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Abstract. Knowledge about the current snow cover extent is essential for characterizing energy and moisture fluxes at the 

Earth surface. The snow covered area (SCA) is often estimated by using optical satellite information in combination with the 

normalized-difference snow index (𝑁𝐷𝑆𝐼) .The 𝑁𝐷𝑆𝐼 thereby uses a threshold for the definition if a satellite pixel is assumed 

to be snow covered or snow free. The spatio-temporal representativeness of the standard threshold of 0.4 is however 

questionable at the local scale. Here, we use local snow cover maps derived from ground-based photography to continuously 15 

calibrate the 𝑁𝐷𝑆𝐼 threshold values (𝑁𝐷𝑆𝐼𝑡ℎ𝑟) of Landsat satellite images at two European mountain sites of the period from 

2010 to 2015. Both sites, the Research Catchment Zugspitzplatt (RCZ, Germany) and the Vernagtferner area (VF, Austria), 

are located within a single Landsat scene. Nevertheless, the long-term analysis of the 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  demonstrated that the 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  

at these sites are not correlated (r=0.17) and different to the standard threshold of 0.4. For further comparison, a dynamic and 

locally optimized 𝑁𝐷𝑆𝐼 threshold was used as well as another locally optimized literature threshold value (0.7). It was shown 20 

that large uncertainties in the prediction of the SCA of up to 24.1% exist in satellite snow cover maps in cases where the 

standard threshold of 0.4 is used, but a newly developed calibrated quadratic polynomial model which is accounting for 

seasonal threshold dynamics can reduce this error. The model minimizes the SCA uncertainties at the calibration site VF by 

50% in the evaluation period and was also able to improve the results at RCZ in a significant way. Additionally, a scaling 

experiment has shown that the positive effect of a locally adapted threshold diminishes from a pixel size of 500m and more 25 

which underlines the general applicability of the standard threshold at larger scales.  

1 Introduction 

Numerous studies ranging from the local to the global scale have underlined the influence of snow cover on e.g. air temperature, 

runoff generation, soil temperature and soil moisture (Bernhardt et al., 2012; Deb et al., 2015; Dutra et al., 2012; Dyurgerov, 

2003; Liston, 2004; Mankin and Diffenbaugh, 2015; Santini and di Paola, 2015; Tennant et al., 2015). Hence, an accurate 30 
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estimation of the spatial extent of the snow pack is fundamental for a suite of applications (Pomeroy et al., 2015). The accuracy 

of weather and climate models heavily depends on this information, as the range of surface temperatures is instantly limited 

to a maximum of 0° C in existence of snow and the surface albedo becomes typically significantly enhanced (Agosta et al., 

2015; Liston, 2004; Rangwala et al., 2010; Takata et al., 2003; Vavrus et al., 2011). From a hydrological point of view, the 

formation of a snow pack has a buffering effect and thus often leads to a transfer of precipitation from the cold to the warm 5 

season of the year (Bernhardt et al., 2014; Viviroli et al., 2011). This leads to a support of summer runoff needed e.g. in 

agriculture or for sanitary water supply, but can also lead to an intensification of flood events e.g. in case of rain on snow 

events (Viviroli et al., 2011). With this in mind, information on the current snow distribution is elementary for water resources 

management (Thirel et al., 2013) and weather forecasting model systems (Dee et al. 2011). 

Snow cover distribution is often derived from satellite data and then either used as input for operational models (Butt and Bilal, 10 

2011; Dee et al., 2011; Homan et al., 2011; Tekeli et al., 2005) or for the offline evaluation of modelled snow cover (Bernhardt 

and Schulz, 2010; Warscher et al., 2013) and snow fall patterns (Maussion et al., 2011). The used snow-cover mapping 

approaches can be grouped into four categories: manual interpretation, classification-based and index-based methods, and 

spectral mixture analysis. Manual interpretation as well as classification-based approaches are often used in local snow cover 

mapping studies. Both are out of the scope of this study as a need for expert knowledge and a high time-demand limit their 15 

applicability for large time series data. Spectral Mixture Analysis are also not in the focus of this study as they need an extensive 

spectral database for the different land surface components (Sirguey et al., 2009; Painter et al., 2009). These databases are 

usually not commonly available and only the final snow cover product can be downloaded (TMSCAG for Landsat and 

MODSCAG for MODIS). We focus on the automatic normalized-difference snow index (𝑁𝐷𝑆𝐼 ) approach here. It was 

developed by Dozier (1989) and is a simple and established method to identify snow cover in optical satellite images. 20 

NOAA/NESDIS which is assimilated into ERA/Interim (Dee et al., 2011; Drusch et al., 2004), or the widely used MODIS 

snow cover products (Hall and Riggs, 2007; Hall et al., 2002) make use of the 𝑁𝐷𝑆𝐼.  

The 𝑁𝐷𝑆𝐼 traces back to band rationing techniques (Kyle et al., 1978; Dozier, 1984) related to the NDVI (Rouse et al., 1974; 

Tucker, 1979) and is based on the physical principle that snow reflection is significantly higher in the visible range of the 

spectrum than in mid-infrared. The index ranges between -1 and 1 and a differentiation between snow and no snow is based 25 

on a 𝑁𝐷𝑆𝐼 threshold value (𝑁𝐷𝑆𝐼𝑡ℎ𝑟) which is commonly assumed to be 0.4 (Dozier, 1989; Hall and Riggs, 2007; Sankey et 

al., 2015). According to Hall et al. (2001) the accuracy for monthly snow detection using the atmospherically corrected MODIS 

product (MOD10/MYD10) with its standard threshold is about 95% in non-forested and about 85% in forested areas. These 

accuracies make 𝑁𝐷𝑆𝐼 based snow cover products well accepted for global scale applications, but uncertainties have to be 

expected at the local scale (Härer et al. 2016). Moreover, the snow detection algorithm for the MODIS snow cover product 30 

changed in the latest collection 6. The algorithm now uses a NDSI threshold of zero together with a flag system to detect snow 

cover and users are encouraged to use their own NDSI threshold in the MODIS Snow Products Collection 6 User Guide if a 

binary snow cover map is wanted.  
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In line with this, numerous recent studies have questioned the general applicability of a standard 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  in local snow and 

glacier monitoring. When calibrating the 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  manually or by automated methods against field data for single scenes, large 

deviations from the standard value of 0.4 have been observed. The published values range from 0.18 to 0.7 (Burns and Nolin, 

2014; Härer et al., 2016; Maher et al., 2012; Racoviteanu et al., 2009; Silverio and Jaquet, 2009; Yin et al., 2013). The wide 

range of values show the spatio-temporal variability of the 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  and raise the question for a valid non-subjective method 5 

to define this value.  

Maher et al. (2012), for example, assumed a spatially calibrated 𝑁𝐷𝑆𝐼𝑡ℎ𝑟of 0.7 to be constant over time. The comprehensive 

work of Yin et al. (2013) compared various automatic entropy-based, clustering-based, and spatial threshold methods to adjust 

the 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  for specific satellite images. The findings of Yin et al. (2013) are based on single-date comparisons at five sites 

around the world and were undertaken on a regional scale. The clustering-based image segmentation method developed by 10 

Otsu (1979) compared best to the evaluation data sets, which is why the Otsu  method is used as comparative data in here.  

Härer et al. (2016) have presented a calibration strategy for satellite derived snow cover maps on the basis of local camera 

systems. The achieved results have shown that 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  can be distinctly different in course of the snow cover period and that 

there is a need for a temporal adaption of 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  for achieving valid results in view of the local SCA.  

The aim of the presented study is to evaluate the variability of 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  in space and time and to test if this variability does 15 

lead to significant uncertainties in the existing snow cover maps. A scaling exercise which has investigated up to which scale 

a locally adapted threshold can improve the classification results shows the limits of the fixed threshold approach at the local 

scale.  

We use the camera-based calibration approach (Härer et al., 2013) as reference as it has shown its low error margins in 

comparison to high resolution locally derived 1m resolution snow maps at RCZ (Härer et al. 2016). The results achieved by 20 

this approach are then compared to the automatic segmentation method of Otsu (1979), which has proven to be one of the most 

performant snow detection methods available today (Yin et al., 2013) and to the standard threshold of 0.4, as well as to a 

location specific threshold of 0.7 (Maher et al., 2012). Moreover, we present a seasonal model calibrated with the 𝑁𝐷𝑆𝐼 

threshold time series. The quadratic polynomial model can also be locally adapted by including a geology dependent offset 

which is comparable to earlier findings of Chaponnière et al. (2005). The results will reveal the performance of the different 25 

approaches and will clarify for which scales a fixed 𝑁𝐷𝑆𝐼 threshold can be an adequate solution.  

2 Study Site and Data 

The presented study focuses on two mountain sites in the European Alps, the Research Catchment Zugspitzplatt (RCZ) located 

in Germany (47°40’ N/11°00’ E; Bernhardt et al., 2015; Weber et al., 2016) and the Vernagtferner (VF) catchment in Austria 

(46°52’ N/10°49’ E; Fig. 1a to c; Abermann et al., 2011). RCZ is a partly glacierized headwater catchment with a spatial extent 30 

of about 13.1 km². It stretches from 1371 to 2962 m a.s.l.. The substrate is mainly limestone. VF is also an alpine headwater 
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basin with a size of 11.5 km² and a glaciated part of about 7.9 km² (Mayr et al., 2013). It ranges from 2642 to 3619 m a.s.l. 

and the underlying rock is gneiss.  

Both sites are equipped with similar single lens reflex camera systems for monitoring wide parts of the catchments starting 

from May 2011 at RCZ and from August 2010 at VF. The photographs are recorded as 8-bit data with three colour channels 

(red, green and blue; RGB) on an hourly basis for RCZ and three times a day for VF. The camera locations at the study sites 5 

are depicted in Fig. 1a and b and the camera orientations are Southwest at RCZ and West-Northwest at VF. Both investigation 

areas are located within a single Landsat scene (Fig. 1c) which guarantees comparable illumination conditions and allows for 

a direct comparison of the 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  between both sites.   

Overall, 156 Landsat scenes from Landsat 5 TM, 7 ETM+ and 8 OLI were available for the observation period between 

18 August 2010 and 31 December 2015. Suitable satellite image-photograph pairs were available at 15 dates for RCZ and VF, 10 

at one date for RCZ and in 32 dates for VF only. The differences stem from the local weather conditions, from the different 

lengths of the local photograph time series, and from the restriction that a 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  calibration with PRACTISE or the 

clustering-based image segmentation from Otsu (1979) can only be applied if there is no full snow coverage in the area. For 

the photo rectification part in our study, digital elevation models (DEM) with a horizontal resolution of 1 m of RCZ and VF 

are used, as well as orthophotos with a sub-meter spatial resolution and topographic maps as additional material to ensure an 15 

optimal geometric accuracy.  

3 Methods 

Our study investigates the differences of automatically derived 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  from a) Landsat satellite imagery and b) terrestrial 

photography with literature values and displays their effects on the resulting snow cover maps. Radiometrically and 

geometrically corrected Landsat Level 1 data was used in combination with the cloud and shadow masking software Fmask of 20 

Zhu et al. (2015). Any pixel with a cloud probability exceeding 95% in this analysis was excluded with a surrounding buffer 

of three pixels (Härer et al., 2016). The top of atmosphere reflectance values were calculated according to the Landsat user 

handbook but no atmospheric correction was applied to the Landsat data to facilitate a direct comparison to many studies that 

apply the 𝑁𝐷𝑆𝐼 for snow cover mapping, especially in high elevation areas where atmospheric influence is known to be low 

(Bernhardt and Schulz, 2010; Maher et al., 2012; Warscher et al., 2013).  25 

The normalized-difference snow index (𝑁𝐷𝑆𝐼) was calculated in accordance to Dozier (1989) by using green (~0.55 µm) and 

mid-infrared (MIR, ~1.6 µm) reflectance values:   

𝑁𝐷𝑆𝐼 =
𝜌green − 𝜌MIR

𝜌green + 𝜌MIR
 ,           (1) 

𝑁𝐷𝑆𝐼 values can range between -1 and 1 and the 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  defines the 𝑁𝐷𝑆𝐼 value from which on the satellite pixel is assumed 

as snow covered. We used fixed 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  values and dynamically derived 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  values in course of this study. In case of 30 

the fixed values, the standard of 0.4 and a literature value of 0.7 (Maher et al., 2012) were used. For the dynamic approaches, 
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the clustering-based image segmentation approach from Otsu (1979) and a terrestrial camera-based calibration approach of 

Härer et al. (2016) were applied. 

By using Otsu (1979), the 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  was calibrated by maximizing the between-class variance of the two classes snow and no 

snow:   

max
−1≤𝑁𝐷𝑆𝐼𝑡ℎ𝑟≤1

{𝜎𝑂
2} = max

−1≤𝑁𝐷𝑆𝐼𝑡ℎ𝑟≤1
{𝑃𝑠(𝑁𝐷𝑆𝐼𝑡ℎ𝑟) 𝑃𝑛𝑠(𝑁𝐷𝑆𝐼𝑡ℎ𝑟) [𝜇𝑠(𝑁𝐷𝑆𝐼𝑡ℎ𝑟) − 𝜇𝑛𝑠(𝑁𝐷𝑆𝐼𝑡ℎ𝑟)]},   (2) 5 

where 𝑃𝑠 and 𝑃𝑛𝑠 are the probabilities of the classes snow and no snow with respect to the 𝑁𝐷𝑆𝐼𝑡ℎ𝑟 , and 𝜇𝑠 and 𝜇𝑛𝑠 are the 

mean values of these two classes. The probability of 𝑃𝑠 is thereby calculated as the number of pixels with 𝑁𝐷𝑆𝐼 values above 

the 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  divided through the total number of pixels in the image. 𝑃𝑛𝑠 calculates the absolute difference of 𝑃𝑠 to 1.  

We further restricted the satellite image area used for deriving 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  in accordance to Otsu (1979) to the catchment area of 

RCZ and VF to allow for a spatio-temporal variable 𝑁𝐷𝑆𝐼 threshold value within the investigated satellite scenes. Moreover, 10 

this definition facilitated the direct comparison between the locally derived thresholds using the Otsu method and our own 

method presented in the next paragraph. 

The second dynamic method to calibrate the 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  of the Landsat data for RCZ and VF used ground-based photographs as 

baseline. The Matlab software PRACTISE (version 2.1; Härer et al., 2013 and 2016) was utilized first to georectify the 

available terrestrial photographs and secondly to calibrate the 𝑁𝐷𝑆𝐼𝑡ℎ𝑟 . For doing so, overlapping areas in the photograph-15 

satellite image pairs were used. For further understanding, Figure 2 gives a general overview of the needed input, the internal 

processing steps and the generated output data of PRACTISE 2.1. The first program part georectified the photographs and 

computed differences between areas with and without snow. This results in a high resolution photography-based snow cover 

map (Fig. 2, left column). The second part calibrated the 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  for the satellite scene of interest and used the achieved value 

to calculate a 𝑁𝐷𝑆𝐼 based satellite snow cover map (Fig. 2, right column).  20 

The photo georectification is based on the assumption that the recorded two-dimensional photograph (Fig. 3, blue colour) is 

geometrically connected to the three-dimensional real world (Fig. 3, black colour). Knowing the camera type, its lens and 

sensor system, as well as the camera location and orientation, a georectification becomes possible if a high resolution digital 

elevation model (DEM) is available as well. 

Having this theoretical background in mind, we outlined the different processing steps for a photograph and a Landsat 7 scene 25 

of VF on 17 November 2011 (Figures 4 a to e, 5 a to c). Before the PRACTISE program was used, any possible distortion 

effects of the photograph caused by the camera lens were removed by utilizing the freely available Darktable software 

(http://www.darktable.org/) and LensFun parameters (http://lensfun.sourceforge.net/). Now that all data was available and 

ready, the PRACTISE program evaluation could start. 

In a first step information about the camera location and orientation was needed for georectification of the photography. This 30 

information was automatically optimized by using ground control points (GCPs, Fig. 4a; Sect. 3.3 in Härer et al., 2013). The 

calculated viewpoint and viewing direction were by default used to perform a viewshed analysis (Fig. 4b; Sect. 3.1 in Härer et 

al., 2013). The viewshed was needed for an identification of areas which were visible from the viewpoint and which were not 

http://www.darktable.org/
http://lensfun.sourceforge.net/
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obscured by topographical features or within a user-specified buffer area around the camera. The respective DEM pixels were 

then projected to the photo plane (Fig. 4c; Sect. 3.2 in Härer et al., 2013).  

Now, the snow classification module was activated to distinguish between snow covered and snow-free DEM pixels (Fig. 4d). 

Two major procedures were available for classification: a statistical analysis which was using the blue RGB band (Salvatori 

et al. 2011; Sect. 3.4 in Härer et al., 2013) and a principal component analysis (PCA) based approach (Sect. 3.1 in Härer et al. 5 

2016). The first was used for shadow-free scenes, the second for scenes with shaded areas. Section 3.4 in Härer et al. (2013) 

gives more insights into a third manual option if none of the two classification routines could be applied successfully. 

Moreover, it was shown in Chapt. 4 in Härer et al. (2013) that even if a wrong classification algorithm was applied no more 

than 5% of the pixels in the error-prone parts of the photograph snow cover map were misclassified. It was also shown in an 

earlier publication that the classification of shadow-affected photographs are of the same quality as photographs without 10 

shadows (Chapt. 4 in Härer et al., 2016). As for this study, every classified image was visually inspected and no major snow 

classification errors comparable to our worst case example in the previous publication were found, we expect a relative 

misclassification error of 1%. For this example photograph, the snow classification algorithm utilizing a principal component 

analysis (PCA) was selected to account for the shadow-affected areas in the upper left part of the photograph (Fig. 4d, enlarged 

view in Fig. 4e).   15 

After the photograph rectification and classification, the remote sensing routine of PRACTISE began with the identification 

of satellite pixels that spatially overlap with the photograph snow cover map (Sect. 3.2 in Härer et al., 2016). The used 

photograph and satellite image were thereby recorded within one (RCZ) to three (VF) hours. Moreover, a cloud- and shadow-

free satellite image is generated by using fmask (Zhu et al., 2015). The needed 𝑁𝐷𝑆𝐼 map was calculated in accordance to 

Eq. (1) by PRACTISE (Fig. 5a). 20 

If both, the 𝑁𝐷𝑆𝐼 satellite map and the corresponding high resolution photograph snow cover map were processed, an iterative 

calibration of the 𝑁𝐷𝑆𝐼 threshold value was started. The Landsat image was thereby resampled to the finer resolution of the 

photograph in the calibration to avoid losing any information by the aggregation of the photograph snow cover map. The best 

agreement between the local scale (photograph) and the large scale (Landsat) snow cover map was detected by maximizing 

the accuracy which is the ratio of identically classified pixels to the overall number of photograph-satellite image pixel pairs 25 

n (Aronica et al., 2002):  

𝐹 =
(𝑎+ 𝑑)

𝑛
 ,           (2) 

a represents the number of correctly identified snow pixels and d the same for no snow pixels. F is between 0 and 1 and 

becomes 1 for a perfect agreement between the two images.The calibrated 𝑁𝐷𝑆𝐼 threshold was finally applied to the original 

Landsat data with 30m pixel size to generate the final Landsat snow cover map. Figure 5b shows the resulting satellite snow 30 

cover map superimposed on the photograph snow cover map and a Landsat Look image. A cutout is shown for more detail in 

Fig. 5c.  
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The glacier retreat between DEM production years (2007, 2010) and analysis period 2010-2015 has resulted in a discrepancy 

between real world elevations and the available DEMs, especially in the last years of the observation period. Figure 6 

exemplarily depicts the glacier retreat between 2007 and 2010 by superimposing the ice mass loss on an orthophoto of VF 

from 2010. This loss in elevation leads to inaccuracies in the georectification results of the photographs. And a test for the 

photograph of 28 August 2010 applying the DEM of 2007 and 2010 showed that these georectification issues in turn affect the 5 

𝑁𝐷𝑆𝐼𝑡ℎ𝑟  calibration results. For the DEM from 2007, the calibrated 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  is 0.47 while the correct threshold for the up-to-

date DEM from 2010 is 0.52. As a consequence, we limited the analysis to higher elevated and thus colder areas of the 

catchment where glacier retreat is marginal (areas north-west of the green line in Fig. 5b and Fig. 6).  

To ensure that reducing the spatial overlap between photograph snow cover map and 𝑁𝐷𝑆𝐼 satellite map does not have any 

negative effect on the calibrated 𝑁𝐷𝑆𝐼𝑡ℎ𝑟 , we firstly calibrated the 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  for the three investigated Landsat scenes in 2010 10 

for the complete and the upper area only. Moreover, we calibrated the 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  for the 44 remaining scenes between 2011 and 

2015 using the upper area DEM from 2007 and 2010 to test for a 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  sensitivity in the longer time series. For both 

approaches, the differences between the calibrated 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  never become larger than 0.01. Hence, we assume that our 

calibration approach of using the higher elevated areas at VF which is incorporated in PRACTISE by excluding a radius of 

1800 m around the camera from the analysis (green line in Fig. 5b and Fig. 6) is valid for the complete analysed time series 15 

between 2010 and 2015. As we did not find a similar effect on the 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  calibration in our tests at RCZ, there was no need 

to remove the glacier areas at RCZ from the analysis.  

4 Results and Discussion 

The 𝑁𝐷𝑆𝐼 thresholds derived by the two dynamic methods are now discussed and related to static thresholds. The 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  

predicted by the Otsu method are densely grouped around 0.4. This is underlined by a mean of 0.36 and a standard deviation 20 

of 0.04 at RCZ and a mean of 0.41 with a corresponding standard derivation of 0.04 at VF (Tbl. 1). The statistics do not include 

two dates at VF as no separating 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  could be found by using the Otsu method here (squares in Fig. 7a). This stands in 

contradiction to the real situation as the photographs do show that there was no full snow coverage at the respective dates 

which would generally allow for an prediction of 𝑁𝐷𝑆𝐼𝑡ℎ𝑟 . This shows that the application of the Otsu method is potentionally 

uncertain in nearly fully snow covered situations. Furthermore, the small and thus almost negligible differences to the standard 25 

of 0.4 do not justify the additional effort of using a location dependent threshold prediction like the Otsu method. Additionally, 

the weak seasonal dynamics which can be found at VF would also not require a time dependent calculation of the threshold.  

The camera-based method leads in general to a more dynamic 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  in time and to a higher systematic difference of 

𝑁𝐷𝑆𝐼𝑡ℎ𝑟  between the two sites. The archived 16 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  at RCZ and 47 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  at VF are compared in a first step. The 

presumption of a comparable 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  for both sites could not be confirmed in this case. Significant differences were detected 30 

despite the fact that both sites are high alpine and are located within a single Landsat scene. Moreover, the calibrated 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  

were in large parts significantly different to the standard value of 0.4. Figure 7b and Table 1 illustrate the variability and the 
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range of 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  at both sites. The minimum value at RCZ is 0.15 while the maximum value is 0.39. The values at VF are in 

general on a higher level and range between 0.35 and 0.74. Both sites thus strongly scatter around their catchment-specific 

mean value (0.28 at RCZ, 0.57 at VF) but show a characteristic development over the year (Fig. 8) which is also detected in a 

weaker form for the Otsu method at VF. Independent of the fact that this seasonal dynamic is comparable for both sites using 

the camera-based method. Fig. 7b highlights that the correlation coefficient between 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  at RCZ and VF is very low when 5 

they are compared on a date by date basis (r=0.17). By contrast, a correlation between the Otsu method and the terrestrial 

camera-based method at VF of -0.56 is found which however cannot be observed at RCZ between the two methods (r=0.10, 

Fig. 7a and b). 

The results of the camera-based methods require a deeper investigation to analyse if such different 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  are justifiable. 

Despite the strong scatter and the resulting low correlation, the differences in the catchment-specific mean 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  levels 10 

seem to be systematic (Tbl. 1). Topographic characteristics could be a possible reason. These are similar with respect to 

elevation, slope and aspect but different for the underlying rock being limestone at RCZ and gneiss at VF. We hence 

investigated the 𝑁𝐷𝑆𝐼 values for the snow-free bare rock areas within each catchment. Figure 9 presents frequency histograms 

of the 𝑁𝐷𝑆𝐼 for five summer dates. Other seasons were excluded due to the increased probability of fractional snow cover in 

the Landsat pixels. The tests show that the maximum frequencies after smoothing the histogram are stable for these dates for 15 

each catchment. The mean maximum frequency is about -0.34 at RCZ and 0.01 at VF. This corresponds  to the spectral 

behaviour of limestone and gneiss. The typical limestone is lighter than gneiss in the visible range but the reflectance further 

increases for wavelengths up to 2 µm while it stays similar for a typical gneiss. As the NDSI calculates the difference between 

the green (0.55 µm) and the mid-infrared wavelength (1.55 µm) in the numerator and uses the sum of these two bands in the 

denominator, limestone has therefore a negative value and gneiss is around zero. The mean 𝑁𝐷𝑆𝐼 difference of the rocks at 20 

RCZ and VF amounts to about 0.34. This difference is comparable to the mean systematic difference of 0.26 found for the 

mean calibrated 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  at both sites. It is therefore probable that the different rock types and therewith the background 

radiation triggers the catchment-specific mean 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  levels which in turn supports the idea of adapting 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  locally.  

Next, the effect of the calibrated 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  on the predicted snow covered area (SCA) at RCZ and VF is analysed. The 

differences between the SCA predicted with the standard threshold of 0.4 and those predicted with the Otsu method are small 25 

in our study. This can be related to the minor differences between standard 𝑁𝐷𝑆𝐼𝑡ℎ𝑟and the threshold predicted over Otsu. The 

absolute differences are 0.05 km² in average for VF and 0.15 km² for RCZ. The effects achieved with the photographic method 

instead are on a level which questions the applicability of the standard threshold for local investigations. The differences in 

SCA inbetween the products using the calibrated 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  and the standard threshold of 0.4 are calculated using the camera-

calibrated SCA as baseline which has shown the highest accuracy of the derived snow cover products when compared to the 30 

available photo classifications of PRACTISE (Härer et al. 2016):  
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𝑆𝐶𝐴𝑑𝑖𝑓𝑓% =
100 (𝑆𝐶𝐴0.4− 𝑆𝐶𝐴𝑐𝑎𝑚)

𝑆𝐶𝐴𝑐𝑎𝑚
         (3). 

The values are between -24.1% at RCZ and +17.2% at VF (Fig. 7c) and reveal how different standard and calibrated 𝑁𝐷𝑆𝐼 

based snow cover maps are on the small scale. The deviations are in general larger at RCZ where the calibrated 𝑁𝐷𝑆𝐼 threshold 

values are mainly below 0.4. This means that the SCA is systematically underestimated when using the standard of 0.4. The 

lower error at VF compared to the error percentages at RCZ can be related to the generally higher snow covered area in the 5 

VF catchment. These relative differences result in turn in significantly different absolute SCA (standard threshold versus 

calibrated threshold). Here, the highest differences are 1.09 km² at RCZ and 1.67 km² at VF. This is a relevant error margin 

especially if the small catchment sizes of only 13.1 km² (RCZ) and 11.5 km² (VF) are taken into account.  

Given this finding and the large variability observed in calibrated 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  it is obvious that methods which locally calibrate 

the 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  for a single date and then apply this threshold at multiple dates are probably no solution. An example is the 10 

application of a calibrated threshold of 0.7 at VF to the complete time series in this catchment. We use 0.7 here as Maher et al. 

(2012) state this value in their study and as it is in the plausible range of the observed 𝑁𝐷𝑆𝐼 thresholds at VF (0.35 to 0.74). 

However, when applied to the complete time series, this approach results in a mean absolute error in SCA of 1.26 km² compared 

to an average deviation of 0.41 km² for the standard threshold method. This approach thus might help in some studies where, 

by luck, a 𝑁𝐷𝑆𝐼 threshold is found for the calibration date that also describes the other analysis dates well. However, our 15 

example shows that the chances are also high that it deteriorates the accuracy compared to the standard threshold method when 

applied to other dates. 

An alternative to the temporally constant threshold methods is a statistical modelling approach fitted to the calibrated 𝑁𝐷𝑆𝐼𝑡ℎ𝑟 . 

This however requires a solid set of calibration data to adjust the model to the observations at multiple dates. VF hence serves 

as an example for this approach because of its higher data availability. As stated before a seasonal dynamic in the calibrated 20 

𝑁𝐷𝑆𝐼𝑡ℎ𝑟  could be observed at both sites. A quadratic polynomial model was fitted against the day of year for the calibrated 

𝑁𝐷𝑆𝐼𝑡ℎ𝑟  of the years 2010 to 2013 at VF (𝑁𝐷𝑆𝐼𝑣𝑓 , Fig. 8). 𝑁𝐷𝑆𝐼𝑣𝑓  might not exactly reproduce the calibrated thresholds at 

any time step (r²=0.45; RMSE=0.06) but the evaluation of this simple model for 2014 and 2015 at VF shows a remarkable 

reduction in the average SCA error from 0.35 km² when applying the standard threshold of 0.4 down to 0.17 km². These results 

are promising. We investigated whether the seasonal behaviour of the calibrated 𝑁𝐷𝑆𝐼 thresholds can be attributed to the 25 

elevation and azimuth angles of the sun. The correlation r between azimuth angle and 𝑁𝐷𝑆𝐼 is 0.75 for RCZ and 0.42 for VF. 

For sun elevation, r is 0.77 for RCZ and 0.54 for VF. The found correlation values are significant at the 0.001 level except for 

the azimuth angle at VF which is significant at the 0.01 level. The sun angles thus explain the seasonal development while the 

observed variability within the seasons is still unclear. Snow age, grain size, albedo development or other effects might be 

potential drivers of this behaviour. A detailed investigation of this variability is however beyond this study but will be subject 30 

of future studies. 

As not any site is equipped with camera infrastructure, it was also tested if the achieved regression model can be transferred 

to RCZ while including information about the geology dependent offset between the average 𝑁𝐷𝑆𝐼𝑡ℎ𝑟values. Hence, the model 
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is fitted to the complete calibrated 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  time series at VF (r²=0.36; RMSE=0.07) and a term (-0.34) for the systematic 

mean 𝑁𝐷𝑆𝐼 difference of the rocks at RCZ and VF is added (𝑁𝐷𝑆𝐼𝑟𝑐𝑧, Fig. 9). The evaluation of 𝑁𝐷𝑆𝐼𝑟𝑐𝑧 seems to slightly 

underestimate the calibrated 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  at RCZ. Nevertheless, the quadratic polynomial model accounting for the reflectance 

differences at different sites results in a significant reduction of snow cover mapping uncertainties of 40% as the mean SCA 

error amounts to 0.18 km² while the application of the standard threshold method causes an average deviation in snow cover 5 

of 0.31 km² in RCZ. Given the assumption that the seasonal dynamic and the correction factor are generally applicable, the 

presented seasonal model derived from the multi-year use of PRACTISE at a single site is hence not only temporally but by 

using information about the spectral properties of the pending rock types without the need for other camera systems also 

spatially transferrable. This assumption and the transferability of the model is probably only true for high elevation areas where 

the atmospheric absorbance is low. Even though that the 𝑁𝐷𝑆𝐼 is an index which reduces the dependence on atmospheric 10 

conditions, an atmospheric correction might be necessary as well as more dynamic approaches that reflect the vegetation 

growth and senescence over the year for lowland areas. Hence, the approach needs to be further evaluated and developed in 

future studies with more test sites. 

We have now underlined the importance of a locally adapted 𝑁𝐷𝑆𝐼 threshold calibration for Landsat snow cover maps at the 

two presented catchments. However, the detected 𝑁𝐷𝑆𝐼 threshold dependency automatically leads to the question if the need 15 

for threshold adaption is also necessary for coarser resolution satellite snow cover maps, for example, for a spatial resolution 

of 500 m or 1 km. Hence, we aggregated the Landsat snow cover maps using calibrated and standard 𝑁𝐷𝑆𝐼 threshold values 

from 30 m to 90 m, 210 m, 510 m, and 990 m resolution. Our aggregation experiment of the Landsat snow cover maps for the 

different 𝑁𝐷𝑆𝐼 thresholds shows that the SCA deviation between standard and calibrated snow cover maps diminishes for 

coarser resolution data in most cases. Figure 10 a outlines this error reduction with spatial aggregation for a Landsat 7 scene 20 

of Vernagtferner catchment on 16 September 2011. Figure 10 b shows the simultaneously captured photograph used for 

calibration. We however cannot draw an absolute conclusion from fig. 10 a that the difference in snow cover maps between 

the different thresholds is always reduced with a coarser resolution. The simple reason is that with larger pixel sizes, the 

number of pixels in the catchment becomes lower and the relative weight of a pixel being different for different thresholds has 

a larger relative weight. Therefore, we decided to investigate at which spatial resolution the standard and calibrated snow cover 25 

maps become identical for the 63 cases investigated in the two catchments. This variable is absolute and thus independent of 

relative weights and changes with spatial aggregation. The aggregation step to 510m appears to be of major importance as 

more than 90% (58 of 63) of SCA maps become identical at this pixel size. Thus, using the standard threshold of 0.4 instead 

of the higher 𝑁𝐷𝑆𝐼 thresholds at VF and the lower 𝑁𝐷𝑆𝐼 values at RCZ seems to be accurate in most cases with a pixel size 

of 500m. For applications at this scale, the positive effect of using camera calibrated data diminishes and might rarely justify 30 

the effort. However, our new method using camera-calibrated data focuses on setting in value the higher resolution satellite 

data of the Landsat series and of the new Sentinel 2.  
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5 Conclusions 

The study has revealed that using the standard threshold of 0.4 is adequate for satellite products with a pixel size of 500 meters 

and more. For higher resolution snow cover mapping, significant improvements in the quality of the snow cover maps can be 

achieved if a threshold is used which is variable in space and time. The clustering-based segmentation technique of Otsu is 

producing results which are only slightly different from those of the standard threshold of 0.4 and do not indicate a need for a 5 

further adaption. However when compared to local images, the resulting differences are becoming obvious and could only be 

reduced by the presented camera-based technique. The long-term analysis of calibrated 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  at two comparable high 

elevation sites has shown that large deviations from the 0.4 standard threshold exist. The calibrated optimal threshold values 

span a range from 0.15 to 0.74 over the complete time series and can reach a difference of 0.45 between both observation sites 

at a single date. It was also shown that these differences in 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  lead to significantly different SCA when compared to the 10 

standard of 0.4. 

The 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  at both sites have similar seasonal dynamics while scattering around different site-specific average values (0.28 

at RCZ, 0.57 at VF). The difference between the average threshold values at the two sites could be related to the different 

reflection properties of the rock types in the investigation areas (limestone at RCZ and gneiss at VF). The overall correlation 

coefficient between 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  of both sites is low (r=0.17). This prohibits to generally use the calibrated threshold values from 15 

one catchment in another catchment of the same satellite scene.  

In view of the validity of the standard threshold of 0.4 at the local scale it was found that relative SCA error margins of up to 

24.1% were found for the standard threshold method when using 30m Landsat products. This is critical for any snow cover 

mapping application and especially for model evaluation studies. We hence conclude that the application of a fixed 𝑁𝐷𝑆𝐼 

threshold can lead to large uncertainties in the resulting snow cover products at least at the local scale. Consequently, local 20 

studies strongly need to account for the 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  variability in space and time in order to guarantee high accuracy snow cover 

products. But, in case, studies are carried out with sensors having a pixel size of 500 meters and more the advantage of a 

location dependent 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  vanishes.    

It was shown that site-specific single-date adaptations of the 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  also do not lead to resilient results. The uncertainty 

introduced by a single measurement is not quantifiable and can lead to results worse than that achieved by using the standard 25 

value of 0.4. A quantitative calibration or visual derivation of the 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  for a single date and its application to other dates 

is therefore inappropriate. 

The approximation of the 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  over a simple seasonal model fitted to the calibrated 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  at the respective site has 

shown improvements instead. The achieved model was able to reduce the error in the SCA prediction by 50% when compared 

to the standard threshold method. Nevertheless, a fundamental data pool of in situ information covering the dynamic over the 30 

year as well as the range of possible 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  within a season is needed for calculating this relation. Finally, it was shown that 

the fitted model parameters are also spatially transferable if an additional term accounts for the background radiation of the 

different rock types. This is possible without in situ measurements by utilizing the constant 𝑁𝐷𝑆𝐼 differences of the rock 
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surface in the respective catchments. However, this needs to be further tested at more sites. Future studies will hence use the 

existent webcam infrastructure in the European Alps as well as camera systems installed worldwide at the INARCH network 

sites (Pomeroy et al., 2015) for the generation of numerous calibrated 𝑁𝐷𝑆𝐼𝑡ℎ𝑟 . The observed threshold values will serve as 

operational source for applicable 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  and will allow to evaluate the presented temporally and spatially variable prediction 

approach of 𝑁𝐷𝑆𝐼𝑡ℎ𝑟 . In case of a successful evaluation, the presented scheme allows for an objective and reproducible 5 

derivation of the 𝑁𝐷𝑆𝐼𝑡ℎ𝑟  value for any given satellite scene. This is a large advantage as the threshold is up to now often set 

intuitively or assumed as constant which does neither conform to the complexity of the models evaluated on basis of 𝑁𝐷𝑆𝐼 

based snow cover maps nor to the needs of the models which are assimilating these maps.  
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Table 1. Basic statistic measures of the automatically derived 𝑁𝐷𝑆𝐼 threshold time series at RCZ and VF using the Otsu segmentation 

method and the camera-based calibration method.  

Site Automatically derived NDSI threshold values 

Mean 
Standard 

Deviation 
Max Min Spread 

camera Otsu camera Otsu camera Otsu camera Otsu camera Otsu 

RCZ 0.28 0.36 0.07 0.04 0.39 0.45 0.15 0.29 0.24 0.16 

VF 0.57 0.41 0.09 0.04 0.74 0.47 0.35 0.33 0.39 0.14 
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Figure 1: The figure shows the two test sites used in this study as well as their location within a Landsat scene. Both have indicated the 

camera location in yellow, the catchment area outlined in black and the digital elevation model (DEM) superimposed on a Landsat Look 

image. a) Research Catchment Zugspitzplatt (Germany), b) Vernagtferner catchment (Austria), c) Landsat scene (Landsat Look image, 

WRS2 path 193, row 27) which contains both sites. 5 
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Figure 2: Input and output data as well as the workflow of PRACTISE (version 2.1) to generate the calibrated 𝑁𝐷𝑆𝐼 snow cover maps from 

Landsat data are depicted here (from Härer et al., 2016). 
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Figure 3: Schematic relationship between the camera location and orientation, and the two-dimensional photograph (blue) and three-

dimensional real world coordinate system (black). The dashed line connects the locations of three exemplary ground control points of the 

photograph with the real world to underline the concept. 
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Figure 4: Internal processing steps within a single PRACTISE evaluation are shown for a photograph of VF on 17 November 2011. The 

figures chronologically show the routines for the photograph processing in PRACTISE which are a) the optimisation of the camera location 

and orientation using ground control points, b) the performed viewshed analysis from the resulting camera location and orientation, c) the 

projection and d) the classification of visible DEM pixels. More detail of the PCA based classification result in d) can be seen in an enlarged 5 
view in e).  
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Figure 5: We outline here the internal processing steps within 

the remote sensing routines of PRACTISE. The Landsat 𝑁𝐷𝑆𝐼 

map from 17 November 2011 is shown in a). Clouds and 

shadows (grey areas) are excluded using fmask. The 

photograph and satellite snow cover map derived from the 5 
PRACTISE evaluation are superimposed on the Landsat Look 

image of 17 November 2011 in b). Snow is depicted in red for 

the photograph snow map and white for the satellite snow map. 

The lower areas at VF (south-east of the green line in b) were 

excluded from the complete analysis. The cutout in c) clarifies 10 
which photographed areas are part of the analysis and 

additionally underlines the high agreement between 

photograph and satellite snow cover map. The maps are 

projected in the Universal Transverse Mercator (UTM) system 

based on the World Geodetic System 1984 (WGS84).  15 
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Figure 6: Glacier retreat from 2007 to 2010 causes a loss in elevation of up to -33m at VF. The green line depicts the buffer distance around 

the camera which was excluded from the analysis due to significant glacier loss which in turn lead to geometric inaccuracies in the photograph 

rectification and incorrect 𝑁𝐷𝑆𝐼 threshold calibration results. 
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Figure 7: The Figure displays in a) the 

complete time series of adjusted 𝑁𝐷𝑆𝐼 

thresholds using the Otsu segmentation 

method (circles, erroneous thresholds as 

squares) at RCZ (red) and VF (blue) and 5 
depicts in b) the camera calibrated 

𝑁𝐷𝑆𝐼  thresholds at these two sites 

utilizing ground-based photographs as 

in situ measurements (blue pluses for 

VF and red crosses for RCZ). Relative 10 
SCA changes at RCZ and VF resulting 

from the application of the standard 

instead of the camera calibrated 

reference 𝑁𝐷𝑆𝐼 threshold are shown in 

c). 15 
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Figure 8: Estimates of 𝑁𝐷𝑆𝐼 threshold values at VF are predicted by a quadratic polynomial model (𝑁𝐷𝑆𝐼𝑣𝑓, blue line) which was fitted 

for each day of the year to the calibrated 𝑁𝐷𝑆𝐼 thresholds between 2010 and 2013 (𝑁𝐷𝑆𝐼𝑡ℎ𝑟, blue pluses). The black stars represent the 

𝑁𝐷𝑆𝐼𝑡ℎ𝑟 from 2014 to 2015 at VF used for evaluation of 𝑁𝐷𝑆𝐼𝒗𝒇. Additionally, a 𝑁𝐷𝑆𝐼𝑡ℎ𝑟 prediction model for RCZ (𝑁𝐷𝑆𝐼𝑟𝑐𝑧, red line) is 

defined by a quadratic polynomial model fitted to the complete time series of calibrated 𝑁𝐷𝑆𝐼𝑡ℎ𝑟 at VF (blue pluses and black stars, r²=0.36, 5 
RMSE=0.07) and an additional term of -0.34. 𝑁𝐷𝑆𝐼𝑟𝑐𝑧 is evaluated against the calibrated 𝑁𝐷𝑆𝐼𝑡ℎ𝑟 of RCZ (red crosses).  
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Figure 9: Representative 𝑁𝐷𝑆𝐼 values for the rock surfaces in RCZ and VF catchment are determined using frequency histograms of the 

snow-free bare rock 𝑁𝐷𝑆𝐼 values for five summer dates. A smoothed moving average of 5 histogram classes is shown with red. The maxima 

of the smoothed histograms are depicted in blue for each catchment and the investigated dates.  

 5 
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Figure 10: At VF, we exemplarily show in a) the effect of scaling to 𝑁𝐷𝑆𝐼  based snow cover products for a Landsat 7 scene at 

16 September 2012. The columns from left to right are the camera calibrated SCA, the standard threshold SCA, and their differences at VF. 

The different rows show different scaling factors, being 1 (30 m) 3 (90 m), 7 (210 m), 17 (510m) and 33 (990 m) from the top to the bottom. 

The concurrent photograph in b) depicts the snow situation at VF in our example. The analysis of all investigation dates in c) shows at which 5 

pixel size how many of the camera calibrated and standard threshold snow cover maps become identical. The spatial resolutions of the 

Sentinel- 2, Landsat, MODIS and NOAA AVHRR satellites are outlined for orientation.  


