Response to Reviewer 1

General comment: Thank you for the feedback on this paper and the suggestions, which led
to an improved manuscript. The major change suggested was to include more information on
the snow cover extent (climatology), and we have accordingly revised Figure 3 to include
observed and simulated SCE. A general point we will mention is that this overview of the
system’s performance was kept concise to establish a baseline for future model versions.

Specific comments/replies:

RC: This is a well-written and useful record of how well snow and sea ice are simulated
in an earth-system model and a related seasonal prediction system, albeit with rather
brief discussions for the large number of figures shown.

Reply: Thank you for the kind feedback. We attempted to keep the discussion concise with
the aim of establishing a baseline record of this system’s performance.

RC: There should at least be references to how the land surface components of CanSIPS
and CanESM2 represent snow, and any differences between them.

Reply: Thank you for this suggestion. This is addressed in the revised text, where we have
provided more detail on the component models in CanESM2, CanCM4, and CanCM3.

Changes to the manuscript: component models of CanESM2, CanCM4, and CanCMS3 are
listed and relevant citations included.

RC: Without a figure showing annual cycles in snow cover extent, it is hard to judge how
(physically) significant the trends in Figure 4 are. It would also be nice to see some time series
of modelled and observed SCE to judge the trends and variability.

Reply: Thank you for pointing this out. We have added two rows to Figure 3 showing the
seasonal cycle of SCE and used this to calculate the relative size of the observed changes in
SCE in the discussion of Figure 4. We decided not to add additional time series of SCE since
these trends are discussed extensively in Mudryk et al. (2017) and Mudryk et al. (in review,
https://www.the-cryosphere-discuss.net/tc-2017-198).

Changes to manuscript: Figure 3 expanded to include changes in snow cover extent (SCE)
and description of Figure 4 discusses magnitude of changes relative to climatology.

RC: A reference could be added in the conclusions for the design of LS3MIP
(https://www.geosci-model-dev.net/9/2809/2016/).

Reply: Thank you, added.

Change to manuscript: Reference added.



RC: Figure 5: information that the IQR of observations is based on 5 datasets is repeated
twice. Colour is redundant in this figure.

Reply: Thank you, corrected. We chose the coloring to distinguish the observations from the
models.

Change to manuscript: Figure caption corrected.

RC: Figure 6: information that spatial means of trends have not been removed is repeated
twice.

Reply: Thank you corrected.
Change to manuscript: Figure caption corrected.

RC: Figure 8: the latitude numbers could be rotated to be upright. Stating that the ORCA1
grid will be used without explanation or reference is not helpful.

Reply: Thank you, change to figure made and caption corrected.
Change to manuscript: Figure slightly modified and caption corrected.
RC: Figures 11 and 14: contours are labelled, but colour bars would be helpful.

Reply: Thank you, however in our view, the colors are intended to help distinguish features,
but since contours are labelled and described in the caption we decided not to include a
colorbar.

Changes to manuscript: none.

Response to Reviewer 2

General comment: We thank the reviewer for the detailed review and helpful comments. In
revising the ms we have made several changes that we hope address the overall issue of
readability and other shortcomings identified. The most important change we have made is to
revise the methodological description in Section 2 to make it easier to follow; we thank the
reviewer for pointing out this particular shortcoming.

Before continuing, we wish to make two general points. First, snow and sea ice analysis were
kept in the same paper to reflect work within the CanSISE project. Second, although there is
some review material in this study to provide background, and one figure included in the ms
has been previously published, this assessment is not, in our view, a review paper. We thus
did not feel it warranted to make this paper a ‘one-stop shop’ for information on the



Canadian modelling systems and the observational work carried out previously, which would
have increased the length and would have made the paper less readable. We'll return to
these points below.

Specific comments and replies:

RC: This draft is a review of studies carried out by the network of researchers within the
project CanSISE. It deals with the quality of land snow and sea ice simulations in the
CanESM2 earth system models, as well as the predictive capabilities of CanSIPS in
land snow and sea ice predictions, with a focus on Canada and Canadian sector of the
Arctic Ocean.

The draft is well written, and addresses a number of scientific studies, as well as
methodological topics related to model assessment. It will be an interesting and very
useful reference for the Canadian ESM and its predictive capacities. | recommend this
draft for publication. However, | did not find it easy to read and review, and | would like
to raise a few points that, according to me, would improve the manuscript.

(i) I find the paper a bit unbalanced, the ‘snow’ discussion being more developed than
the ‘sea ice’ one. Both discussions are also mostly unrelated. To me, it could question
the usefulness of having both snow and sea ice discussed in a single paper. | think

the authors should make an effort in harmonizing the presentation. It is obvious that
the same parameters drive both snow and sea ice biases in CanESM, but it should be
clearer. Additionally, the paper would be a bit clearer if sections 3 and 4 were structured
with subsection on sea ice and snow (3a, 3b, 3c...).

Reply: As mentioned in the general comment above, the decision to keep snow and sea ice
analysis in the same paper reflected the status of observational, modeling, and seasonal
forecast work with this model and the CanSISE project. We placed more emphasis on the
quality of the terrestrial snow simulation, and trend analysis with the snow simulation, for two
reasons: first, most of the observational work completed within the lifetime of CanSISE has
focused on terrestrial snow; second, and a related point, is the fact that the sea ice simulation
had well established shortcomings that simply can't be addressed with this version of the
model which the project was tasked with analyzing. Despite differences in simulation quality
of the free running model, both snow and sea ice seasonal prediction development has
occurred within the scope of the CanSISE project, and we thought it was worth documenting
both aspects within the current paper. As such, we have tried to establish a baseline for
future assessment of the model.

The reviewer also suggests that it is obvious that the same parameters drive both snow and
sea ice biases, but a single source of these biases are not obvious to us. For example, the
most unrealistic feature of the snow mass is a positive bias in spring, and the most unrealistic
feature of the sea ice is a negative bias in summer.

We agree that the sections needed to be better demarcated and hope that the current section
headings make the presentation clearer.



Changes to ms: We have added subsections demarcating separate focuses on snow
climatology and trends, and sea ice, in section 3. In the revision we have pointed out the
differences in quality between the snow and sea ice simulation, which suggests that more
focus should be placed on the snow simulation than the sea ice simulation. We have
provided more background on which results are better established from previous papers and
which are original to this paper.

RC: (ii) Like other review papers, there is a need to find the optimal level of details. To me,
there is a lot of references to past studies in this draft, which sometimes is not
selfexplanatory.

Although it really makes me want to read papers written by CanSISE’s

partners, | would find it useful to have more details in a reference paper as a ‘one-stop
shop’. For instance, provide more details on datasets included in the Blended-5 SWE;
remind the readers on some technical details: the components of CanESM/CanCM,
ensemble generation in the large ensemble, in CanSIPS, the definition of the assessment
regions. . . Tables could be used. Another related point is that the paper contains

a large number of figures, which are not always well-discussed in the main text, and
possibly too much in the captions.

Reply: We thank the reviewer for this comment and the suggestions. In the revision, we
agree about the need for more details in the text regarding the makeup of CanCM3, CanCM4,
and CanESM2. We have also tried to improve the description of the method for generating
the large ensemble.

Beyond this, however, it does not seem like the best idea for us to repeat with tables etc. the
many details that are found in previous papers. Although there is merit in the reviewer's
suggestions, there is something of a judgement call to be made here regarding whether this
paper should provide a 'one-stop shop' of the Canadian modelling systems as the reviewer
requests.

This brings us to the reviewer’s point about whether this study should be characterized as a
‘review’ or an ‘assessment’. The ms, to us, reflects a record of where this particular modelling
system sits in the context of its applications for climate prediction and projection, rather than
a typical review paper.

Regarding the level of details of figure descriptions: We opted to keep the description of the
figures concise but we have in this revision tried to add details where the text was unclear.
We have in the case of Figures 5-6 moved some of the detail to the main text and in the case
of Figure 3 and Figure 7 improved the description. Our general approach has been to put
details in the caption that would be used to point out features to the reader that would have
interrupted the flow of the main text.

Changes to the ms: We have added more details of the component model descriptions and
methodological details. We have adjust the level of detail in the text and the captions to make
the paper more readable.



RC: (iii) Finally, as a non-Canadian (nearly) anonymous reviewer, | find the paper a bit too
Canadian-centered. | am not surprised since it is a review paper from a Canadian
project, and | acknowledge the major contribution of the CanSISE network to the field
of snow and sea ice predictions. Though, the authors may wish to refer more to others’
works. . .

Reply: We thank the reviewer for this suggestion. We agree that the work needed to be
placed in better context and have added some reference to previous work - the original ms
did indeed leave out explicit mention of work going on in seasonal sea ice prediction starting
from 2011. Our focus on Canada and the Canadian Arctic did to some extent reflect the
focus of research within this project and less of a broad assessment on the US and Eurasian
cryosphere. We believe that the focus is similar to other regionally focused literature in this
and other international journals, and reflects the regional focus of individual research
programs. In addition, the seasonal prediction system results need to be focused on
Canadian regions where products have been developed and assessed (e.g. the seasonal
snow depth product in Fig. 14). Thus we have opted not to change the focus.

Changes to ms: Citations and references to previous work have been added, including
reviewer’s suggestions and others we thought suitable.

RC:
Minor comments

The abstract is clear and well-written

P2, L12, ‘leading earth system’: this is true, but a bit subjective. | would stay neutral
and write ‘global’ earth system.

Reply: Thank you, language adjusted.
Changes to ms: Text has been changed.

RC:
P2, L16, ‘this study’: this paper is more a review than a study.

Reply:
Thank you, as we mentioned above, we are not in full agreement with the reviewer about the
characterization of this work, but we have reworded this.

Change to ms: Text has been changed to say "The purpose of this paper is to evaluate the
ability ..."

RC:
P3, L1, ‘related climate parameters’: these parameters should be defined once in the
draft: surface temperature, snow precipitation, sea surface temperature. . .

Reply:



Thank you, language adjusted, we now say "This study focuses on snow, sea ice and related
climate parameters and processes...". Please note that information related to surface winds
(Figure 10), soil moisture content (Fig. 12), and sea level pressure (implicit in the work
generating Fig. 16) is involved in the analysis here, but we didn’t want to include a long list at
this point.

Changes to ms: Text has been changed.

RC:

P3, L5, ‘a more complete a characterization’: too many a’s.
P3, L5, ‘observational uncertainty’.

Reply: Thank you, corrected.

Changes to ms: corrections made.

RC:

2. Models and data used

This section should be a bit re-written. | would start by a description of the component
of the coupled atmosphere-ocean-sea ice-land model, then describe the Earth System
Model (ie with Carbon cycle), and finally explain what is CanSIPS. It is more in line with
the order used to discuss the results in sections 3 and 4. And it seems to me more
logical to describe the components, before describing the initialization method...

Reply: We have revised the order of the description according to the reviewer's suggestions,
and thank the reviewer for this suggestion to improve the text. We opted not to include a lot
of detail as mentioned above, but have been more explicit about CanESM2, CanCM3,
CanCM4, and why we did not carry out a thorough analysis of CanCM4 in this paper.

Changes made to ms: Section 2 has been largely rewritten to reflect the reviewers comments
and provide a clearer path to the subsequent analysis.

RC:

P3, L11-12: Merryfield et al. (2013a) refer to the multi-system sea ice predictions combining
CanSIPS and CFSR. The reference should be Merryfield et al (2013b). Although

there is an inversion of both references in the main text. . . which is the impression |

have after reading the full draft...

P3, L16: what is ‘it’?

Reply: Thank you, both points corrected.

Changes made to ms: References and text corrected.



RC:
P3, L19: It is not clear to me what (3) does exactly. Is it about calibration? It could be
interesting to have an example.

Reply: This point was to make the broad point that it is an operation product that is used for
a variety of purposes - a couple of illustrative examples are included.

Changes made to ms: a reference to a figure in the paper the CanSIPS web site have been
added.

RC:

P3, L23-29: Is it possible to provide any reference on the benefit of having an ESM? Is
there any impact (positive or negative) of carbon cycle components on the state of the
physical components?

Reply:

It is true that Merryfield et al. 2013a included a limited assessment of CanCM3 and CanCM4,
which in principle could have been carried out in the areas of snow and sea ice for this paper.
However, the Earth System Model CanESM2 is the only ECCC model used in CMIP5, that is
forced with historical and projected forcings. Thus, the relevant runs of CanCM3 and
CanCM4 under CMIPS5 forcing protocols are not available for a clean comparison of the kind
suggested by the reviewer. In the absence of consistently forced simulations, it would be
difficult to attribute specific changes to the carbon cycle or to other differences. We have
added more background explaining this in the text.

In addition, the reviewer's comment did remind us of a salient point that springtime positive
biases in SWE were also found in the CanSIPS CanCM3 and CanCM4, whether or not they
were constrained by observed meteorological data, in Sospedra-Alfonso et al. (2016b). A
point to this effect has been added in Section 3.1

Changes made to ms: The reasons for the focus on CanESM2 has been clarified, and more
details have been provided to explain the relationships between the different model systems.

RC:
P4, L1: CanESM alone includes a prognostic carbon cycle, isn’t it?

Reply: Thank you, the revised text has corrected this.

Changes to ms: this has been corrected in the revision as part of the larger rewrite of section
2.

RC:
P4, L3-6: Could the authors provide a bit more details on the reasons of improvements
in CanCM4 relative to CanCM3? Is there any change in the model physics? Resolution?

Reply: Thank you for the suggestion, we mention the changes but leave the details to the



description in Merryfield et al. (2013a).

Changes to ms: We have added some more information about CanCM3 and CanCM4 in the
larger rewrite of section 2.

RC:

P4, L19: compared to many other CMIP5 models and operational seasonal prediction
systems (e.g. MetOffice is 1/40

, MeteoFrance is 10

).

P4, L19-23: it would be interesting to have somewhere information about the size of
ensembles run for seasonal predictions.

P4, L24-25, ‘much higher resolution’: what resolution?
Reply: Thank you, the suggested changes have been made.
Changes made to ms: several changes.

RC:
P5, L7: what perturbations are used to generate the ensemble?

Reply: As described in Merryfield et al. 2013, each ensemble member, assimilates the same
data but originates from different initial conditions. Thank you for the suggestion, but we
opted not to include this level of detail in the current paper, since it requires explaining more
about the initialization with details that are documented in the Merryfield paper.

RC:

To me, in this section 2, a discussion on ‘methodology’ is missing. What is the motivation
behind using the ‘Large ensemble’? Maybe the words ‘detection and attribution’

should be written somewhere. How do the authors define the regions over which the
assessment will be conducted? It would be useful at this stage, and will enable a
discussion on the resolution of the land-sea mask for instance...

Reply: Several modifications to the text were made, although the land-sea mask is not
referred to in this section.

Changes made to ms: text changed to clarify motivation of using large ensemble and
attribution of observed trends to externally forced signals.

RC:
P5, L15: is ‘temperature’ surface temperature? 2m-air temperature?

Reply: Thank you, this corrected to land-surface temperature throughout ms (as per
documentation of HadCRUT4 dataset).



Changes made to ms: “temperature" changed to land-surface temperature in most places.
RC:

P5, L16: see above about the differences between CanCM4 and CanESM.

Reply: This has been changed in the rewrite of Section 2.

RC:
P5, L24: what about the orography in the (low resolution) model?

Reply: We are not sure what the reviewer means by this. The orography is resolved as per the
resolution of the grid. Moving to higher resolution would potentially improve some details
over the Western Cordillera. But note that the precipitation bias in Figure 1 is widespread and
not confined to the Western Cordillera only.

RC:
P7, L34 and sq: shouldn’t it be the same for sea ice? See comment (i).

Reply: The reviewer is likely correct, but the point in response to (i) is that a detailed regional
look at sea ice trends for this model is problematic because of the pronounced biases in the
sea ice climatology.

RC:
P8, L25: in terms of climatology

P9, L7-8: what is ‘recently’? The review paper by Guémas and coauthors (see below)
is never cited and provides a useful state-of-the-art of seasonal prediction of the Arctic
sea ice.

Reply: thank you, corrections, clarification, and additional references were carried out.
Changes to the ms: minor corrections carried out.

RC:
P9, L26 and sq: the paragraph deals with land surface initialization, while it starts with
reference to ‘process representation of land surface’.

Reply: Added the words "and initialization" here. But we feel that the term ‘process’ should
still be used. The point is that although no process sensitivity studies were carried out,
distinctively initializating different components of the land surface model and looking at the
related potential predictability provides insight into processes relevant to the prediction
problem.

Changes made to ms: minor corrections.



RC:
P10, L27: referring to Guémas et al (2016) would be fine here too.

P11, L4: a reference to Chevallier and Salas-Mélia (2012) seems relevant here.

P12, L9-13: does it mean that future developments of CanESM/CanSIPS include increase
of resolution of the global model?

Reply: Thank you, references added. We did not want to comment on future releases of the
model beyond the points made in the ms.

Changes made to ms: references added.

RC:
P12, L23: reference to Lindsay et al. (2012) not in reference list. . . Is it really a viable solution?

Reply: Thanks for pointing this out. Thickness initialization is more of an aspiration, so we
added a qualifier and another reference.

Changes made to ms: minor changes on this line.

P12, L33-34: references for LS3MIP and ESM-SnowMIP?
Reply: Thank you, added.

Changes made to ms: reference added.

RC:
Figure 1: what is ‘temperature’?

Figure 3: definition of the regions considered (if | don’t want to download Mudryk et
al...)?

Figure 8: information on ORCA10 (not defined: reference?) seems not relevant here, or should
be discussed in the main text (e.g. while presenting the components or their possible
evolutions).

Reply: Thank you, all these changes have been made.

Changes made to ms: Figure captions changed.

RC:

References
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Guémas, V., Blanchard-Wrigglesworth, E., Chevallier, M., Day, J., Déqué, M., DoblasReyes,
F., Fuckar, N., Germe, A., Hawkins, E., Keeley, S., Koenigk, T., Salas y Mélia, D.,

Tietsche, S., 2016. A review on Arctic sea ice predictability and prediction on seasonalto-
decadal

timescales. Quarterly Journal of the Royal Meteorological Society, 142,

546-561. doi:10.1002/qj.2401.

Van den Hurk, B., Kim, H., Krinner, G., Seneviratne, S. |., Derksen, C., Oki, T., ...

Viovy, N. (2016). LS3MIP (v1. 0) contribution to CMIP6: the Land Surface, Snow

and Soil moisture Model Intercomparison Project-aims, setup and expected outcome,
Geosci. Model Dev., 9, 2809-2832.

Reply: Thank you for these references.

Changes made to ms: citations and references added.

To the editor: additional changes made to the ms.

Most of the Figures were changed slightly in the revised version.
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Abstract. This study assesses the ability of the Canadian Earth-system Model 2 (CanESM2) and the Canadian Seasonal to

Interannual Prediction System (CanSIPS) to simulate and predict, snow and sea ice from seasonal to multi-decadal timescales,

[Deleted: Canadian Seasonal to Interannual Prediction System

(CanSIPS) and the

with a focus on the Canadian sector. To account for observational uncertainty, model structural uncertainty, and internal
climate variability, the analysis uses multi-source observations, multiple Earth-System Models (ESMs) in Phase 5 of the

Coupled Model Intercomparison Project (CMIP5), and large initial condition ensembles of CanESM2 and other models. It is
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found that the ability of the CanESM2 simulation to capture snow-related climate parameters, such as cold-region surface
temperature and precipitation, lies within the range of currently available international models. Accounting for the considerable
disagreement among satellite-era observational datasets on the distribution of snow water equivalent, CanESM2 has too much

springtime snowmass over the Canada, reflecting a broader Northern Hemisphere positive bias. Biases in seasonal snow cover
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extent are generally less pronounced. CanESM?2 also exhibits retreat of springtime snow generally greater than observational

cover
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estimates, after accounting for observational uncertainty and internal variability. Sea ice is biased low in the Canadian Arctic,
which makes it difficult to assess the realism of long-term sea-ice trends there. The strengths and weaknesses of the modeling
system need to be understood as a practical tradeoff: the Canadian models are relatively inexpensive computationally because
of their moderate resolution, thus enabling their use in operational seasonal prediction and for generating large ensembles of

multidecadal simulations. Improvements in climate prediction systems like CanSIPS rely not just on simulation quality but
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also on using novel observational constraints and the ready transfer of research to an operational setting. Improvements in
seasonal forecasting practice arising from recent research include accurate initialization of snow and frozen soil, accounting
for observational uncertainty in forecast verification, and sea-ice thickness initialization using statistical predictors available

in real time.

1 Introduction

Seasonal snow cover and sea ice are integral to the cultural identity, history, and economy of northern nations like Canada.
They also exert an enormous physical influence on the earth system, ranging from local interactions with winds and
temperatures in the Arctic and snow-covered regions, to larger-scale interactions with weather systems and ocean circulation,
to global-scale influences on the Earth’s energy balance. In recent decades, dramatic changes in Canada’s snow cover and sea
ice have been witnessed and documented (Derksen et al., 2012; Najafi et al., 2015). This has driven the need to better
understand and predict these fields for the coming seasons, years and decades. To address this need, Canada has helped lead

the global effort to better observe and model snow, sea ice, and related climate parameters_(such as northern high latitude land-

surface temperature and precipitation). This effort includes Canadian contributions to the International Polar Year (e.g.

Kulkarni et al., 2012), to the development of garth system model and climate prediction systems (Merryfield et al., 2013a;

Sigmond et al., 2013; van den Hurk et al., 2016), and to leadership of ongoing field and remote sensing efforts (King et al.,
2015).

As part of Canada’s larger effort in snow and sea-ice research, the focus here is on seasonal and longer timescale prediction of

leading
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terrestrial snow, sea-ice cover, and related climate variability. The purpose of this paper is to evaluate the ability of Canada’s

this study is focused
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current earth system model (ESM) and climate prediction system to carry out this kind of prediction in the context of the
development of new observational products. This work was undertaken by the Canadian Sea Ice and Snow Evolution Network

(CanSISE), a core project of the Climate Change and Atmospheric Research Program of the Natural Sciences and Engineering

the
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Research Council of Canada (CCAR/NSERC) . Model evaluation, which typically compares a model to observations, needs
to account for several sources of uncertainty, including impacts of spatial and temporal sampling in the presence of internal

climate variability and observational uncertainty (whether instrumental error or errors related to data processing and retrieval

! The CanSISE Network was funded for five years starting in 2013. It is a partnership between several Canadian Universities
(Toronto, British Columbia, Guelph, McGill, Northern British Columbia, Victoria, Waterloo, and York); Environment and
Climate Change Canada [ECCC; research groups include the Canadian Centre for Climate Modelling and Analysis (CCCma)
and the Climate Processes Section, both in the Climate Research Division; and the Canadian Ice Service (CIS)], and the Pacific

Climate Impacts Consortium (PCIC).
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systems). Our evaluation of Canadian models is helped by ready access and comparison with output from internationally

available models, to provide a suitable scientific context.

This study focuses on snow, sea ice and related climate parameters and processes relevant to the Canadian land mass and the .

d: parameters

pan-Arctic region. The Canadian ESM and climate prediction system has been studied in a variety of related settings (e.g.
Arora et al. 2011; Merryfield et al. 2013a, b; Gillet et al. 2012; Sigmond et al. 2013, Kirtman et al. 2013; Flato et al. 2013).

We here seek to more fully assess simulation and prediction of seasonal snow cover and regional sea-ice variability

accompanied by a more complete characterization of observational uncertainty, model structural uncertainty, and internal .

(o

climate variability. After reviewing the current generation Canadian Seasonal to Interannual Prediction System and Canadian
Earth-System Model 2 (CanSIPS and CanESM2; section 2), we characterize climatological behavior and trends for snow and
sea ice in these systems (section 3), provide an overview of recent developments in seasonal snow and sea-ice prediction

(section 4), and conclude (section 5) with a summary and discussion of new directions for predictionssystem development.

2 Models and data used

In section 3, our analysis will focus on CanESM2 (Arora et al., 2011; Scinocca et al., 2016). This is the earth-system model

used by the Canadian Centre for Climate Modeling and Analysis (CCCma) of Environment and Climate Change Canada
(ECCC) for its contribution to Phase 5 of the Coupled Model Intercomparison Project (CMIP5). CanESM2 combines

atmosphere, ocean, land-surface (including snow), sea-ice, and carbon-cycle components in a coupled framework in which all

model components interact. The system can simulate the past and projected state of global temperature, circulation, carbon

dioxide concentrations, etc. under the influence of external forcing, but independently of assimilated ocean and atmospheric

initialization data. As summarized in Arora et al. (2011), the atmospheric and oceanic components are the fourth generation

atmospheric and oceanic general circulation models CanAM4 and CanOM4, the prognostic carbon-cycle components are the

Canadian Model of Ocean Carbon (CMOC) and the Canadian Terrestrial Ecosystem Model (CTEM), the land-surface

component (including the snow scheme) is version 3 of the Canadian Land Surface Scheme (CLASS). and the sea-ice

component is the Flato and Hibler (1992) cavitating fluid scheme. As with most other models participating in CMIPS,

CanESM2 does not use flux adjustments that artificially constrain the climate system to be in a state of energy and water

balance. Following CMIP5 protocols, the model includes concentrations and emissions of greenhouse gases, aerosol and

aerosol-precursor emssions, and presriptions for land-cover change (Arora et al. 2011).

CanESM2 has moderate spatial resolution compared to other CMIP5 models (approximately 2.8° horizontal grid spacing and

up to 35 vertical levels in the atmosphere; approximately 100 km horizontal grid spacing and up to 40 levels in the ocean).

This resolution accounts for constraints on available computing resources. It sufficiently resolves salient features of the global

atmosphere-ocean circulation while still permitting the execution of large initial condition ensembles of model simulations to
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adequately sample internal variability under different external forcings. We note that ECCC has also made a complementary

multi-year investment in regional climate modelling (Scinocca et al., 2016) to provide higher resolution over North America

(with versions at 50 km and at 25 km grid resolution) to address the shortcomings of coarse resolution.

In section 4, we consider the application over Canada of CanSIPS (Merryfield et al. 2013a), the operational prediction system, (l‘ leted: and its component models

of the Canadian Metoerological Centre (CMC) for climate variability on seasonal to interannual (several-month to multiple-

Deleted: provide Environment and Climate Change Canada’s
(ECCC

year) timescales. Like CanESM2, CanSIPS is also a multi-component interactive system. However, unlike CanESM?2, when
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operating as a prediction system CanSIPS starts from an initial state that approximates the real-world state at a given initial (r leted: current

time. CanSIPS includes 1) a data assimilation system that estimates realistic initial states of the atmosphere, ocean, land, and :(Deleted: forecast

sea ice to start the forecasts; 2) two separate coupled climate models (the earlier generation Canadian Coupled Model 3 ’(Deleted: S

Deleted: (Merryfield et al. 2013a) combines a dynamical ocean
model (that simulates three-dimensional ocean circulation and heat
and salinity transport) with atmosphere, land surface (including

. | snow) and sea-ice component models in a coupled framework in

* | which all model components interact

[CanCM3] and the later generation Canadian Coupled Model [CanCM4]) that advance the simulated system from this initial

condition_(using an ensemble size of 10 for each model); and 3) diagnostic systems to analyze the output and generate useful

forecasts for operational use within ECCC’s Meteorological Service of Canada (e.g. Fig. 14 below and the probabilistic

Deleted: The system’s surface energy and water budgets are in
. | sufficient balance to avoid climate state drift over the course of
+ | longer simulations.

seasonal forecast at https://weather.gc.ca/saisons/prob_e.html). Evaluations of CanSIPS need to consider all three parts of the

seasonal prediction system. CanCM4 has the same atmosphere, ocean, land, and sea ice components as CanESM2, but does
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not include CanESM2’s carbon cycle components. CanCM3 has the previous-generation atmosphere and ocean components

relative to CanCM4 and CanESM?2, but the same land-surface and sea-ice components as CanCM4 and CanESM?2 (Merryfield
etal. 2013a).

Merryfield et al. (2013a) summarize the performance of CanCM3 and CanCM4 when the models are run independently of

assimilated data. LanCM4 reduces_the global mean absolute error of ocean surface temperatures compared to CanCM3, . [ leted: CanCM3 has a very small annual mean sea surface

indicating an overall improvement in the coupled ocean atmosphere state that results from improved physical parameterizations {emperature bias, and €

and finer resolution, Relative to CanCM3 and observations, CanCM4 tends to warm more rapidly under the effects of . [ leted: captured in the latest generation model (Merryfield et al.,

anthropogenic Jadiative forcing, over the 1970-2009 period. Jn CanCM3, the simulation is characterized by excessive pan- ('2‘01'33). T—

Arctic sea-ice cover in summer and winter and a small rate of sea-ice loss compared to observations. In CanCM4, while there change

is still excessive sea-ice cover in winter, there is too little sea ice in summer (see section 3 below). The rate of sea-ice loss in ~. "’[Deleted: This characteristic is relevant to snow and sea-ice
variability and trends and variability in CanESM2 (section 3).

CanCM4 is more in line with recent observations than that in CanCM3 (Stroeve et al., 2012); however, caution is required to
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interpret recent sea-ice loss rates in light of the large amount of multidecadal variability expected in these trends (e.g. Notz,

2012; Swart et al., 2015). Because CMIPS5 simulations were carried out with CanESM2 but not CanCM4, the simulations

required to do a clean comparison of CanCM4 and CanESM?2, and thus gauge the impact of carbon-cycle processes on

simulation quality, are not available.

When run as a prediction system, CanSIPS, combining CanCM3 and CanCM4, is able to show multi-month skill in seasonal . (Deleted:

forecasts of detrended sea-ice area anomalies, comparable to that obtained in other modelling systems (Merryfield et al.,
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2013b), and generally enhanced skill relative to a statistical persistence forecast (Sigmond et al., 2013). The assessed skill

depends on the verification dataset (Sigmond et al. 2013), especially for total (non-detrended) anomalies. Such issues will be

revisited in this study.

v

‘| independently of the data assimilation system. Run in this way, the

v

Our assessment of CanSIPS/CanESM2 is enhanced by two recent research products arising from CanSISE: the Blended-5
snow water equivalent (SWE) dataset of Mudryk et al. (2015) and the CanESM2 Large Ensemble of simulations from
CanESM2. The Blended-5 dataset addresses the need for a SWE verification dataset, and, potentially, for initialization of
snow-related parameters in CanSIPS and other prediction systems. Blended-5 builds on long-term work of ECCC (e.g. Brown
et al., 2010; Derksen and Brown, 2012; Brown and Derksen, 2013) and consists of an ensemble of gridded SWE datasets over
1981-2010 from a variety of sources including remote sensing, land surface assimilation systems, and reanalysis driven snow

models._The papers of Mudryk et al. (2015, 2017) detail the components, quality assessment, and characteristics of the
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same modelling system can be used to project long-term climate
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initial conditions in the atmosphere and ocean. ECCC’s Canadian
Centre for Climate Modeling and Analysis (CCCma) uses an
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(CanESM2; Arora et al., 2011; Scinocca et al., 2016), which includes
interactive land and ocean carbon cycle components to project the
future state of global temperature, circulation, carbon dioxide
concentrations, etc. under the influence of external forcing. ¢

As with most other models participating in CMIP5, CanESM2 does
not use flux adjustments that artificially constrain the climate system
to be in a state of energy and water balance; CanCM4 and CanESM2
use time varying volcanic forcing, and include a prognostic
(interactive) carbon cycle that uses biological models to simulate
carbon cycling in the coupled atmosphere/land/ocean/biosphere
system. These systems compare well to other earth system models
and climate prediction systems (Merryfield et al., 2013a and other
citations in the introduction).
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Blended-5 dataset.

The use of large initial condition ensembles has afforded a renewed assessment of the impacts of natural climate variability on

recent and projected climatic variability and trends (e.g. Deser et al. 2012, Kay et al. 2015). The CanSISE project team designed
the CanESM2 Large Ensemble (e.g. Sigmond and Fyfe, 2016), which consists of four sets of 50 simulations each of CanESM2

that examine the impact of natural and anthropogenic forcings over the period 1950:2100 in the presence of internal climate

variability. For each of the five realizations run by CCCma for CMIPS5, a new set of ten simulations is generated by slightly '

erturbing the atmospheric state at the beginning of 1950, with ten different perturbations. These 50 realizations are then

integrated forward until 2005 with LCMIPS5 historical forcings (Taylor et al., 2012); from 2006-2100, the RCP8.5 CMIP5

scenario is used. The first ensemble set, which applies all available external forcings, will be the one used here. Additional sets
of attribution integrations not analyzed here include just historic natural external forcings (solar and volcanic), just historic
anthropogenic aerosol forcings, and just stratospheric ozone forcing. Each realization in each set is identical apart from its

initial conditions. Thus, the ensemble mean of a given 50 member set is characterized by about a factor seven less internal

variability than a single realization, and therefore provides a relatively robust estimate of that set’s externally forced signal.

The distinctively forced ensembles permit attribution of observed climate signals to different external forcings. The CanESM2

Large Ensemble has been used in several current and ongoing studies (Sigmond and Fyfe, 2016; McKusker et al., 2016; Gagné

i | detrended sea-ice area anomalies, comparable to that obtained in

it i| resolution compared to many other CMIP5 models (approximately
+ | 2.8° horizontal grid spacing and up to 35 vertical levels in the
il atmosphere; approximately 100 km horizontal grid spacing and up to

temperature bias, and CanCM4 reduces the global mean absolute
error of ocean surface temperatures compared to CanCM3, indicating
an overall improvement in the coupled ocean atmosphere state
captured in the latest generation model (Merryfield et al., 2013a).
Relative to CanCM3 and observations, CanCM4 tends to warm more
rapidly under the effects of anthropogenic climate change over the
1970-2009 period. This characteristic is relevant to snow and sea-ice
variability and trends and variability in CanESM2 (section 3). In
CanCM3, the simulation is characterized by excessive pan-Arctic
sea-ice cover in summer and winter and a small rate of sea-ice loss
compared to observations. In CanCM4, while there is still excessive
sea-ice cover in winter, there is too little sea ice in summer (section
3). The rate of sea-ice loss in CanCM4 is more in line with recent
observations than that in CanCM3 (Stroeve et al., 2012); however,
caution is required to interpret recent sea-ice loss rates in light of the
large amount of multidecadal variability expected in these trends (e.g.
Notz, 2012; Swart et al., 2015). CanSIPS, combining CanCM3 and
CanCM4, is able to show multi-month skill in seasonal forecasts of

other modelling systems (Merryfield et al., 2013b), and generally
enhanced skill relative to a statistical persistence forecast (Sigmgpfl]
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40 levels in the ocean). This resolution accounts for constraints on [2]

et al., 2016; Fyfe et al., 2016; Mudryk et al., 2017; Kirchmeier-Young et al., 2016). We also use similar initial condition
ensembles of the National Center for Atmospheric Research Community Earth-System Model 1 (NCAR CESMI; Kay et al.,
2015) and the NCAR Community Climate System Model 4 (CCSM4; Mudryk et al., 2013). Other observational sources and

modelling results used in this study will be described in the text and figure captions. In what follows, our primary focus is on
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Canada and the pan-Arctic, placed in the context of Northern Hemisphere climate.
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3 CanESM2 climatology and trends

3.1 Observed and simulated terrestrial snow climatology -

We first evaluate the climatological characteristics of CanESM2’s land-surface temperature, precipitation, and snow water

equivalent (SWE) for the Canadian land mass, In winter and spring, the distribution of land-surface temperature over Canada

CFormatted: Normal

is well reproduced in CanESM2, although a warm bias is evident in both seasons (left and central panels of the top rows of
Figs. 1-2). The Taylor (2001) diagram for land-surface temperature (top row, right panels of Figs. 1-2) shows that CanESM2
compares well to other CMIP5 models (the same models and realizations are used in Mudryk et al., 2017) in capturing the
spatial pattern and correlation with observations, although the spatial gradients are somewhat stronger than observed for winter

(as shown by the distance of the CanESM2 point from the origin in the Taylor diagram), associated with a stronger south-to-

north temperature gradient than observed. In JFM precipitation (central row of Figs. 1-2), the general pattern and spatial

gradient strength are captured in the model, but there is excessive wintertime precipitation over most of Canada, including the
Western Cordillera, sub-Arctic and Arctic, in both seasons. This excessive precipitation contributes towards a bias of excessive
SWE over much of Western Canada and the Canadian Sub-Arctic that is particularly pronounced in spring (lower row of Figs.
1-2). CanESM2 SWE has greater spatial variance than the Blended-5 SWE ensemble mean and most of the individual
component datasets of the Blended 5 (lower right panel of Figs. 1-2). Generally speaking, the Taylor diagrams in Figs. 1-2
suggest that CanESM2 is well within the state of the art of current models for the climate parameters related to seasonal snow

cover.

Observed SWE climatology, variability and trends are relatively non-robust compared to variables such as land-surface
temperature (Mudryk et al., 2015, 2017) and for this reason we assess some aspects of the spread across the Blended-5 SWE
datasets. Individual observational datasets contributing to Blended-5 also show stronger spatial gradients than the Blended-5
mean (circles filled with light brown in the Taylor diagram in the lower right panels of Figs. 1-2). This is in part expected
because the observational mean will cancel random errors. However, this also suggests that there is considerable uncertainty
in the spatial variance, and so it is difficult to assess how realistically spatial variance is captured in CanESM2 and the other

CMIPS5 models. This observational uncertainty is alsogvident in the seasonal cycle of total snow mass aggregated for Canada

coupled model CanCM4, which is one of the component models of

Del d: , taking CanESM2 to be representative of the physical
CanSIPS
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and the Northern Hemisphere, as well as geographic subregions (top two rows of Fig. 3, gray shading). For example, for the

Northern Hemisphere (second row, first column), the range in Blended-5 estimates of peak snow mass in February is over

50% of the average, and is driven mainly by uncertainty in Arctic (second row, third column) and alpine regions (second row,

fourth column). The individual datasets in the Blended-5 product are not shown in Fig. 3, but their characteristics are discussed

in Mudryk et al. 2015. The NASA Global Land Data Assimilation System (GLDAS) provides, an estimate well below the
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multi-dataset mean, the MERRA reanalysis dataset typically provides a central estimate, and the maximum estimate yaries

(" leted: providing

with region among the remaining three datasets,
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After accounting for the, considerable observational uncertainty in total snow mass, it is nevertheless possible to assess the

[Deleted: (individual datasets not shown here but are discussed in
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Mudryk et al. 2015).

realism of CanESM2’s, simulation. The CanESM2 snow mass over Canada is plotted as originally available on the model’s ‘

“(" leted: there is

land grid (light teal points, shown only in the first row and first column of Fig. 3) and as adjusted to reflect the observational
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mask which is on a finer scale (dark teal points). The adjustment is downward because some of the model’s snow mass is

located in grid cells that, in reality, are only partially covered by land. The positive bias of CanESM2 relative to the

observational mean (Figs. 1-2) is evident in the seasonal cycle in snow mass over Canada (first,row of Fig. 3), especially in

spring_in midlatitudes, and reflects a broader Northern Hemisphere positive bias (second row of Fig. 3),Sospedra-Alfonso et

(" leted: bottom

al. (2016b) also find that CanCM4 model that contribute to CanSIPS features a positive springtime SWE bias. For comparison,

the CMIPS multi-model mean_over Canada (red x symbols), does not feature as pronounced,a bias. The CMIP5 model range ;

(not shown) spans from the lowest observational estimate to above the CanESM2, but CanESM2 is on the high end, especially :

during spring in the midlatitudes. Our assessment is that, especially in midlatitudes, CanESM2 simulates excessive springtime
snow associated with excessive wintertime precipitation building up throughout winter and into spring (middle rows of Figs.

1-2).

The seasonal cycle of snow-cover extent (SCE) is shown in the third and fourth rows of Fig. 3. Here, observed SCE is derived

from the Blended-5 dataset by converting SWE to SCE using a threshold of 4 mm; this threshold was tested in Mudryk et al.

2017. For the observational products in the Blended-5 dataset, the relative uncertainty in SCE is generally less than for snow

mass. For example, the observational range in peak Northern Hemisphere SCE in January is about 15%, and is dominated by

uncertainty in midlatitude and Arctic regions. A modest positive springtime excess of SCE is evident for CanESM2 for Canada

and the Northern Hemisphere. On the whole, observed SCE is better constrained than observed snow mass, and simulated SCE

is generally more realistic than simulated snow mass for CanESM?2, as well as for the average over the CMIPS models,
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available on the model’s land grid (dark teal points in Fig. 3) and as
adjusted to reflect the observational mask which is on a finer scale
(light teal points). The adjustment is downward because some of the
model’s snow mass is located in grid cells that, in reality, are only

v, )
» ‘(l‘ leted: top )

. {_partially covered by land.

Deleted: CanESM2’s SWE is generally within the observational
range but is above that range in springtime. This springtime positive
bias is exacerbated over Canada in particular (bottom row), especially

outside the Arctic.

‘_F(Deleted: (shown, for Canada only, in the bottom row) )

(Deleted: such

3.2 Observed and simulated trends in terrestrial snow,

. (Formatted: Font: Not Bold, No underline

A standard target for snow process analysis in climate models is trends of SCE, which are strongly temperature controlled (e.g.

(ot

(Formatted: No underline, English (UK)

Brutel-Vuilmet et al., 2013; Mudryk et al., 2017). Assessing the ability of models to capture these trends needs to account for

natural variability, forced variability, observational uncertainty, and intermodel differences. We show in Fig. 4 the trends in

snow cover extent (SCE) derived from the Blended-5 dataset for the Northern Hemisphere in January-March and April-June.

o (Deleted: -cover extent trends
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In both seasons, there is a spread of observed seasonal snow cover reduction estimates from 0.0 to -0.5 million km? per decade

in winter (based on a simple interquartile range for this small number of observational datasets), and from -0.1,to -0.6 million

his threshold was tested in Mudryk et al., 2017)
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km? in spring. The red horizontal line in the box plot represents the median over the Blended-5 datasets. Over the 25 year

observational period, the trends correspond to an approximate snow loss that is at most 4% of JFM SCE and in the range of 5-
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40% of AMJ SCE. The range of trends from the CanESM2 Large Ensemble, NCAR CESM1, and NCAR CCSM4 suggests

that internal variability alone provides an uncertainty range of about 0.5 million km? per decade. Assuming internal variability

isgealistic in the models, this is the limit of precision we can expect in assessing recent trends. CanESM2 consistently produces

Deleted: The red horizontal line in the box plot represents the
median over the Blended-5 datasets.
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greater snow loss than NCAR CCSM4 and CESM1, especially in AMJ. We conclude that all the models displayed fall within
wintertime snow retreat estimates, that NCAR CCSM4 and CESM1 overlap with estimates of observed snow retreat in spring,
but that CanESM2 exhibits more spring snow retreat than our best estimate of the observations. This excessive snow retreat is

associated in part with excessive global warming in the model mentioned in section 2 (Mudryk et al., 2017).

A more challenging target for the purpose of simulation and attribution of climate change on a regional scale is the spatial

pattern of observed climate fluctuations in recent decades. Acknowledging the overall biases noted above, we concentrate our

analysis on the response patterns with spatial means removed. We first show the wintertime 1981-2005 land-surface

‘ (Deleted: represented
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temperature trend pattern with the spatial mean removed jn the upper left panel of Fig. 5, This represents a predominantly

‘ (Deleted: anomalous

positive meridional gradient of land-surface temperature change from southern to northern Canada, reflecting wintertime

Arctic amplification of warming. The same field in individual realizations of CESM1 and CanESM2 has a spatial correlation

in the range of -0.6 to +0.6 (Taylor diagram in lower left panel of Fig. 5), suggesting that these patterns are affected by
significant internal variability (Deser et al., 2012). There are more realizations with positive than negative spatial correlation
in winter land-surface temperature trend patterns, which is consistent with the anticipated effect of anthropogenic forcing.
Wintertime land-surface temperature trends systematically show greater spatial variance than the estimated warming pattern
from the single observational land-surface temperature dataset employed here. This could be related to stronger (more negative)

meridional gradients in land-surface temperature and its trends in the models compared to the observational dataset. Spring

CDeIeted: (i.e. the trend with the spatial mean removed,
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time land-surface temperature trend patterns (top left panel of Fig. 6) feature anomalously negative changes in the Canadian

prairie regions and positive changes around the coastal regions. It is harder to find realizations in the spring,that correspond to

C" leted: time season

the observed pattern (left Taylor diagram in bottom row of Fig. 6), and spatial variance of the land-surface temperature trends
appear to be biased high as in winter. For precipitation, there is little evidence of consistent pattern matching between the
observations and individual realizations, for winter or spring (middle column, top and bottom panels of Figs. 5-6). For SWE
spatial patterns (right column, top and bottom panels of Figs. 5-6), the structural details of the trend maps are also not readily
found in the models compared to the mean of the Blended-5 SWE. Compared to the ensemble mean of the Blended-5
observations, the simulations show greater spatial variance in SWE trends, but this is partially owing to smoothing of spatial
structure in observational errors, as is shown by the scatter of SWE trends by individual contributors to the Blended-5 dataset

(light brown circles in Taylor diagrams).

It is possible to find individual realizations_in the CanESM?2 large ensemble thatgither match fairly well or fairly poorly with

observed trends. In the second row of Figs. 5 and 6, we show for the two seasons of JFM and AMIJ respectively the land-

surface temperature

8

recipitation, and SWE trends for the pest all-round matchyealization, which is a single realization having .~
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the greatest average pattern correlation across the three fields (land-surface temperature, precipitation, and SWE) and the two

seasons of JEM and AMJ. The spatial pattern correlation coefficient of each field with its observational counterpart is labelled.

Plotted in the third row of Figs. 5 and 6 is the worst all-round match realization, which is the single realization having the

least (most negative) pattern correlation, The best-match realization exhibits tradeoffs across fields, for example in the ability

Cl‘ leted: and third rows of Figs. 5-6).

to represent the structured pattern of springtime precipitation change (r=0.38 for the middle panel of the second row of Fig. 6)
versus wintertime land-surface temperature change (r=0.01 for the left panel of the second row of Fig. 5). The worst-match

caseexhibits a similar range of correlations, on the negative side, and generally looks quite different from the best-match case.

o CDeIeted: (second row of Figs. 5-6)
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This preliminary analysis of intraensemble variability suggests limits on how much regional-scale information about changes

for snow cover and related climate variables can be extracted from ESMs. The key point is, that caution is needed in judging a

(" leted: is reflects the basic point t

model on its ability to reproduce spatial patterns of trends in SWE and related climate parameters, even on these multidecadal

timescales.

The spatial pattern of CanESM2 land-surface temperature and precipitation trends is generally representative of that found in
individual realizations of the CMIP5 datasets, in the sense that the individual realizations of CanESM2 and other CMIP5
models have positive pattern correlations with the CMIPS multi-model mean (Taylor diagrams not shown). Consistently, the
CMIP5 multimodel mean of the land-surface temperature and precipitation trends are generally similar to the CanESM2

ensemble mean (winter example shown in the top two rows of Fig. 7; note that in Fig. 7 the spatial mean of the patterns is not

removed in order to allow comparison of the overall responses in CanESM2 to CMIPS), However, for SWE, we find

CanESM2’s pattern is typically opposite that of individual realizations from other models in CMIP5 (not shown) as is also
evident in the ensemble mean (bottom row of Fig. 7). In particular, CanESM2 shows a strong positive trend in the Western
Cordillera and a weaker positive trend in Southern Ontario and eastern Canada in both winter (Fig. 7) and spring (not shown),

whereas a reduction of SWE is found in these regions and seasons in CMIP5.

3.2 Arctic sea ice in CanESM2

Turning to sea ice, we recall that it is well established that summertime Arctic sea-ice area or extent is biased low in CanESM2

(Stroeve et al., 2012; Merryfield et al. 2013a; Laliberté et al. 2016). We thus focus a limited amount of additional analysis on

sea ice in the Canadian sector. The established low bias,is borne out in the Canadian Arctic sector (top two panels of Fig. 8),
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where CanESM2 has less than half of the observed sea-ice coverage in the Beaufort Sea-Arctic Ocean sector. Further limiting
the utility of regional sea-ice analysis with this model is the moderate spatial resolution of the model and its associated land-
sea distribution, particularly in the Canadian Arctic Archipelago (central panel of Fig. 8). The summertime sea-ice extent is
among the lowest of all CMIP5 models in the Canadian Arctic as a whole. In Canadian Arctic regions, summertime sea-ice
extent is biased low in the Beaufort Sea and is practically zero in Hudson Bay and Baffin Bay (Fig. 9, left column). This bias
contributes to the outcome that the sea ice reaches nominally ice-free summertime conditions at times comparable to present-

day in CanESM2. The bias is evident throughout the seasonal cycle in most regions (Fig. 9, right column), with the exception
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of Baffin Bay, although not as extreme relative to other models in other seasons as it is in summer. In this respect, the quality
of simulation in CanESM2 is not as good as that of other ESMs such as NCAR CESM1 (lower panel of Fig. 8), which provide

a better baseline for regional sea-ice studies both in terms of climatology and land-sea distribution.

Process investigations of sea ice by CanSISE include a focus on the relationship between sea-ice drift and Arctic winds, since

realistic sea-ice dynamics are crucial for accurate representation of sea ice (Notz, 2012). International Arctic Buoy (IABP)
Programme measurements (Tschudi et al., 2016) show that sea-ice drift speed peaks in September, when sea ice is thinnest
(lower panel of Fig. 10), and not at the time of peak wind speed in December. However, in CanESM2, the peak sea-ice drift
speed occurs in November and is more in phase with the seasonal cycle of near-surface wind speed. Other models in the CMIPS
archive that have more modern sea-ice components are able to reproduce more closely the observed seasonal cycle of sea-ice
drift speed (Tandon et. al., submitted manuscript). These results provide strong motivation to transition to a modeling system

with improved sea-ice and related processes in the Arctic.

4 Snow and sea-ice related forecast performance and development of CanSIPS

Operational seasonal forecasts based on coupled global ocean-atmosphere models have been produced for about two decades

(ot

internationally (Stockdale et al., 1998) and in Canada (by CanSIPS) since 2011. Over this period the main emphasis has been
on predicting seasonal meteorological variables describing near-surface temperature, atmospheric circulation and precipitation,

as well as sea-surface temperatures, since theseare a major driver of seasonal climate variations. Potential has also existed for
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such systems to usefully predict additional variables, including snow and sea ice, particularly as the sophistication of the
models and the methods used to initialize them have increased. With respect to the cryosphere, however, such capabilities have
received little attention until relatively recently compared to other areas of focus in seasonal prediction (e.g. Blanchard-

Wrigglesworth et al. 2011, Sigmond et al. 2013, Guémas et al. 2016).

4.1 Characteristics of CanSIPS related to seasonal forecasts of terrestrial snow,

Research carried out under CanSISE examined the ability of CanSIPS both to realistically initialize SWE and to predict future
SWE variations (Sospedra-Alfonso et al., 2016a, b, c). This was the first study of snow in an operational seasonal forecast
system. Regarding seasonal prediction of snow by CanSIPS, anomaly correlation skill for wintertime SWE is high at short
lead times, and remains statistically significant (greater than 0.3) at lead times of at least 6 months for certain regions (Fig.
11), which suggests potential for practical utilization of such forecasts. Two primary sources of potential predictability (PP,
defined as the ratio of ‘signal’ variance describing interannual variability of ensemble means to total variance consisting of the
sum of ‘signal” and ‘noise’ components) and skill in CanSIPS forecasts of SWE have been identified (Sospedra-Alfonso et al.,
2016b, c). The first, which is most important at short lead times, is the demonstrated ability of CanSIPS to provide realistic

initial values for SWE (Sospedra-Alfonso et al., 2016a), combined with the natural tendency for SWE anomalies to persist
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throughout the snow season in regions where winter land-surface temperatures remain below freezing, so that the snowpack
accumulates until the onset of spring melt. The second main source of PP and skill, which becomes increasingly prevalent at
longer lead times, is the ability of CanSIPS to predict future climatic conditions such as land-surface temperature and
precipitation anomalies which influence snow accumulation and melt. A large part of this type of predictability and skill arises
from ENSO, which strongly influences winter climate in North America and is skillfully forecast by CanSIPS up to a year in

advance.

The value of skillful seasonal forecasting of snow in turn depends on process representation and initialization at the land-
surface. For example, Ambadan et al. (2015) have investigated the impact of initialization of SWE, soil liquid water, and soil
frozen water on potential predictability of springtime surface air temperature in the CanSIPS system (Fig. 12). Realistic
initialization of these variables enhances potential predictability by as much as 30% in terms of variance explained within the
potential predictability framework. This shows that it is important to regard snow initialization in the broader setting of land-

surface initialization, and that there is evidence for quantitative improvement in regional predictability as more observational

information on the state of the land surface is brought into the prediction system. Current operational practice in CanSIPS uses
observed atmospheric forcing to bring the land surface (including soil moisture and snow cover) into a realistic state. Although
this procedure performs reasonably well for snow (within observational uncertainty), potential remains for improving the

initialization and forecasting of snow and other land variables by assimilating observation-based land data directly in real time.

Blending different sources of data from highly uncertain observations has led to improved characterization of the forecast skill
of the CanSIPS system. Fig. 13 shows the degree of agreement between SWE forecasts from CanSIPS and several SWE
products over Canada (similar results are found for other regions). The degree of agreement is measured as the anomaly
correlation coefficient for a one-month forecast (with lead 0 from initialization). The five datasets are the Blended-5 dataset
(blue) and four individual datasets including two components of the Blended-5 dataset. Even though all observational datasets
are being compared to the same forecast, it is the Blended-5 dataset, capturing the mean of several observational datasets, that
agrees best with the forecast. It is clear that improving verification datasets through blending, which can be reasonably expected
to lead to cancellation of independent errors in observational estimates, impacts assessed agreement with the forecast. To
reiterate, in this case, improved calculated skill is derived from an apparent improvement in the quality of the verification data
and not an improvement of the forecast (Sospedra-Alfonso et al., 2016b). Whether or not such improved consistency might be
found for the prediction of other quantities, the broader point is that there is a need to ensure that verification data is continually

updated in order to fairly compare predictions to the best available data (Massonet et al., 2016).

Recent research in snow analysis and observational datasets is expected to support operational improvements in CanSIPS and
hence in ECCC’s operational prediction capacity. For example, CanSISE work has led to new efforts to develop an operational

real-time snow amount forecast for the coming months, which could be used in several impacted sectors such as outdoor
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recreation, water resource planning, and agriculture (Fig. 14, snow amount forecast shown as above and below normal SWE
amounts). In this successful proof of concept, we note satisfactory general agreement with the MERRA analysis, which is
independent of CanSIPS and is itself subject to some uncertainty. This indicates promise for this new forecast product, while

highlighting issues of observational uncertainty addressed in part by our recent research.

4.2 Sea-ice forecasting with CanSIPS

Much as for snow, the ability of global climate model-based seasonal forecasting systems to predict sea ice has also received

little attention until recently, although such assessments have now been carried out for several systems (Guémas et al. 2016),

In the area of sea-ice prediction, CanSIPS hindcasts, despite some of the simulation deficiencies described above, have
demonstrated skill in seasonal predictions of sea ice (e.g. Sigmond et al., 2013; Merryfield et al., 2013b). While these prior
studies have focused on forecast skill of area-integrated quantities such as sea-ice area, recent work (Sigmond et al., 2016) has
also shown significant forecast skill of more user relevant sea-ice metrics such as the first calendar date that sea ice melts
(retreat date; Figs. 15a-c) or freezes up (advance date; Figs. 15d-f). Advance dates are skillfully predicted at lead times of 5
months on average (3.3 months for detrended anomalies), and retreat dates at lead times of 3 months (2.2 months for detrended
anomalies). For retreat dates, the main source of forecast skill is persistence, while advance date predictions benefit from

predictable ocean temperatures.

Sea ice predictability is also assisted by persistence of sea-ice thickness (e.g. Chevallier and Salas Y Mélia, 2014), but CanSIPS

does not take advantage of this in that it currently employs an initialization method that uses only climatological sea-ice
thickness (SIT) information. Since real time SIT observations are limited, Dirkson et al. (2015, 2017) have developed several
statistical models of varying complexity for initializing SIT in operational predictions. These are based on predictors available
in real time together with historical SIT values represented by the pan-Arctic Ice and Ocean Modelling System, or PIOMAS
(Zhang and Rothrock, 2003), which is frequently used as a reference dataset for SIT due to the sparseness of historical SIT
observations. The first such model (known as “SMv17), described in Dirkson et al. (2015), uses a statistical approach to find
an optimal combination of sea ice concentration and sea level pressure information to provide useful sea ice thickness
information. While this model reduces temporal- and spatial- mean absolute errors in the SIT initial conditions by 48% relative
to the original CanSIPS initialization (when validated against PIOMAS SIT values), and shows consistent skill estimating ice
volume in all months, much of this improvement in skill emerges from a more accurate representation of local negative trends
in SIT. Two additional statistical models, “SMv2” and “SMv3”, that improve on SMv1 with respect to interannual variations
in SIT anomalies are described in Dirkson et al. (2017), and seasonal sea ice volume from SMv3 is compared to that from
CanSIPS initial conditions in Fig. 16. Seasonal forecasting experiments using these SIT initial conditions demonstrate general
improvement forecasting both pan-Arctic sea-ice extent and local sea-ice concentration compared to the current operational

system, with most significant improvements afforded by initializing with either SMv2 or SMv3 (Dirkson et al., 2017).

- CI‘ | d: SIT)
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5 Conclusion

We have assessed characteristics of snow, sea ice, and related climate parameters in Environment and Climate Change

Canada’s (ECCC) earth system model (ESM) CanESM2 and seasonal to interannual climate prediction system CanSIPS, with

a focus on the Canadian sector of the Northern Hemisphere. This assessment is intended to provide a baseline for future

versions of the models with respect to these important societally-relevant climate parameters. It has highlighted the application

of the Blended-5 multisource snow water equivalent (SWE) (Mudryk et al., 2015) and the CanESM2 Large Ensemble of

climate simulations. In addition, it has highlighted new developments in sea ice, snow, and related climate parameter prediction

on seasonal timescales. We summarize our key findings:

The CanESM2 simulation of climate parameters over the Canadian land mass closely tied to snow — land surface
temperature and precipitation on land in cold regions — lies well within the range of currently available international
models. There is considerable disagreement among observational datasets on the amount and geographical structure of
snow water equivalent (SWE) in the satellite era. The CanESM2 simulation of SWE performs as well as available
international models in this area. Even accounting for this observational uncertainty, however, there is a bias towards
excessive seasonal snow cover and unrealistic spatial distribution of SWE in the spring over the Canadian land mass and
over the Northern Hemisphere as a whole. Excessive precipitation over the Canadian land mass contributes to this bias.
Accounting for observational uncertainty, CanESM2 simulates a greater retreat of springtime snow over the satellite era
than most of the available observations assessed here and other models that include large initial condition ensembles. The
spatial pattern of the observed temperature, precipitation, and SWE trends is strongly influenced by internal variability.
This makes it difficult to assess the model-simulated patterns of change in the variables we have examined. Nevertheless,
Western Cordillera trends in SWE in CanESM2 represent a recent increase that is opposite to those found in typical CMIP5
models.

Previously identified biases towards low Arctic sea ice extent are also reflected in regional biases: in Hudson’s Bay and
the Canadian Beaufort Sea sector, the sea ice extent is biased low and this undermines projections of when regional sectors
of the Arctic will be ice free. In the current system, there are tradeoffs related to the resolution of geographical features in
the CanESM and CanSIPS systems that impact both the snow and sea ice simulations. This provides an urgent area of
improvement for future model development.

Recent work suggests promising potential for seasonal forecasting of snow, sea ice and related climate parameters using
CanSIPS. For example, accurate initialization of frozen and liquid soil water, in addition to improved SWE representation,
might lead to significantly improved seasonal temperature forecasts. Furthermore, the Blended-5 example shows that
accounting for observational uncertainty can lead to better understanding of forecast quality. This result suggests
initialization could also be improved in this manner. This and related work has stimulated the development of ECCC’s

first experimental seasonal snow amount forecast product.
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e Despite biases in the sea ice simulation, it is possible to develop potentially useful new seasonal forecast products for sea
ice advance and retreat. In addition, implementing sea ice thickness initialization using indirect statistical predictors of
thickness can improve sea ice forecasts compared to the current methodology. Motivated by the promising research results,
improved sea ice thickness initialization (as initially explored by Lindsay et al., 2012_and Day et al. 2014) is being

considered for implementation in the CanSIPS system.

Further improvements in the CanSIPS and CanESM climate prediction and projection capacity for snow, sea ice and related
climate variables also hinge on assessing model process representation in more depth. For example, critical to capture
accurately is the snow albedo feedback process, which governs the seasonality of snow cover and land surface temperature
and hydroclimatic responses to climate change (Qu and Hall, 2007, 2014; Hall et al., 2008; Thackeray et al., 2015; Thackeray
and Fletcher, 2016). Thackeray et al. (2015) show that CanESM2 places among the best CMIP5 models for all regions in terms
of the overall simulation of snow cover fraction and snow-covered surface albedo. Further progress in this kind of process
representation will be achieved in part through internationally coordinated inter-comparison efforts associated with CMIP6,

including the Land Surface, Snow and Soil moisture Model Intercomparison Program (LS3MIP; van den Hurk et al 2016) and

the Earth System Model Snow Inter-comparison Project (ESM-SnowMIP). Besides ongoing work on sea-ice mechanics and
its relationship, through wind driving, to sea ice drift, CanSISE research is also currently characterizing snow cover on sea ice
in models and observations, which also serves as a potential source of model error in the timing and amplitude of sea-ice

growth and melt.

CanSISE demonstrates the utility of entraining a network of researchers bridging observational and modelling communities to
focus on a related set of processes in evaluation of earth system models and climate prediction systems. The results suggest
that there can be several benefits to updated multi-source observational datasets for climate prediction, monitoring, and
assessment. Our focus in this paper has been on recently produced multi-source snow observational datasets, but our results

suggest that there are benefits of multi-source temperature, precipitation, and sea ice datasets that follow a similar approach.

. Cl‘ leted: strongly

We have articulated the tradeoffs involved in constraints on CanESM2’s resolution in light of limitations of available advanced
computing resources. Running the model at two degrees latitude/longitude permits the creation of the CanESM2 Large
Ensemble set, but can entail under-resolution of key features of interest in applications, such as the Canadian Arctic
Archipelago’s channels and islands. We suggest that similar large ensembles be considered based on future model versions,
accounting for these tradeoffs, and being complemented by ECCC regional climate model simulations (e.g. Scinocca et al.,

2016).
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Figure 1: Comparison of simulated Canadian climate in CanESM2 with observations and other climate models for 1981-2005. The
left column shows observed January-March (JFM) mean _land-surface temperature (top, HadCRUT4), precipitation (centre, CRU
TS3.21) and snow water equivalent (bottom, Blended 5 data). The central column shows the same fields as simulated by the ensemble
mean of the CanESM2 Large Ensemble. Observations and the CanESM2 output have been mapped to a common grid that
represents the model grid spacing. The right column plots Taylor (2001) diagrams showing the correlation (related to the polar
angle) and standard deviation relative to observations (distance from origin) of the patterns of these variables in observations (black
dot), CanESM2 (green dot) and other CMIP5 climate models (brown circles). Models that are closer to the black dot representing
the observations have smaller errors (standard error repr d by dotted icircles at intervals of 0.5). In the SWE Taylor
diagram (bottom row), the filled light brown dots compare the individual Blended-5 datasets to the Blended-5 mean.

20

Precipitation = Temperature

SWE

Observations

CanESM




Observations CanESM

Temperature

Precipitation

SWE

00 05 1.0 15 20 25 30

Figure 2: As in Fig. 1, for April-June (AMJ).
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columns represent the same best-match and worst-match realizations from Fig. 5, but with AMJ trends displayed.
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Figure 8: a) Fraction of years (1979-2014) with September sea ice cover (sea ice concentration > 0.15) for the NSIDC passive
microwave product on an EASE 25km grid. b) As in a) but for the CanESM2 model, remapped using a nearest neighbour remapping.
¢) As in b) but for the CESM1-CAMS model. The grey shading indicates the land mask for each dataset. The NCAR CESM1
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might be resolved in future configurations of CanESM2. Also evident is the low Sep ber sea ice extent bias in CanESM2. —( Deleted: Note, however, that it is the ORCA1 grid that will be
employed in the new CanESM2.

27



Canadian Arctic
b

2548
2 2.0 E
U~
Xe 15) E
S5
Sg 1.0 R R
)
& osfk \ \‘" N 4
00 - M 1 L L — L L L L L L L L
1900 1950 2000 2050 2100 ] FM A M J J ASOND
year Beaufort Sea
08 S
€ 06
e
x
€
(]
o< 0.4
Lo
87 02
0‘0---F--‘Ar '\\\\\\\\\\\\0:0
1900 1950 2000 2050 2100 ] FM A M J J ASOND
year Hudson Bay
0.25 &
= 020} E
U~
IE
Eg 0.15 |- E
9% 010 E
[ PP B e - - - - =
@ 005} | ]
s ARRESS
0.00 o S L
1900 1950 2000 2050 2100 ] FM A M J J ASOND
year Baff n Bay
h
0.8 g T T T T L — 14
" 1.2
5. 0.6 | i 1.0
x
g;Ez 0.4l i 0.8
o8 0.6
5= 0.2 M i 0.4
” o - - - 0.2
0.0 O - A o ! L1 L1 1lpo
1900 1950 2000 2050 2100 ] FM A M J J ASOND
vear

Figure 9: a): September sea ice extent (sea ice concentration larger than 0.15) for the Canadian Arctic [defined by the Canadian Ice
Service Data Archive (CISDA) domain]. The CanESM2 model (green), CISDA (yellow), National Snow and Ice Data Center (NSIDC,
red) and the multi-model mean (blue) are shown with their 1979-2013 trends. Individual models are shown in light gray. b: The
Canadian Arctic seasonal cycle for 1979-2013. Box plots were added to describe the inter model spread (whiskers are 5th and 9th
percentiles). c-d, e-f, g-h: same as a, b but for the Beaufort Sea, Baffin Bay and Hudson Bay, respectively. In panels e and g, the
CanESM2 curve is close to zero. Sea ice amounts are scaled to account for the fraction of ocean present in the CanESM2 land sea
mask (Laliberté et al. 2016).
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Figure 10: (a) Seasonal cycle of Arctic average sea ice drift speed (solid, in units of km day™) and near-surface wind speed (dashed,
in units of m s) from a historical run of CanESM2 averaged over 1979-2005. The spatial domain used for the calculation is the
region north of 68°N for longitudes east of 103°E and west of 124°W and north of 79°N at all other longitudes, excluding gridpoints
within 150 km of a coastline. This focuses on regions of year-round drifting ice, and excludes landfast ice. (b) As in (a) but using non-
gridded drift speed measurements from the International Arctic Buoy Programme (solid; Tschudi et al., 2016) and near-surface
wind data from ERA-Interim (dashed; Dee et al., 2011).
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Figure 11: Anomaly correlation coefficient (ACC) skill for February-April (FMA) SWE of 1981-2010 CanSIPS hindcasts initialized
at the start of February and the preceding January, November and August (lead times of 0, 1, 3 and 6 months respectively). The
Blended-5 dataset of Mudryk et al. (2015) is used for observational verification. Contour interval 0.1, and the overbars denote spatial

averages of ACC over areas of North America having seasonal snow cover.
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ility (an idealized model based estimate of potential forecast skill). Based on Ambadan et al. 2015.
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Figure 13: Anomaly correlation coefficient (ACC) averaged over Canada for first-month CanSIPS forecasts of SWE, verified against
several observation-based datasets including Blended-5 (blue), MERRA (green), MERRA-2 (grey), ERA-Interim Land (red), and
ERA-Interim (magenta); the MERRA and ERA-Interim Land are p ts of Blended-5. Blended-5 shows the best agreement
with the forecast, suggesting a strong influence of observational dataset on evaluation of forecast performance.
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Figure 14: Real time CanSIPS forecast of standardized anomalies of monthly-mean SWE for January 2016 (left), initialized at the
end of the preceding month, compared to the MERRA analysis for the same period (right). Contour interval is 0.25, and anomalies
are relative to a 1981-2010 base period.
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Figure 15: Maximum lead time at which CanSIPS skillfully predicts retreat/advance dates (defined as the calendar date at which
sea ice concentration first drops below/exceeds 50%), for total anomalies (first column), detrended anomalies (second column), and
for a detrended persistence forecast based on persisting the observed initial sea-ice ration ly. The bers in the top
right corner of each panel indicate the Arctic average maximum lead time (in months). From Sigmond et al. (2016).
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Figure 16: Time series of seasonally averaged sea ice volume over the period 1981-2012, in units of 10° km® for the PIOMAS sea ice
thickness analysis (which assimilates observations) (black), the SMv3 statistical model of Dirkson et al. (2017) (red), and CanSIPS
initial conditions (cyan). The CanSIPS system as originally configured incorporates no information about recent sea ice thinning

and thus misses the recent downward trends of sea ice volume.
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CanCM3 has a very small annual mean sea surface temperature bias, and CanCM4 reduces the global mean absolute
error of ocean surface temperatures compared to CanCM3, indicating an overall improvement in the coupled ocean
atmosphere state captured in the latest generation model (Merryfield et al., 2013a). Relative to CanCM3 and
observations, CanCM4 tends to warm more rapidly under the effects of anthropogenic climate change over the 1970-
2009 period. This characteristic is relevant to snow and sea-ice variability and trends and variability in CanESM2
(section 3). In CanCM3, the simulation is characterized by excessive pan-Arctic sea-ice cover in summer and winter
and a small rate of sea-ice loss compared to observations. In CanCM4, while there is still excessive sea-ice cover in
winter, there is too little sea ice in summer (section 3). The rate of sea-ice loss in CanCM4 is more in line with recent
observations than that in CanCM3 (Stroeve et al., 2012); however, caution is required to interpret recent sea-ice loss
rates in light of the large amount of multidecadal variability expected in these trends (e.g. Notz, 2012; Swart et al.,
2015). CanSIPS, combining CanCM3 and CanCM4, is able to show multi-month skill in seasonal forecasts of
detrended sea-ice area anomalies, comparable to that obtained in other modelling systems (Merryfield et al., 2013b),
and generally enhanced skill relative to a statistical persistence forecast (Sigmond et al., 2013). The assessed skill
depends on the verification dataset (Sigmond et al. 2013), especially for total (non-detrended) anomalies. Such issues

will be revisited in this study.
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The CanSIPS and CanESM2 systems have moderate spatial resolution compared to many other CMIP5 models
(approximately 2.8° horizontal grid spacing and up to 35 vertical levels in the atmosphere; approximately 100 km
horizontal grid spacing and up to 40 levels in the ocean). This resolution accounts for constraints on advanced
computing resources, sufficiently resolving salient features of the global atmosphere-ocean circulation, while still
permitting the execution of large ensembles of model simulations to adequately sample internal variability under
different external forcings. ECCC has also made a complementary multi-year investment in regional climate
modelling (Scinocca et al., 2016) to provide much higher resolution over Canada to address the shortcomings of coarse

resolution.



