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Abstract 11 

A new spatio-temporal dataset from the ongoing Airborne Snow Observatory (ASO) provides an unprecedented look 12 

at the spatial and temporal patterns of snow water equivalent (SWE) over multiple years in the Tuolumne Basin, 13 

California, USA. We found that fractional snow covered area (fSCA) significantly improves our ability to model the 14 

distribution of SWE based on relationships between SWE, fSCA, and topography. Further, the broad availability of 15 

satellite images of fSCA facilitates the transfer of these relationship to different years with minimal degradation in 16 

performance (r2=0.85, %MAE=33%, %Bias=1%) compared with models fit on the same day, by considering 17 

variations in SWE depth as expressed by differences in fSCA between years. The crux of this proposition is in selecting 18 

the model to transfer. We offer a method with which to select a model from another year based on the similarity in 19 

SWE distribution at existing snow pillows in the area. Comparison of the best transferred predictions and the selected 20 

predictions results in a mild decrease in r2 (0.02) and moderate increases in %MAE (15%) and %Bias (10%). The 21 

results motivate further refinement in the technique used to select the best model because if these dates can be 22 

identified then SWE can be modeled at accuracy levels equivalent to models generated from ASO data collected on 23 

the day of interest. Lastly, we found that models from ASO observations of anomalously low snowpacks in 2015 still 24 

transferred to other years, although the same cannot be said for the reverse. This research provides a first attempt at 25 

extending the value of ASO beyond the observations and we expect ASO will continue to provide insights for 26 

improving water resource management for years to come. 27 

  28 

The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-167
Manuscript under review for journal The Cryosphere
Discussion started: 4 October 2017
c© Author(s) 2017. CC BY 4.0 License.



 2 

1 Introduction 29 

The spatial distribution of snow water equivalent (SWE) largely controls the timing and magnitude of streamflow 30 

(Stewart et al., 2004) and is important for plant ecology (Litaor et al., 2008) in snow-dominated catchments around 31 

the world. In these catchments, accurate assessments of snowpack water storage are critical for ensuring robust 32 

estimates of seasonal water supply. Nevertheless, SWE is poorly measured operationally with only sparse point 33 

measurements on the order of one measurement location per thousand square kilometers of snow covered terrain. 34 

Additional manual measurements in the form of snow courses add little information about the spatial variability and 35 

typically occur on the order of only three times a season. 36 

 Satellite remote sensing provides spatially explicit information about the snowpack but current satellites are 37 

unable to measure SWE directly at the scales relevant for water resources management in mountainous terrain (e.g. 38 

the western United States) (Dozier, 2011). The need for improved information regarding the quantity and distribution 39 

of SWE has led to the development of new measuring techniques including the application of ground penetrating radar 40 

(GPR) (Marshall and Koh, 2008), Global Positioning Systems (GPS) (Gutmann et al., 2012; Koch et al., 2014), Light 41 

Detection and Ranging (lidar) (Deems et al., 2013; Schirmer et al., 2011), and photogrammetry (Bühler et al., 2015; 42 

Nolan et al., 2015). Although these techniques are typically limited to snow depth, they can still capture the majority 43 

of the variability in SWE because snow depth varies an order of magnitude greater than density (Mizukami and Perica, 44 

2008). Snow depth distributions can be converted to SWE using modeled snow density or in situ snow pit observations 45 

(Elder et al., 1991; Painter et al., 2016; Sturm et al., 2010). 46 

 Airborne systems have significantly improved the ability to measure SWE distribution at high spatial 47 

resolution and at extents relevant to water resource management (i.e. > 100 km2). However, most previous studies of 48 

snow distribution using airborne data have been limited to snap-shots in time, limiting the ability to empirically 49 

transfer observations to time periods outside of those directly sampled. Since 2013, the National Aeronautics and 50 

Space Administration (NASA), Jet Propulsion Laboratory, Airborne Snow Observatory (ASO) has acquired weekly 51 

observations of snow properties from approximately the time of annual peak SWE to the end of the snowmelt season 52 

in the Tuolumne Basin, California (Painter et al., 2016). ASO measures snow depth by differencing the lidar-derived 53 

surfaces from a snow-on and snow-off flight and infers albedo and snow extent based on spectroradiometric 54 

measurements. An energy-balance model is used to estimate snowpack density, and subsequently convert snow depth 55 

to SWE. These weekly observations of SWE distribution over multiple years represent a new opportunity for 56 

understanding the spatial and temporal dynamics of snow distribution. Moreover, the intensive repeat sampling of 57 

ASO may provide an opportunity to extend observed SWE patterns beyond the time periods directly observed by ASO 58 

– a goal of the work presented here. In this context, the ability to extend expensive ASO data in time could dramatically 59 

expand the applicability of ASO data to future time periods without incurring the costs associated with future airborne 60 

acquisitions. 61 

A potential application of ASO measurements relates to the possibility of developing statistical relationships 62 

between ASO data and other snow and terrain data that are more routinely available. In this context, statistical models 63 

have been extensively used to estimate relationships between snow point measurements and physiography (Balk and 64 

Elder, 2000; Elder et al., 1998; Erickson et al., 2005; Fassnacht et al., 2003; López-Moreno and Nogués-Bravo, 2006; 65 
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Molotch et al., 2005; Schneider and Molotch, 2016). At small scales (i.e. < 10 km2), dedicated sampling of headwater 66 

catchments has led to models that explain between 20% and 65% of the variability in snow depth based on 67 

physiographic variables at 30m resolution (Balk and Elder, 2000; Elder et al., 1998; Erxleben et al., 2002). 68 

Importantly, Erickson et al. (2005) found persistence in the topographic controls on snow depth distribution and 69 

successfully parameterized a multi-year model relating the physiographic variables of a small headwater catchment to 70 

annual peak snow depth by scaling the mean based on in situ measurements. Later studies have since confirmed an 71 

inter-annual consistency in snow depth distribution based on high resolution lidar measurements (Deems et al., 2008; 72 

Schirmer et al., 2011; Trujillo et al., 2009) and the inter-annual persistence of topographic controls on snow depth 73 

distribution (Grünewald et al., 2013). These previous works suggest that relationships between lidar snow depth 74 

measurements and topography may be useful for extending lidar measurements of snow in time. 75 

Lidar is only capable of measuring snow depth and coincident density measurements are scarce, despite SWE 76 

being the more important hydrologic variable. However, snow depth varies an order of magnitude more than density 77 

and therefore largely controls the variability of SWE (Mizukami and Perica, 2008). Hence, we expect the results from 78 

the previous studies be relevant here, i.e. inter-annual consistency in SWE distribution will be similar to that of snow 79 

depth. Given the difficulty of extensively measuring density and SWE, operational SWE observation networks that 80 

use snow pillows to measure SWE have been used to relate physiography and SWE. In this regard, multiple studies 81 

have explained up to 82% of the variability in SWE based on physiographic variables (Fassnacht et al., 2003; 82 

Harshburger et al., 2010; Schneider and Molotch, 2016). These studies aimed to understand the processes controlling 83 

snow distribution and to apply this knowledge to interpolate point observations of SWE to >1000 km2 for a single 84 

point in time. The spatio-temporal dataset of SWE from ASO provides an unprecedented opportunity to develop 85 

relationships between SWE and topography and test their persistence across several years. 86 

 Given that topographic variables are largely static in time, additional time-variant variables should be useful 87 

in the context of explaining the spatio-temporal distribution of SWE. In this context, remotely sensed snow covered 88 

area data has long been recognized to provide information with regard to snowpack water storage and consequently 89 

expected summer streamflow (Good and Martinec, 1987; Martinec and Rango, 1981; Potts, 1937; 1944). Currently, 90 

SCA is commonly estimated from SWE in hydrologic models through a depletion curve parameterization in order to 91 

constrain melt production to the areal extent of snow cover (Anderson, 1973; Clark et al., 2011; Lawrence et al., 2011; 92 

Livneh et al., 2010; Luce and Tarboton, 2004; Niu et al., 2011). The utility of depletion curves to provide sub-model-93 

scale information in physically-based modeling suggests that fSCA should provide additional information in statistical 94 

models of SWE distribution. The consistent relationship between fSCA and SWE is predicated on the fact that SWE 95 

distribution is extremely heterogeneous over complex terrain. Upon melt out, terrain features are progressively 96 

uncovered. This process varies only slightly each year because of similarities in the meteorology, e.g. wind direction, 97 

that drive accumulation patterns and solar exposure that drives melt out (Luce and Tarboton, 2004). Snow covered 98 

area is also relatively easy to measure due to the distinctive spectral signature of snow compared to soil, rock, and 99 

vegetation. In fact, photographic estimates of fSCA have been utilized for seven decades within hydrologic 100 

applications (Parsons and Castle, 1959; Potts, 1937; 1944) and today robust observations of fSCA can be obtained 101 

from variety of ground-based, aerial and satellite optical imagers (Bloschl et al., 1991; Dozier et al., 1981; Hall et al., 102 
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2001; Kirnbauer and Bloschl, 1994; König and Sturm, 1998; Painter et al., 2009; Rittger et al., 2013; Rosenthal and 103 

Dozier, 1996). 104 

The repeat observations from ASO provide a unique dataset of concurrent SWE and fSCA over multiple 105 

years with which to develop statistical relationships between SWE, fSCA, and topography. Given that fSCA is widely 106 

observable from a variety of satellites, these relationships could then be used to estimate SWE for any date on which 107 

fSCA observations are available. Hence, the objective of this research is to use ASO-derived relationships between 108 

SWE (dependent variable), and fSCA and physiography (independent variables) to estimate SWE distribution for time 109 

periods when ASO data are not available. We aim to test how well statistical models of the relationship between SWE, 110 

fSCA and physiography transfer in time. We ask (1) Does fSCA improve statistical models of SWE distribution? (2) 111 

Can statistical models of SWE distribution be transferred directly from one year to another? (3) How can we determine 112 

which SWE distribution from the ASO record best represents a date of interest? 113 

We present our SWE distribution modelling framework and show the utility of including the time-variant 114 

variable fSCA for improving the SWE distribution estimates. Further, we evaluate the impact of transferring models 115 

from one year to another. Lastly, we present a methodology for identifying which models of SWE distribution, from 116 

the ensemble of historical ASO acquisitions, best represents the SWE distribution for unsampled dates of interest. We 117 

then discuss the results in the context of extending ASO to unsampled dates. 118 

2 Site Description 119 

We used a SWE dataset from the Tuolumne River basin in the Sierra Nevada mountains in California, USA (Fig. 1). 120 

The basin is 1,175 km2 in area, consisting of 48% vegetation, 50% rock, 2% water, and small isolated areas with 121 

permanent snow/ice. The elevation range is 1127 m to 3965 m, encompassing 4 distinct ecological zones ranging from 122 

lower montane forest to alpine (NPS, 2016). The lower montane forest ranges from 1127 m to 1800 m elevation and 123 

consists of a diverse mix of coniferous and deciduous trees. The upper montane forest ranges from 1800 m to 2450 m 124 

elevation and primarily consists of coniferous species such as red fir and lodgepole pine. Elevations from 2450 m to 125 

2900 m are considered subalpine and consist of a mix of meadows and coniferous forest. The highest elevation band 126 

above 2900 m is an alpine zone that is devoid of tree cover and contains limited herbaceous vegetation. This alpine 127 

zone contains areas with large granitic features, talus slopes and boulder fields. Snowmelt from the basin runs off into 128 

the Hetch Hetchy reservoir, which is the main water supply for the City of San Francisco. 129 

 130 

 131 
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 132 
Figure 1. Land cover map of the Tuolumne Basin with snow pillows shown as blue dots. The land cover data was provided 133 
by ASO and was derived from spectral information from summer snow-off flight. The snow pillows locations were obtained 134 
from the California Department of Water Resources. 135 

3 Data Sources 136 

We utilize the ASO dataset in the Tuolumne River Basin in the Sierra Nevada mountains of California. The ASO 137 

mission consists of airborne lidar in conjunction with a hyperspectral spectroradiometer (Painter et al., 2016). The 138 

dataset consists of a 3 m resolution snow-free digital elevation model (DEM), 3 m snow depth maps for which snow-139 

free areas are masked using spectral information from the spectroradiometer, 3 m vegetation height map and 50 m 140 

SWE maps. The dataset is distributed in the UTM zone 11 and WGS84 datum map projection system.  141 

In order to conduct our analysis at a spatial scale that will ensure transferability to more widely available 142 

data, we mean-aggregated the 50 m SWE maps to 500 m. Subsequently, we converted the 3 m DEM and snow depth 143 

maps to 501 m using mean aggregation and then bilinearly resampled to the 500 m SWE grid. We computed the 144 

physiographic variables used in the modelling framework [Table 1] from the 500 m DEM using open source GIS 145 

software, including GDAL (GDAL Development Team, 2015), SAGA GIS (Conrad et al., 2015), and R (R Core 146 

Team, 2015). We chose the 500 m resolution because it is relevant to water resource management and is the scale for 147 

which daily satellite fSCA images are available from the Moderate Resolution Imaging Spectroradiometer, which is 148 

a commonly used fSCA data product (Painter et al., 2009; Salomonson and Appel, 2004). We also used a binary 149 
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aggregation of the 3 m snow depth maps to obtain 501 m fSCA maps, which were then resampled to 500 m by nearest 150 

neighbor to preserve snow free pixels. Lastly, we aggregated and bilinearly resampled the vegetation height map to 151 

500 m.  152 

 153 

Table 1. List of physiographic variables considered in the multiple linear regression to model SWE distribution.  Source 154 
includes studies in which these variables have been used and the source of the algorithm, if applicable. Citations in the 155 
source column are by no means exclusive. 156 

 157 
 158 

The ASO flies approximately weekly from near peak SWE to the end of the melt season. As such, there were 159 

six flights in 2013, ten in 2014, eight in 2015, and eight in 2016. Only the final four flights of the 2016 season were 160 

available for this study resulting in a total of 28 SWE maps. The 2014 and 2015 seasons were characterized by a severe 161 

dry snow drought (Harpold et al., 2017) and 2013 and 2016 also experienced below average snowpack conditions, but 162 

less severely. Painter et al. (2016) report a mean absolute vertical snow depth error of 8 cm and a bias of 1 cm when 163 

compared with manually measured snow depths at the 15 × 15 m scale. Further details about the mission and 164 

processing can be found in Painter et al. (2016). 165 

 We also obtained daily SWE measurements from 54 snow pillows operated by the California Department of 166 

Water Resources that are within 20 km of the Tuolumne watershed boundary. The stations range from 2000 m to 3250 167 

m. We downloaded the adjusted SWE records, which have been manually quality controlled, for the 2013-2016 water 168 

years. No further adjustments were performed. The data can be downloaded from http://cdec.water.ca.gov/. 169 

4 Methods 170 

We use linear regression to model the distribution of SWE for every ASO flight. The explanatory variables we consider 171 

are ASO-observed fSCA and physiographic variables previously used in the literature (Table 1). We present results 172 

Variable Units/Derivation	Specifics Source

UTM	Northing meters Fassnacht	et	al.	(2003)

UTM	Easting meters Fassnacht	et	al.	(2003)

elevation meters Elder	et	al.,	(1991,	1998)

zness sine(slope);	ranges	0-1;	dimensionless
Balk	and	Elder	(2000);	Erxleben	et	al.	
(2002);	Fassnacht	et	al.	(2003)

northness cosine(aspect);	ranges	0-1;	dimensionless
Balk	and	Elder	(2000);	Erxleben	et	al.	
(2002);	Fassnacht	et	al.	(2003)

eastness sine(aspect);	ranges	0-1;	dimensionless
Balk	and	Elder	(2000);	Erxleben	et	al.	
(2002);	Fassnacht	et	al.	(2003)

topographic	position	index	(TPI)
elevation	difference	of	a	pixel	from	the	mean	of	the	
surrounding	pixels;	meters Revuelto	et	al.	(2014);	GDAL	(2015)

vector	ruggedness	measure	(VRM)

3-dimensional	measure	of	the	variation	of	slope	and	
aspect;	not	correlated	with	slope	or	aspect;	ranges	
0-1;	dimensionless

Veitinger	et	al.	(2015);	Sappington	et	
al.	(2007);	Conrad	et	al.	(2015)

standard	deviation	of	slope

standard	deviation	of	slope	in	3x3	window	around	
each	pixel;	shown	to	detect	changes	in	slope	at	
multiple	scales;	radians

Marchand	and	Killingveit	(2005);	
Lopez	et	al.	(2014);	Grohman	et	al.	
(2007)

vegetation	height	
measured	by	ASO;	used	in	place	of	forest	canopy	
density	from	previous	studies;	meters

Molotch	and	Bales	(2005,	2006);	
Painter	et	al.	(2016)
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from two models: 1. “PHV” is a multiple linear regression that consists only of physiographic variables as independent 173 

variables. This represents the traditional approach for estimating SWE distribution based on relationships with 174 

physiography; 2. “PHV-FSCA” is a multiple linear regression that includes both physiographic variables and fSCA 175 

as independent variables. We make these distinctions to demonstrate the utility of fSCA as a time-variant variable. No 176 

one has explicitly explored the utility of fSCA for directly estimating the distribution of SWE. fSCA values greater 177 

than and equal to zero are used to fit the PHV-FSCA models. Regression estimates from both PHV and PHV-FSCA 178 

are masked to snow covered areas as observed by ASO. Once we illustrate the utility of the statistical models for 179 

characterizing ASO SWE distribution patterns at discrete points in time, we then show how these statistical models 180 

can be transferred to time periods without ASO observations. With regard to all statistical models, we report the 181 

squared Pearson correlation coefficient (r2) as a measure of the relative spatial pattern between the modeled SWE 182 

distribution and ASO observed SWE distribution. We also report the mean absolute error as a percent of mean 183 

observed SWE (%MAE) as a measure of the accuracy of the modeled SWE distribution. Lastly, we report bias as a 184 

percent of mean observed SWE (%Bias) as a measure of the systematic over or under-prediction by the model. 185 

4.1 SWE Models: Discrete Time 186 

To examine the utility of fSCA as a predictor, we compared the SWE distributions modeled with PHV and PHV-187 

FSCA using a split sampling strategy. We split each date into a training (80%) and test (20%) dataset to evaluate 188 

overall model performance on this date. This insures that we are not evaluating the model with the same data used to 189 

create the model. Furthermore, this procedure is replicated 20 times to provide 20 different subsets with which to 190 

evaluate model performance; this is more robust than a single replication. More replications were computationally 191 

prohibitive. This split sample strategy is an important initial step in transferring ASO data in time as it is necessary to 192 

first show that fSCA and physiographic variables can be used to adequately model ASO-observed SWE on the date 193 

of acquisition. Once this is established, the transferability of the models in time can then be explored – as described 194 

in the next section. 195 

4.2 SWE Models: Transferred in Time 196 

We evaluated a second set of predictions whereby each date is modeled using all the data, i.e. not split, and then this 197 

model is used to predict SWE on dates that ASO flew in different years. In this manner, we simulate SWE on the date 198 

ASO flew using models from other years and then we use the ASO data on the date of interest strictly to evaluate the 199 

model estimates of SWE. Hereafter, we refer to the date of the model (i.e. the date of the ASO observation for which 200 

the model is developed) as the model date and the date being predicted as the transfer date. This results in 28 models 201 

of SWE distribution for PHV and PHV-FSCA each because there are a total of 28 ASO flights. Given our primary 202 

goal of estimating the SWE distribution for unsampled dates, we apply models developed for each ASO acquisition 203 

to all other dates except for dates within the same year as that in which the model was developed. For example, in 204 

2013 there were a total of 6 ASO flights out of the total of 28 flights during the four-year study period. This leaves 22 205 

flights from other years that can be used to develop statistical models of SWE that can be transferred to the dates in 206 

2013. By conducting our model tests in this manner we are more robustly testing the transferability of models from a 207 
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given model date with regard to simulating SWE distribution on a given transfer date. Due to a different number of 208 

ASO observations in each year, the prediction ensemble size differs for each year. As noted above, for each date in 209 

2013 there are 22 potential models. For each date in 2014 there are 18 potential models; for each date in 2015 there 210 

are 20 potential models; and for each date in 2016 there are 24 potential models. These models are referred to as 211 

transferred models, and for each transfer date we identify the best model from another year based on error statistics 212 

generated from the ASO data acquired on the transfer date. We refer to this model as the best model. 213 

The ability of a model to transfer from the one date to another will vary based on how well the relationships 214 

between the dependent variable (SWE) and explanatory variables are captured and the similarity of the SWE 215 

distributions. Here we quantify the SWE similarity between dates using the mean absolute error (MAE) of SWE 216 

recorded at nearby snow pillows. For each transfer date, there is an ensemble of predictions from the model dates from 217 

the other years. Each of the model dates exhibit a similarity with the SWE distribution of the transfer date. In order to 218 

pick which model date exhibits the greatest similarity with the transfer date without having an ASO observation, we 219 

calculate the MAE of SWE at the snow pillows between each pair of model-transfer dates and select the model date 220 

with the lowest MAE. We compare the prediction performances from this model selection procedure (denoted selected 221 

model) with those of the best models. 222 

4.3 Statistical Model 223 

The multiple linear regression models described above, i.e. PHV and PHV-FSCA, are based on a regularized 224 

regression model applied in an elastic net framework as implemented in the glmnet package in R (Friedman et al., 225 

2010). The benefit of a regularized regression over standard regression is that it reduces overfitting while permitting 226 

all conceptual variables to be included, rather than removing potentially useful variables due to multicollinearity. 227 

Regularized regression increases the predictive ability of a model with multiple predictor variables by penalizing the 228 

objective function used to estimate the parameter set. The elastic net is an extension of ordinary least squares, which 229 

estimates parameter coefficients by minimizing the residual sum of squares (RSS) as the objective function (Eqn 1):  230 

 231 

𝑅𝑆𝑆 = 	 𝑦& − 𝛽)𝑥&)

+

),-

.

&,-

/

Eqn	 1 	232 

 233 

where yi is the response variable at the ith observation, βj is the coefficient for predictor variable j, and xij is predictor 234 

variable j at each observation i. The elastic net penalizes RSS by two different types of regularization techniques, 235 

known as L1 and L2, that have opposing properties (more on this below). In this regard, the elastic net estimates the 236 

regression parameters β by minimizing RSS in Eqn 2: 237 

 238 

𝑅𝑆𝑆 = 	 𝑦& − 𝛽4 − 𝛽)𝑥&)

+

),-

.

&,-

/

+ 𝜆𝑃8 𝛽 Eqn	 2  239 
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where 241 

𝑃8 𝛽 =
1
2
1 − 𝛼 𝛽)/ + 𝛼 𝛽)

+

),-

Eqn	 3 	242 

 243 

β0 is the intercept, 𝜆 controls the magnitude of the penalty, and 𝛼 changes the relative influences of the L1 and L2 244 

regularizations. In practice, this shrinks the coefficient values towards zero to account for multicollinearity and 245 

predictors with low explanatory power. Penalized coefficients have less variance and can select variables without 246 

resorting to a discrete selection procedure, e.g. a p-value threshold such as in step-wise regression. Consequently, 247 

resulting parameter sets are more robust predictors for independent data (Zou and Hastie, 2005a).  248 

The elastic net has two tuning parameters, 𝜆 and 𝛼, which are determined through cross validation. When 249 

𝛼=1, the penalty is composed completely of the L1 penalty and commonly known as Lasso regression. When 𝛼=0, 250 

the penalty is composed completely of the L2 penalty and is commonly known as Ridge regression. The advantage of 251 

the elastic net is that alpha can range between 0 and 1 and therefore inherits the properties of both L1 and L2 252 

regularization. L1 regularization is commonly used for model selection because predictor coefficients can be shrunk 253 

to zero and effectively removed from the model. However, in the presence of correlated predictor variables, one 254 

predictor variable would be randomly selected while the others are removed. This can result in decreased predictive 255 

performance since variables with some explanatory power are no longer in the model. With L2 regularization, 256 

regression coefficients will shrink towards zero but with an asymptote at zero. This is the preferred type of 257 

regularization in the presence of multicollinearity because all variables would remain in the model but with smaller 258 

coefficients. The elastic net provides a framework to choose the best compromise between the L1 and L2 penalties. 259 

For further details, we direct the reader to Zou and Hastie (2005b) and Hastie et al. (2009).  260 

We do not directly treat spatial correlation in our models due to the large computational demands of fitting 261 

the covariance function for ~4000 pixels for 28 dates. Neglecting spatial correlation is another potential source for 262 

regression coefficients to be overfit and consequently we do not interpret them for physical meaning (Cressie, 1993; 263 

Erickson et al., 2005). Nonetheless, we show utility with our methods without addressing spatial correlation and expect 264 

the results presented herein would improve if spatial correlation were explicitly treated (Carroll and Cressie, 1997).  265 

5 Results 266 

5.1 SWE Models: Discrete Time 267 

Table 2 shows that PHV-FSCA outperforms PHV in all metrics in all years except %Bias (where both models exhibit 268 

close to 0 %Bias, as expected from a regression). The model PHV-FSCA explains on average between 78% and 86% 269 

of the variance in SWE distribution in any given year whereas PHV only explains between 55% and 67%. We similarly 270 

see improvement in %MAE where PHV-FSCA exhibits mean annual %MAE between 27% and 41% compared with 271 
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PHV which yields mean annual %MAE between 50% and 71%. In summary, we note a substantial improvement in r2 272 

and %MAE for distributing SWE when fSCA is included as an additional variable. 273 

 274 

Table 2. Mean prediction performance for PHV and PHV-FSCA from each observation date using a split-sampling 275 
approach. 276 

 277 
 278 

5.2 SWE Models: Transferred in Time 279 

Figure 2 shows March 23, 2014 as an example transfer date in 2014 that was predicted using a PHV-FSCA model 280 

from May 25, 2013. Overall, we see similar spatial trends between the observed and modeled SWE distributions, but 281 

we see darker purples in the observed map indicating higher SWE. The mean observed SWE is 0.23 m compared to 282 

0.21 m modeled. The range of observed SWE is 0-0.75 m while the modeled SWE ranges from 0-0.39 m. The standard 283 

deviations of observed and modeled SWE are 0.13 m and 0.11 m, respectively. The difference map shows large areas 284 

of agreement to within 0.05 m SWE and a qualitative comparison with Figure 1 suggests these are mainly forested 285 

areas. We see areas of under prediction (red) mostly above tree line in the north and areas of over prediction (blue) 286 

above tree line in the south. A comparison with Google Earth® aerial imagery confirms that the pixels that exhibit 287 

very large negative differences (bright red pixels) are areas with persistent snow for much of the year. The snow extent 288 

is very similar between the modeled SWE and observed SWE because only areas observed to have fSCA greater than 289 

0 were predicted. 290 

r2 %MAE %Bias r2 %MAE %Bias
2013 0.55 71 0 0.86 33 1
2014 0.67 50 1 0.86 27 1
2015 0.57 64 -3 0.83 33 1
2016 0.59 71 2 0.82 41 2
Mean 0.6 61 0 0.85 32 1

PHV-FSCAPHV
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 291 
Figure 2. An example of SWE distribution from 2014-03-23. Observed SWE (top left); modeled SWE using PHV-FSCA 292 
(bottom left); the difference, modeled SWE – observed SWE, draped over a shaded relief map (bottom right). A histogram 293 
of the differences (top right). 294 

 295 

Figure 3 shows the range of r2 for transferred models for PHV and PHV-FSCA on each date based on models 296 

created in other years. Additionally, we indicate the best model performance for each transfer date by a diamond. In 297 

this regard, we observe unanimous improvement across all dates with PHV-FSCA compared to PHV. PHV-FSCA 298 

yields the highest mean best r2 of 0.84 (mean of diamonds) compared to PHV with a mean best r2 of 0.6. We also 299 

observe a notable decrease in r2 for PHV towards the end of the season while PHV-FSCA exhibit a consistent r2. The 300 

standard deviation of r2 for PHV is 0.14 and for PHV-FSCA it is 0.05. 301 

 302 
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 303 
Figure 3. The range of r2 for each simulation date from the transferred models. The diamond represents the best model for 304 
each transfer date. The boxplots represent the interquartile range with vertical lines to denote the 5th and 95th percentiles. 305 
Black dots are outliers. 306 

 307 

Figure 4 also clearly shows PHV-FSCA to exhibit the best, i.e. lowest, %MAE with transferred models 308 

compared to PHV. The mean best %MAE (mean of diamonds) for PHV-FSCA is 33% while the mean best %MAE 309 

for PHV is 63%. Particularly obvious in these panels is the upward distribution shift and larger range for PHV later in 310 

the season compared to only a minimal increase in %MAE for PHV-FSCA. The standard deviations of the best %MAE 311 

are 10% for PHV-FSCA and 26% for PHV. 312 
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 314 
Figure 4. The range of %MAE prediction errors for each transfer date from the transferred models. The diamond 315 
represents the best model for each transfer date. The y-axis is limited for clarity. The boxplots represent the interquartile 316 
range with vertical lines to denote the 5th and 95th percentiles. Black dots are outliers. 317 

 318 

Figure 5 shows that the best transferred models (diamonds) for both all models exhibit close to zero bias. The 319 

mean best %Bias for PHV is 2% and for PHV-FSCA it is 1%. However, we note that the variability in %Bias increases 320 

more dramatically at the end of the season, especially for PHV. The standard deviations of the best (i.e. lowest) %Bias 321 

for PHV and PHV-FSCA are 15% and 7%, respectively. 322 
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 324 
Figure 5. The range of %Bias prediction errors for each transfer date from the transferred models. The diamond represents 325 
the best model for each transfer date. The y-axis is limited for clarity. The boxplots represent the interquartile range with 326 
vertical lines to denote the 5th and 95th percentiles. Black dots are outliers. 327 

 328 

Following the demonstration of unanimous improvement with fSCA as a predictor variable, we compare just 329 

the best transferred models of PHV-FSCA presented in Figs. 3, 4, 5 with the split-sample models of PHV-FSCA from 330 

the previous section, to assess the performance degradation one would expect due to transferring a model between 331 

years. We observe that PHV-FSCA models can be transferred to another year with little degradation in performance 332 

(Table 3). The yearly r2 of the best transferred model are always within 1% of the split sample model and, on average, 333 

explains the same amount of variance in SWE distribution. The yearly mean %MAE of the transferred model is always 334 

within 6% of the split sample model with the mean 1% higher. The yearly mean magnitude of %Bias is actually lower, 335 
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i.e. better, in two years with the best transferred model compared to the split sample model, and the overall mean is 336 

the same. 337 

 338 

Table 3. Mean model performance comparison with PHV-FSCA for the split sample model and the best transferred model 339 
for each simulation date. 340 

 341 

5.3 Evaluating the Selected Model Performance 342 

Table 4 summarizes and compares the yearly mean statistics from PHV-FSCA for the best models and the selected 343 

models transferred from another year. The model selection procedure results in similar yearly r2 to the best models 344 

but increases in both %MAE and %Bias are apparent with the selected models. Compared to the best models, yearly 345 

mean %MAE for selected models increases between 3% and 18% and yearly absolute %Bias increases between 3% 346 

and 37%. The years 2013, 2014, and 2015 yielded increases in %MAE of 18%, 17%, and 16%, respectively for 347 

selected versus best models. In 2016 selected model %MAE exhibited an increase of only 3%. The absolute %Bias 348 

increases 3% in 2013, 6% in 2014, 37% in 2015, and 24% in 2016 for selected versus best models.  349 

 350 

Table 4. Yearly and overall prediction errors of PHV-FSCA for best transferred models and the selected models. Best 351 
transferred model errors involved fitting a model to all the data on each date and using these models to predict SWE on 352 
dates in other years. Only the best model date-simulation date pair is considered. The selected model errors are derived 353 
from the same ensemble of model date-simulation date pairs, but the model is selected based on the pillow SWE similarity 354 
described in the text. 355 

 356 
 357 

Figure 6 shows the difference for each transfer date between the errors of the best models (diamonds in Figs.s 358 

4, 5) and the errors of the selected models (these are shown as open circles in Fig. 6). We focus on %MAE and %Bias 359 

from PHV-FSCA only because r2 showed generally consistent performance for a given transfer date (Table 4; 360 

comparatively small vertical range of the purple boxplots in Fig. 3 compared with Figs. 4 and 5).  361 

r2 %MAE %Bias r2 %MAE %Bias
2013 0.86 33 1 0.86 34 -1
2014 0.86 27 1 0.86 26 0
2015 0.83 33 1 0.82 39 3
2016 0.82 41 2 0.82 40 -1
Mean 0.85 32 1 0.85 33 1

Best	Transferred	ModelSplit	Sample	Model

r2 %MAE %Bias r2 %MAE %Bias
2013 0.86 34 -1 0.84 52 4
2014 0.86 26 0 0.84 43 6
2015 0.82 39 3 0.81 55 40
2016 0.82 40 -1 0.81 43 -25
Mean 0.85 33 1 0.83 48 11

Best	Transferred	Model Selected	Model
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The mean difference in %MAE between the selected and best models is 15% and the selected model exhibited 362 

the same %MAE as the best model on only one date (Fig. 6a). The range in performance difference is between 0% 363 

and 45% with a mean of 15% and median of 12%. The differences in %MAE were generally lowest in 2016 with a 364 

mean of 3% and standard deviation of 4%. In contrast, 2013, 2014, and 2015 exhibited both higher mean differences 365 

(18%, 16%, and 18%, respectively) and higher standard deviations in %MAE (14%, 8%, and 14%, respectively). 366 

The best model had a lower absolute magnitude %Bias of between 0% and 73% with a mean of 29% and 367 

median of 26%. The selected model was the same as the best model on only one date (Fig. 6b). The yearly mean 368 

difference in error was consistently higher for %Bias than %MAE, with means of 25% in 2013, 30% in 2014, 34% in 369 

2015, and 20% in 2016. The standard deviation in the error difference was lowest in 2014 (9%) compared to 16% in 370 

2013, 22% in 2015, and 11% in 2016. 371 

 372 
Figure 6. The increase in prediction error for %MAE (a) and %Bias (b) between the best model and the selected model. 373 

 374 

We evaluate the prediction errors from different model years to see if there are any systematic differences in 375 

the predictions generated; i.e. do some years yield better predictions of other years? This allows us to determine how 376 

sensitive predictions for transfer dates will be given the existing ensemble of observations. In this context, we note 377 
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distinct differences in the predictive ability of models from different years, which has important implications for the 378 

ability of a model to transfer in time. 379 

Figure 7a shows that, on average, models from 2015 produced the lowest %MAE and models from 2016 380 

produce predictions with the largest %MAE. The mean %MAE in 2016 is 118% compared to 79% with 2013 models, 381 

69% with 2014 models and 50% with 2015 models. We observe consistency in a year’s ability to predict another year 382 

relative to the overall distribution, i.e. the colored dots are typically clustered within the range of the boxplots. We 383 

also note in 2016 that the best models always came from 2013, but in 2013 the best models only came from 2016 for 384 

the first three flights. In 2014, the bulk of the models around the median performance were from 2015 and vice-versa 385 

in 2015. In these two years, the poorest predictions were from 2013 and 2016. 386 

Figure 7b show that models from 2016 also produce the largest %Bias with a mean of 97% compared with 387 

56% from 2013, 21% from 2014, and -26% from 2015. We again see consistency in the location of the colored dots 388 

relative to the boxplots thus suggesting years will consistently model the SWE distribution of certain other years 389 

better. In this regard, similar to %MAE, 2013 produces the lowest %Bias in 2016, but in 2013 the inverse is only true 390 

for the first three flights as the distribution shifts up. 391 

 392 

 393 
Figure 7. The prediction errors for PHV-FSCA for each date; %MAE (a) and %Bias (b). The colored dots are the prediction 394 
errors coded by model year and jittered to prevent over plotting. Open circles represent the selected model. The boxplots 395 
represent the entire distribution of prediction errors for each date. The boxes represent the interquartile range with vertical 396 
bars for the 5th and 95th percentiles. Small black dots are statistical outliers.  397 
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6 Discussion 398 

6.1 SWE Distribution Modeling 399 

The relationship between snow covered area and SWE is well established as evident by the common use of depletion 400 

curves in hydrologic modeling (Anderson, 1973; Clark et al., 2011; Liston, 1999; Luce et al., 1999). We invert the 401 

idea of the depletion curve in this study by using the spatial distribution of fSCA to predict the spatial distribution of 402 

SWE. The basis for this approach is relatively well established given that fSCA is sensitive to topographic complexity 403 

and the spatial distribution of SWE (Donald et al., 1995; Fassnacht et al., 2016; Niu and Yang, 2007). In this regard, 404 

model performance consistently improved when fSCA was used as a predictor, with an average %MAE decrease from 405 

61% with PHV to 32% with PHV-FSCA. The utility of fSCA as an explainer of SWE distribution is not an 406 

unprecedented result. König and Sturm (1998) showed that in situ measurements of SWE were correlated with fSCA 407 

from aerial photographs. In addition, Marchand et al. (2005) suggested that the sub-grid standard deviation of 408 

physiography could improve regression models of SWE distribution because it accounts for sub-grid snow depth 409 

variability. Remotely sensed fSCA provides a means of capturing this sub-grid variability in SWE without requiring 410 

higher resolution data to compute the variance of physiography for each pixel. 411 

The statistics for the selected PHV-FSCA model reported in this study compare favorably to SWE 412 

distribution statistics reported previously. Headwater catchment scale studies, based on intensive field data, have been 413 

able to achieve r2 values from as low as 0.18 to as high as 0.65 (Balk and Elder, 2000; Elder et al., 1991; 1998; 414 

Erxleben et al., 2002; López-Moreno and Nogués-Bravo, 2006; Molotch and Bales, 2005) compared to the mean r2 of 415 

0.83 for the selected models in this study. These papers, which cover only a few square kilometers, represent a far 416 

more simplistic problem with regard to characterizing relationships between snow accumulation and physiographic 417 

variables.  418 

The results presented herein compare favorably with larger scale studies (i.e. > 1000 km2) of snow 419 

distribution. Fassnacht et al. (2003) reported average yearly RMSE between 0.12 and 0.16 m and 0 m bias when cross-420 

validated with snow pillows. Harshburger et al. (2010) reported an average r2 of 0.82 and RMSE of 0.05 m when 421 

cross-validated with snow pillows. Schneider and Molotch (2016) reported a mean RMSE of 0.23 m and %Bias of 422 

0.8% from snow surveys in the Upper Colorado River Basin. This is compared to a mean RMSE of 0.07 m and mean 423 

%Bias of 11% for the selected model in this study. The favorable error statistics reported here are even more 424 

encouraging when considering the differences in evaluation methods of these previous studies. In this regard, the error 425 

values reported here are quite robust in that we compare against spatially explicit observations over relatively large 426 

spatial scales (i.e. > 1000 km2). In contrast, the aforementioned works were evaluated against relatively sparse 427 

observations (Fassnacht et al., 2003; Harshburger et al., 2010; Schneider and Molotch, 2016).  428 

Bair et al. (2016) compared a retrospective SWE reconstruction to the same ASO observations (2013-2015) 429 

and reported yearly mean %MAE between 20% and 31% and yearly mean %Bias between -11% and 10%. These 430 

yearly statistics are better than those reported in this study (Tables 3, 4), but are the result of a much more complicated 431 

energy balance model that can only be run after the snow has disappeared. The selected model in this study is a simple 432 

linear regression that can be applied in real-time, thus we consider our results valuable for applications where real-433 

time estimates of SWE distribution are needed. Furthermore, we compare our selected model results to SWE estimates 434 
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from the U.S. National Weather Service’s operational Snow Data Assimilation System (SNODAS). SNODAS 435 

produces spatially distributed SWE estimates for the coterminous United States at 1 km by assimilating a physically 436 

based model with SNOTEL observations and remotely sensed snow covered area. The SWE product from SNODAS 437 

is the only high-resolution, gridded SWE product available at a daily time step for the continental United States and 438 

is available from http://nsidc.org (Barrett, 2003). Previous work has shown the physically based model to perform 439 

well at the point scale (Rutter et al., 2008) but suffer in alpine zones because it does not consider wind redistribution 440 

(Clow et al., 2012). The yearly mean r2 between ASO and SNODAS ranges from 0.04 in 2016 to 0.36 in 2015 with a 441 

mean of 0.17. The yearly mean %MAE ranges from 120% in 2014 to 274% in 2013 with a mean of 199%. The yearly 442 

mean %Bias ranges from -10% in 2016 to 236% in 2015. We refer the reader to “Selected Model” of Table 4 for the 443 

PHV-FSCA error summary. In this regard, SNODAS exhibits a mean %MAE 4 times greater than that of PHV-FSCA 444 

and a mean %Bias 8 times higher than PHV-FSCA. Both models poorly predicted the anomalous conditions in 2015. 445 

While it is clear that the errors with PHV-FSCA are considerably lower than with SNODAS overall, SNODAS is a 446 

complex system that attempts to capture the snow dynamics across the entire United States compared with PHV-447 

FSCA which was trained using a very specialized data set in the study region.  448 

We also show that SWE distributions can be related to fSCA and physiography in one year and applied to 449 

another year. The performance of PHV-FSCA was quite similar when applied to the date at which the model was 450 

trained (i.e. discrete time models with a split sample) versus applying the model to other years (i.e. transferred models). 451 

In this regard, we see a minimal decrease in prediction skill and minimal increase in prediction error when we compare 452 

split sample models with the best transferred models. Recall that the split sample model was trained and tested on the 453 

same day and the transferred model was trained in a different year from which the model was applied. Table 3 shows 454 

the mean r2 in the split sample model to be equivalent to that of the best transferred model. Moreover, the average 455 

%MAE of the best transferred model exhibits only a 1% difference from the split sample model and the mean %Bias 456 

exhibits no difference. Thus, if we are able to identify the best model for a given date of interest we would see minimal 457 

degradation in predictive ability relative to a model derived from data acquired on the date of interest. However, we 458 

see significant differences in predictive ability from models of different years (Fig. 7) and conclude that relationships 459 

between SWE and physiography are only similar between specific years, not as uniformly as put forth by previous 460 

studies (Erickson et al., 2005; Grünewald et al., 2013). Also, it is unclear as to the impact of climate non-stationarity 461 

with respect to the ability to transfer models to future years. Even so, for each year in this dataset there exists a 462 

corresponding year from which accurate predictions can be made.  463 

The benefits of using fSCA as a predictor variable in the transferred models are particularly large at the end 464 

of the season when the errors are highest (Figs. 3, 4, 5). For the last 2 dates of each year, the average difference in 465 

%MAE between the best PHV model and best PHV-FSCA model was 54% compared to an average difference of 20% 466 

for the other dates. The improvements seen by including fSCA as a predictor are noteworthy because the ensemble of 467 

models trained using ASO observations could then be applied using remotely sensed fSCA from satellites. The degree 468 

to which satellite-based fSCA will improve model performance toward the end of the snowmelt season will be partially 469 

dictated by the accuracy of the fSCA data, which is subject to increasing uncertainty at low fSCA values (Painter et 470 

al., 2009; Rittger et al., 2013). Optical fSCA products such as MODSCAG also suffer in forested areas since snow 471 
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cover is occluded by the canopy (Raleigh et al., 2013; Rittger et al., 2013). A viewable gap fraction correction is 472 

typically used to extrapolate fSCA to the occluded portions of a pixel by assuming that fSCA is the same under the 473 

canopy as it is in canopy gaps (Molotch and Margulis, 2008), and future studies should evaluate the sensitivity of 474 

PHV-FSCA to this assumption. Cloud cover can also obscure a satellite’s view of the snow and therefore making it 475 

difficult to estimate the snow extent. However, Slater et al. (2013) showed that gaps of 5 or more consecutive days 476 

are rare with MODIS thus suggesting that weekly estimates of SWE would be feasible. Lastly, omission and 477 

commission errors of cloud identification can provide erroneous estimates of fSCA although Parajka and Blöschl 478 

(2008) report an overall filtering accuracy of 96% in the Alps. Nonetheless, this is still an active area of research 479 

(Dozier et al., 2008; Parajka and Bloeschl, 2008; Rittger et al., 2013; Xia et al., 2012). 480 

6.2 Considerations for Extending the ASO Record 481 

The value of ASO during the year flown is significant for water management because it provides high resolution SWE 482 

information with low uncertainty compared to traditional estimation methods and therefore facilitates more accurate 483 

water supply forecasts. The downside to ASO is the relatively high cost of operation compared to traditional 484 

measurement campaigns. The work presented here provides a first step in realizing the value of ASO subsequent to 485 

active operations. We find that the number of flights within a year affects the mean and variance of the predictions in 486 

other years by <1%; this was quantified by iteratively selecting between 1 and the number of observations in a given 487 

year 100 times and assessing the change in error. In other words, it is better to perform ASO once per year for 10 years 488 

than 10 times in one year.  489 

It is clear from our results that flights in one year do not necessarily transfer well to another year, e.g. 2016 to 490 

2014 and 2016 to 2015 (Fig. 7). The model selection procedure relies on operational snow pillows to identify similar 491 

patterns of SWE between historical dates (i.e. model dates) and the date of interest (i.e. transfer dates). The spatial 492 

representativeness of these stations may have contributed to the general inability of these stations to select the best 493 

historical date for a given date of interest. In this context, it is well established that these snow pillows may not 494 

adequately represent the SWE of the surrounding terrain (Meromy et al., 2012; Molotch and Bales, 2006; Rice et al., 495 

2011). However, the minimal degradation in prediction performance when considering the best transferred model 496 

should motivate improvements for identifying the dates from the past with the most similar SWE distribution. As 497 

shown here, if these dates can be identified, the SWE can be modeled at accuracy levels that are equivalent to models 498 

generated from ASO data collected on the date of interest. We also tested the similarity in remotely sensed fSCA as a 499 

method for identifying the historical date with the most similar SWE distribution to the date of interest. We found that 500 

anomalous SWE and fSCA distributions make this method less robust than using snow pillow data. However, a 501 

completely remote sensing based approach would be useful in data sparse regions where ground stations do not exist. 502 

A potentially robust remote sensing based method could be to track fSCA through time and select a similar SWE 503 

distribution based on the trajectory of fSCA rather than a single snapshot of fSCA. It is also important to note that 504 

flying ASO during a year with an anomalously low snowpack such as in 2015 in California does not necessarily reduce 505 

the predictive capacity of models for future years. In our case, 2015 provided useful estimates of SWE distribution in 506 
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all the other years, including 2016, even though the models from the relatively wet year of 2016 did not transfer well 507 

to the very dry year of 2015 (Fig. 7).  508 

Intuitively, it is not surprising that the models from 2016 did not transfer to other years because there was much 509 

more snow than in 2014 and 2015, which were very low snow years. Less intuitive, however, is why the inverse 510 

worked well, i.e. the models from 2014 and 2015 did transfer relatively well to 2016. In this regard, we see lower 511 

mean fSCA in 2016 for the same mean SWE in 2015 in the ASO data. This means that for the same mean SWE, there 512 

are deeper pockets of snow covering a smaller area remaining at the end of a higher snow year (i.e. 2016) than a lower 513 

snow year (i.e. 2015). Therefore, we would expect the relationships between topographic variables and SWE to 514 

become increasingly disparate from the underlying terrain with a deeper snow accumulation. Thus, the regression 515 

coefficients derived from years with deeper snowpacks do not adequately represent relationships found during years 516 

with shallow snowpacks. However, this does not mean that the model from the last date of the season (which is also 517 

a shallow snowpack) transfers well because this SWE distribution still largely represents the dominant spatial patterns 518 

from the peak SWE distribution (Egli and Jonas, 2009; Liston, 1999; Luce et al., 1999).  519 

7 Conclusion 520 

We estimated the relationships between SWE, physiography, and fSCA and show that the temporal consistency in 521 

these relationships can be used to estimate SWE in years beyond the ASO observation record, with a mean r2 of .85, 522 

mean %MAE of 33%, and mean %Bias of 1%. The relationships transfer robustly in time with no degradation in r2 or 523 

%Bias and only 1% in %MAE when comparing predictions between models fit on the same day and models from a 524 

different year. Models with fSCA as a predictor transfer better than those without, and we suggest that the inclusion 525 

of fSCA provides information with regard to the variability of the SWE resulting from different accumulation 526 

dynamics due to differences in terrain roughness. In this regard, the availability of satellite images of fSCA facilitate 527 

the transfer of modeled relationships based on ASO observations to dates when no airborne snow depth measurements 528 

exist. The crux of this proposition is in selecting the model to transfer. We offer a method with which to select a model 529 

from another year based on the similarity in SWE distribution at existing snow pillows in the area. Comparison of the 530 

best predictions and the selected predictions results in a mild decrease in r2 (0.02) and moderate increases in %MAE 531 

(15%) and %Bias (10%). The results presented above motivate further refinement in the technique used to select the 532 

best model because if these dates can be identified then SWE can be modeled at accuracy levels equivalent to models 533 

generated from ASO data collected on the day of interest. Lastly, although SWE distributions simulated in years with 534 

anomalous SWE distributions (2014, 2015) had the highest errors, models from these years still yielded good 535 

performance in 2013 and 2016. Thus, the benefit of ASO in anomalously dry years is two-fold: water managers receive 536 

accurate information during a year that is difficult to model, but also these observed SWE distributions can be used to 537 

simulate SWE distributions in future, less anomalous years. Overall, ASO provides an unprecedented observation of 538 

the relationships between SWE, fSCA, and physiography. The ASO dataset facilitates improved understanding of 539 

these relationships in both time and space and should lead to better information for water managers. 540 

  541 

The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-167
Manuscript under review for journal The Cryosphere
Discussion started: 4 October 2017
c© Author(s) 2017. CC BY 4.0 License.



 22 

8 Data Availability 542 
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