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Tc-2017-160. Author’s response to RC2 

Reviewer 2 (RC2): Received and published 23 September 2017 

Reviewer 2’s general comments:  
The manuscript presents an important effort in understanding Canadian High Arctic glacier albedo and 
surface temperature. Change in Queen Elizabeth Islands (QEI) glacier surface albedo is presented from 
the combined Aqua and Terra MODIS Collection 6 albedo product and change in glacier surface 
temperature is presented from Terra MODIS Collection 5 Land Surface Temperature and Emissivity 
product. The temporal period of the analyses includes the QEI summer months (June, July, August) from 
2001-2016. Albedo and land surface temperature changes are evaluated and presented as monthly and 
seasonal averages as well as spatial patterns. Satellite analysis is compared with reanalysis data, some 
complementary observation data and studies published to date. 

AR: We thank the reviewer for the thoughtful evaluation of our manuscript. We have reviewed and 
addressed both the major considerations and minor specific comments. This is outlined below.  

• RC refers to reviewer’s comment 
• AR refers to author’s response 
• Revised sections of the manuscript are presented in italics.  

Reviewer 2’s major considerations and author’s responses 

RC 1: “As written, the manuscript can be difficult to follow. The Data and Methods section provides 
appropriate content and detail. However, the manuscript may benefit from reorganization of content in 
the Introduction, Results, and Discussion sections. Content in the Discussion section could be moved to 
the beginning of the manuscript, with the option to provide a ‘Background’ section. Supporting details of 
complementary observations (e.g. snowfall, temperature) introduced in the Discussion might be better 
placed earlier in the manuscript, near results (see line by line suggestions below). In addition, there are 
grammatical errors and smaller ordering inconsistencies throughout the manuscript that deter from 
readability. Careful editing and attention to detail is needed in revising and ensuring the success of this 
manuscript.” 

AR 1: The manuscript has been revised to make it more concise and easier to follow. Specifically, Sections 
3.3 (now section 3.4) and 4.1 (now section 4) have been shortened. Repetition in sections 3.3 and 4.1 has 
been removed. Sections 4.1 and 4.2 have been merged (now section 4). Additional attention has been 
paid to grammar and ordering inconsistencies throughout the manuscript to improve readability. While 
we appreciate the suggestion of a background section we chose not to include one here. We felt that, 
after revising and condensing the manuscript, the addition of a background section was not necessary 
(see RC/AR 29).  

Revised text: 

Revised Section 3.4, Lines 365-392: 

‘3.4 Principal Components Analysis 

To explore whether there are any other spatial patterns in the 16-year mean summer BSA record that differ 
from the long-term (linear) trend, we performed a Principal Components Analysis of the BSA record (Sect. 
2.3). The first and second Principal Components (Fig. 8) explain 65% and 12% of the variance in the mean 
summer BSA record, respectively. The spatial pattern of the First Principal Component (PC1) scores (Fig. 8a) 
is generally consistent with the spatial patterns of summer (JJA, Fig 5a) and July (Fig. 5c) mean BSA change 
described previously (Sect. 3.3). PC1 scores are strongly negative (< -0.005) on western Axel Heiberg Island 
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(large BSA declines), and weakly negative (> -0.001) or even positive at high elevations in the interiors of the 
ice masses where there was no change in the mean summer BSA. Moderately negative (~ -0.002) component 
scores occur on the western (continental) side of eastern Ellesmere Island’s ice masses as well as over much 
of Manson Icefield and the southeast portion of Prince of Wales Icefield, where large decreases were 
observed in both the summer (JJA) and the July BSA. 
For PC1, the highest Empirical Orthogonal Functions (EOFs) (32.8 and 25.9) correspond to the years with the 
lowest mean summer BSA (2011 and 2012) (Fig. 9). The lowest EOFs (-31.7 and -24.6) correspond to the 
years with the highest mean summer BSA (2013 and 2004) (Fig. 9). In addition, the departure from zero is 
much larger for the minimum component scores than for the maximum component scores (Fig. 8a), 
suggesting that both positive and negative BSA anomalies are likely caused by forcings with the same spatial 
pattern, albeit with the opposite sign. Investigating possible relationships between surface albedo and 
known large-scale patterns of atmospheric variability (Arctic Oscillation, Pacific North American Pattern, 
North Atlantic Oscillation), we found the EOFs for PC1 to be well (negatively) correlated with the mean 
summer North Atlantic Oscillation (NAO) index (r = -0.84, p < 0.001, Fig. 9), derived by averaging the June–
August monthly mean NAO indices for 2001 to 2016 (http:www.cpc.ncep.noaa.gov). This is consistent with 
the finding of Mortimer et al. (2016) that there was a good agreement between the mean summer LST 
record and the NAO index in the QEI over the 2000–15 period. 
The second Principal Component (PC2) had the largest EOFs of any component in 2006, 2010, and 2016. In 
these years, there was poor correspondence between the PC1 EOFs and the JJA NAO index (Fig. 9). The 
spatial pattern of the PC2 scores (Fig. 8b) resembles that of the August BSA change (Fig. 5d). Large negative 
PC2 scores (< -0.004) were observed on eastern Devon Ice Cap and Manson Icefield, where large August BSA 
declines (< -0.0075 yr-1) occurred. Positive PC2 scores (Fig. 8b) were observed in southwest Axel Heiberg 
Island and at lower elevations on northern Ellesmere Island’s southwestern ice caps, where the mean August 
BSA increased (Fig. 5d). Unlike PC1, there were no significant correlations between the EOFs of PC2 and 
known large-scale patterns of atmospheric variability.’ 

Revised Section 4, Lines 411-462: 

‘4 Discussion 

Between 2001 and 2016 the bulk of the measured mean summer BSA declines in the QEI occurred in July 
(Sect. 3.2). This finding is consistent with previous work (e.g. Alt, 1987; Gardner and Sharp, 2007) that found 
variability in July near-surface air temperatures to be the primary influence on inter-annual variability in 
annual QEI mass balance. Variability in July air temperatures has, in turn, been associated with variations 
in the strength, position, and geometry of the July circumpolar vortex (Gardner and Sharp, 2007). Extreme 
high melt years in the QEI are associated with the intrusion of a steep ridge at all levels in the troposphere 
and the absence of the North American trough, making the QEI thermally homogeneous with continental 
North America (Alt, 1987). Between 2001 and 2016, in years with low (e.g. 2007–12) or high (e.g. 2001–04)) 
albedos, there was a persistent ridge (trough) in the 500 hPa geopotential height surface centered over the 
north and west of the QEI (Fig. 4; Sect. 3.1.1). This configuration appears to be tied to the increased warming 
and albedo declines observed in the central western part of the QEI from 2007 to 2012. For example, strong 
warming (Fig. 7b) and albedo declines (Fig. 5a) over Axel Heiberg Island and north-central Ellesmere Island 
coincided with a ridge of high pressure centered over the north and west of the QEI (Fig. 4) that was often 
observed in years when the NAO index was negative (Fig. 9).  
Differences in the spatial patterns of the monthly BSA change (Fig. 5b–d) reflect the dominant atmospheric 
circulation patterns that occur over the QEI during the summer months. In the QEI, anticyclonic circulation 
tends to dominate in the months of June and July, while cyclonic circulation often occurs in August (Alt, 1987; 
Gascon et al., 2013). In June and July, the largest BSA declines occurred in the climatically continental 
interiors of the ice masses on Ellesmere and Devon Islands, as well as on Axel Heiberg Island (Fig. 5). In these 
months, the mountains on eastern Ellesmere and Devon Islands act as a barrier to moisture transport from 
the east limiting (solid) precipitation (which can temporarily raise the surface albedo) on the western (lee) 
side of the eastern ice masses (Koerner 1979). Adiabatic heating of descending air masses on the western 
(lee) side of the eastern ice masses results in warm dry air which promotes warming, melting, and enhanced 
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albedo declines. In contrast, in August, when cyclonic circulation is common (Sect. 3.2.1), BSA declines were 
largest at low elevations in the maritime regions of eastern Devon Ice Cap, Manson Icefield, and the 
southwestern Prince of Wales Icefield (Fig. 5d). Low pressure systems which track from the southwest to the 
north and northeast are common in August, and they advect warm moist air into the Arctic from the south 
(Alt, 1987; Gascon et al., 2013). In the eastern QEI, orographic uplift of air masses tracking from the 
southwest, and subsequent adiabatic heating of these air masses when they descend on the eastern sides 
of ice masses, would bring warm dry air to the eastern (lee) side of the mountains in the eastern QEI, 
promoting both warming and albedo decline in these regions in August.  
During the 2001–16 period, the mean summer QEI-wide BSA record was strongly tied to the summer NAO 
index (Sect. 2.4).  Anticyclonic circulation was shown to co-vary with the NAO index over the Greenland Ice 
Sheet, immediately to the east of the QEI, since ~2001 (Rajewicz and Marshall, 2014). On the Greenland Ice 
Sheet, clear sky conditions and the advection of warm air form the south that accompany anticyclonic ridging 
(Rajewicz and Marshall, 2014), similar to that observed in the QEI in June and July (Alt, 1987; Gascon et 
al., 2013; Bezeau et al., 2015), were found to enhance the strength of the ice-albedo feedback between 2009 
and 2011 which resulted in higher rates of melt and glacier mass loss (Box et al., 2012). Although a similar 
phenomenon is likely to have occurred in the QEI, we find that in some years (2006, 2010, 2016) there was 
poor correspondence between the mean summer BSA record and the NAO index (Fig. 9), suggesting that an 
additional forcing may be influencing the spatial and temporal variability of glacier surface albedo in the 
QEI. 
The spatial pattern of both the QEI snow accumulation (Fig. 2 and 3 in Koerner 1979) and ∂18O values (Fig. 
7 in Koerner 1979) were inferred by Koerner (1979) for the 1962-73 period from surface snow samples and 
shallow firn cores collected in spring 1974. These spatial patterns (of snow accumulation and ∂18O) closely 
resemble the spatial pattern of PC2 scores (Fig. 8). Specifically, areas having large negative PC2 scores (< -
0.002; Fig. 8b) of the 16-year mean summer BSA record (Sect. 3.4) were characterized by relatively high 
accumulation rates (Fig. 2 and 3 in Koerner (1979)) and snow that is isotopically warm (Fig. 7 in Koerner 
(1979)), while areas with positive PC2 scores had lower snow accumulation rates. This similarity points to a 
possible role of precipitation in affecting the mean summer BSA in some years. To investigate the 
relationship between the albedo record and variability in precipitation we examined the cumulative mass 
change record for the QEI from the Gravity Recovery and Climate Experiment (GRACE; Wolken et al. (2016), 
extended to 2016 (B. Wouters, personal communication, 2017)).  The record shows that in 2006, 2010, and 
2016 (the years when PC2 of the 16-year mean summer BSA record had the largest EOFs of any Principal 
Component, Sect. 3.4), once the annual minimum glacier mass was reached, there was a prolonged period 
of constant low mass (i.e. no melt or snowfall) before fall/winter accumulation began (inferred from an 
increase in mass). In other years, there was a sharp transition from the local end-of-summer mass minimum 
to the period of seasonally increasing mass. This could indicate that in some years during the 2001–16 
period, variability in August snowfall may have influenced the mean summer BSA.’  

 

RC 2: “In the data and methods section (Page 4, line 122) MOD10A1 data was mentioned “to be a 
reasonable representation of the true surface albedo”. Does this refer to analysis conducted by the 
authors for this manuscript or to Box et al., 2017? Please clarify. If MOD10A1 data was not inspected by 
the authors for this manuscript, why not?”  

AC 2: The reference to the MOD10A1 data has been removed and the methods section (section 2.1 MODIS 
sensor degradation) detailing MODIS sensor calibration issues has been revised.  

Revised text, lines 90-138: 

‘2.1.1 MODIS sensor degradation 

The MODIS sensors are currently operating well beyond their expected [productive] six year lifetimes (Barnes 
et al, 1998; Justice 1998) and the detectors are degrading (Xiong et al., 2001). For both the MODIS Terra 
and Aqua sensors, instruments were calibrated pre-launch (radiometric, spatial, specular calibration) 
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(Gunther et al., 1996). On-orbit calibration procedures were included to monitor the sensor degradation that 
is expected as the instruments are exposed to solar radiation (Gunther et al., 1996). For the reflective solar 
bands (0.41–2.2 µm) the on-board calibration system includes a solar diffuser (SD) calibrated using the solar 
diffuser stability monitor (SDSM) (Gunther et al., 1998). Lunar and Earth view observations (for select desert 
sites) are also used to assess radiometric stability (Sun et al., 2003). Even so, long-term scan mirror and 
wavelength dependent degradation, which are not sufficiently accounted for by the on-board calibrators 
(SD/SDMS), have been observed (Xiong et al., 2001; Lyapustin et al., 2014 and references therein). 
Calibration degradation effects, which are largely confined to the MODIS Terra sensor, are greatest in the 
blue band (B3) and decrease with increasing wavelength (Xiong and Barnes, 2006). An anomaly in the SD 
door operation (3 May 2003) and a decision to leave the door permanently open, exposing the SD to 
additional solar radiation, resulted in degradation of the SD on the MODIS Terra sensor that was faster than 
had originally been anticipated, and than was observed for the MODIS Aqua sensor (Xiong et al., 2005). 
Differences in the response versus scan angle (RVS) for the two side mirrors were also characterized pre-
launch (Barnes et al., 1998). The RVS is important because it describes the scan mirror’s response to different 
angles of incidence (AOI, for each band, detector and mirror side) (Sun et al., 2014). However, for the MODIS 
Terra sensor, following an overheating incident during pre-launch calibration, the RVS was not re-
characterized and the exact pre-launch RVS characteristics are not known (Pan et al., 2007; Sun et al., 2014 
and references therein). These issues have resulted in the performance of the MODIS Terra sensor being 
poorer than that of the MODIS Aqua sensor.  
As a normal part of the operational procedure, the MODIS Characterization Support Team 
(http:mcst.gsfc.nasa.gov) periodically updates the calibration algorithms and approaches, during which 
time the entire L1B record (calibrated top of the atmosphere radiances) is re-processed to reflect improved 
understanding and characterization of changes to the instruments. Even so, non-physical trends in MODIS 
Terra data products, that result from calibration drift, have been observed and are well documented (e.g. 
Xiong et al., 2001; Xiong and Barnes, 2006; Franz et al., 2008; Kwiatkowski et al., 2008; Wang et al., 2012; 
Lyapustin et al., 2014; and references therein). The latest revision occurred with the C6 data and includes 
on-orbit calibration procedures to mitigate long-term calibration drift, particularly at the shorter 
wavelengths (Wenny et al., 2010; Toller et al., 2013; Sun et al., 2014; Lyapustin et al., 2014). The C6 dataset 
uses the on-board calibrators (e.g. SD/SDMS) and the mirror side ratios from lunar standard and Earth view 
observations (Toller et al, 2013; Sun et al., 2014). The C6 revision also includes an additional approach, 
aimed primarily at the short-wavelength bands, that uses observations of desert sites (pseudo-invariant 
targets) to derive instrument calibration coefficients and RVS at multiple AOIs (instead of the two AOIs 
provided by the SD and lunar standard) (Toller et al, 2013; Sun et al., 2014). Although this vicarious approach 
is less accurate than the one that uses the mirror-side ratios calibrated using a lunar standard, it has been 
found to provide a significant improvement to the L1B radiance measurements relative to the C5 data, prior 
to ~2013 (Toller 2013; Lyapustin et al., 2014). Updated L1B C6 radiances can be up to several percent higher 
than the C5 values (e.g. Band 3 and for most recent period ~2013 onward) (Toller et al., 2013; Lyapustin et 
al. 2014; Casey et al., 2017). However, evaluation of the L1B C6 Band 3 (0.46–0.48 µm) radiance over a 
desert site (Libya 4) identified residual errors (decadal trends on the order of several tenths of 1%; Lyapustin 
et al., 2014) that are within the product’s stated accuracy (2% in absolute reflectance units for the reflective 
solar bands (Barnes et al., 1998; Justice et al., 1998)). The impact of the C6 updates on higher level MODIS 
science products is difficult to quantify because the corrections are time, mirror-side, angular, and detector 
dependent (Toller et al., 2013; Lyapustin et al. 2014; Sun et al., 2014). In addition, the C6 revision includes 
updates to algorithms (in addition to the calibration updates) used in the derivation of specific higher-level 
products (https://www.umb.edu/spectralmass/terra_aqua_modis/v006 outlines changes made to the 
MCD43A3 C6 data product). Important for the current study, however, is that recent analysis of surface 
albedo over the Greenland Ice Sheet, immediately to the east of the QEI, using MODIS C6 data (including the 
MCD43A3 product used in this study) identified statistically significant albedo declines over the wet snow 
zone (Casey et al., 2017). For the most part, these declines are thought to be physically real (Casey et al., 
2017), which gives us confidence in the albedo trends presented here. There are no long-term, spatially 
distributed, in situ albedo records from the glaciers and ice caps in the QEI, so a comparison between the 
MCD43A3 records and ground observations is not possible. This is both a motivation for and a limitation of, 
the current study.  
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References added: 

Barnes, W. L., Pagano, T.S., and Salomonson V.V.: Prelaunch characteristics of the Moderate Resolution 
Imaging Spectroradiometer (MODIS) on EOS-AM1, IEEE Transactions on Geoscience and Remote 
Sensing, 36(4), 1088-1100, doi: 10.1109/36.700993, 1998. 
Franz, B.A., Kwiatkowska, E.J., Meister, G. and McClain, C.R.: Moderate Resolution Imaging 
Spectroradiometer on Terra: limitations for ocean color applications, Journal of Applied Remote Sensing, 
2(1), 023525, doi: 10.1117/1.2957964, 2008.  
Guenther, B., Barnes, W., Knight, E., Barker, J., Harnden, J., Weber, R., Roberto, M., Godden, G., 
Montgomery, H., and Abel, P.: MODIS calibration: a brief review of the strategy for the at-launch calibration 
approach, Journal of Atmospheric and Oceanic Technology, 13(2), 274-285. doi: 10.1175/1520-
0426(1996)013<0274:MCABRO>2.0.CO;2, 1996 
Guenther, B. Godden, G. D., Xiong, X., Knight, E.J., Qiu, S. Y., Montgomery, H., Hopkins, M. M., Khayat, M. 
G., and Zhidong Hao, Z.: Prelaunch algorithm and data format for the Level 1 calibration products for the 
EOS-AM1 Moderate Resolution Imaging Spectroradiometer (MODIS), IEEE Transactions on Geoscience and 
Remote Sensing, 36(4), 1142-1151, doi: 10.1109/36.701021, 1998. 
Justice, C.O., Vermote, E., Townshend, J.R.G., Defries, R., Roy, D. P., Hall, D. K., Vincent V. Salomonson V. V. 
et al.: The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global 
change research, IEEE Transactions on Geoscience and Remote Sensing, 36(4), 1228-1249, doi: 
10.1109/36.701075, 1998. 
Kwiatkowska, E. J., Franz, B. A., Meister, G., McClain, C. R., and Xiong, X.: Cross calibration of ocean-color 
bands from Moderate-Resolution Imaging Spectroradiometer on Terra platform, Applied Optics, 47(36), 
6796–6810, doi:10.1364/AO.47.006796, 2008. 
Pan C., Xiong, X., Che, N.: MODIS pre-launch characterization of reflective solar bands response vs. Scan 
angle, Proc. SPIE – Earth Observeing Systems XII, Optical Engineering Applications, 66770R, 
doi:10.117/12.730573, 2007. 
Sun, J., Xiong, X., Guenther, B., and Barnes, W.: Radiometric stability monitoring of the MODIS reflective 
solar bands using the Moon, Metrologia, 40(1), S85, doi: 10.1088/0026-1394/40/1/319, 2003. 
Sun, J., Xiong, X., Angal, A., Chen, H., Wu, A., and Geng, X.: Time-dependent response versus scan angle for 
MODIS reflective solar bands, IEEE Transactions on Geoscience and Remote Sensing, 52(6), 3159-3174, doi: 
10.1109/TGRS.2013.2271448, 2014. 
Wenny, B. N., Sun, J., Xiong, X., Wu, A., Chen, H., Angal, A., Choi, T., Madhavan, S., Geng, X., Kuyper, J., and 
Tan, L.: MODIS calibration algorithm improvements developed for Collection 6 Level-1B, Proc. SPIE – Earth 
Observing Systems XV, 78071F, doi: 10.1117/12.860892, 2010. 
Xiong, X., Esposito, J., Sun, J., Pan, C., Guenther, B., and Barnes, W. L.: Degradation of MODIS optics and its 
reflective solar bands calibration, In Proc. SPIE – Sensors, Systems, and Next-Generation Satellites V, 4540, 
62-70. Doi: 10.1117/12.450646, 2001.  
Xiong, X., Eriyes, H., Xiong, S., Xie, X., Esposito, J., Sun, J., and Barnes, W.: Performance of Terra MODIS solar 
diffuser and solar diffuser stability monitor, In Proc. SPIE - Earth Observing Systems X, 58820S doi: 
10.1117/12.615334, 2005. 
Xiong, X., and Barnes, W.: An overview of MODIS radiometric calibration and characterization, Advances in 
Atmospheric Sciences, 23(1), 69-79, doi: 10.1007/s00376-006-0008-3, 2006. 

RC 3: “Additionally, is there a reason the authors have focused on Terra data? The manuscript may be 
strengthened by analysis of MODIS Aqua MYD10A1 and Terra MOD10A1 data. As stated, the MCD43A3 
data represents data acquired from both Terra and Aqua sensors. Calibration challenges which have 
primarily impacted Terra data may be teased apart by analysis of Aqua MYD10A1 data, Terra MOD10A1 
data, and combined sensor MCD43A3 data.” 

AR 3: The combined MCD43A3 data product was selected for this study (instead of the Terra or Aqua only) 
to ensure optimal spatial coverage of the QEI ice cover. The study is meant as a first assessment of QEI 
surface albedo and is just as concerned with the spatial patterns in albedo just as it is with the temporal patterns 

https://doi.org/10.1109/TGRS.2013.2271448
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of albedo change. We acknowledge that these data include observations from both the Aqua and Terra 
sensors, and are therefore affected by calibration challenges that impact the Terra data more than the 
Aqua data. The methods section (Section 2.1 MODIS sensor degradation) has been re-written to provide 
a better account of the issues relating to sensor degradation.  

Revised text, lines 90-138: 

‘2.1.1 MODIS sensor degradation 

The MODIS sensors are currently operating well beyond their expected [productive] six year lifetimes (Barnes 
et al, 1998; Justice 1998) and the detectors are degrading (Xiong et al., 2001). For both the MODIS Terra 
and Aqua sensors, instruments were calibrated pre-launch (radiometric, spatial, specular calibration) 
(Gunther et al., 1996). On-orbit calibration procedures were included to monitor the sensor degradation that 
is expected as the instruments are exposed to solar radiation (Gunther et al., 1996). For the reflective solar 
bands (0.41–2.2 µm) the on-board calibration system includes a solar diffuser (SD) calibrated using the solar 
diffuser stability monitor (SDSM) (Gunther et al., 1998). Lunar and Earth view observations (for select desert 
sites) are also used to assess radiometric stability (Sun et al., 2003). Even so, long-term scan mirror and 
wavelength dependent degradation, which are not sufficiently accounted for by the on-board calibrators 
(SD/SDMS), have been observed (Xiong et al., 2001; Lyapustin et al., 2014 and references therein). 
Calibration degradation effects, which are largely confined to the MODIS Terra sensor, are greatest in the 
blue band (B3) and decrease with increasing wavelength (Xiong and Barnes, 2006). An anomaly in the SD 
door operation (3 May 2003) and a decision to leave the door permanently open, exposing the SD to 
additional solar radiation, resulted in degradation of the SD on the MODIS Terra sensor that was faster than 
had originally been anticipated, and than was observed for the MODIS Aqua sensor (Xiong et al., 2005). 
Differences in the response versus scan angle (RVS) for the two side mirrors were also characterized pre-
launch (Barnes et al., 1998). The RVS is important because it describes the scan mirror’s response to different 
angles of incidence (AOI, for each band, detector and mirror side) (Sun et al., 2014). However, for the MODIS 
Terra sensor, following an overheating incident during pre-launch calibration, the RVS was not re-
characterized and the exact pre-launch RVS characteristics are not known (Pan et al., 2007; Sun et al., 2014 
and references therein). These issues have resulted in the performance of the MODIS Terra sensor being 
poorer than that of the MODIS Aqua sensor.  
As a normal part of the operational procedure, the MODIS Characterization Support Team 
(http:mcst.gsfc.nasa.gov) periodically updates the calibration algorithms and approaches, during which 
time the entire L1B record (calibrated top of the atmosphere radiances) is re-processed to reflect improved 
understanding and characterization of changes to the instruments. Even so, non-physical trends in MODIS 
Terra data products, that result from calibration drift, have been observed and are well documented (e.g. 
Xiong et al., 2001; Xiong and Barnes, 2006; Franz et al., 2008; Kwiatkowski et al., 2008; Wang et al., 2012; 
Lyapustin et al., 2014; and references therein). The latest revision occurred with the C6 data and includes 
on-orbit calibration procedures to mitigate long-term calibration drift, particularly at the shorter 
wavelengths (Wenny et al., 2010; Toller et al., 2013; Sun et al., 2014; Lyapustin et al., 2014). The C6 dataset 
uses the on-board calibrators (e.g. SD/SDMS) and the mirror side ratios from lunar standard and Earth view 
observations (Toller et al, 2013; Sun et al., 2014). The C6 revision also includes an additional approach, 
aimed primarily at the short-wavelength bands, that uses observations of desert sites (pseudo-invariant 
targets) to derive instrument calibration coefficients and RVS at multiple AOIs (instead of the two AOIs 
provided by the SD and lunar standard) (Toller et al, 2013; Sun et al., 2014). Although this vicarious approach 
is less accurate than the one that uses the mirror-side ratios calibrated using a lunar standard, it has been 
found to provide a significant improvement to the L1B radiance measurements relative to the C5 data, prior 
to ~2013 (Toller 2013; Lyapustin et al., 2014). Updated L1B C6 radiances can be up to several percent higher 
than the C5 values (e.g. Band 3 and for most recent period ~2013 onward) (Toller et al., 2013; Lyapustin et 
al. 2014; Casey et al., 2017). However, evaluation of the L1B C6 Band 3 (0.46–0.48 µm) radiance over a 
desert site (Libya 4) identified residual errors (decadal trends on the order of several tenths of 1%; Lyapustin 
et al., 2014) that are within the product’s stated accuracy (2% in absolute reflectance units for the reflective 
solar bands (Barnes et al., 1998; Justice et al., 1998)). The impact of the C6 updates on higher level MODIS 
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science products is difficult to quantify because the corrections are time, mirror-side, angular, and detector 
dependent (Toller et al., 2013; Lyapustin et al. 2014; Sun et al., 2014). In addition, the C6 revision includes 
updates to algorithms (in addition to the calibration updates) used in the derivation of specific higher-level 
products (https://www.umb.edu/spectralmass/terra_aqua_modis/v006 outlines changes made to the 
MCD43A3 C6 data product). Important for the current study, however, is that recent analysis of surface 
albedo over the Greenland Ice Sheet, immediately to the east of the QEI, using MODIS C6 data (including the 
MCD43A3 product used in this study) identified statistically significant albedo declines over the wet snow 
zone (Casey et al., 2017). For the most part, these declines are thought to be physically real (Casey et al., 
2017), which gives us confidence in the albedo trends presented here. There are no long-term, spatially 
distributed, in situ albedo records from the glaciers and ice caps in the QEI, so a comparison between the 
MCD43A3 records and ground observations is not possible. This is both a motivation for and a limitation of, 
the current study.’ 

RC 4: “Section 2.2 discusses MODIS LST data. Why was Collection 5 MOD11A2 data used? (Page 5, lines 
155-157) Communication with the MODIS data distributor, LP DAAC, revealed that MOD11A2 and 
MYD11A2 Collection 6 data have been available since mid-2015. Additionally, with the discussion of the 
Terra sensor degradation, it seems short-sighted to use Terra data only. Why was Terra data used? Was 
Aqua data used (i.e. MYD11A2)? If not, why not? Recommendation to add MYD11A2 data analysis.” 

AR 4: The manuscript has been revised and now uses the C6 MOD11A2 data instead of the C5 product. 
Terra data were used because of the time-period under investigation (2001-16). Terra data are available 
since 2000 while Aqua data are only available after 2002. Use of the Terra LST data (MOD11A2) allowed 
comparison with the albedo record for the full 2001-16 time period. 

RC 5: “Reorganization of content is advised toward readability. There are several cases where content is 
difficult to follow. Example, Results Section, 3.1 Suggestion to add sentences clarifying and further 
detailing results. As written, parts of the section are terse and non-intuitive.”  

AR 5: Section 3.1 has been re-ordered and additional text has been added for readability.  

Revised text, Section 3.1 (now lines 224-242): 

‘3.1 Mean summer albedo 
Annual maps of the mean summer clear-sky broadband shortwave black-sky MCD43A3 albedo for all 
glacier-covered surfaces in the QEI for the 2001–16 period are presented in Figure 2. The QEI-wide mean 
summer BSA, averaged across all 16 years, was 0.550 ± 0.115 (mean ± 1 standard deviation; Table 1). The 
lowest QEI-wide mean summer BSA (0.539 ± 0.127) was recorded in 2011 while the highest (0.668 ± 0.089) 
was recorded in 2013 (Table 1).  
In general, mean summer BSA is lower around the margins of the ice masses, where glacier ice is exposed in 
the summer, than it is in the higher elevation interior regions where snow or firn are exposed year-round 
(Fig. 2). During years when the QEI-wide mean summer BSA was low (e.g. 2011), we observed a broad zone 
of low albedo values (< 0.4) around the margins of the major ice masses (Fig. 2). Conversely, in years when 
the mean summer BSA was high (e.g. 2013), this zone was much less obvious. High data dropout at high 
elevations on Axel Heiberg Island, and over the summit of the Devon Ice Cap in 2014 and 2006 (Table S1), 
may have produced a negative albedo bias for these regions, since the albedo is typically greater at higher 
elevations. Aggregating the 2001–16 average mean summer BSA into 50 m elevation bins, we observed a 
linear rate of BSA increase with elevation (0.0085 per 50 m elevation bin, r2 = 0.99).  
In addition to the mean summer (JJA) BSA, the monthly mean BSA values for June, July, and August, were 
also investigated (Sect. 2.3) (Table 2, Fig. S1–S3). July had the lowest 16-year monthly mean BSA (0.551 ± 
0.131), followed closely by August (0.579 ± 0.127) (Table 2). In each year during the 2001–16 period, the 
highest summer monthly BSA was always recorded in June while the lowest monthly BSA was recorded in 
either July or August. The lowest monthly mean BSA values for June and August were recorded in 2011, while 



8 
 

the lowest July mean BSA occurred in 2012. The highest monthly mean BSA for both June and July occurred 
in 2013; for August, it occurred in 2003.’  

RC 6: Lines 196-197 Why does Table 1 2001-2016 average differ from manuscript stated average (i.e. Table 
1 states 0.599, manuscript states 0.550)?  

AR 6: The value of 0.599 in Table 1 refers to the mean summer (JJA) BSA. The value of 0.551 on line 196-
107 refers to the July mean BSA which is 0.551 ± 0.0131 and is presented in Table 2. As such, line 196-197 
(now lines 238-239): ‘July had the lowest 16-year monthly mean BSA (0.551 ± 0.131), followed closely by 
August (0.579 ± 0.127) (Table 2).’ remains unchanged except for addition of reference to appropriate 
Table (Table 2). 

RC 7: For example, readers may appreciate a sentence stating that in addition to the JJA averages, monthly 
mean albedo was also calculated (Table 2, see Section 2.3).  

AR 7: Section 3.1 has been re-ordered to make it easier to follow and a sentence (Line 209, highlighted) 
regarding the monthly mean BSA albedo has been added, with reference to the appropriate Table, Figures, 
and methods section.  

Revised text, section 3.1 (now lines 224-242): Line 209 highlighted 

‘3.1 Mean summer albedo 
Annual maps of the mean summer clear-sky broadband shortwave black-sky MCD43A3 albedo for all 
glacier-covered surfaces in the QEI for the 2001–16 period are presented in Figure 2. The QEI-wide mean 
summer BSA, averaged across all 16 years, was 0.550 ± 0.115 (mean ± 1 standard deviation; Table 1). The 
lowest QEI-wide mean summer BSA (0.539 ± 0.127) was recorded in 2011 while the highest (0.668 ± 0.089) 
was recorded in 2013 (Table 1).  
In general, mean summer BSA is lower around the margins of the ice masses, where glacier ice is exposed in 
the summer, than it is in the higher elevation interior regions where snow or firn are exposed year-round 
(Fig. 2). During years when the QEI-wide mean summer BSA was low (e.g. 2011), we observed a broad zone 
of low albedo values (< 0.4) around the margins of the major ice masses (Fig. 2). Conversely, in years when 
the mean summer BSA was high (e.g. 2013), this zone was much less obvious. High data dropout at high 
elevations on Axel Heiberg Island, and over the summit of the Devon Ice Cap in 2014 and 2006 (Table S1), 
may have produced a negative albedo bias for these regions, since the albedo is typically greater at higher 
elevations. Aggregating the 2001–16 average mean summer BSA into 50 m elevation bins, we observed a 
linear rate of BSA increase with elevation (0.0085 per 50 m elevation bin, r2 = 0.99).  
In addition to the mean summer (JJA) BSA, the monthly mean BSA values for June, July, and August, were 
also investigated (Sect. 2.3) (Table 2, Fig. S1–S3). July had the lowest 16-year monthly mean BSA (0.551 ± 
0.131), followed closely by August (0.579 ± 0.127) (Table 2). In each year during the 2001–16 period, the 
highest summer monthly BSA was always recorded in June while the lowest monthly BSA was recorded in 
either July or August. The lowest monthly mean BSA values for June and August were recorded in 2011, while 
the lowest July mean BSA occurred in 2012. The highest monthly mean BSA for both June and July occurred 
in 2013; for August, it occurred in 2003.’  

RC 8: Include references to Tables, methods as appropriate. 

AR 8: Additional references to Tables, Figures, and methods have been added throughout These are 
identified on the markup copy, some examples are provided below. 

Examples: 

Results Section 3.1, lines 225-239: 
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‘Annual maps of the mean summer clear-sky broadband shortwave black-sky MCD43A3 albedo for all 
glacier-covered surfaces in the QEI for the 2001–16 period are presented in Figure 2. The QEI-wide mean 
summer BSA, averaged across all 16 years, was 0.550 ± 0.115 (mean ± 1 standard deviation; Table 1). The 
lowest QEI-wide mean summer BSA (0.539 ± 0.127) was recorded in 2011 while the highest (0.668 ± 0.089) 
was recorded in 2013 (Table 1).  
In general, mean summer BSA is lower around the margins of the ice masses, where glacier ice is exposed in 
the summer, than it is in the higher elevation interior regions where snow or firn are exposed year-round 
(Fig. 2). During years when the QEI-wide mean summer BSA was low (e.g. 2011), we observed a broad zone 
of low albedo values (< 0.4) around the margins of the major ice masses (Fig. 2). Conversely, in years when 
the mean summer BSA was high (e.g. 2013), this zone was much less obvious. High data dropout at high 
elevations on Axel Heiberg Island, and over the summit of the Devon Ice Cap in 2014 and 2006 (Table S1), 
may have produced a negative albedo bias for these regions, since the albedo is typically greater at higher 
elevations. Aggregating the 2001–16 average mean summer BSA into 50 m elevation bins, we observed a 
linear rate of BSA increase with elevation (0.0085 per 50 m elevation bin, r2 = 0.99).  
In addition to the mean summer (JJA) BSA, the monthly mean BSA values for June, July, and August, were 
also investigated (Sect. 2.3) (Table 2, Fig. S1–S3). July had the lowest 16-year monthly mean BSA (0.551 ± 
0.131), followed closely by August (0.579 ± 0.127) (Table 2).’ 

Results Section 3.2.1, lines 245-250: 

‘The mean summer BSA anomalies, relative to the 2001–16 mean, are presented in Figure 3 and Table 1. For 
consistency with the regression analysis (Sect. 3.3), BSA anomalies were only computed for pixels having 
mean summer BSA observations in 11 or more of the 16 years (Sect. 2.3). The period 2001–16 is 
characterised by a six-year period of positive BSA anomalies (2001–06) followed by a six-year period of 
negative BSA anomalies (2007–12) (Table 1).’ 

Results Section 3.2.2, lines 285-287: 

‘In addition to the mean summer (JJA) BSA anomalies, the mean June, July, and August BSA anomalies were 
also examined (Fig. S4–S6) (Sect. 2.3). The sign of the mean July BSA anomaly (Table 2) was always 
consistent with that of the mean summer (JJA) BSA anomaly (Table 1).’ 

RC 9: Similarly, in the Discussion section, it is stated that “delayed snowfall onset and limited melt in 
August were inferred from the GRACE mass change record”. However, earlier in the manuscript, 
speculative statements are made on snowfall patterns, implying there are no quantitative data nor 
analyses to cite for QEI. Use of a specific snowfall proxy data (i.e. GRACE, reanalysis) or other observational 
datasets would be more quantitative than speculative remarks currently in the Results and Discussions 
sections.  

AR 9: While we agree that quantified data based statements are preferred over speculation where 
possible, in the case of the QEI ice cover, spatially-distributed in-situ precipitation measurements do not 
exist for this time-period. Where appropriate, speculative comments have been removed from the text 
(see RC/AR 28). A reference to recent modeled precipitation changes (Vincent et al. 2015) (RC/AR 14) was 
added to the introduction. Vincent et al. (2015) found an increase in precipitation and an increase in the 
ratio of snowfall to total precipitation over the Canadian Arctic during the period 1948-2012. However, it 
is important to note that these trends were calculated by gridding climate station data (50km x 50km 
grid). There are only three such stations (Resolute Bay, Eureka, Alert) in the QEI and none of these are 
located over ice. Because of the coarse spatial resolution of the modelled data and the caveat that these 
trends were not validated over the permanent ice cover, the modelled data were not useful for validating 
trends at the scale of the individual ice caps which are the focus of our study. 

We did consider using other modeled climate data in our study. The CanRCM4 (0.44°; 0.22° up to 2009) 
and MARv3.5.2 20 km monthly data forced with ERA Interim were investigated. However, we found the 
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spatial resolution of these data to be too coarse to discern spatial patterns in precipitation, and MAR 
results only covered a part of the QEI. Similar issues of spatial resolution were encountered with the 
NCEP/NCAR Reanalysis R1 temperature and precipitation data (2.5°x2.5° grid). Additionally, the absence 
of in-situ measurements on ice means that we are unable to validate these datasets.  For the temperature 
record, it was possible to use in-situ climate records from stations located on the ice (Agassiz and Devon 
Ice Caps) to validate the NCEP/NCAR Reanalysis R1 data and MODIS LST records (Sharp et al., 2011). Sharp 
et al. (2011) found upper-air (700hPa) air temperatures from NCEP/NCAR Reanalysis R1 data to be well 
correlated with on-ice air temperature records, available for the Devon (1997-2009) and Agassiz (1988-
2009) Ice Caps. Both Sharp et al. 2011 (2000-06) and Mortimer et al. 2016 (2000-15) found the 700hPa air 
temperatures to be strongly correlated with the MODIS LST record. A similar comparison is not possible 
for precipitation due to the absence of in situ measurements on ice, and caution was taken not to over-
interpret precipitation trends.  

The GRACE data do not provide detailed spatial information about snowfall patterns. However, when 
combined with existing knowledge of the accumulation and ablation seasons in the region these data can 
provide information about the relative timing of the transition from summer mass loss (which ends when 
the minimum annual glacier mass is reached) to the winter period of mass gain (inferred from the onset 
of mass increase) which occurs in autumn. This is described in lines 454-461 of the revised manuscript. 

Revised text, lines 454-461: 

‘To investigate the relationship between the albedo record and variability in precipitation we examined the 
cumulative mass change record for the QEI from the Gravity Recovery and Climate Experiment (GRACE; 
Wolken et al. (2016), extended to 2016 (B. Wouters, personal communication, 2017)).  The record shows 
that in 2006, 2010, and 2016 (the years when PC2 of the 16-year mean summer BSA record had the largest 
EOFs of any Principal Component, Sect. 3.4), once the annual minimum glacier mass was reached, there was 
a prolonged period of constant low mass (i.e. no melt or snowfall) before fall/winter accumulation began 
(inferred from an increase in mass). In other years, there was a sharp transition from the local end-of-
summer mass minimum to the period of seasonally increasing mass.’ 

RC 10: Two specific areas of speculation are: (1) Results Section 3.1, line 203, ‘may indicate early onset of 
snowfall that fall’ and (2) Results Section 3.2, lines 290-292 snowfall patterns may be changing in QEI). 
Quantified data based statements are preferred over speculation where possible. 

AC 10: Again, while we agree that quantitative statements are preferred over speculation, the absence of 
in-situ precipitation data limits our ability to provide them. The specific areas of concern noted in RC 10 
have been removed from the manuscript. 

RC 11: Recommendation for the authors to clearly state the additional QEI LST analysis provided in this 
manuscript as compared to Mortimer et al., 2016. (See some line by line comments below.) I recommend 
considering the role of the QEI LST analysis in this manuscript. 

RC11a: Recommendation for the authors to clearly state the additional QEI LST analysis provided in this 
manuscript as compared to Mortimer et al., 2016. (See some line by line comments below.) 

AR 11a: Following your recommendations, the manuscript has been revised and now uses the MOD11A2 
C6 data instead of the C5 data. Text has been added to the Methods (Section 2.2) to clearly state the 
differences in the QEI LST analysis provided in this manuscript compared to Mortimer et al., 2016.  

Revised additional text, lines 175-177: 
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‘The LST analyses presented here are an update of those presented by Mortimer et al. (2016) which 
used MODIS C5 data. The two analyses also differ in the time period used (we use 2001–16 instead 
of 2000–15 to coincide with the BSA analysis).’ 

RC 11b: I recommend considering the role of the QEI LST analysis in this manuscript. 

AR 11b: Temperature changes drive the snow grain metamorphism and melt of snow which both affect 
its albedo. In addition, the removal of the seasonal snowpack (which exposes lower albedo firn or glacier 
ice), and the melt of glacier ice (which releases impurities which have low albedo and thus changes the 
surface albedo of both ice and snow) are driven by changing air and surface temperatures. Hence 
comparison of the LST and albedo datasets provides insight into the mechanisms driving albedo change 
in different regions of the QEI. As such, analyses of the LST dataset are included in this manuscript to help 
understand the observed spatiotemporal patterns of albedo change in the QEI. Additional text clarifying 
the reason for inclusion of the LST data has been added to both the methods (Section 2.2) and results 
(Section 3.5) sections, as well as to the conclusion.  

Revised text: 

Methods Section 2.2 lines 161-167 added text:  

‘Warmer surface temperatures increase the rates of grain metamorphism and snowmelt, resulting in larger 
snow grains which have a lower albedo than those of fresh snow (Wiscombe and Warren 1980; Colbeck 
1982) (Sect. 1). Air and surface temperatures also affect the timing of removal of the seasonal snowpack, 
which exposes lower albedo firn or glacier ice. Additionally, the melt of glacier ice releases impurities that 
have a low albedo and thus change the surface albedo of both ice and snow (e.g. Clarke and Noone 1985; 
Doherty et al., 2010; Sect. 1). As such, analysis of the glacier surface temperature and comparison of these 
data with the albedo record is included to help understand the observed spatiotemporal patterns of glacier 
albedo change in the QEI.’   

Results section 3.5 lines 394-396 added text:  

‘Owing to the positive feedback between albedo and surface temperature we would expect to observe 
strong increases in surface temperature where albedo declines were large. To investigate the relationship 
between temperature and albedo over the QEI, the 16-year mean summer LST record was compared with 
the 16-year mean summer BSA record (Sect. 2.3).’  

Conclusion, added text (lines 476-485): 

‘Albedo declines increase the proportion of incoming solar radiation absorbed at the air-ice interface, and 
thus the energy available to drive melt, warming, and further surface albedo decline. Warmer temperatures, 
in turn, increase the rate of snow grain metamorphism which lowers the albedo. Air and surface 
temperatures affect the removal (timing and extent) of the seasonal snowpack which exposes lower albedo 
firn and/or glacier ice, while melting glacier ice releases impurities that further reduce its albedo. Given that 
surface temperature and albedo are inextricably linked, knowing where and when albedo changes are likely 
to occur in future is important for predicting future rates of mass loss from the QEI ice caps. Recent 
investigations of atmospheric circulation patterns over the QEI (e.g. Gardner and Sharp, 2007) focused on 
characterization of July temperature and atmospheric conditions, since July is usually the month when melt 
rates peak. Our results suggest, however, that changes occurring during the month of August are also 
important, especially as the length of the melt season continues to increase.’ 

RC 12: Was the Randolph Glacier Inventory used to delineate QEI glacier analysis areas? If so, please state 
clearly where appropriate (i.e. manuscript text, figure captions) and cite. 
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AR 12: The Randolph Glacier Inventory was used to delineate QEI glacier areas throughout the analysis. 
This was stated in Line 186 (now line 220-222) of the original manuscript: ‘To ensure that only data for 
glaciated surfaces were retained, all BSA and LST outputs used in this analysis were clipped to the Randolph 
Glacier Inventory v3.2 region 32 (Arctic Canada North) reference polygons (Arendt et al., 2012; Pfeffer et 
al., 2014).’ 

RC 13: Page 2, line 38 – What is meant by ‘accelerated release’? Suggestion to reword, clarify intent. 

AR 13: Sentence reworded.  

Revised text, Line 36-38 (now lines 37-40): 
‘Albedo decreases can also be caused by aerosol deposition (Warren and Wiscombe, 1980), biological 
activity on glacier surfaces (Fountain et al., 2004), and the release of impurities contained within 
melting snow and ice, which become concentrated at the snow/ice surface (Clarke and Noone, 
1985; Conway et al., 1996; Flanner et al., 2007; Doherty et al., 2010).’ 

RC 14: Page 2, lines 40-42 – The authors are correct to state fresh snow would raise surface albedo. 
Suggestion to include QEI precipitation data quantifying the suggestion, or reference precipitation studies. 

AR 14: Reference to Vincent et al. (2015), who reported both an increase in total precipitation and an 
increase in the ratio of snowfall to total precipitation over the Canadian Arctic during the period 1948-
2012, has been added. These trends were calculated by gridding climate station data. In the QEI, there 
are only three such stations (Resolute Bay, Eureka, Alert) and none of them are located on glacier ice (see 
RC/AR 9). Reference to Box et al. (2012) who found a second-order negative albedo feedback (defined by 
a positive correlation between albedo and surface air temperature anomalies) in the accumulation area 
of the nearby Greenland Ice Sheet has also been added to the end of this sentence.  

Revised text: 
Lines 39-42 (now lines 40-43) 
‘Given the observed increases in air and glacier surface temperatures across the QEI (Mortimer et 
al., 2016) we anticipate a reduction in the surface albedo in this region, unless warming has also 
been accompanied by an increase in solid precipitation (Vincent et al., 2015) that is large enough 
to raise the surface albedo (e.g. Box et al., 2012).’  
Reference added 
Vincent, L. A., Zhang, X., Brown, R. D., Feng, Y., Mekis, E., Milewska, E. J., Wan, H., and Wang, X. 
L.: Observed trends in Canada’s climate and influence of low-frequency variability modes, Journal 
of Climate, 28, 4545-4560, doi: 10.1175/JCLI-D-14-00697.1, 2015. 

RC 15: Page 2, line 49 – Suggestion to clarify for readers the source of the temperature analysis used in 
referenced studies. 

AR 15: Text revised for clarity. 

Revised line 49 (now lines 49-52):  
‘Between 2000 and 2015, increases in QEI summer 700 hPa air temperatures derived from the 
NCEP/NCAR R1 Reanalysis (Kalnay and others, 1996) and glacier surface temperatures from the 
Moderate Resolution Imaging Spectroradiometer (MODIS) were greatest in the north and west of 
the QEI (Sharp et al., 2011; Mortimer et al., 2016). We do not know whether there is a similar 
spatial pattern in the albedo record.’ 

RC 16: Page 3, lines 89-91 – Suggestion to edit sentences. As written, one could glean that it is difficult to 
discriminate between surface snow and ice vs cloud spectral visible-thermal infrared response. This is not 
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always difficult to do spectrally. If the authors intend to discuss cloud remote sensing only, please clarify 
this. A more appropriate reference than Hall 2008a, may be Hall et al., 2002, MODIS snow-cover products, 
Remote Sensing of Environment, 83, 181-194. 

AR 16: Text moved and re-written for clarity. Reference to Hall et al. (2002) has been added. The issue of 
concern here is the presence of clouds which can potentially introduce additional variability in the dataset 
(due to the removal of data when clouds are detected) that is not representative of physical changes on 
the surface. 

Revised text (now lines 139-144):  
‘Furthermore, the MCD43A3 data used here were produced only under clear sky conditions (Hall 
et al., 2002; 2012). A conservative cloud mask is applied to remove observations made when 
clouds are detected (Ackerman et al., 1998). The resulting data gaps may introduce variability in 
the albedo record that is not representative of true physical change. Despite this, the MCD43A3 
albedo product has been found to provide a reasonable representation of the seasonal albedo 
cycle over glaciers and ice caps (e.g. Stroeve et al., 2006). Hence, in the absence of long-term 
ground measurements of glacier surface albedo in the QEI, we made the assumption that this is 
also the case in the QEI.’ 

Reference added: Hall, D. K., Riggs, G. A., Salomonson V. V. DiGirolamo N. E., Bayr K. J.: MODIS 
snow-cover products, Remote Sens. Environ., 83(1), 181-194, doi: 10.1016/S0034-4257(02)00095-
0, 2002. 

 
RC 16: Page 4, line 98 – Delete ‘some of’. 

AR 16: Deleted ‘some of’  

Revised text Line 98 (now lines 91-92): 
‘The MODIS sensors are currently operating well beyond their expected [productive] six year 
lifetimes (Barnes et al, 1998; Justice 1998) and the detectors are degrading (Xiong et al., 2001).’ 

RC 17: Page 4, line 102 – Lyapustin et al. was not the first to report on Terra’s band degradation. 
Recommendation to additionally read and cite early / appropriate work, e.g. Xiong et al., 2001, 
Degradation of MODIS optics and its reflective solar bands calibration, doi: 10.1117/12.450646 
Xiong and Barnes, 2006, An overview of MODIS radiometric calibration and characterization, doi: 
10.1007/s00376-006-0008-3  
Sun et al., 2014 Time-dependent response versus scan angle for MODIS reflective solar bands, IEEE TGRS, 
doi: 10.1109/TGRS.2013.2271448 

AR 17: References to earlier studies have been added following additional review of the relevant literature 
(see RC/AR 18). References to Sun et al. (2014) and Xiong and Barnes (2006) are included in a revised 
section on MODIS sensor degradation (lines 90-138). 

Revised text: 

Line 102 (now line 91-92): 
‘The MODIS sensors are currently operating well beyond their expected [productive] six year 
lifetimes (Barnes et al, 1998; Justice 1998) and the detectors are degrading (Xiong et al., 2001).’ 

Revised methods section 2.1 (lines 90-138) text with references to Xiong et al. (2001), Xiong and 
Barnes (2006) and Sun et al. (2014) are highlighted: 
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  ‘2.1.1 MODIS sensor degradation  

The MODIS sensors are currently operating well beyond their expected [productive] six year lifetimes (Barnes 
et al, 1998; Justice 1998) and the detectors are degrading (Xiong et al., 2001). For both the MODIS Terra 
and Aqua sensors, instruments were calibrated pre-launch (radiometric, spatial, specular calibration) 
(Gunther et al., 1996). On-orbit calibration procedures were included to monitor the sensor degradation that 
is expected as the instruments are exposed to solar radiation (Gunther et al., 1996). For the reflective solar 
bands (0.41–2.2 µm) the on-board calibration system includes a solar diffuser (SD) calibrated using the solar 
diffuser stability monitor (SDSM) (Gunther et al., 1998). Lunar and Earth view observations (for select desert 
sites) are also used to assess radiometric stability (Sun et al., 2003). Even so, long-term scan mirror and 
wavelength dependent degradation, which are not sufficiently accounted for by the on-board calibrators 
(SD/SDMS), have been observed (Xiong et al., 2001; Lyapustin et al., 2014 and references therein). 
Calibration degradation effects, which are largely confined to the MODIS Terra sensor, are greatest in the 
blue band (B3) and decrease with increasing wavelength (Xiong and Barnes, 2006). An anomaly in the SD 
door operation (3 May 2003) and a decision to leave the door permanently open, exposing the SD to 
additional solar radiation, resulted in degradation of the SD on the MODIS Terra sensor that was faster than 
had originally been anticipated, and than was observed for the MODIS Aqua sensor (Xiong et al., 2005). 
Differences in the response versus scan angle (RVS) for the two side mirrors were also characterized pre-
launch (Barnes et al., 1998). The RVS is important because it describes the scan mirror’s response to different 
angles of incidence (AOI, for each band, detector and mirror side) (Sun et al., 2014). However, for the MODIS 
Terra sensor, following an overheating incident during pre-launch calibration, the RVS was not re-
characterized and the exact pre-launch RVS characteristics are not known (Pan et al., 2007; Sun et al., 2014 
and references therein). These issues have resulted in the performance of the MODIS Terra sensor being 
poorer than that of the MODIS Aqua sensor.  
As a normal part of the operational procedure, the MODIS Characterization Support Team 
(http:mcst.gsfc.nasa.gov) periodically updates the calibration algorithms and approaches, during which 
time the entire L1B record (calibrated top of the atmosphere radiances) is re-processed to reflect improved 
understanding and characterization of changes to the instruments. Even so, non-physical trends in MODIS 
Terra data products, that result from calibration drift, have been observed and are well documented (e.g. 
Xiong et al., 2001; Xiong and Barnes, 2006; Franz et al., 2008; Kwiatkowski et al., 2008; Wang et al., 2012; 
Lyapustin et al., 2014; and references therein). The latest revision occurred with the C6 data and includes 
on-orbit calibration procedures to mitigate long-term calibration drift, particularly at the shorter 
wavelengths (Wenny et al., 2010; Toller et al., 2013; Sun et al., 2014; Lyapustin et al., 2014). The C6 dataset 
uses the on-board calibrators (e.g. SD/SDMS) and the mirror side ratios from lunar standard and Earth view 
observations (Toller et al, 2013; Sun et al., 2014). The C6 revision also includes an additional approach, 
aimed primarily at the short-wavelength bands, that uses observations of desert sites (pseudo-invariant 
targets) to derive instrument calibration coefficients and RVS at multiple AOIs (instead of the two AOIs 
provided by the SD and lunar standard) (Toller et al, 2013; Sun et al., 2014). Although this vicarious approach 
is less accurate than the one that uses the mirror-side ratios calibrated using a lunar standard, it has been 
found to provide a significant improvement to the L1B radiance measurements relative to the C5 data, prior 
to ~2013 (Toller 2013; Lyapustin et al., 2014). Updated L1B C6 radiances can be up to several percent higher 
than the C5 values (e.g. Band 3 and for most recent period ~2013 onward) (Toller et al., 2013; Lyapustin et 
al. 2014; Casey et al., 2017). However, evaluation of the L1B C6 Band 3 (0.46–0.48 µm) radiance over a 
desert site (Libya 4) identified residual errors (decadal trends on the order of several tenths of 1%; Lyapustin 
et al., 2014) that are within the product’s stated accuracy (2% in absolute reflectance units for the reflective 
solar bands (Barnes et al., 1998; Justice et al., 1998)). The impact of the C6 updates on higher level MODIS 
science products is difficult to quantify because the corrections are time, mirror-side, angular, and detector 
dependent (Toller et al., 2013; Lyapustin et al. 2014; Sun et al., 2014). In addition, the C6 revision includes 
updates to algorithms (in addition to the calibration updates) used in the derivation of specific higher-level 
products (https://www.umb.edu/spectralmass/terra_aqua_modis/v006 outlines changes made to the 
MCD43A3 C6 data product). Important for the current study, however, is that recent analysis of surface 
albedo over the Greenland Ice Sheet, immediately to the east of the QEI, using MODIS C6 data (including the 
MCD43A3 product used in this study) identified statistically significant albedo declines over the wet snow 
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zone (Casey et al., 2017). For the most part, these declines are thought to be physically real (Casey et al., 
2017), which gives us confidence in the albedo trends presented here. There are no long-term, spatially 
distributed, in situ albedo records from the glaciers and ice caps in the QEI, so a comparison between the 
MCD43A3 records and ground observations is not possible. This is both a motivation for and a limitation of, 
the current study.’ 

References added: 

Barnes, W. L., Pagano, T.S., and Salomonson V.V.: Prelaunch characteristics of the Moderate Resolution 
Imaging Spectroradiometer (MODIS) on EOS-AM1, IEEE Transactions on Geoscience and Remote 
Sensing, 36(4), 1088-1100, doi: 10.1109/36.700993, 1998. 
Franz, B.A., Kwiatkowska, E.J., Meister, G. and McClain, C.R.: Moderate Resolution Imaging 
Spectroradiometer on Terra: limitations for ocean color applications, Journal of Applied Remote Sensing, 
2(1), 023525, doi: 10.1117/1.2957964, 2008.  
Guenther, B., Barnes, W., Knight, E., Barker, J., Harnden, J., Weber, R., Roberto, M., Godden, G., 
Montgomery, H., and Abel, P.: MODIS calibration: a brief review of the strategy for the at-launch calibration 
approach, Journal of Atmospheric and Oceanic Technology, 13(2), 274-285. doi: 10.1175/1520-
0426(1996)013<0274:MCABRO>2.0.CO;2, 1996 
Guenther, B. Godden, G. D., Xiong, X., Knight, E.J., Qiu, S. Y., Montgomery, H., Hopkins, M. M., Khayat, M. 
G., and Zhidong Hao, Z.: Prelaunch algorithm and data format for the Level 1 calibration products for the 
EOS-AM1 Moderate Resolution Imaging Spectroradiometer (MODIS), IEEE Transactions on Geoscience and 
Remote Sensing, 36(4), 1142-1151, doi: 10.1109/36.701021, 1998. 
Justice, C.O., Vermote, E., Townshend, J.R.G., Defries, R., Roy, D. P., Hall, D. K., Vincent V. Salomonson V. V. 
et al.: The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global 
change research, IEEE Transactions on Geoscience and Remote Sensing, 36(4), 1228-1249, doi: 
10.1109/36.701075, 1998. 
Kwiatkowska, E. J., Franz, B. A., Meister, G., McClain, C. R., and Xiong, X.: Cross calibration of ocean-color 
bands from Moderate-Resolution Imaging Spectroradiometer on Terra platform, Applied Optics, 47(36), 
6796–6810, doi:10.1364/AO.47.006796, 2008. 
Pan C., Xiong, X., Che, N.: MODIS pre-launch characterization of reflective solar bands response vs. Scan 
angle, Proc. SPIE – Earth Observeing Systems XII, Optical Engineering Applications, 66770R, 
doi:10.117/12.730573, 2007. 
Sun, J., Xiong, X., Guenther, B., and Barnes, W.: Radiometric stability monitoring of the MODIS reflective 
solar bands using the Moon, Metrologia, 40(1), S85, doi: 10.1088/0026-1394/40/1/319, 2003. 
Sun, J., Xiong, X., Angal, A., Chen, H., Wu, A., and Geng, X.: Time-dependent response versus scan angle for 
MODIS reflective solar bands, IEEE Transactions on Geoscience and Remote Sensing, 52(6), 3159-3174, doi: 
10.1109/TGRS.2013.2271448, 2014. 
Wenny, B. N., Sun, J., Xiong, X., Wu, A., Chen, H., Angal, A., Choi, T., Madhavan, S., Geng, X., Kuyper, J., and 
Tan, L.: MODIS calibration algorithm improvements developed for Collection 6 Level-1B, Proc. SPIE – Earth 
Observing Systems XV, 78071F, doi: 10.1117/12.860892, 2010. 
Xiong, X., Esposito, J., Sun, J., Pan, C., Guenther, B., and Barnes, W. L.: Degradation of MODIS optics and its 
reflective solar bands calibration, In Proc. SPIE – Sensors, Systems, and Next-Generation Satellites V, 4540, 
62-70. Doi: 10.1117/12.450646, 2001.  
Xiong, X., Eriyes, H., Xiong, S., Xie, X., Esposito, J., Sun, J., and Barnes, W.: Performance of Terra MODIS solar 
diffuser and solar diffuser stability monitor, In Proc. SPIE - Earth Observing Systems X, 58820S doi: 
10.1117/12.615334, 2005. 
Xiong, X., and Barnes, W.: An overview of MODIS radiometric calibration and characterization, Advances in 
Atmospheric Sciences, 23(1), 69-79, doi: 10.1007/s00376-006-0008-3, 2006. 

RC 18: Page 4, paragraph 3. Suggestion for authors to reread literature on MODIS sensor calibration, 
degradation and capabilities. Line 110, more correct to state that C6 did improve radiance measurements 
from launch to ~2013. It remains to be assessed how accurate and reliable MODIS C6 data will be moving 

https://doi.org/10.1109/TGRS.2013.2271448
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forward from C6 implementation (~2013 to present).  Line 110: Recommendation to check the MODIS 
Characterization Support Team literature https://mcst.gsfc.nasa.gov/publications?f%5Btype%5D=102 .  

AR 18: Literature has been reviewed and have been included in the revised methods section (Section 
2.1.1) presented above. Specific mention of the improved radiances up until ~2013 has been added.  

Revised text, Line 110 (now lines 121-123):  
‘Although this vicarious approach is less accurate than the one that uses the mirror-side ratios 
calibrated using a lunar standard, it has been found to provide a significant improvement to the 
L1B radiance measurements relative to the C5 data, prior to ~2013 (Toller 2013; Lyapustin et al., 
2014).’  

RC 19: For lines 113-114, it is not that the sensor is capable of identifying trends greater than 0.01, so 
much as +/- 0.01 is the limit of MODIS sensor accuracy and precision. The paragraph could be rewritten 
to be more informative and clear regarding MODIS sensor design and capabilities. 

AC 19: This paragraph has been re-written to be more informative and accurate regarding MODIS sensor 
design and capabilities. The text ‘is capable of identifying trends greater than 0.01’ has been removed.  

Revised methods text is included with RC/AR 20, below. 

RC 20: The paragraph (Page 4, Paragraph 3) could be rewritten to be more informative and clear regarding 
MODIS sensor design and capabilities.  

AR 20: MODIS Characterization Support Team literature has been reviewed and this section has been re-
written to be more informative.  

Revised text, lines 90-138: 

‘2.1.1 MODIS sensor degradation 

The MODIS sensors are currently operating well beyond their expected [productive] six year lifetimes (Barnes 
et al, 1998; Justice 1998) and the detectors are degrading (Xiong et al., 2001). For both the MODIS Terra 
and Aqua sensors, instruments were calibrated pre-launch (radiometric, spatial, specular calibration) 
(Gunther et al., 1996). On-orbit calibration procedures were included to monitor the sensor degradation that 
is expected as the instruments are exposed to solar radiation (Gunther et al., 1996). For the reflective solar 
bands (0.41–2.2 µm) the on-board calibration system includes a solar diffuser (SD) calibrated using the solar 
diffuser stability monitor (SDSM) (Gunther et al., 1998). Lunar and Earth view observations (for select desert 
sites) are also used to assess radiometric stability (Sun et al., 2003). Even so, long-term scan mirror and 
wavelength dependent degradation, which are not sufficiently accounted for by the on-board calibrators 
(SD/SDMS), have been observed (Xiong et al., 2001; Lyapustin et al., 2014 and references therein). 
Calibration degradation effects, which are largely confined to the MODIS Terra sensor, are greatest in the 
blue band (B3) and decrease with increasing wavelength (Xiong and Barnes, 2006). An anomaly in the SD 
door operation (3 May 2003) and a decision to leave the door permanently open, exposing the SD to 
additional solar radiation, resulted in degradation of the SD on the MODIS Terra sensor that was faster than 
had originally been anticipated, and than was observed for the MODIS Aqua sensor (Xiong et al., 2005). 
Differences in the response versus scan angle (RVS) for the two side mirrors were also characterized pre-
launch (Barnes et al., 1998). The RVS is important because it describes the scan mirror’s response to different 
angles of incidence (AOI, for each band, detector and mirror side) (Sun et al., 2014). However, for the MODIS 
Terra sensor, following an overheating incident during pre-launch calibration, the RVS was not re-
characterized and the exact pre-launch RVS characteristics are not known (Pan et al., 2007; Sun et al., 2014 
and references therein). These issues have resulted in the performance of the MODIS Terra sensor being 
poorer than that of the MODIS Aqua sensor.  



17 
 

As a normal part of the operational procedure, the MODIS Characterization Support Team 
(http:mcst.gsfc.nasa.gov) periodically updates the calibration algorithms and approaches, during which 
time the entire L1B record (calibrated top of the atmosphere radiances) is re-processed to reflect improved 
understanding and characterization of changes to the instruments. Even so, non-physical trends in MODIS 
Terra data products, that result from calibration drift, have been observed and are well documented (e.g. 
Xiong et al., 2001; Xiong and Barnes, 2006; Franz et al., 2008; Kwiatkowski et al., 2008; Wang et al., 2012; 
Lyapustin et al., 2014; and references therein). The latest revision occurred with the C6 data and includes 
on-orbit calibration procedures to mitigate long-term calibration drift, particularly at the shorter 
wavelengths (Wenny et al., 2010; Toller et al., 2013; Sun et al., 2014; Lyapustin et al., 2014). The C6 dataset 
uses the on-board calibrators (e.g. SD/SDMS) and the mirror side ratios from lunar standard and Earth view 
observations (Toller et al, 2013; Sun et al., 2014). The C6 revision also includes an additional approach, 
aimed primarily at the short-wavelength bands, that uses observations of desert sites (pseudo-invariant 
targets) to derive instrument calibration coefficients and RVS at multiple AOIs (instead of the two AOIs 
provided by the SD and lunar standard) (Toller et al, 2013; Sun et al., 2014). Although this vicarious approach 
is less accurate than the one that uses the mirror-side ratios calibrated using a lunar standard, it has been 
found to provide a significant improvement to the L1B radiance measurements relative to the C5 data, prior 
to ~2013 (Toller 2013; Lyapustin et al., 2014). Updated L1B C6 radiances can be up to several percent higher 
than the C5 values (e.g. Band 3 and for most recent period ~2013 onward) (Toller et al., 2013; Lyapustin et 
al. 2014; Casey et al., 2017). However, evaluation of the L1B C6 Band 3 (0.46–0.48 µm) radiance over a 
desert site (Libya 4) identified residual errors (decadal trends on the order of several tenths of 1%; Lyapustin 
et al., 2014) that are within the product’s stated accuracy (2% in absolute reflectance units for the reflective 
solar bands (Barnes et al., 1998; Justice et al., 1998)). The impact of the C6 updates on higher level MODIS 
science products is difficult to quantify because the corrections are time, mirror-side, angular, and detector 
dependent (Toller et al., 2013; Lyapustin et al. 2014; Sun et al., 2014). In addition, the C6 revision includes 
updates to algorithms (in addition to the calibration updates) used in the derivation of specific higher-level 
products (https://www.umb.edu/spectralmass/terra_aqua_modis/v006 outlines changes made to the 
MCD43A3 C6 data product). Important for the current study, however, is that recent analysis of surface 
albedo over the Greenland Ice Sheet, immediately to the east of the QEI, using MODIS C6 data (including the 
MCD43A3 product used in this study) identified statistically significant albedo declines over the wet snow 
zone (Casey et al., 2017). For the most part, these declines are thought to be physically real (Casey et al., 
2017), which gives us confidence in the albedo trends presented here. There are no long-term, spatially 
distributed, in situ albedo records from the glaciers and ice caps in the QEI, so a comparison between the 
MCD43A3 records and ground observations is not possible. This is both a motivation for and a limitation of, 
the current study.  

References added: 
Barnes, W. L., Pagano, T.S., and Salomonson V.V.: Prelaunch characteristics of the Moderate Resolution 
Imaging Spectroradiometer (MODIS) on EOS-AM1, IEEE Transactions on Geoscience and Remote 
Sensing, 36(4), 1088-1100, doi: 10.1109/36.700993, 1998. 
Franz, B.A., Kwiatkowska, E.J., Meister, G. and McClain, C.R.: Moderate Resolution Imaging 
Spectroradiometer on Terra: limitations for ocean color applications, Journal of Applied Remote Sensing, 
2(1), 023525, doi: 10.1117/1.2957964, 2008.  
Guenther, B., Barnes, W., Knight, E., Barker, J., Harnden, J., Weber, R., Roberto, M., Godden, G., 
Montgomery, H., and Abel, P.: MODIS calibration: a brief review of the strategy for the at-launch calibration 
approach, Journal of Atmospheric and Oceanic Technology, 13(2), 274-285. doi: 10.1175/1520-
0426(1996)013<0274:MCABRO>2.0.CO;2, 1996 
Guenther, B. Godden, G. D., Xiong, X., Knight, E.J., Qiu, S. Y., Montgomery, H., Hopkins, M. M., Khayat, M. 
G., and Zhidong Hao, Z.: Prelaunch algorithm and data format for the Level 1 calibration products for the 
EOS-AM1 Moderate Resolution Imaging Spectroradiometer (MODIS), IEEE Transactions on Geoscience and 
Remote Sensing, 36(4), 1142-1151, doi: 10.1109/36.701021, 1998. 
Justice, C.O., Vermote, E., Townshend, J.R.G., Defries, R., Roy, D. P., Hall, D. K., Vincent V. Salomonson V. V. 
et al.: The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global 
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change research, IEEE Transactions on Geoscience and Remote Sensing, 36(4), 1228-1249, doi: 
10.1109/36.701075, 1998. 
Kwiatkowska, E. J., Franz, B. A., Meister, G., McClain, C. R., and Xiong, X.: Cross calibration of ocean-color 
bands from Moderate-Resolution Imaging Spectroradiometer on Terra platform, Applied Optics, 47(36), 
6796–6810, doi:10.1364/AO.47.006796, 2008. 
Pan C., Xiong, X., Che, N.: MODIS pre-launch characterization of reflective solar bands response vs. Scan 
angle, Proc. SPIE – Earth Observeing Systems XII, Optical Engineering Applications, 66770R, 
doi:10.117/12.730573, 2007. 
Sun, J., Xiong, X., Guenther, B., and Barnes, W.: Radiometric stability monitoring of the MODIS reflective 
solar bands using the Moon, Metrologia, 40(1), S85, doi: 10.1088/0026-1394/40/1/319, 2003. 
Sun, J., Xiong, X., Angal, A., Chen, H., Wu, A., and Geng, X.: Time-dependent response versus scan angle for 
MODIS reflective solar bands, IEEE Transactions on Geoscience and Remote Sensing, 52(6), 3159-3174, doi: 
10.1109/TGRS.2013.2271448, 2014. 
Wenny, B. N., Sun, J., Xiong, X., Wu, A., Chen, H., Angal, A., Choi, T., Madhavan, S., Geng, X., Kuyper, J., and 
Tan, L.: MODIS calibration algorithm improvements developed for Collection 6 Level-1B, Proc. SPIE – Earth 
Observing Systems XV, 78071F, doi: 10.1117/12.860892, 2010. 
Xiong, X., Esposito, J., Sun, J., Pan, C., Guenther, B., and Barnes, W. L.: Degradation of MODIS optics and its 
reflective solar bands calibration, In Proc. SPIE – Sensors, Systems, and Next-Generation Satellites V, 4540, 
62-70, doi: 10.1117/12.450646, 2001.  
Xiong, X., Eriyes, H., Xiong, S., Xie, X., Esposito, J., Sun, J., and Barnes, W.: Performance of Terra MODIS solar 
diffuser and solar diffuser stability monitor, In Proc. SPIE - Earth Observing Systems X, 58820S doi: 
10.1117/12.615334, 2005. 
Xiong, X., and Barnes, W.: An overview of MODIS radiometric calibration and characterization, Advances in 
Atmospheric Sciences, 23(1), 69-79, doi: 10.1007/s00376-006-0008-3, 2006.’ 

RC 21: Page 5, line 129 – Suggestion to move citation to correct location in the sentence, i.e. Schaaf and 
Wang 2015 reference should immediately follow MCD43 product mention. 

AR 21: Citation moved to earlier in the sentence. 

Revised Line 129 (now lines 147-149):  
‘Summer (1-2 June (day 152) to 30-31 August (day 243)) MODIS MCD43A3 and MCD43A2 C6 
(Schaaf and Wang, 2015) data for MODIS tiles h17v00, h16v00, h16v01, and h15v01 for the period 
2001-2016 were obtained from the NASA/USGS Land Processes Distributed Active Archive Center 
(http://lpdaac.usgs.gov/accessed November 2016).’  

RC 22: Page 5, line 141 – Awkward as written, suggestion to reword to clarify further use of BSA term e.g. 
‘henceforth BSA refers to the black sky albedo MODIS shortwave broadband data.’ 

AR 22: Line no longer included in manuscript.  

RC 23: Page 5, lines 151-152 – The authors seem to generalize in that “uncertainties in the MOD11A2 LSTs 
arise mainly from cloud contamination”. Suggestion to reread relevant literature and present accurately. 
Does the sentence refer to over snow only? 

AR 23: This sentence referred to uncertainties in the trends derived from the MOD11A2 data and not in 
the MOD11A2 data itself. The text has been revised for clarity.  
 
Revised text, lines 151-152 (now lines 179-183): 

‘Uncertainties in trends derived from the MOD11A2 LST data arise mainly from cloud 
contamination (Box et al., 2012; Hall et al., 2012) and the removal of observations for periods 
when clouds are detected (Ackerman et al., 1998; Hall et al., 2008b). Variability in the number of 
clear-sky days within each observation period and from one year to the next was not found to 
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introduce significant variability in the MODIS-derived LST relative to the true near-surface air 
temperature in the QEI (see Mortimer et al., 2016).’ 

RC 24: Page 6, line 159 – Is there a reference from precipitation records/data in QEI? i.e. what station, 
record or data is 400 mm/yr derived from? 

AR 24: The reference for the 400 mm/yr should be Braithwaite, 2005. In the original manuscript, this 
reference, which refers to both the temperature and precipitation ranges, was included at the end of the 
following sentence. The text has been revised to clarify this omission.  

Revised text line 159 (now lines 187-188): 
‘Annual precipitation in the QEI is low (<400 mm yr-1) and varies little from one year to 
the next; in contrast, the annual temperature range is large (> 40°C) (Braithwaite, 2005).’  

RC 25: Page 7, line 195 – Suggestion to include MCD43A3 for clarity and completeness. 

AR 25: Mention of MCD43A3 included for clarity and completeness, as suggested.  

Revised text line 195 (now line 225-226): 
‘Annual maps of the mean summer clear-sky broadband shortwave black-sky MCD43A3 albedo 
for all glacier-covered surfaces in the QEI for the 2001–16 period are presented in Figure 2.’ 

 
RC 26: Page 9, line 272 – Note that it is not only the calibration accuracy that limits the capability to 
measure trends, but also the sensor design. Please add reference to sensor capabilities (e.g. Justice et al., 
1998, doi: 10.1109/36.701075 and/or similar on MODIS instrument design and post-launch capabilities, 
see https://mcst.gsfc.nasa.gov/publications?f%5Btype%5D=102 ). 

AR 26: Sentence revised for accuracy in both the methods (Section #, line 202-205) and results (Section 
3.3.1, line 315) sections. Additional references to literature discussing sensor capabilities (Barnes et al., 
1998; Justice et al., 1998) have been added. References to the appropriate methods section have been 
included in the results.  

Revised text: 

Line 125-128 (Section 2.1.1): 

‘…evaluation of the L1B C6 Band 3 (0.46–0.48 µm) radiance over a desert site (Libya 4) identified residual 
errors (decadal trends on the order of several tenths of 1%; Lyapustin et al., 2014) that are within the 
product’s stated accuracy (2% in absolute reflectance units for the reflective solar bands (Barnes et al., 1998; 
Justice et al., 1998)). 

Lines 192-195 (now lines 202-205, Section 2.3): 
‘Following Casey et al. (2017), BSA trends between -0.001 yr-1 and +0.001 yr-1 are considered to be negligible. 
Negligible trends were defined by Casey et al. (2017) on the basis of the magnitude of the residual calibration 
uncertainties in the C6 data (on the order of several tenths of one percent in TOA reflectance (Lyaputsin et 
al., 2014)) over pseudo-invariant desert sites (Sect. 2.1.1).’  

Lines 298-299 (now Results Section 3.3.1 line 315):  
‘More than 95% of pixels experienced a non-negligible (> |0.001| yr-1, Sect. 2.3) decrease in summer BSA…’ 

References added: 
Barnes, W. L., Pagano, T.S., and Salomonson V.V.: Prelaunch characteristics of the Moderate Resolution 
Imaging Spectroradiometer (MODIS) on EOS-AM1, IEEE Transactions on Geoscience and Remote 
Sensing, 36(4), 1088-1100, doi: 10.1109/36.700993, 1998. 
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Justice, C.O., Vermote, E., Townshend, J.R.G., Defries, R., Roy, D. P., Hall, D. K., Vincent V. Salomonson V. V. 
et al.: The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global 
change research, IEEE Transactions on Geoscience and Remote Sensing, 36(4), 1228-1249, doi: 
10.1109/36.701075, 1998. 
 

RC 27: Page 12, lines 365-366, Suggestion to reword sentence, avoiding use of “positive (negative)” words 
side by side. 

AR 27: This line, as written, is no longer included in the revised manuscript.  

RC 28: Page 12, lines 376-377 It is stated that “delayed snowfall onset and limited melt in August were 
inferred from the GRACE mass change record”. Did the authors process GRACE data, or does this reference 
a study? If it references a study, please include the citation. If the authors processed GRACE data, please 
include mention of in Data and Methods. 

AR 28: Text has been re-organized for clarity. The above-mentioned delayed snowfall onset and limited 
melt in August were inferred from the GRACE mass change record data presented in Wolken et al. 
(2016), extended to 2016. The explanation of this was originally included in Section 3.3 (now section 
3.4). The more detailed explanation has now been moved to the discussion and has replaced the general 
comment to better describe how we used the GRACE data. 

Revised text (lines 454-462): 
‘To investigate the relationship between the albedo record and variability in precipitation we 
examined the cumulative mass change record for the QEI from the Gravity Recovery and Climate 
Experiment (GRACE; Wolken et al. (2016), extended to 2016 (B. Wouters, personal communication, 
2017)).  The record shows that in 2006, 2010, and 2016 (the years when PC2 of the 16-year mean 
summer BSA record had the largest EOFs of any Principal Component, Sect. 3.4), once the annual 
minimum glacier mass was reached, there was a prolonged period of constant low mass (i.e. no 
melt or snowfall) before fall/winter accumulation began (inferred from an increase in mass). In 
other years, there was a sharp transition from the local end-of-summer mass minimum to the 
period of seasonally increasing mass. This could indicate that in some years during the 2001–16 
period, variability in August snowfall may have influenced the mean summer BSA.’ 

RC 29: Page 13, lines 407-409 Example of content that may be better placed in the beginning of the 
manuscript. 

AR 29: We appreciate your recommendation to include a background section or to include some of this 
material at the beginning of the manuscript. In revising the manuscript, however, we found that this 
particular point fitted better towards the end as it helps to place the importance and relevance of the 
August BSA change in the context of existing literature.  

RC 30: Page 15, lines 465-466 Example of sentence where it is difficult to assess what is new in this 
manuscript vs. Mortimer et al., 2016. 

AR 30: The text from Lines 465-466 is no longer included in the revised manuscript. However, in response 
to this comment we reviewed the existing text to ensure that it was clear as to whether we were referring 
to the current study or to Mortimer et al. 2016. Specifically, in response to your comment regarding C5 vs 
C6 (RC 4), LST anomalies were recalculated and are presented in Figure S7. Additional text has been 
included to specify differences between Mortimer et al. 2016 and this study. Where possible, references 
to figures in the current text (i.e. Figure 7 and Figure S7) are used instead of referring to the earlier 
Mortimer et al. 2016 study. 
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Revised text and figures: 

Added text lines 176-179:  
‘The LST analyses presented here are an update of those presented by Mortimer et al. (2016) which 
used MODIS C5 data. The two analyses also differ in the time-period used (we use 2001-16 instead 
of 2000-15 to coincide with the BSA analysis).’ 

Figure S7 (added Figure): 

  

Figure S7: Mean August clear-sky BSA anomaly relative to the 2001–16 mean for the QEI ice caps relative to the 2001–16 
mean. White areas outside of the ice caps indicate non-glaciated ice cover. 
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Where possible, references to figures in the current text (i.e. Figure 7 and Figure S7) are used instead of 
referring to the earlier Mortimer et al. 2016 study. 
 

Revised line 273-276: 
‘In 2005 and 2006 (years when the mean summer QEI-wide BSA anomaly was near zero and there 
was a large amount of spatial variability in the mean summer BSA), BSA anomalies on the western-
most part of Axel Heiberg Island (Fig. 3) were double the magnitude of the QEI-wide BSA anomaly 
(Table 1) and of the same sign. A similar feature (large anomaly values of the same sign as the 
QEI-wide anomaly) was also observed in the LST anomaly record in 2005 (Fig. S7).’ 
Revised line 339-340:  
‘…even though strong increases in LST (>0.1°C yr-1) were observed in these locations between 2001 
and 2016 (Fig. 7).’  

RC 31: Figure 1 caption – Do the authors intend to reference Moderate Resolution Imaging 
Spectroradiometer instead of “Moderate Resolution Spectroradiometer”? 

AR 31: Figure 1 Correct, it should read Moderate Resolution Imaging Spectroradiometer instead of 
Moderate Resolution Spectroradiometer. In revised manuscript, MODIS is used in the figure caption 
instead of used instead of Moderate Resolution Imaging Spectroradiometer. 

Revised Figure 1 caption: 
‘Figure 1: Glaciated regions of the Queen Elizabeth Islands. Background image: MODIS 4 July 2011. 
Inset: red polygon shows location of Queen Elizabeth Islands, Arctic Canada.’  

RC 32: Figure 1 image – In some formats, it is difficult to differentiate the thematic colours used in the 
figure. Consider if there may be other colours to use. For reader friendliness, it may also help to move the 
legend and increase the font size of the legend text. Also, consider adding a label to the 8 regions. This 
may help readers in interpretation of Supplemental Table S2 

AR 32: Figure 1 revised. Bottom-right inset no longer included because regional BSA values are no longer 
referred to in text. Labels for the major ice masses have been included on the main map. Supplemental 
Table 2 has been removed. 

Revised Figure 1: 
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Figure 1: Glaciated regions of the Queen Elizabeth Islands. Background image: MODIS 4 July 2011. Inset: red 
polygon shows location of Queen Elizabeth Islands, Arctic Canada.  

RC 33: Figure 4 – Figure text, misspelled word ‘anomaly’ in two locations, please correct. 

AR 33: Figure 4 corrected for two erroneous spellings of ‘anomaly’ 

Revised Figure 4: 
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Figure 4: Mean summer (JJA) composite NCEP/NCAR Reanalysis 500 hPa geopotential height anomaly for (a) a 
period of large negative BSA anomalies (2001–04) and (b) a period of large positive BSA anomalies (2007–12). 
Source: https://www.esrl.noaa.gov/psd. 

RC 34: Figure 5 – Why there is no data (white in figure) for the period 2001-2016 in some locations of 
QEI ice? 

AR 34: Cloud cover results in an absence of data. The amount of missing data, presented in Table S1, varies 
between months and from one year to the next. Because of this variability, thresholds were set to ensure 
consistency between years in calculating the mean summer and mean monthly BSA. This was outlined in 
Section 2.3 lines 191-194: ‘For each year during the 2001–16 period, mean summer (JJA) BSA 
was calculated for pixels having at least 10 BSA observations in each month (June, July, August) 
and at least 45 of a possible 92 observations during the JJA period. These monthly thresholds 
ensure both an even distribution of BSA data throughout the summer season and consistency 
between different years.’  

Further, to ensure the trend in BSA was not biased towards extremely warm or cold years, regressions 
were only computed for pixels having at least 11 mean summer BSA observations. This was outlined in 
lines 197-202: ‘The mean summer (JJA) BSA and LST and the mean monthly (June, July, August) BSA, as 
well as the BSA and LST anomalies, were calculated on a pixel-by-pixel basis relative to the 2001–16 mean 
for pixels having mean summer observations in 11 or more years. These constituted ~87% and ~98% of 
possible BSA and LST pixels, respectively. Long-term rates of change in BSA and LST over the period 2001–
16 were determined by linear regression between the 16 year records of mean summer LST/BSA and time. 
Consistent with the BSA and LST anomalies, regressions were computed on a pixel-by-pixel basis for all 
pixels having mean summer observations for 11 or more years.’ 

RC 35: Figure S7 – Example of important, interesting QEI LST content for the authors to consider moving 
from the supplemental material to the main manuscript. 

AR 35: Figure S7, which was revised to use the C6 instead of the C5 data (see RC/AR 3), has been moved 
from supplemental material to the main text and is now Figure 7. 
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Figure 7 (revised and moved): 

 
Figure 7: QEI (a) 16 year average mean summer land surface temperature (°C) and (b) linear rate of change of mean 
summer LST (°C yr-1) for the period 2001-16 over the QEI ice caps. Background image: MODIS, 4 July 2011. Brown 
indicates non-glaciated land cover. 
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