ground state when launching simulations.

Similarly, to adequately replicate the snow and egelution over glacierized areas a
glacier initialization was performed. Thus, for thienulations a sufficiently thick ice
layer (several tens of meters) was incorporate@dtbirthe snow layers to ensure glacier

presence during each season in the glacierizeds.ae® Crocus is a multilayer

11
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snowpack model that simulates the energy and nmésicihanges between the various
snowpack layers, it also enables simulation ofglleier surface mass balance (Dumont
et al.,, 2012a; Gerbawet al, 2005; Lejeuneet al, 2013). Glacierized areas were
initialized at the beginning of each snow seasoAydust) using a 40-m ice thickness
(if the total ice thickness was less than this @glwhich ensured that it was present for
the entire snow season (from 1 August of one ye&l1t July of the next year). Thus,
the six deepest Crocus layers were initialized \aittiensity value of 917 kghand a
temperature of 273.16 K (the Crocus default deresity temperature values for ice, and
representative of temperate glaciers). The thicknek these layers progressively
transitioned from a shallow thickness for the uplager (0.01 m) to thicker layers in
the deepest part of the ice (with a 5-fold differemactor between one layer and the one
above); this resulted in a total ice thickness @D8 m. The ice initialization was also
performed during the spin-up of soil to reprodube ground state over glaciarized
areas. The extent of glacierized areas was bas#teanost recent data on their surface
area, inventoried in 2012 (Rabatet al, 2013). Although other historic surface
inventories of glacierized areas within the uppeveAcatchment were available (1986
and 2003; Gardentt al, 2014), the most recent inventory was used forpbaity
because the change in the glacierized surface la@bmeen the inventoried dates
represents less than a 1% of the total study suidesa.

3.4 Evaluation strategy

The availability of direct snow and ice observasicior mountain areas is limited.

Broadly, when the time between observations istshioe spatial extent is limited and

oppositely, when large areas are observed, theaehfpequency is low. Consequently,
evaluation of the performance of a model in repoiay the snowpack evolution is

difficult because of a lack of information. Althdugve did not evaluate a hydrological
model in this study, the “observation scale” ddfir®y Bloschl and Sivapalan (1995)
aided assessment of the representativeness of \thegalde observations. The

observation scale is defined by: i) the spatialfieral extent (coverage) of a dataset; ii)
the spacing (space and time resolution) betweepleamand iii) the integration volume

(time) of a sample (also known as support). Theseetcriteria can rarely be optimized
simultaneously. Hanzeat al. (2016) introduced a representation to depict thialsility

of an observation dataset to evaluate model pedno@ To evaluate the simulations in

this study we used four datasets based iorsitu snow depth from Météo-France

12
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stations; the snow covered area (SCA) from MODI&ges; the punctual glacier
surface mass balance (SMB); and the glacier equitizline altitude (ELA) from
Landsat/SPOT/ASTER. Based on the radar charts miexbdoy Hanzeet al. (2016),

shown in their Figure 5the information available for our study matchesrfotl the

datasets exploited in their study (Snow Depth, M®DlLandsat and Glacier mass

balance). These four datasets cover almost the r&dbr chart space (“optimal”

validation dataset), thus providing almost a fulNalgation of the simulation

performance
The analyses presented below enabled us to draslusions about the impact of the

methods used on the various spatio-temporal scalesidered, also enabling an overall
evaluation of the simulation platform.
The four datasetsised—-in—evaluation—of-the-simulations—are—describebwallowed

performing a multi-criteria evaluation of the simtibns with all observations available

within the study areaHowever-Nmot all simulations (punctual, semi-distributed, and

distributed) were evaluated using all four obseoratlatasets. The punctual snow depth
simulations only provided a preliminary evaluatimnthe simulation setup in terms of
reproducing the temporal snowpack evolution, soyopunctual snow depth
observations were used in the evaluation of tmsukition approach. The three other
datasets (SCA, and glacier SMB and ELA) were useslaluating the semi-distributed
and distributed simulations, as these datasetdieadppropriate spatial and temporal
extents needed to assess the performance of thespproaches.

Punctual snow depth observations

The Météo-France observation network has 5 statiotise study area (Fig. 1), located
at different elevations. Some of these stationsuiaed data during all snow seasons
throughout the entire study period, including atdée Aiguilles Rouges (2365 m.a.s.l.),
Chamonix (1025 m.a.s.l.), and Le Tour (1470 m.a.Lther stations were installed
later, and provided observational data since tr81195 snow season (Lognan station;
1970 m.a.s.l) and since the 2003-04 snow seasoRl€gere station; 1850 m.a.s.l.). At
these stations the temporal evolution of the sneptld was observed at daily or sub-
daily time intervals, and these data were usedvaduate SAFRAN-Crocus in non-
glacierized areas during winter and spring (perwidl snow presence).

Snow cover area based on the MODIS sensor

i) Evolution of the snow covered area
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Many studies have demonstrated the usefulness oDIgOmages for snow cover
mapping in mountain areas (Gascetnal, 2015; Klein and Barnett, 2003; Parajka and
Bloschl, 2008). The MODIS mission database provilbeg) temporal coverage (the
mission was launched in 2000, and obtains dailygesy so enabled a comparison
between the simulated and observed snow cover temolfor 14 snow seasons (out of
the 26) simulated on an almost daily basis (corspas were limited by cloud cover in
the study area). Sub-pixel snow monitoring of theve cover at 250-m spatial
resolution was performed using MODImLab softwarmdith is based oBDumontet al,
2012b; Sirgueet al, 2009. Multispectral fusion between MOD0O2HKM (500 m; ldan
3—-7) and MODO02QKM (bands 1 and 2) (Sirguetyal, 2008), enabled this software to

generate images at 2%0250 m spatial resolution to derive various sno@-pooducts.

We used the unmixing_wholesnow (UWS&rguey 201Bproduct, as it has been shown

to outperform other snow-ice products for assesswgution of the SCA gpectral

unmixing technique ilCharroiset al, 2013). We also considered the cloudiness product

in MODImLab to determine the proportion of the ¢atent affected by cloud cover.
Generation of the UWS and cloudiness products irDihdab software was based on
the same DEM used for the snowpack simulationss €hsured a direct match between
of observation and simulation pixels. To avoid ssreelated to cloud presence in the
study area, only days having cloud cover represgnti 20% of the total surface area
were considered in the analysis.

Fhe-Different UWS threshold for considering a pixel to be snow coveredsere
sdested. The UWS values used in the sensibilitywese 0.25, 0.35 and 0.45t6-0.35
| ) Similarly,
TFthree snow depth threshold values (0.10, 0.15, a@@ M (Gascoiret al, 2015;
Quéno et al, 2016) were examined to consider a pixel as snowered in the

simulationson the sensibility tesSince snowpack simulations on forested areas (sub-

canopy snowpack simulations not implemented in dimeulations) and also satellite

observations could have important deviations freal snowpack evolution; ié SCA

evolution in forested areas was not evaluated, thede areas were masked in the
analysis.

The temporal evolution of the snow covered aread)S&thin the study area predicted

by each simulation approach (semi-distributed asttiduted) was analyzed in terms of
the root mean squared error (RMSE), the mean aeseiwor (MAE), and R for

14
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comparisons between simulations and observatiDaspite the study periodeing-is

long in terms of snow observationspitly -spans over a 14 vear time period. Thus, to

assess whethéhne results obtained with distributed and semi-disitélol simulations are

significantly different the uncertainty of the scores was quantified byoatdirap

approach-a—t-studenttest-has—been—apphedm the annual SCA database1@0

bootstrap samplef 100 membersvas obtained by random sampling with replacement

of the different years of observations. This boafgbting wasexpleitedusedo compute

the standard deviation of each score, consideredrasdom variableThus, the scores

samples of the semi-distributed and distributedusitions can be compared layt-

student test.
The temporal evolution of the SCA for specific sneaasons was also analyzed to
assess the difference between observations andasioms in different time periods.

Error metrics obtained on these particular snows@es were compared to average

values from the bootstrapped samplde SCA evolution in forested areas was not

evaluated, and these areas were masked in thesemaly

i) Evaluation of spatial similarity

The spatial similarity between the observed andikited SCA was evaluated for each
simulation approach based on two similarity metrit® Jaccard index (J), and the
average symmetric surface distance (ASSD). As titk aglls coincided because the
simulations and observations were based on the &l we were able to obtain
binary maps of snow presence from the simulated @lbgkerved maps, using the
thresholds established.

The Jaccard index is the ratio of the intersecbetween the observed (O) and the
simulated (S) SCA and the union of O and S (Equatio The index values range from
0 to 1, with a value of 1 representing a perfectcimebetween the observed and
simulated SCA.

__lons|
~ lous|

J (1)
The ASSD is complementary to J, as it evaluatesligtance between the boundaries of
the observed and simulated SCA. ASSD is basedemtbdified directed Hausdroff
distance between boundaries (Dubuisson and Ja#¥; X#e Quénet al, 2016 and
Sirgueyet al, 2009 for more details). The ASSD unit is metensg the smaller the
distance the better the match between surface laosd The Jaccard index and ASSD

were calculated for the 2001-02 to the 2014-15 smmasons. To assess the
15
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performance of the two SCA simulation approachessfecific periods, the 2006-07
and 2007-08 snow seasons (both of which were desaized by low average levels of
snow accumulation) and the 2011-12 and 2012-13 seagons (characterized by high
levels of snow accumulation) were analyzed for hbthaccumulation period (January,
February, and March; JFM) and the melt period (Maye, and July; MJJ).

Glacier surface mass balance

Glaciers located in the Mer de Glace and Argentisub-catchments have been
monitored, in a sufficient number of measuremeaoations for our analysis, since 1995
by the French Service National d’Observation GLACIOM. During this period field
data were obtained twice per year, during the mawintend April-May) and minimum
(around October) snow accumulation periods. Theda dnabled calculation of the
SMB for summer (SSMB; annual difference between ii@ximum and minimum
acquisitions), winter (WSMB; annual difference beém the minimum of the previous
year and the maximum acquisitions), and annuall$Ni8; year to year differences in
the minimum acquisitions) at each individual pooft the network (Fig. 3). The
observation procedure involved use of glaciologicedthods (Cuffey and Paterson,
2010) to retrieve the surface mass balance fovdheus time periods (SSMB, WSMB,
and ASMB). Stakes (markers over the glaciers) ateup in both accumulation and
ablation areas throughout the glaciers, and seatethe evolution of the various zones
of the glaciers. The spatial distribution of thaksts is shown in Figure 3. For further
information on the methods for SMB data collectisee Réveilleet al. (2017).

The observations of SMB for the various time pesict more than 65 locations
encompassing different glaciers enabled assessvhéme snow and ice evolution over
glacierized areas, as these measurements inclumed &nd ice ablation (SSMB) and
snow accumulation (WSMB) periods. Thus, the sinmdatSMB for the same
observation periods and locations were computeédoas Crocus results. With this
information-a-tinearregression-and RMSE, MAE aRfdcoefficient were computed for

each sub-basin for the three periods, and these uged to measure the performance of

the modeling approacheSimilarly to the SCA evaluation the significance of the

differencesbetweenboth simulation approaches assessed with a bootstrap method

based on the resampling of the 20 available y@atheobservations.

FinallyF the simulated (distributed and semi-distributed) asftserved temporal

evolutions of the SMBs were compared based on HeERAN elevation bands (the
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average and standard deviation for all points witeach band were calculated). To
assess any elevational dependence of the SMBge#soial evolution of the observed
and simulated SSMB, WSMB, and ASMB were comparedvio snow seasons having
opposite characteristics (high and low levels adveraccumulation) for the Mer de

Glace glacier, which had a large gradient for assgslevational dependence.

Glacier equilibrium-line altitude

The glacier equilibrium-line altitude (ELA) is thennual maximum elevation of the
snow-ice transition over glacierized areas. Sing@@41the temporal evolution of the
ELA for the five largest glaciers in the study atess been monitored using various
satellite sensors (Rabatet al, 2013, 2016). Data on the inter-annual evolutibthe
ELA for the Tour, Argentiére, and Mer de Glace ge (and its main tributaries, the
Leschaux and Taléfre glaciers) was available ferehtire study period

Images from Landsat 4TM, 5TM, 7 ETM+, SPOT 1-5, A8STER were used to obtain
the ELA for the study period. The spatial resolutaf these images ranges from 2.5 to
30 m. The method of snow line delineation using tispéctral images combining
green, near-infrared, and short-wave infrared b&radsbeen fully described by Rabatel
et al. (2012). The satellite acquisition date dependsvamous factors including the
availability of satellite images for the study araad cloud presence, but images
obtained during the period of minimum snow accurtoma (late August to early
October) were used to obtain the ELA. Thus, theutabted ELA was obtained for the
same dates as the satellite acquisitions. Becatistheo difference in the spatial
resolution of the simulation (250 m) and sateltitsservations<{ 30m), the average and
standard deviations of the ELA were compared.
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4. Results
4.1. Punctual snow depth
The observed and simulated snow depth evolutionhi®r2007-08 and 2012-13 snow

seasons (low and high average snow accumulatiors,yeaspectively) for the five
stations are shown in Figure 4. The snow depthutieol shows the capacity of the
SAFRAN-Crocus model chain to reproduce the tempevalution at locations having
differing topographic characteristics.

It is important to note that the results shown iguFe 4 indicate the capacity of the
simulations to reproduce snow depth dynamics atipgoints having well known
topographic characteristics. Punctual simulatiamdude the impact of surrounding
topography on incident solar radiation (terrain dsdveing masks). Additionally, the
meteorological forcing was taken at the statiorvaien (SAFRAN forcing not yet
discretized on elevation bands). Nevertheless,sffadial scale of the meteorological
forcing was that of the Mont Blanc SAFRAN massifiefefore the spatial variability of
solid/liquid precipitation within the massif is niatken into account.

Some snow accumulation events were underestimatecdverestimated in the
SAFRAN-Crocus simulation, evident in discrepanciestween the simulated and
observed snow depths, including for the Le Tourefestimation) and La Flégere
(underestimation) stations for the 2007-08 snovs@®aDespite these discrepancies
resulting from meteorological forcing, the simuth&volution of the snow dep#hows

a goodterrecttemporal timing-appeared-reliableinr-particularialg-meltperiods.

Table 1 shows the RMSE and bias errors betweemgaligms and simulations at the

five stations. There was a high level of variapiltetween the errors for the various
stations, mainly because all local effects were inoluded in the simulations. It is
noteworthy that the number of observations avalanid the time periods (which could
have marked differences on total seasonal snowradetion) affected the significance
of the RMSE and bias for the various stations (&d)l The RMSE values ranged from
20.8 to 66.6 cm and the bias ranged from —19.19td 4m. These values are small
relative to the total snowpack thickness (snow ldegiservations were commonly >
200 cm, and in some cases exceeded 300 cm). Howewethe Aiguilles Rouges
station the RMSE and bias estimates were higher filathe other stations. This may
be because this station is exposed to major widdeed snow transport episodes that

were not accounted for in the simulation. In additto these events, this station is also
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affected by forecasting errors related to the nretegical forcing, such as the large
underestimation for the first snowfall in 2007—08.

4.2. Snow Cover Area evaluation

Figure 5 shows an example of the SCA obtained uieguWS product for 24 July

2008, and the corresponding simulated snow deptbrmdaned using the distributed
approach. This date was selected because it whsud-ftee day with high elevation
areas covered by snow.

Table 2 shows the SCA simulation results estimbteskd on 0.1, 0.15 and 0.2 m snow
depth thresholds compared with thleserved variou®) WS (6-35threshold testeeh,

for the 2008—-09 and 2009-10 snow seasons (avenage accumulationsynd for both

spatialization approachesghis table shows that the evaluation metrics atg slightly

sensitive to the choice of these thresholds andftinaevery threshold and metrics the

ranking of the two approaches remains the samdight of the sensibility testse

results we selected a 0.15 m snow deptlmulatienthresholdfor the simulations and
0.35 SCA threshold for MODImLab UWS produfetr classifying a pixel as snow-

covereddeciding whether a pixel was snow covered

_i) Evolution of the snow covered area

The results of simulation of the SCA in the studgaafor 10 of the 14 snow seasons
(for ease of visualization) based on MODIS data sirewn in Figure 6. This figure

shows that both approaches were able to reprotiec8CA evolution based on MODIS

Figure 7 shows the SCA evolution for four non-cangige snow seasons, two having
low levels of snow accumulation (2006—07 and 20@7s€asons) and two having high
levels of snow accumulation (2011-12 and 2012-83@es). In winter the simulation
slightly overestimated the SCA compared with obagowns, but during summer and
autumn the simulations underestimated the SCA. Wewehe distributed simulations

most closely reproduced the observed S@able-3) In all four seasons the semi-
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distributed simulations generated larger underegémof the SCA during summer and
early autumn.

Using the terrain aspect classification for sensiihuted simulations it is possible to

evaluate the impact of terrain shadowing effectentthe eight orientation classes we
identified two main groups: those having a northaspect (N, NW, NE) and those

having a southern aspect (S, SE, SW). Figure 8 sliovobserved and simulated SCA
evolution for high and low snow accumulation seasionrelation to these two terrain

classes. The variability in the SCA was well captufor both aspects by both the semi-
distributed and distributed simulationdsreever,The SCA temporal evolution shows

that overall the simulation underestimated the S@#ijng late spring and summer in

northern aspects. For southern aspects, simulaficghe SCA evolution was poorer

during winter.
Error estimates for the SCA simulatied the whole study site and ferin+relationte the

north and south aspects (Tabg&gt and 5) were lower for the distributed simulations

compared with the satellite observatioR8SE and MAE standard deviations obtained

from the bootstrapping (Table 3) are lower thandhiference between scores for both

approaches. The p-values for these two error nsesiie lower than 0.01 and thus the

null hypothesis is rejected with a 99% confidenenval interval and the skills of

distributed and semi-distributed simulations aré statistically equivalent Conversely
the R2 standard deviation of the SCA is high comgdp the difference between the

scores of both approaches. As a result, the highlue indicated (in this case above

0.05) that the null hypothesis should be accepted that these scores are not

statistically different between both approaches. R2E and RMSE average values for
high (2006-2008 snow seasons, Table 4) and lowl(C201 3 snow seasons, Table 5)
levels of snow accumulation also show the bettpaciy of distributed simulations to
reproduce SCA evolutionlthe t-student test has demonstrated that RMSE an& MA

results for both approaches are not statisticalivalent and that for all

aspetssrientationsand periods, the distributed simulations presémiger errors-.

wWe can conclude thahis later approachsignificantly better reproduce the SCA

evolution

The differences in the error metrics (RMSE and MAEjween distributed and semi-

distributed simulations are significant for bothrth and south aspects but higher for

north aspect. However, it must be highlighted tbathe whole catchment and for any
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aspect, the null hypothesis can be accepted basd¢ideoR2 value between distributed

and semi-distributed approaches. This means tlmantlded value of the distributed

approach is not visible on this criterich—Meregubie-SCA-temporal-evolutior-shewn

a O a O NO\A N O\ a¥a' m ON esam aYa a¥a' A a ala te

i) Evaluation of the spatial similarity

The spatial similarity between the observed andukited SCA is exemplified in the
temporal evolution of the Jaccard index and ASS&bld 6 shows the average values
for J and ASSD for the entire study period and tfeer 2006—07 and 2007-08 snow
seasons (low levels of snow accumulation) and €1e1212 and 2012—-13 snow seasons
(high levels of snow accumulation).

The higher scores found during seasons having leigkls of snow accumulation were
expected because of the larger areas covered hy. $agure 9 shows the temporal
evolution of the Jaccard index and ASSD for higd ow level snow accumulation
seasons.Altheugh—the Ddifference between the distributed and semi-distedu
simulations waglmost unappreciablelofor most datesand only- during late melting
(August-September}-the—Jacecard—inrdex—vatues—fordiseributed simulations were
slightly betterhigher (higher J index and lower A8SThis shows that except for some

particular time periods differences in the spagiadilarity with the observed SCA with

both simulation approaches are minshewing—a—greatercapacityfor-simulating the

A hle 6 an J A D)\, a Aara loZwwa D a a¥a aa aVa AN h

and-minimum-—snow—acedmulation—(Fig—9)able 7 shows the average Jaccard and

ASSD index values obtained for the JFM and MJJoplerifor the four snow seasons

analyzed in detail (high and low level snow accuatiah seasons)Again, a minor

improvement
reproduction-of-the- SCA-evelution,—and-their—apilib- on captueing betterthespatial

patterns in heterogeneous mountain terr@inobtained with distributed snowpack
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simulations Not surprisingly, the values in Table 7 also shmgher scores for both

simulations during winter and early spring, whea 8CA was high.

4.3. Glacier surface mass balance

Analysis of the glacier surface mass balance edadsessment of the effectiveness of
simulations of the seasonal and annual evolutiosnofv and ice on glacier surfaces.
Figures 10 and 11 show the simulated and obserragdral evolution of the surface
mass balance for the 300-m elevation bands. These good agreement between
observations and simulations with respect to yegretar SMB variability. During
winter the snow accumulation at high elevations waderestimated. For elevations
above 2700 m.a.s.l. a higher positive glacier SM&s wbserved, and the difference
between the observed and simulated SMB increasekighier elevations. During
summer, when solid precipitation has no or marginféilience in low elevation areas
and little influence at higher elevations, the oled and simulated SMB values were
similar for elevations above 2100 m.a.s.l. for kher de Glace glacier, and above 2400

m.a.s.l. for the Argentiere glacier. Neverthelegsshigh elevation areas the SSMB

deviation was also underestimated on the simulstibims-was-prebablybecause-of the

O\A/Q A\/Q a NO\A aa ala an aYa Bl a a¥aal'a nao A 2 AN .....
A \/ A o—a H a d

Combination of the simulated WSMB and SSMB producad ASMB that

underestimated snow accumulation at high elevat{on3000 m.a.s.l.) and melting at

low elevations (2400 m.a.s.l. for the Argentiéracgtr, and < 2400 m.a.s.l. for the Mer
de Glace glacier). Thus, the glacier ASMB includednmer and winter variations,
which in some cases negated each other. The congraerformance of the simulations
in reproducing the SMB between high and low elerstiis clearly illustrated in Figure
12. This shows the altitudinal dependence of theBSlgr two snow seasons, one
having a low level of snow accumulation and theeoth high level. The simulated
SSMB, WSMB, and ASMB values for both approachesevestimated the observed
values at both low (higher negative loss of watpriealents observed) and high (lower

positive loss of water equivalents observed) elemaaireas. Nevertheless, the SMB
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simulations at intermediate elevations correctlyroduce the observed values, and the
temporal evolution of the SMB for the 20 years &if and 11) was well reproduced
by the simulations.

The performance of simulations in reproducing gla@MB must take account of the
areal extent at differing elevations. Elevation8080 m.a.s.l. represent 37% and 52%
of the surface areas of the Argentiere and Mer thedsglaciers, respectively. The
Argentiere glacier has < 10% of its surface ardawb®400 m.a.s.l., and the Mer de
Glace glacier has < 7% below 2100 m.a.s.l. Thels¢ive extents of glacierized surface
area show that for large areas of the glacierSMB was accurately reproduced by the
simulations. However, for large glacierized arehsré were marked differences
between the observations and simulations; althaighyear-to-year evolution was
accurately reproduced, this demonstrates the mei@dprove simulation methods.

In general, the distributed simulation values foe SMB were slightly closer to the
observed SMB values than were those from the sestrifmited simulations.

Table 8shows RMSE, MAE and R2 means and standard dev&atbtained from the

100-memberbootstrapgsample For most of the error metrickhe standard deviations are

lower than score differences and the p-values@awechough to reject null hypothesis.

This way results obtained with both simulation awhes are statically different In

winter, the SMB simulations show similar resulsr both glaciers, lower RMSE and

MAE are obtained for distributed simulations anditdre R2 for semi-distributed

simulations. Oppositely during summer all scoremasbetter results for the distributed

approach. The annual SMB also exhibit better redalt distributed simulations—shoews

4.4. Glacier Equilibrium Line Altitude

The temporal evolution of the ELA for the five lagy glaciers in the study area is
shown in Figure 13Overall—and-d@spite differences in the spatial resolutions of
simulations and observations of ELike-ability-efthesimulationswere ableo capture
the tempeoralevolution of the ELAchangesduring the 26 years of the studyas

satisfactorywith-lowervariationsfound-ford huted simutrisformo easonsFor



722 | most of the years and glaciers simulated A values derived from the distributed

723 | approach were closer toadi#se observedHowever, for certain years, more precise

724 | results were obtained with semi-distributed simats.

725 Table 9 shows the average absolute differenceseleetwbservations and simulations
726 and the linear adjustments for the five glacietseSe results show a systematic positive
727 bias on the simulated ELA which is consistent wikie summer underestimation
728 revealed by the previous tests.
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5. Discussion

5.1. Overview of SAFRAN-Crocus performance

The observation dataset used in this study enadseddievel- multi-criteria spatio-
temporal validation of the performance of snowpsithulations at the scale of a large
alpine catchment. The analysis of the results cohigbstributed and distributed
simulations provided a holistic evaluation of thw and ice dynamics in the study
area. Overall, the SAFRAN-Crocus simulations hallewsn a good capability on
reproducing the temporal evolution and spatialatality of snow and ice during the
study period.

The simulations were evaluated using snow depth filain five Météo-France stations.
Their ability to reproduce a bulk variable suchsasw depth suggests that the main
simulation processes were satisfactory, especidiigse related to the various
components of the energy and mass balance. Thadengs are consistent with
previous evaluations of the SAFRAN-Crocus systemréiddet al, 2009a; Lafaysset
al., 2013).

Crocus simulates the energy and mass exchangessuilttand atmosphere and also

within the snowpack layers, but it does not sinmulstinall scale topographic effects on

snow depth distribution (Revuelto et al., 2016aye@ the fact that the final objective

of this study is to compait®o simulation approaches and thane of themwould not

allow an appropriate parametrization of topogramhictrol on snow distribution (semi-

distributed approach), we have not considered napptoaches for distributing snow
based on terrain parametergigiera et al., 2017, Helbig et al., 2015), whichyrmaiso

require a higher spatial resolution for accountimpographic effect on snow

distribution (Deems et al., 2006, Trujillo et #2007) Hence,we decided to simulate

snowpack evolutiomwith a spatial scale in which satellite observatiomse available

over a long time period with a suitable temporabiation, whatich lead to select 250m

spatial resolution simulations (same as MODImLabdpcts). Moreover this spatial

resolution provides amappropriate representation of slep@r future applications

forecasting snow avalanches with expert systemsARKE Lafaysset al, 2013)

Distributed information on the snowpack evolutioonmh the MODIS sensor enabled
evaluation of the simulation results on a suitatdmporal scale. Although many
MODIS images were discarded because of cloud ctivey, demonstrated the capacity

of SAFRAN-Crocus to simulate the spatial distribatiof the SCA over time for large
25
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areas having high spatial heterogeneity. The 144@& period spanned is longer than
in all previous similar evaluations, and at a higbpatial resolution (Quénet al,
2016). Evaluation of the spatial similarity betwesimulations and observations
(Jaccard index and ASSD) showed that the SCA 3$paditern was well reproduced.
The simulated SCA for winter was in close agreemstit observations, as most of the
study area was covered by snow. In contrast, dusmgymer the performance of
simulations declined, as evidenced by the incréas&SSD and the decrease in the
Jaccard index. As small scale topographic effdud$ tontrol snow accumulation on
preferential accumulation areas were not includethe simulations, deviations from
observations would have increased for certain deriparticularly the late melt period.
These processes, which are mainly driven by sropbbdraphic features, can be long-
lasting during the late melt period (Revuettbal, 2016b; Sturm and Wagner, 2010).
This was particularity evident in comparisons & gtores for the 2006—07 and 2007—
08 periods with those for the 2011-12 and 2012-ék®@s (Table 3). The differences
in response may have originated from the higheglateof glacier melt processes in
years with shallow snow depth. For these yearsgtuw capability of the model on
reproducing snow melting is lumped because the dtistsibution is not appropriately
simulated.

The availability of observations of the glacier SMi&r a long time period provided an
opportunity to evaluate the performance of the &mns in capturing the snow and
ice temporal evolution over a wide range of elewsi over glacierized areas.
Contrasting simulation performances were foundhi& various elevation bands, and
changed with the time period involved (summer, waintor annual scales). The
performances in simulating the SMB for the Argemti@and Mer de Glace glaciers
differed at high and low elevations. Although theserved SMB was always higher
than the simulated one for elevations exceedind 2ii0the opposite was observed for
areas having elevations below 2100-2400 m. As d#meporal variability of solid
precipitation generally explains the temporal Maitity of the WSMB (Réveilletet al,
2017), it is important to consider differences bedw simulated and observed solid
precipitation, and how these could affect undemeation of the SMB in simulations.
Studies in the same study area and nearby glasigygest that at high elevations the
SAFRAN reanalysis may underestimate solid predipmaat ratios ranging from 1:1.2
at 2000 m.a.s.l. and 1:2.0 at 3200 m.a.s.|., witlazerage of 1:1.5 at the glacier scale (
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Gerbauxet al, 2005; Réveillett al, 2017; Vianiet al, submitted). This mainly results
from the lack of precipitation observations at haavations available for assimilation
into the SAFRAN reanalysis; consequently divergsrinerease with elevation. Despite
this shortcoming, the simulations captured thertatenual fluctuation of the WSMB for
all elevation bands. During summer the SMB could éxplained by temperature
variability in the two glaciers (Réveillet al, 2017), thus simulations results are closer
to observations, particularly at higher elevatiofre.summer, most precipitation is
liquid, and so has little impact on the energy bedaof the glaciers (Hock, 2005); this
may explain the improvement in summer simulatiarshiost elevations.

It has recently been shown that Crocus is ablecturately simulate snow albedo
(Réveilletet al, in prep), which is important because of its iefiee on the surface
mass balance (Essery and Etchevers, 2004; Esseatly 1999). However, it has been
demonstrated that Crocus results are directly &ffeby uncertainties in the estimation
of long wave radiation and wind (Réveillet al, in prep). Such effects may be
significant for elevations where the snow compietaklts during summer and do not
insulate ice from the atmosphere during late meten; this includes the low elevation
areas of glaciers, where high SSMB errors weredoit the annual time scale, glacier
differences between the observed and simulated 8MBgh elevations during winter
and at low elevations during summer were reduceduse the SMB underestimates for
winter (note these were negative/positive at hayl/klevations) were compensated for
by more accurate simulations during summer, anel wezsa. Regardless of these errors,
SAFRAN-Crocus was able to replicate the interannaablution of the SMB.
Additionally, there was a good match between olserns and simulations for the
21002400 to 3000 m.a.s.l. elevation bands for Ntex de Glace and Argentiére
glaciers, respectively; these elevation bands epessed large proportions of the
glaciers (approximately 40 and 53%, respectively).

For the entire study period the SAFRAN-Crocus satiahs effectively reproduced the
observed inter-annual evolution of the study aréacigr ELA. However, some
differences were evident, particularly on steeplarcigrs, because the high spatial
heterogeneity was not well captured by the simoeti For mid-latitude mountain
glaciers, the annual evolution of the ELA can bastdered to be a good proxy for the

glacier surface mass balance (Braithwaite, 1984baR# et al, 2005). Thus,
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observations of the glacier SMB, together with tBEA, provide for a complete
evaluation of glacier temporal evolution.

5.23. Distributedvs. semi-distributed approaches

In this study we performed distributed and semiritisted snowpack simulations using
the same model and evaluation setup (including ingalization, meteorological
forcing, projection on the same grid, observati@tatlases). Thus, both approaches
were affected by the same methodological limitatiomhe simulation results were

consistent with the observed SCA evolution usinthkepproaches. However, better

results were obtained from the distributed simalati espeeiallyduring late summer.

Similarly,

This wasis because the energy balanessis more accurately simulated in the

distributed approach, as it accoesh$for terrain shadowing effects on incoming solar

radiation. Thereby, foaspectsaredsleep valleys}-trorthernaspeatid/or time periods
(mainly-long time periods since last snowfalls on late s@emnfior—a which the

differences on simulation of the incoming solariaidn has a determinant weight,

differences on snowpack simulation between bothcamhes are marked

Based on the glacier SMB scores and their tempvralution, we concluded that the
best simulation approach depends on the seasolvauvdrhus, the WSMB evaluation

showed that similar results were obtained using tthe methods. In contrast, the
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distributed approach was better at simulating t88B. The similar performances of
the semi-distributed and distributed simulationsrdyuwinter, but the better results for
the distributed simulations for summer resultedhe distributed approach providing
greater accuracy at the annual scale. rHfieerbetter results obtained for both glaciers
analyzed for a long time period (ASMB) using thetdbuted simulations suggests that
this approach is likely to provide more reliablsuks over longer periods.

The distributed simulation of the ELA generally sledl closest agreement with
observations, but for certain years the semi-thsted simulations most accurately
reproduced the observed values. Thus, it is nadiplesto conclude that one approach
to reproducing the ELA was superior. This uncetiaimay be related to the coarse
pixel size, which did not enable the high spatiatenogeneity of the terrain to be
captured. The annual ELA covers a small area ofkhaers (it represents the snow line
limit between snow-free and snow-covered areas)y tus the effect of spatial
heterogeneity is likely to be significant.

Overall, the distributed simulations weseghtly better at reproducing observational
data. Thus, distributed simulations, which betegresent the spatial heterogeneity of
mountain areas, in general produce more accura@patk simulationsand-are-the
recommended—modeling—approeachlowever, depending on the purpose of the
simulations and the accuracy required, other factoust be considered. For instance,
semi-distributed simulations have lower computiegource requirements; in this study,
the distributed approach had computing requiremiiratiswere a factor of 100 greater.
The accuracy of semi-distributed simulations inrogpcing the snowpack evolution
over large areas makes them useful in many apjlicat

A good example of an application in which the comgonal requirements have a

determinant weight are ensemble simulations forjeptmns in several climate

scenarios (e.q. Verfaille et al, 2017).

5.23. Limitationsefthe-evaluationscrionmedand simulations
Although the observation dataset enabled comprérersaluation of the simulations,

it had limitations. First, the discrepancy in sphtscale between the SAFRAN
meteorological analysis and the snow depth obsenst and the low number of
stations, limited the interpretation of resultsterms of the simulated snow depth.

Differences in the temporal evolution of snow deqdibtween observation and
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simulations were in part associated with the unvesbsub-massif spatial variability in
the level of precipitation, as previously descriljpdrandet al, 2009a; Lafaysset al,
2013; Vionnetet al, 2016). In situ observations are also subject to local effects
associated with the topographic control at eaoh, $iicluding exposure to dominant
winds, which markedly affects the snow depth dymambsuch effects remain difficult
to capture in snowpack modeling (Dadical, 2010a; Listoret al, 2007; Revueltet

al., 2016a; Schirmeet al, 2011; Vionnetet al, 2014), and were not included in the

modeling involved in our studySimilarly other processes suels lateral heat flux

exchanges amongst grid-cells are not implementé&facus snowpack model and thus

could impact the final result of simulatiottdarder and Pomeroy 2017)

Discrepancies originating from the snow-rain licein also influence the snow depth.
Stations at high elevation (Aiguilles Rouges: 2864.s.1.) are typically not affected by
this phenomenon during winter, as tf&€dsotherm is located at lower elevations. In
contrast, low elevation stations (Le Tour: 1470 .ela Chamonix: 1025 m.a.s.l.) are
potentially affected by differences between theutated and observed snow-rain limit,
even during winter. In mid-latitude regions inclagithe Alps, elevational shifts in the

0°C isotherm cover a significant variation throughthg year, including the elevations
where each of the stations in this study is located

data Dataon the spatial extent of SCA derived from MODIS ges enabled distributed

evaluation of the simulations. However, its usedgkin analysis of the performance of
spatial simulations is limited, as it does not pdevinformation on other snowpack

variables, and imposes restrictions on the speggdlution Satellite observations also

involve uncertainty, depending on the routines i@gpfor generating the final product

and the thresholds used to decide whether a preal as covered by snowditer a

sensibility test-¥Ww adopted a 0.35 UWS threshold for consideringx&l@s snow

covered in satellite imagery (Charrogt al, 2013; Dedieuet al, 2016). We also
performed an analysis to select the simulated stepth threshold for considering a
pixel to be snow covered. The 0.15 m thresholdcseteis consistent with values
reported in previous studies (Gascah al, 2015; Quénoet al, 2016). Despite

mountain areas kagve a high spatial heterogeneity which also affectewgack

distribution, these thresholds enabled a binaryassmtation of snow presence/absence

which finally ensured a consistent SCA evaluatibhaih simulation approaches.
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The results obtained in this study, i.e. slightiyt Isignificantly better skill for the

distributed approach, are sensitive to the choitethe spatial resolution. Using

resolution coarser than 250 m would lead to smatléferences between both

spatialization approaches because the pixel enativould be less accurate and

because all the shadows would not be resolved. €&sely, higher resolutions may

improve the accuracy of shadowing effects but witimputational times which can

become unaffordable for large areas applications.

~Moreover,-In low elevation areas, where ice is exposed tathwsphere for longer

periods during the year (snow does not insulatefrima the atmosphere since it has
disappeared), differences in meteorological forcweyiables including wind and
temperature can have a marked influence on simulatesults (Réveilletet al,
submitted). Similarly, at low elevations the glasiare usually covered by debris, as is
the case for the Mer de Glace glacier. This wascoasidered in our simulations, but
differences in the behavior of the snow-ice inte#fen debris-covered areas could be
expected to affect the simulation results (Lejeenal, 2013).




958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990




991

992

993

994

995

996

997

998

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023




1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056

5.4. Future perspectives on distributed snowpaokilsitions

Simulating the snowpack evolution in mountain areaschallenging. Although
advances in meteorological/snowpack models andlation approaches are improving
the reproduction of observational data, inaccumaiemain. Many studies have
highlighted the potential to improve snowpack modgby assimilating observational
data (Griessingest al, 2016; Thirelet al, 2013). Satellite data enables the distribution
of the snowpack over large areas to be determiaed,the assimilation of such data
into snowpack models has been shown to signifigantprove the simulation results
(Charroiset al, 2016). In distributed snowpack simulations alndistéct satellite data

can be assimilated, in contrast to the semi-distedb approachwhich needs of

aggregation routines to enable satellite data dlsgiom losing part of the information

in_this process Additionally, meteorological forcing models haginhigh spatial

resolution are improving simulations of the spgpiitern of meteorological variables in
mountain areas (Schirmer and Jamieson, 2015; Vicginal, 2016; Weusthofet al,
2010). This will improve snowpack simulations (Rérset al, 2014; Quéncet al,
2016), even though it is challenging to combinehhrgsolution numerical weather
prediction models with precipitation measuremergsimilation in analysis systems.
Interest in distributed snowpack simulations wél énhanced when reliable high spatial
resolution meteorological forcing data are avaéalas only this simulation approach
can take full advantage of such data.

Other approaches halfway between our distributed semi-distributed snowpack

simulations are also showing promising results.sTls the case of unstructured

triangular meshes, which allow better capturingizwnr- shadows of surrounding

topography than the semi-distributed approach usdatlis work. These methods are

able to improving energy balance simulation resultsle preserving computational
costs (Marsh et al., 2012);

Further research is needed on parameterizing sstale snowpack processes for

incorporation in modeling, including wind drivencsm transport (Dadiet al, 2010b;
Winstralet al, 2012), avalanche snow redistribution (Bernhandt &chulz, 2010), and

topographic control on snow distribution (Revuedtoal,. 2016a). Inclusion of these
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1057 processes, together with the incorporation of bédiameteorological forcing and
1058 satellite data, assimilation will improve the a@ay of snowpack simulations over

1059 extensive mountain areas.
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6. Conclusions

This study provided a detailed assessment of thiyadf the SAFRAN-Crocus system
to simulate the snow and ice dynamics in complg@xnal terrain using distributed and
semi-distributed simulation approaches. The studg wndertaken in the upper Arve
catchment in the western French Alps, with simaladi run for the 1989-90 to the
2014-15 snow seasons.

A preliminary evaluation of the simulations was qbeted based on observations of
snow depth derived from five meteorological stagiavithin the study area. This was
only performed using punctual snowpack simulatidasprovide an initial assessment
of model performance over non-glaciated terrainsfite some discrepancies between
observations and simulations, the model reliabpraduced the snow depth, especially
during melt periods.

In regard to the spatial scale of snowpack simuatiover extended areas, the semi-
distributed and distributed simulations were cormegausing the same observation
datasets, including: (i) the temporal evolutiontled snow-covered area based on data
from the MODIS sensor; (i) measurements of surf@ass balance of glaciers within
the upper Arve catchment; and (iii) observationatladon the annual evolution of the
equilibrium-line altitude for the various glaciersnsidered.

Both simulation methods accurately reproduced thelution of the SCA during
accumulation events, as they relied on the samearwbgical forcing data. For the
winter to early spring period, when the study aiealmost completely covered by
snow, there was little difference between the tppraaches. However, fére latemelt
period the distributed simulations better reproduite observations.

The simulations for low elevations and elevation®2200 m.a.s.l. underestimated
(negative underestimation in low elevations anditp@sin high) the observed SMB.
Nevertheless, the results of both simulations weidose agreement with observations
at mid-elevation areas, and adequately reprodulcedobserved annual SMB at all
elevations. Overall, the distributed simulationslgedlimited better results.

Based on comparison with ELA data obtained fromowar satellites at the end of
summer, the SAFRAN-Crocus accurately reproducedntee-annual variability of the
snowpack over glaciated areas. However, differenbesveen observations and
simulations were evident, particularly for the siestl glacierized areas, where the

spatial resolution of the simulations did not eeathle high spatial variability of the
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topography to be includedir—addition,—based-on-the ELA-evaluation,—the—ihsted

Overall, the results of this study demonstrated thstributed simulations reproduce

slightly better snowpack dynamics in the alpinedi@r of our study area. Distributed

simulations take into account the specific topohm@pcharacteristics of each pixel

(local values of aspect, slope and elevation) ancemmportantly the effects of terrain

shadowing by surrounding areas. Accounting for éhego effects over long time

periods led to statistically significant better ukks for the distributed approach.

However the lower computational requirements ofisdistributed simulations together

with the flexibility on the design and applicatigeale of the simulation make this
approach also suitable to simulate snowpack evoldiveral—theresults-of-this-study

amon aYa N all ih aYa aa [fa¥a ViV/aVdaalsilVa aVa a epnrog no .-,‘,..
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Figures

Figure 1: Upper Arve catchment study area. The white shadea shows the extent of
the glaciers in 2012 (Gardesit al, 2014). The inner maps show various magnification
of the Alps and the location of the Arve valley hwit the mountain range. The red
points show the position of the five Météo-Frantdisns located in the study area.

Figure 2: Schematic representation of the approaches useddount for mountain
spatial heterogeneity when simulating snowpack oyos.

Figure 3: Glacier SMB measurement locations for ablation aocumulation areas in
the Mer de Glace and Argentiére glaciers.

Figure 4: Observed (black squares) and simulated (red lisiesyv depth evolution for
the 2007—-08 (upper panel) and 2012-13 (bottom panelv seasons. The elevations of
the stations are: Chamonix: 1025 m.a.s.l.; Le Td470 m.a.s.l.; La Flegere: 1850
m.a.s.l.; Lognan: 1970 m.a.s.l.; and Aiguilles Resaid2365 m.a.s.l.

Figure 5: Spatial distribution of the UWS MODImLab prodyequivalent to the SCA
distribution), and the simulated snow depth obtainging the distributed approach (the
purple color shows the snow depth values exceettied@.15 m threshold) for 24 July
2008.

Figure 6: Temporal evolution of the SCA (2004—2014) basedemi-distributed and
distributed simulations and MODIS sensor obserwatiolhe vertical bars associated
with the MODIS observations show the uncertaintsoagted with cloud presence for
days having< 20% snow cover.

Figure 7: Observed and simulated SCA evolution for a peabtbw level snowpack
accumulation (2006-2008; upper panel) and a pewbdhigh level snowpack
accumulation (2011-2013 lower panel). The vertizas for the MODIS observations
show the uncertainty associated with cloud preséogays havings 20% snow cover.
Red and blue shading for the distributed and sestiouted SCA simulations show the
uncertainty associated with various snow depthstiwlels for determining whether a
pixel was snow covered. The lower limit of the shgdrepresents the SCA evolution
for a 0.1 m threshold, the upper limit of the singdrepresents a 0.2 m snow depth
threshold, and the middle line represents a 0.Ehoaw depth threshold.

Figure 8: Evolution of the SCA in relation to north and soasipect for the 2006—2008
(upper panel; low level of snowpack accumulatiom 2011-2013 (lower panel; high
level of snowpack accumulation) snow seasons. &&rtbars for the MODIS
observations show the uncertainty associated wadhdcpresence for days haviag
20% snow cover. Red and blue shading for the Higied and semi-distributed SCA

51



1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527

1528
1529
1530

simulations show the uncertainty associated withoua snow depth thresholds for
determining whether a pixel was snow covered. Towefl limit of the shading
represents the SCA evolution for a 0.1 m threshtild, upper limit of the shading
represents a 0.2 m snow depth threshold, and ttdleniine represents a 0.15 m snow
depth threshold.

Figure 9: Jaccard index and ASSD values for low level (2@06and 2007-08) and
high level (2011-12 and 2012-13) snow accumulaeasons.

Figure 10: Temporal evolution of the observed and simulateem{-distributed and
distributed) SMB for the Argentiére glacier for tfer 300-m elevation bands for the
period 1994-2013. The points show the average wéisen and simulation values for
the same measurement locations, and the verticaldb@w the standard deviations for
those values.

Figure 11: Temporal evolution of the observed and simulateem{-distributed and
distributed) SMB for the Mer de Glaggacier for the seven 300-m elevations bands for
the period 1994-2013. The points show the averadgerwation and simulation values
for the same measurement locations, and the viebiaza show the standard deviations
for those values.

Figure 12: Altitudinal dependence of the observed and sinedlgsemi-distributed and
distributed) SMB for two snow seasons (2007-08: level snow accumulation; and

2012-13: high level snow accumulation) at the MeGdace glacier.

Figure 13: Observed and simulated evolution of the ELA fa flve glaciers during
the study period, based on the same dates asftirdbe satellite image acquisition.
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1531 Tables

RMSE ) ) Num. Obs.
Observatory S Bias[cm] Period
[cm]
Chamonix 23.3 12.1 1983-2015 6704
Le Tour 29.6 13.0 1985-2015 6323
Nivose Aiguilles g0 49.4  1983-2015 5902
Rouges
La Flegere 45.0 -19.1 2003-2015 1231
I nAanar 2N ¢ 1C 100/-2N1E KQRZ

1532 |

1533 Table 1 Error statistics (bias and RMSE) between simdlated in situ snow depth
1534 observations for the five meteorological statiamshie study area for periods for which
1535 observations were available. The locations of tagans are shown in Figure 1.

1536 |

1537

‘ Distributed approach Semi-Distributed approach
Threshold

‘ SCA[0,1] SD [m] i AMSE MAE i AMSE MAE
| 0.1 0.803 13.84 9.85 0.790 15.48 10.36
| 025 0.15 0.807 13.75 9.54 0.793 15.04 9.79
| 0.2 0.806 13.79 9.60 0.789 16.41 12.05
| 0.1 0.821 12.64 8.36 0.809 14.31 9.79
| 035 0.15 0.828 12.51 8.24 0.815 13.59 9.60
| 0.2 0.815 12.86 8.54 0.811 14.90 10.49
| 0.1 0.812 13.47 9.33 0.798 15.29 10.47
| 045 0.15 0.813 13.69 9.58 0.805 14.31 9.81
| 0.2 0.813 1338 9.24 080 1629 1117

1538

1539 | Table 2 UWSthreshold selectioh-perfermantor various snow thicknesses selected as
1540 | thresholds for the 2008-09 and 2009-10 snow seaBwonslistributed and semi-
1541 | distributed simulations Bold values indicate the selected snow deptid SCA
1542 | threshold.
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1544
1545
1546

1547
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PeriodExpositio  Approac R? MAE RMSE
n h
Entreperiod 4o 0.8150.819+0.0 16.4710.40+0.3
distribute 29 9 15.2815.240.71
@oor- ¢
2015)Whole ~ Distribute  0:8220.821£0.0 g 550 344030  12.6412.6+0.77
catchment d 21
oo 0 Semi: 0744072100 10.75610.09+0. 16.90315.98+0.
distribute 36 52 88
O8Narrthht d = = -
Ee*ﬂesc_‘fe”asm Distgbute 9456%.572&0.0 8,747 5740.38 4:4432172.7&0.9
Semi- + + +
2011 12 doeib O.~88101.8858_0.0 1—1%61;).17_0.3 15%812.78_0.6
2012-13South == = 4
Exposiionaspec pigyribute  0.8950.857+0.0 11.1013.19+0.7
d 16 7-999.83+0.39 0
1548
1549 | Table 3 R, MAE and RMSE average and standard deviationsegaftom the 100
1550 | sample bootstrapping for the observed and simulaA4 (based on the distributed and
1551 | semi-distributed approaches) for the entire timaopgewith SCA observation (2001-
1552 | 2015). Results for the entire study area and fortiNand South Expositions are
1553 | presented. Error metrics in bold note p-valueshef T-student test lower than 0.01
1554 | (99% confidence interval for rejecting null hypadiss.
1555
1556
1557
Period Approach R? MAE RMSE
2@97—982an QW; hmole .Se_mi- 0.744 10.756 16.903
S distributed
catchment  pigyiputed 0.756 8.74 14.82
20111210 _
2012 Semi- 0.580.881 11.2611.56 18.3615:58
13Northern distributed
aspect Distributed 0.590.895 8.61799 15.621110
Southern _ M 0.80 10.17 16.48
aspect distributed
Distributed 0.815 10.34 16.21
1558
1559 Table 4 RMSE, MAE and Rvalues for the observed and simulated SCA (basetieon
1560 | distributed and semi-distributed approachesy&steus2006-2008me periods fothe
1561 | whole catchment, Northern aspect (N, NE, NW).andtlsern aspect (S, SE, SWh-those
1562 | parts-ofthe study-area-having-a-northern-agbediE-NW).
1563
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1564

1565
1566
1567
1568
1569
1570

1571
1572
1573
1574
1575
1576
1577
1578

Period Approach R? MAE RMSE
Whole Semi- 0.8810-71 11.5610-12  15.5816.04
catchmentEntire  distributed
period
Distributed 0.8950-72 7.997.60 11.1012.84
(20012015)
h Semi- 0.820.58 11.3041.26  16.3818.36
Northern distributed
aspect2006—07
to-200+-08 Distributed 0.840-59 7.798.61 11.6915.62
h Semi- 0.9020-82 10.9831.30  15.0916.38
Southemn distributed
aspect2011-12
0201213 Distributed 0.9050-84 8.257.79 11.8111.69

Table 5: RMSE, MAE and Rvalues for the observed and simulated SCA (baseHeon

distributed and semi-distributed approaches) foious2011-2013 time period for the

whole catchment, Northern aspect (N, NE, NW).andtl$ern aspect (S, SE, SW).

Period Approach Jaccard ASSD
Entire period d_Se_lr)nl— g 0.817 0.912
(2001-2015) - ZiStrioute

Distributed 0.832 0.975
2006-07 to _Semi- 0.783 0.920
2007-08 distributed

Distributed 0.801 0.952
2011-12 to _Semi- 0.826 0.897
2012-13 distributed

Distributed 0.836 0.952

Table 6: Average values of the Jaccard index and ASSD saloe each simulation
approach for various time periods.
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Period Approach Jaccard Index ASSD
JFM MJJ JFM MJJ
Semi- 0.9535 0.802 0.687 1.152
2006-07  gistributed
Distributed 0.9557 0.823 0.704 1.104
Semi- 0.950 0.793 0.717 1.062
2007-08  istributed
Distributed 0.951 0.809 0.724 1.043
Semi- 0.968 0.756 0.711 0.983
2011-12  gistributed
Distributed 0.967 0.754 0.734 0.994
Semi- 0.980 0.790 0.199 1.271
12012-13  istributed
Distributed 0.990 0.799 0.198 1.250

1579 Table 7: Average values of the Jaccard index and ASSDdoh simulation approach
1580 for the maximum (JFM) and minimum (MJJ) snow acclation periods.
1581
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1582

1583
1584
1585
1586
1587
1588
1589

1590

1591

Glacier Period

Approach

RMSE

MAE

R2

Semi-
distributed

0,56+0.0270-53

0,43+0.0220-42

0,54+0.06506-537

Distributed

0,51+0.0286-52

0,42+0.02306-40

0,50+0.0736-51

Arg

Semi-
distributed

0,96+0.0570-96

0,78+0.0450-78

0,75+0.0310-+42

Distributed

0,77+0.0490-+#6*

0,62+0.0470-61

0,84+0.01906-84

Semi-
distributed

0,99+0.0550-99

0,72+0.0210-+#1

Distributed

1,18+0.0623-05

0,909+0.0540-8¢

0,71+0.0550-+#8

Semi-
distributed

0,73+0.0310-+2

0,57+0.0240-56

0,64+0.0410-64

Distributed

0,76+0.0261-57

0,58+0.02/4115

0,59+0.0450-83

Semi-
distributed

1,47+0.0931-46

1,18+0.0831-17

0,746+0.0490-75

Distributed

1,19+0.0691-19

0,86+0.0570-86

0,86+0.0140-86

Semi-
distributed

1,74+0.0951-+2

1,36+0.075333

0,76+0.0410-+45

Distributed  1,57+0.0881.57 1,16+0.0694-15 0,838+0.0200-83

Table 8: R°, MAE and RMSE average and standard deviationsegaftom the 100

sample bootstrapping for the observed and simulaMB for Mer de Glace (Mdg) and

Argentiere (Arq) glaciers (based on the distribugedl semi-distributed approaches.

Error metrics in bold note p-values of the T-studésst lower than 0.01 (99%
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1592

Glacier Approach  Avg Dif Std. Dev Slope R2
(Differences)

Semi- 155.11 69.62 0.715 0.420

Mdg distributed
Distributed ~ 88-57 48.90 0.869 0.627
Semi- 158.34 101.84 0.188 0.102

Les distributed
Distributed ~ 110-73 109.67 0.560 0.586
Semi- 105.14 59.25 0.4936 0.2336

Tal distributed
Distributed ~ 80-12 41.87 0.766 0.476
Semi- 105.14 59.25 0.339 0.528

Tour distributed
Distributed ~ 84-33 68.71 0.625 0.715
Semi- 63.89 42.87 0.270 0.103

Arg distributed
Distributed ~ °#492 31.85 0.578 0.381

1593 Table 9: Average differences, standard deviations, slogbefinear adjustment, and
1594 R2 values for the observed and simulated ELA for MeGlace (Mdg), Leschaux
1595 | (Les), Talefre (Tal), Tour and Argntiere (Arg) glars.

1596
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