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Abstract. The growth of frazil or granular ice is an important mode of ice formation in the cryosphere. Recent advances

have improved our understanding of the microphysical processes that control the rate of ice-crystal growth when water is

cooled beneath its freezing temperature. These advances suggest that crystals grow much faster than previously thought. In

this paper, we consider models of a population of ice crystals with different sizes to provide insight into the treatment of frazil

ice in large-scale models. We consider the role of crystal growth alongside the other physical processes that determine the5

dynamics of frazil ice. We apply our model to a simple mixed layer (such as at the surface of the ocean) and to a buoyant

plume under a floating ice shelf. We provide numerical calculations and scaling arguments to predict the occurrence of frazil-

ice explosions, which we show are controlled by crystal growth, nucleation and, gravitational removal. Faster crystal growth,

higher secondary nucleation and slower gravitational removal make frazil-ice explosions more likely. We identify steady-state

crystal size distributions, which are largely insensitive to crystal growth rate but are affected by the relative importance of10

secondary nucleation to gravitational removal. Finally, we show that the fate of plumes underneath ice shelves is dramatically

affected by frazil-ice dynamics. Differences in the parameterization of crystal growth and nucleation give rise to radically

different predictions of basal accretion and plume dynamics; and can even impact whether a plume reaches the end of the ice

shelf or intrudes at depth.

1 Introduction15

1.1 Frazil ice in the environment

Frazil-ice formation is an extremely rapid mode of ice growth occurring as the initial phase of ice growth in turbulent waters.

Frazil ice forms as a suspension of crystals in oceans, lakes, rivers and sub-glacial ice streams from liquid water supercooled

beneath its freezing temperature (Martin and Kauffman, 1981; Lawson et al., 1998). Supercooled water at the surface of the

ocean occurs when it is cooled efficiently by the atmosphere. Such conditions can occur in gaps in the ice pack (called leads)20

and in extensive areas of open water (called polynyas), as observed by Skogseth et al. (2009). In some Antarctic regions, frazil

ice growth in supercooled water also contributes to the accretion of platelet ice on the underside of sea ice (e.g. Gough et al.,

2012; Langhorne et al., 2015).
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Frazil ice can also form underneath floating ice shelves at the margins of the Antarctic continent. Plumes of relatively fresh,

buoyant ‘ice shelf water’ (ISW) flow along the underside of the ice shelves. These rise over a depth range of about a kilometre,

a range associated with significant variation of the pressure-dependent freezing temperature of seawater, which varies by

−0.76 ◦C/km with depth (Millero and Leung, 1976). Consequently, the temperature of a rising plume can fall beneath the in

situ freezing temperature (Lewis and Perkin, 1986), triggering the formation of frazil ice. Some of the ice precipitates onto the5

base of the ice shelf, where it forms so-called marine ice, which has a granular texture. The presence of marine ice was inferred

and subsequently observed by drilling boreholes through the ice shelf (Engelhardt and Determann, 1987; Oerter et al., 1992).

Frazil-ice formation can affect the dynamics of these plumes by changing their buoyancy directly (because ice is less dense

than water), and by changing their temperature and salinity.

It is just becoming possible to assess the role of frazil-ice formation on sea ice and ocean conditions through large scale10

models (e.g. Galton-Fenzi et al., 2012; Wilchinsky et al., 2015; Smedsrud and Martin, 2015). Such models rely on previous

theoretical work concerning frazil-ice dynamics, which was pioneered by Daly (1984). Models of frazil-ice dynamics have

been applied to the study of frazil in the upper ocean (Svensson and Omstedt, 1994, 1998; Heorton et al., 2017), and also to

the study of frazil ice beneath ice shelves (Jenkins and Bombosch, 1995; Khazendar and Jenkins, 2003; Smedsrud and Jenkins,

2004; Holland and Feltham, 2005; Jordan et al., 2014, 2015). The theory of frazil-ice dynamics involves parameterizations of15

a number of physical processes that affect the evolution of a population of ice crystals. In this paper, we revisit the theory of

frazil-ice dynamics taking into account new understanding of the microphysics of crystal growth (Rees Jones and Wells, 2015),

before suggesting likely implications for these large scale models.

1.2 Crystal growth rate

In a recent paper, Rees Jones and Wells (2015) presented numerical evidence that the growth rate of ice crystals has been20

significantly underestimated in some previous studies as detailed below. In this section, we briefly review this finding, and

explain the underlying physical ideas.

Frazil ice is observed to consist of roughly disk-shaped crystals that typically have a much greater radius R than thickness

H (McFarlane et al., 2014). Crystal growth is predominantly radial, with attachment kinetics limiting growth in the basal plane

and maintaining the disk-shaped geometry for crystals of modest size (Fujioka and Sekerka, 1974). The radial growth rate G25

of a frazil crystal depends on the rate at which the latent heat released by crystal growth is transported away from the crystal.

In general, the radial growth rate can be written in the form

ρiLG= (Nukl∆T/H)f, (1)

where ρi is the density of ice, L is the latent heat of solidification, Nu is the crystal Nusselt number which equals 1 for

purely diffusive growth and can be enhanced by flow, kl is the thermal conductivity of the liquid phase, ∆T is the amount30

of supercooling below the in-situ freezing temperature, and f is a dimensionless geometric factor. A helpful way to interpret

equation (1) is to rearrange it into an expression for the rate of crystal-mass growth, with the ice-crystal mass M = ρiπR
2H .
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Figure 1. Example of temperature distribution around a disk-shaped crystal (filled grey region outlined in black) of radius 1 mm and

thickness 0.1 mm. Contours of temperature are shown varying between the freezing temperature Tf and the far-field temperature T0 < Tf .

In this example the crystal is growing into freshwater, and the thermal conductivity of ice is four times larger than than of water. The

numerical calculations used to make this figure are described in Rees Jones and Wells (2015).

We find

L
dM

dt
= Nukl∆T2πRf ∝Nukl∆T

A

δT
f, (2)

The right-hand side is the product of the area for heat transfer A and the heat flux scale kl∆T/δT , where δT is a thermal

boundary layer thickness. Numerical calculations of the temperature distribution around an ice crystal (an example is shown

in figure 1) show that δT ∝H near the crystal edges, which have an area A∝RH . However, δT ∝R near the crystal faces,5

which have an area A∝R2. In either case, the ratio A/δT ∝R. Thus the scaling argument suggests f ∝ 1 (cf. equation 2). It

is interesting to note that the mass growth rate of spherical crystals is also proportional to crystal radius R, so the rate of latent

heat release seems to depend on crystal size R but not on the details of the geometry.

We now consider three possible parameterizations of crystal growth, which we denote f1,2,3. Numerical calculations of

the heat transfer by diffusion from a disk-shaped crystal (Rees Jones and Wells, 2015) show that the growth rate depends10

logarithmically on aspect ratio f1(h=H/2R) = 1/[0.9008− 0.2634log(h)], which is similar to 1. Some previous studies

are also consistent with the scaling f ∼ 1. For example, Svensson and Omstedt (1994) and Jenkins and Bombosch (1995)

take f2 = 1. By contrast, some later studies are inconsistent with the scaling argument. For example, Smedsrud and Jenkins

(2004), Holland et al. (2007) and Galton-Fenzi et al. (2012) take A∝RH and δT ∝R, which gives a growth rate proportional

to f3 ≡H/R� 1, i.e. a very much smaller growth rate. A further complication arises in that it is sometimes additionally15

assumed that the crystal aspect ratio h=H/2R is constant, rather than the crystal thickness H being constant. In this case,

f3 ≡ 2h, which is a constant, like f2, but very much smaller (e.g. Smedsrud and Jenkins (2004) take h= 0.02). These papers

are illustrative of a wider range of studies (e.g. Svensson and Omstedt, 1998; Khazendar and Jenkins, 2003; Holland and
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Figure 2. Three parameterizations of crystal growth. The parameterization f1 (solid dark blue curve) is the result of a detailed numerical

calculation (Rees Jones and Wells, 2015). Parameterizations f2 (dot-dash light blue curve) and f3 (dashed red line) are obtained by scaling

analysis, as described in the text. The growth rates f1 and f2 are comparable, but f3 is much smaller at typical small aspect ratios. We also

indicate (square marker) the growth rate if a constant aspect ratio h= 0.02 is assumed.

Feltham, 2005; Jordan et al., 2014, 2015; Wilchinsky et al., 2015; Smedsrud and Martin, 2015); recently it appears that growth

law f3 has been used most commonly, if not exclusively. In summary, numerical calculations show that there is only weak

dependence on aspect ratio: f1 is typically close to f2; however, f1 is some 10–100 times greater than f3, as illustrated in

Figure 2.

The presence of salt in seawater reduces the crystal growth rate because the supercooling is reduced and salt rejected by the5

growing crystal needs to diffuse away. Numerical calculations performed to investigate these effects (Rees Jones and Wells,

2015) support the scaling argument used to account for the effect of salt by Galton-Fenzi et al. (2012), which in turn was based

on Holland and Jenkins (1999). For practical modelling purposes, the supercooling needs to be adjusted for the salt content

of seawater, and the Nusselt number should be reduced to account for salt diffusion. A good approximation based on our

numerical calculations is Nu = [1 + 1.4× (−aSkl)/(DSρiL)]
−1
, where a < 0 is the rate of change of freezing temperature10

with salinity S, and DS is the diffusivity of salt in water.

2 Frazil-ice dynamics

2.1 Physical processes

How does the growth rate of an ice crystal affect the overall ice production rate of a system? To address this question we need

to investigate ‘frazil-ice dynamics’. We follow the comprehensive framework of the influential reviews of Daly (1984, 1994),15

which accounts for the evolution of a crystal size distribution in time, in space, and in crystal size space. The evolution occurs
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through crystal nucleation, growth, flocculation, breakup, and transport by fluid motion. There is a high degree of uncertainty

in the rate of each of these processes, which in turn drives uncertainty in predictions of crucial, environmentally relevant

quantities, such as the total ice production rate.

2.2 Mathematical description

In this section we set out continuum equations that describe the evolution of frazil ice in a general framework that can be5

applied to a wide range of specific situations, before later focussing on examples of ice growth in a mixed layer, and under ice

shelves. Suppose that the size of a crystal can be characterised by a single length scale R, the radius of a disk-shaped crystal.

We introduce the crystal number density n, which is defined as the number of crystals per unit volume of mixture per unit

length in crystal-size space. Other quantities can be derived from n. For example, the crystal concentration density c= nV ,

where V = πR2H is the volume of a disk shaped crystal of thickness H , and the total crystal concentration C =
∫∞
0
c dR.10

Note that C is the volume occupied by ice crystals per unit volume of mixture. The total number density N =
∫∞
0
ndR. The

density n is a function of time t, position x and crystal size R, and is governed by (cf. Daly, 1984)

∂n

∂t
+∇ · (un)−∇(Dc∇n) = (3)

− ∂

∂R
(Gn)−W ∂n

∂z
− 1

V

∂

∂R
(BV n) + Ṅδ(R),

where u is the fluid velocity and Dc is the crystal diffusivity. For turbulent flows, one approach is to parameterize the effects15

of fluid flow u as an enhanced diffusivity, sometimes called a turbulent or eddy diffusivity. The terms on the right-hand side

represent frazil dynamics terms, on which we elaborate below.

The first term represents crystal growth, where G is the radial crystal growth rate discussed in section 1.2. For compactness,

we rewrite equation (1) as

G=G0f, (4)20

where G0 = Nukl∆T/(ρiLH), and f is given by one of the three growth laws. The effect of this term is to shift the crystal

size distribution to larger radii R, without increasing the total number of crystals. Thus growth increases crystal concentration,

but not the number of crystals.

The second term represents removal due to buoyant crystal rise, where W is an effective crystal rise speed. It is well

established that larger crystals rise faster. Recent experimental observations and the parameterization of crystal rise speed are25

discussed in McFarlane et al. (2014). For the simplest treatment, we use a linear relationship

W =W0R, (5)

withW0 = 16 s−1, because more complicated parameterizations do not fit the data much better than this simple fit. Indeed, such

a relationship is consistent with the crystal rise being a Stokes settling velocity under the assumption that crystal thickness is

constant. The drag is proportional to µWR, and the buoyancy is proportional to ∆ρgR2H , where ∆ρ is the density difference30

between ice and water. Thus balancing drag and buoyancy yields W ∝R.
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The third term represents the net effect of the processes of flocculation and break up, where B is the rate. Positive B

corresponds to flocculation greater than break up. Note that this term is constructed to conserve crystal volume, which is

physically appropriate. To see this, multiply equation (3) by V and integrate from R= 0 to R=∞. The total volume of ice

is unaffected by the flocculation term. To our knowledge, this term has received relatively little attention within the frazil-ice

literature. One exception, Svensson and Omstedt (1994) include it and take5

B =B0R
2. (6)

As a technical aside, we note that Svensson and Omstedt (1994) describe their flocculation law as linear. However, this linearity

applies only to the particular discrete set of equations they present, which use logarithmically spaced size classes. At the

continuum level, the quadratic equation (6) applies. There is no direct evidence for the form of this relationship, although

Svensson and Omstedt (1994) found it helpful in fitting some experimental data. Their choice matches the intuition that larger10

crystals might flocculate more readily since they are more likely to come into near contact with other crystals. However, it

does not account for the fact that flocculation should increase with frazil concentration. A fuller treatment would take B as an

integral of an interaction kernel K multiplied by number density over crystal radius, B =
∫∞
0
KndR. This kind of approach

has proved fruitful in the theory of sea-ice thickness and floe-size distributions (Thorndike, 2000; Godlovitch et al., 2011;

Horvat and Tziperman, 2015; Toppaladoddi and Wettlaufer, 2015). In view of the considerable uncertainties in parameterizing15

flocculation, we neglect this process in all of our calculations (B = 0). Indeed, even the sign of B is uncertain, as it not

clear whether flocculation or break-up dominates (and the balance of these processes may well depend on the fluid dynamical

conditions). If break-up dominates (perhaps in more turbulent environments), setting B = 0 might overestimate the number of

large crystals. Conversely, if flocculation dominates, setting B = 0 might underestimate the number of large crystals.

The fourth term represents crystal nucleation, where Ṅ is nucleation rate. We use the mathematical construct of a delta20

function δ(R) in equation (3) to express the fact that nucleated crystals are extremely small. By integrating equation (3) from

R= 0 to R= ε̃ > 0, it can be shown that the nucleation flux balances the growth of small crystals, and

lim
ε̃→0+

Gn|R=ε̃ = Ṅ, (7)

since the other terms give rise to contributions that are proportional to ε̃ and vanish in the limit ε̃→ 0+. After some primary

nucleation event, nucleation is assumed to be dominated by secondary nucleation, sometimes called collisional breeding.25

Indeed, Daly (1984) argues that homogenous and heterogenous nucleation are extremely unlikely to occur in natural systems

because the levels of supercooling achieved are less than 1◦C. We follow e.g. Svensson and Omstedt (1994) and suppose that

collisions between crystals cause microscopic pieces of ice to break off which in turn become new crystals with very small

radius. The total nucleation rate depends on the the rate at which a volume is swept out by a crystal and the crystal number

density. We write30

Ṅ = ñ

∞∫
0

πR2Urn(R)dR, (8)
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where

Ur =
√

4εR2/15ν+ (W0R)2 ≡ U0R (9)

is an effective collisional velocity scale taken to be the geometric mean of a velocity scale based on turbulent motions (ε is the

turbulent dissipation rate, ν is the kinematic viscosity) and one based on buoyant crystal rise. We define U0 =
√

4ε/15ν+W 2
0 ,

and use a value ν = 2×10−6 m2 s−1. The nucleation efficiency scale ñ= min(N,ñmax), where ñmax is a calibration parameter5

that limits the efficiency of secondary nucleation. Smedsrud (2002) points out that some of the nucleated crystals will be below

the so-called ‘critical size’ for crystals to grow, so it is plausible that ñ < N , but it must be conceded that this parameterization

is rather ad hoc. We use this formulation primarily for consistency with previous studies, to allow us to isolate the effect of

crystal growth rate. It is simply a continuous version of that used by e.g. Svensson and Omstedt (1994); Smedsrud (2002);

Smedsrud and Jenkins (2004); Holland and Feltham (2005). Before the efficiency cap is reached, secondary nucleation is a10

quadratic in the number of crystals, leading to very rapid growth in crystal number.

2.3 Numerical methods to solve governing equations

Equation (3) can be discretised in radial space to facilitate numerical solution, following e.g. Svensson and Omstedt (1994).

The spatial problem is a standard advection–diffusion problem so we do not discuss here how to discretize the left-hand side

of the equation (3) and focus on the crystal interaction terms on the right-hand side. Let Ri be a discrete set of points in radial15

space, where 1≤ i≤M . We introduce the notation Wi =W (Ri), Gi =G(Ri) and Vi = V (Ri) = πR2
iH . We work in terms

of the total number of particles in size class i, denoted mi, which evolves according to

∂mi

∂t
=−Γimi + Γi−1mi−1−Wi

∂mi

∂z
−αimi (i≥ 2) (10)

∂mi

∂t
=−Γimi−Wi

∂mi

∂z
+

j=M∑
j=2

ñπR2
jUr(Rj) (i= 1)

where20

Γi =
Gi2πRiH

Vi+1−Vi
, (11)

αi = ñπR2
iUr(Ri)

V1
Vi
, (i≥ 2) (12)

The discrete distribution n(Ri) can be recovered ni =mi/∆Ri, where ∆Ri =Ri+1−Ri. We note that equation (10) is only a

first-order discretization in radial space, so an alternative approach could be to use a second order discretization. This numerical

representation is conservative, and we use a formulation of secondary nucleation (in terms of αi) that conserves crystal volume25

even when V1 is non-zero. Note that in the limit R1→ 0 and ∆Ri→ 0 we recover the continuum equations discussed above.

Equation (10) is equivalent to equation (1) in Svensson and Omstedt (1994). They demonstrate that this model is capable

of reproducing the main features of the laboratory experiments of Michel (1963) and Carstens (1966), so we do not include

any experimental comparison here. However, we discuss (section 3.3) how such consistency is insufficient to fully validate
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the model. For practical purposes, we find it advantageous to use a logarithmically spaced set of crystal sizes and test the

accuracy of our discretization by increasing the number of size classes to 1024. We find that good accuracy can be achieved

with 128 classes, but accuracy noticeably degrades beneath this (cf. Holland and Feltham, 2005). Software code to reproduce

the calculations in the paper is available (Rees Jones, 2017).

3 Frazil ice in a mixed layer5

3.1 Simplified governing equations

The upper layer of a lake or ocean can sometimes be approximated as a well mixed layer, an approximation that can also be

applied to the laboratory experiments of Michel (1963) and Carstens (1966). We assume that background turbulent stirring is

sufficient to keep the layer well-mixed such that all physical quantities (temperature and crystal size distribution) are uniform

over the layer. Such turbulence might be driven, for example in the oceans, by wind, waves, and buoyancy-driven convection.10

A turbulent flow is mechanically driven in laboratory experiments. Thus we only need to solve evolution equations for average

physical quantities across the layer. This approximation also significantly simplifies equation (3) while still retaining the key

frazil-ice dynamics. Averaging equation (3) over the mixed layer of depth D yields

∂n

∂t
=− ∂

∂R
(Gn)− γn+ Ṅδ(R), (13)

where γ =W/D is an effective gravitational removal term. In reality, crystal concentration would tend to decrease with depth15

(Svensson and Omstedt, 1998) because of crystal buoyancy. Nevertheless, γ =W/D is an appropriate scaling relationship

because removal increases with crystal rise velocity W and decreases with mixed layer depth D because turbulent eddies act

to mix crystals down to that depth range. This type of depth-integrated representation of the process of gravitational removal

has been used successfully in previous studies of turbulent, particle-laden gravity currents (Bonnecaze et al., 1993).

The temperature of the mixed layer or tank evolves due to heat extraction to the atmosphere per unit volume Q and release20

of the latent heat of solidification

ρlcl
dT

dt
=−Q+ 2πNukl∆T

∞∫
0

fnRdR. (14)

There is an implicit assumption that the ice removed through gravitational settling does not inhibit heat loss to the atmosphere

(by ice accumulation at the surface), otherwise Q would decrease over time. Note that, in this section, we neglect the depth-

dependence of the freezing temperature, which affects the supercooling ∆T . This is a good approximation provided the mixed25

layer is relatively shallow, but would not be appropriate for mixed layers deeper than O(100 m).

3.2 Rapid growth – the frazil-ice explosion

In a typical experiment, a relatively small number of crystals are seeded into supercooled water, for example by running a

saw blade over a block of ice. Over time, the number of crystals undergoes a period of rapid growth, producing an optically
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dense suspension (Hanley and Tsang, 1984). Svensson and Omstedt (1994) include a figure from Daly (1992, citing personal

communication) showing a period of rapid growth in the number of crystals: the total number of crystals increased by four

orders of magnitude over around 250 s. The frazil-ice explosion was observed to reduce the supercooling in the mixed layer to

a small residual amount.

Our goal in this section is to ascertain the conditions under which such a frazil-ice explosion can occur, and hence determine5

conditions for their occurrence in geophysical settings as well as laboratory experiments. To motivate our approach, we consider

the time evolution of a mixed layer seeded with some small initial concentration and cooled beneath freezing by a constant

flux Q. The initial size distribution of crystals is taken to be uniform on [0,2R0], and we vary the total number of crystals

to vary the initial concentration. Throughout this section, we fix the crystal growth law f2 = 1. We present an example of

such a calculation in Figure 3. In one calculation, with slightly less ice initially present (blue curve in Figure 3), all of the10

ice is removed (by gravitational rise) and supercooling continues to build. Eventually we would expect heterogenous and later

homogenous nucleation to occur (Daly, 1984), but we do not model these processes. In the other calculation, with slightly

more ice initially present (red curve in Figure 3), the ice concentration increases rapidly before attaining a steady state in which

supercooling is almost exhausted (see section 3.4). We consider this an example of a ‘frazil-ice explosion’ of the kind observed

in experiments. A greater initial seeding concentration of ice always makes an explosion more likely, so we investigate the15

minimum initial concentration (or equivalently number of crystals, if the initial size is fixed) required to trigger an explosion

as a function of the other parameters of the system.

We summarize the results of our investigations in Figure 4. Increasing the turbulent intensity ε (Figure 4a) increases the rate

of secondary nucleation, since crystals are more likely to collide, which promotes frazil explosions. Increasing the mixed-layer

depth D (Figure 4b) reduces the rate at which crystals are removed gravitationally, which again promotes frazil explosions.20

A slightly weaker effect (note the different scale on the axis) is that increasing the cooling rate Q (Figure 4c) promotes frazil

explosions. The direct mechanism is that higher cooling promotes ice growth, increasing the frazil concentration. However,

there is also an important indirect mechanism: ice growth shifts the crystal size distribution to larger crystal sizes, which are

more likely to collide, leading to greater secondary nucleation. This effect is somewhat offset by the fact that larger crystals

are also more effectively removed by gravitational rise.25

These mechanisms can be understood more quantitatively by scaling analysis. First, we integrate equation (13) across crystal

sizes to obtain an evolution equation for the total number density of crystals (recalling the growth shifts the size distribution

but doesn’t change the total number of crystals)

dN

dt
= Ṅ −

∞∫
0

nγ dR. (15)

If gravitation removal were to act alone, we find that30

dN

dt
=−W0

D
RN, (16)
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Figure 3. Example of the evolution of (a) frazil-ice concentration and (b) supercooling after an initial seeding event. One calculation is

initialized with slightly more crystals than the other: the red curve has an initial crystal number density of 106 m−3 compared to 5×105 m−3

for the blue curve. The former leads to a frazil-ice explosion with a large concentration of ice and all the supercooling exhausted. The latter

eventually loses all of the ice initially present. Calculations were performed with Q= 1200 W m−3, ε= 5× 10−3 m2 s−3, D = 1 m,

ñmax = 4× 106 m−3, R0 = 0.2 mm, H = 0.05 mm. The parameter values are similar to Svensson and Omstedt (1994).

where R is the mean crystal size. Thus crystals are removed exponentially on a settling timescale τ =D/W0R≈ 300 s (based

onD = 1 m andR= 0.2 mm, the initial average crystal radius), which is commensurate with the evolution timescale observed

in Figure 3.

Second, we consider a balance between secondary nucleation and gravitational removal. We expect a frazil explosion when

the secondary nucleation (equation 8) is much greater than gravitational removal:5

N2U0πR
3� NW0R

D
, (17)

⇒N �Ncrit. ∼
W0

U0R
2
D
. (18)

If R is given by the initial average crystal radius, then in terms of the external parameters of the system shown in Figure 4, we

would naively expect Ncrit. to decrease with turbulent intensity (inversely proportional to U0), mixed-layer depth (inversely
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Figure 4. Regime diagram showing how the parameters of the system affect the likelihood of a frazil explosion (coloured blue and labelled

‘frazil’ in each panel) or collapse of the ice population by gravitational settling (coloured grey and labelled ‘no frazil’). Each dot represents

a separate numerical simulation. Increased (a) turbulent intensity ε, (b) mixed-layer depth D, and (c) cooling rate Q all promote frazil

explosions. Apart from the panels in which they are varied, the parameters used are as in Figure 3. The dashed and solid curves show the

predictions of scaling analysis described in the main text. The dashed curves corresponds to equation (18) and the solid curves to equation

(22). Note that in panel (a) these equations give the same predictions, so only one curve is plotted.

proportional to D), and be independent of Q. The first prediction (Figure 4a) is supported by the numerical results. However,

the second prediction (Figure 4b) and third prediction (Figure 4c) are not (the dashed curves do not agree with the numerical

results). The resolution of these discrepancies lies in recognising that the average crystal size R is not a constant external

parameter (i.e. set by the initial condition as a consequence of the seeding strategy), but rather depends on crystal growth.

We now suppose that the average crystal size is determined by the amount a crystal can grow over a crystal removal timescale5

τ , i.e.

R∼Gτ. (19)

This is a good approximation provided Gτ is much larger than the initial crystal size. The growth rate G is proportional to the

supercooling, in particular G= Nuf kl∆T/(ρiLH). We can estimate the supercooling from the heat balance equation (14) in

which the crystal growth term is negligible until the frazil explosion occurs. We find10

ρlcl∆T ∼Qτ,

⇒G∼ Nuf klQτ

ρlclρiLH
. (20)

We substitute equation (20) into equation (19) and recall that τ =D/W0R. Rearranging for R we find

R
3 ∼ Nuf klQ

ρlclρiLH

(
D

W0

)2

. (21)
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We then substitute this estimate for R into equation (18) and obtain

Ncrit. ∼
1

U0

(
W0

D

)7/3(
Nuf klQ

ρlclρiLH

)−2/3
. (22)

Equation (22) is very appealing because it can explain nearly all the results presented in Figures 4a, 4b and 4c (the solid curves

agree with the numerical results much better than the dashed curves). The heat flux result is perhaps slightly affected by the

initial crystal size distribution at small Q, but overall the agreement is very good.5

In terms of our crystal growth rate, our scaling argument in equation (22) suggests that the faster growth laws would neces-

sitate a smaller initial concentration of ice to trigger a frazil explosion, something that we observe in numerical experiments

(cf. Figure 6).

In conclusion, we find that the explosive growth of frazil ice requires a sufficiently large numbers of seed crystals. Seed

crystals might be supplied from the atmosphere as sea spray freezes, from broken off from pieces of an ice shelf above a10

plume, or (perhaps unlikely) by sediment acting as nuclei for crystal growth. Such growth is promoted by high turbulent

intensity, a deeper mixed layer, and strong cooling rate (or larger seed crystals).

3.3 Transient evolution

Figure 5 shows an example of how the crystal size distribution (CSD) evolves when a frazil explosion occurs. Initially, the

larger seed crystals are removed gravitationally, while crystals are nucleated at the smallest size due to collisional breeding.15

These crystals grow. Note the ‘travelling wave’ type solutions evident at 100s and 200s with the radius of crystals increasing

over time. Indeed, there are travelling wave solutions to equation (13) if crystal growth is the only process that affects the CSD

evolution. Finally, a steady-state distribution is achieved, which we discuss in more detail in section 3.4.

We next consider the impact of different parameterisations of crystal growth f1−3. One main experimental measurement is

mixed-layer temperature as a function of time. We find that this observable is sensitive to the crystal growth rate, as shown in20

Figure 6. Faster crystal growth means a faster increase in crystal concentration, with the peak growth rate occurring several

hundred seconds earlier. This in turn means that the peak supercooling is lower, because of the latent heat liberated by crystal

growth. These differences are experimentally detectable.

Our new parameterization produces broadly similar transient evolution curves to the older model of Svensson and Omst-

edt (1994). It is therefore encouraging to note that Svensson and Omstedt (1994) were able to use their model to explain the25

experimental observations of degree of supercooling. However, demonstration of consistency with experiments does not con-

clusively show that a parameterization of crystal growth is correct, because other factors also affect the predicted supercooling,

such as the size distribution of the initial seed crystals (which was not controlled in the experiments of Michel (1963) and

Carstens (1966) that Svensson and Omstedt (1994) used to test their model) as shown in Figure 7. Larger seed crystals grow

more slowly and achieve greater maximum supercooling, which produces similar predictions to using a slower growth-rate30

law. This suggests that it is worthwhile for experimentalists to try to measure crystal sizes, as well as supercooling, in order to

discriminate between models.
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Figure 5. Evolution of crystal size distribution for initial conditions that permit a frazil explosion (red curve in Figure 3).

In conclusion, we have shown that crystal growth rate significantly affects the transient evolution of crystal size distribution.

Further experimental observations are needed to discriminate between models. Geophysically, we note that the differences

between models occur on timescales of a few hundred seconds. This timescale is proportional to mixed-layer depth, so a

deeper mixed layer would be associated with even longer transient frazil-ice dynamics. The transient differences are therefore

likely to be most significant to systems where the frazil ice is subject to processes that act on similar or shorter timescales to the5

transient relief of supercooling. (For processes that act on longer timescales, the frazil-ice dynamics would have equilibrated

to the steady states discussed in the next section.) For example, a lateral current of 0.1 m/s would take 100 s to move material

across a lead that is 10 m wide. These numbers offer some indication that these transient model differences may well be

geophysically significant. Indeed, we show an example in the context of Ice Shelf Water plumes in section 4.

3.4 Steady states10

We observed that the crystal size distribution evolves to a steady state. In this section we study these steady states by numerically

integrating our transient model to reach a steady state for each of the three growth laws, and by finding analytical steady-state
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Figure 6. Evolution of crystal concentration (a, c), mixed-layer temperature (b, d) using the three growth rate formulae discussed in section

1.2. Using D = 1 m leads to frazil explosions for growth laws 1 and 2, but the population collapses for growth law 3. For a deeper mixed

layer D = 10 m, all the growth laws result in a frazil explosion. Other parameters are as in Figure 3.

solutions of the governing equations for two of the growth laws. We present an example of numerically obtained steady states

in Figure 8. Changing the growth law subtly shifts the crystal size distribution.

In order to understand better the physical processes involved in maintaining this steady state, we analyse the steady state

solutions of equation (13), namely

∂

∂R
(G0fn) + γ0Rn= Ṅδ(R) (23)5

where γ0 =W0/D. We start with the growth law f = f2 (a constant). First, we integrate equation (23) when R> 0 to obtain

n= n0 exp

(
− γ0

2G0f2
R2

)
. (24)

Second, at R= 0+, equation (7) implies that

G0f2n(R= 0+) = πU0ñmax

∞∫
0

n(R)R3 dR, (25)
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Figure 7. Evolution of (a) crystal concentration and (b) mixed-layer temperature using four different initial average crystal radii (0.05, 0.1,

0.2 and 0.4 mm), growth law f2 and other parameters as in Figure 3.

where we assume that the total number of crystals exceeds ñmax so ñ= ñmax. This is reasonable because there is a very large

number of crystals after a frazil-ice explosion has occurred. Equation (25) can be manipulated by substituting in equation (24)

and integrating to show thatG0f2 = γ20/2πU0ñmax. This expression allows the steady state supercooling to be calculated since

G0 = Nukl∆T/ρiLH . Third, we use the overall heat balance from equation (14) in steady state

Q= 2πNukl∆T

∞∫
0

fnRdR (26)5

to determine the unknown prefactor n0. Finally, we calculate the average crystal size (mean) R, the total number of crystals

N , the total crystal concentration C.

We then repeat the analysis for the growth law f = f3 ≡H/R. We report the results in Table 1.

We conclude from this analysis that the average crystal radius is insensitive to the crystal growth rate. This initially surprising

result can be understood by considering that the balance between growth and precipitation at large crystal sizes gives G0f ∼10

γ0R
2
, while the balance between growth and nucleation of the smallest crystals gives G0f ∼ U0ñmaxR

4
. The growth rate

15



Figure 8. Numerically calculated steady-state crystal size distributions using the three growth rate formulae discussed in section 1.2. The

parameters are as in Figure 3.

dependent term G0f can be eliminated between these equations and

R∼
(

γ0
U0ñmax

)1/2

, (27)

in agreement with the expressions in Table 1. Therefore average crystal size depends on (1) secondary nucleation (affected by

turbulent intensity through U0 and efficiency of secondary nucleation through ñmax, where more secondary nucleation means

smaller crystals), and on (2) gravitational removal (a larger gravitational removal rate prefactor γ0 means larger crystals). The5

first effect is readily understood: secondary nucleation creates tiny crystals. The second is more subtle because gravitational

removal tends to remove larger crystals. However, secondary nucleation increases more rapidly as a function of crystal radius

than gravitational removal. Thus enhanced gravitational settling enhances the removal of large crystals, and mutes their effi-

ciency in driving secondary nucleation, leading to the scaling given in equation (27). In geophysical settings and laboratory

experiments, the crystal rise velocity, mixed-layer depth and turbulent intensity can be measured much more easily than the10

efficiency of secondary nucleation. We therefore suggest choosing this parameter to match with observations of average crystal

size. For example, choosing the reduced value ñmax = 4× 105 m−3 would give an average crystal size of about 0.5 mm.
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Table 1. Steady state crystal size distribution results for two growth laws. . Note that Γ() here denotes the Gamma function. The steady state

supercooling can be computed using ∆T =G0ρiLH/(Nukl)

Quantity f = f2 f = f3 ≡H/R

n (crystal size distribution) n0 exp

(
− γ0

2G0f2
R2

)
n0Rexp

(
− γ0

3G0H
R3

)

G0 (growth rate) γ2
0

2πU0ñmaxf2

γ
5/2
0

3H (πU0ñmaxΓ(5/3))3/2

n0 (distribution prefactor) 2π
Q

ρiLHγ0

(
γ0

U0ñmax

)−2
9(πΓ(5/3))5/2

2πΓ(2/3)

Q

ρiLHγ0

(
γ0

U0ñmax

)−5/2

N (total crystal number) π
Q

ρiLHγ0

(
γ0

U0ñmax

)−3/2
3(πΓ(5/3))3/2

2π

Q

ρiLHγ0

(
γ0

U0ñmax

)−3/2

R (mean radius) 1

π

(
γ0

U0ñmax

)1/2 1

Γ(2/3)(πΓ(5/3))1/2

(
γ0

U0ñmax

)1/2

C (concentration) π

2

Q

ρiLγ0

(
γ0

U0ñmax

)−1/2
3Γ(4/3)(πΓ(5/3))1/2

2Γ(2/3)

Q

ρiLγ0

(
γ0

U0ñmax

)−1/2

The total crystal concentration C is also insensitive to the crystal growth rate. We can show this by continuing our scaling

analysis as follows. From equation (26), we estimate

Q∼Nukl∆TfRN,

∼ ρiLHG0fRN,

∼ ρiLHγ0R
3
N,5

∼ ρiLγ0RC, (28)

where we have used G0f ∼ γ0R
2

from the growth versus settling balance. If we define a surface heat flux scale Qsurf. =QD,

and recall γ0R=W0R/D, we find

C ∼ Qsurf.

ρiLW0R
. (29)

Thus at steady state, the total amount of frazil ice is determined by a balance between the surface heat flux and the rate of10

export of latent heat in the form of frazil ice that is removed gravitationally. This steady state balance is unaffected by crystal

growth rate (at least in the absence of advective processes).

4 Frazil-laden plume underneath an ice shelf

Frazil ice also forms in plumes of ice shelf water (ISW) beneath floating ice shelves. A plume is fed by the discharge of

subglacial meltwater at the start of the shelf and by melting from the shelf itself. These meltwaters are relatively fresh, so the15
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plume rises buoyantly. The plume entrains ocean waters, resulting in an intermediate temperature and salinity called ice shelf

water (ISW). A full examination of the dynamics of these plumes is beyond the scope of this paper, and we refer the reader

to previous studies by Jenkins (1991); Jenkins and Bombosch (1995); Smedsrud and Jenkins (2004). Instead we focus more

narrowly by considering a simple case study that illustrates the possible impact of different treatments of frazil-ice processes

on the dynamics of an ISW plume. A linear ice shelf rises from a depth of 1400 m below sea level to a depth of 285 m below5

sea level over a horizontal distance of 600 km. The ambient seawater is treated as an approximation to High Salinity Shelf

Water (HSSW) with a linear stratification. Jenkins and Bombosch (1995) conceived this setting as a simple configuration that

is representative of a large Antarctic ice shelf. The plume becomes supercooled as it ascends the ice shelf base because of

the fall in pressure and consequent change in the freezing temperature. This supercooling leads to a combination of frazil-ice

formation and direct basal freezing. Frazil ice increases the plume buoyancy and so accelerates the plume. Thus we might10

naively expect that faster crystal growth would lead to higher frazil concentrations and faster flowing plumes. In this section,

we show that this expectation is confounded by complex feedbacks between plume dynamics and frazil-ice processes.

The plume model accounts for the evolution of plume depth D, and the depth-averaged plume velocity U , temperature T

and salinity S as a function of distance s along the ice shelf. Note that we also average the freezing temperature over the depth

of the plume. The frazil-ice dynamics part of the model is essentially the same as that described in Eq. 3, but integrated over15

the depth of the plume. The depth-averaged frazil crystal size distribution evolves according to

∂(DUn)

∂s
=−D ∂

∂R
(Gn)− p(R)n+DṄδ(R), (30)

where p(R) is the rate at which frazil precipitates onto the base of the ice shelf.

We retain the approach of Smedsrud and Jenkins (2004) as far as possible. The full set of governing equations is described in

that paper. Software code to reproduce the calculations in the paper is available (Rees Jones, 2017). Note that our thermal calcu-20

lation includes an estimate of the conductive heat flux into the ice shelf (based on the thermal boundary layer parameterization

of Holland and Jenkins (1999), using a core ice-shelf temperature of −15 ◦C, A. Jenkins, personal communication). We use a

large number of crystal size classes in the discrete calculation (1000), to ensure the crystal size distribution is well resolved. By

contrast Smedsrud and Jenkins (2004) use only 10 classes. This affects the quantitative results but not the qualitative behaviour

of the system. One important difference compared to the mixed-layer models (Section 3) is that the precipitation rate depends25

both on crystal rise velocity and also on the plume velocity, because precipitation from a turbulent plume occurs when crystal

buoyancy exceeds the turbulent shear stress acting to keep it in suspension. Thus precipitation occurs when the plume velocity

U is less than some critical velocity Uc that can be expressed in terms of a critical Shields number.

4.1 Results

The dynamics of an ISW plume can be very sensitive to frazil-ice processes. Our numerical investigation found two basic types30

of behaviour. Sometimes frazil ice precipitates out over a relatively short distance O(10 km) and the plume itself is barely

affected by the frazil. At other times the frazil ice is sustained over O(100 km) and the plume is rendered more buoyant. We

illustrate this range of behaviour and explain the underlying physical mechanisms by varying the rates of secondary nucleation
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and crystal growth (Figure 9). In terms of secondary nucleation, we consider no nucleation ñmax = 0 m−3, intermediate nu-

cleation ñmax = 500 m−3 comparable to Smedsrud and Jenkins (2004), and high nucleation ñmax = 4×106 m−3 comparable

to Svensson and Omstedt (1994). In terms of crystal growth, we contrast a slow growth law and a fast growth law. For a slow

growth law, we use Smedsrud and Jenkins (2004), one of the class of growth laws we labelled f3 previously. For a fast growth

law , we use Rees Jones and Wells (2015), labelled f1 previously. Calculations with the growth law f2 introduced in Section5

1.2 are very similar to the results with f1.

Our sensitivity experiments (Figure 9) show that secondary nucleation is needed to sustain the frazil ice population. We

would also expect a continuous source of small seed crystals to have a similar effect, were the source sufficiently large. In

calculations without nucleation, the crystals precipitate out and the total concentration remains small, insufficient to affect

the plume dynamics. The faster growing crystals precipitate more over a shorter distance (dashed blue curve, panel e), be-10

cause larger crystals rise faster and are more difficult to keep in suspension. After the frazil ice precipitates out of the plume,

supercooling increases (blue curves, panel d), leading to a high rate of direct basal freezing (blue curves, panel g).

By contrast, a high nucleation rate triggers rapid growth of frazil ice, which relieves the supercooling in the plume (red

curves, panels c, d, f ). This behaviour is analogous to the ‘frazil-ice explosion’ we observed previously (Section 3.2), and

occurs when secondary nucleation exceeds crystal removal by precipitation. The increased frazil concentration leads to a more15

buoyant plume, causing it to accelerate and have a slightly smaller depth D (red curves, panels a, b). Precipitation is relatively

unimportant (red curves, panel e) as a result of a positive feedback: a faster flowing plume keeps crystals suspended more easily.

Furthermore, nucleation produces small crystals, which again are kept in suspension more easily. A faster crystal growth rate

is associated with a faster increase in crystal concentration along the slope, although similar quasi-steady states are reached

after the supercooling is almost exhausted. As we found previously (equation 29), the quasi-steady ice concentration reflects20

the overall energy balance of the system, rather than the growth dynamics.

The case of intermediate nucleation rate illustrates the surprising interplay between nucleation, growth and precipitation of

crystals. The calculation with a faster growth rate initially leads to a greater concentration of frazil ice, but the ice concentration

is eventually overtaken by the slower growth rate calculation (green curves, panel c). Faster growth leads to larger crystals

which in turn are more readily precipitated (dashed green curve, panel e). This means that the crystal concentration eventually25

decreases, reducing the plume buoyancy and causing it to decelerate (dashed green curve, panel a). In this case, the plume

thickness starts to increase rapidly as the plume begins to intrude at depth (dashed green curve, panel b). By contrast, the case

of slower growth rate eventually reaches a crystal concentration comparable to the calculations with larger crystal nucleation

rate.

In terms of the large-scale dynamics, different parameterizations of crystal growth rate and nucleation can be the difference30

between a plume that is reinvigorated by frazil ice and reaches the end of the shelf and a plume that decelerates and intrudes at

depth. This behaviour is likely to affect the ocean circulation and water mass transformation in the shelf seas around Antarctica.

The differences between models could in principle be observed by considering the amount of frazil precipitation relative

to basal freezing. The total amount of frazil formation also differs between the models (panels c, f ). These differences are

surprising: faster growth can lead to less frazil-ice formation in total, if it is removed from suspension before it can multiply.35
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Figure 9. The sensitivity of the dynamics of a frazil-laden plume to parameterizations of crystal growth and nucleation. We perform calcula-

tions with no secondary nucleation (blue), intermediate nucleation (green) and high nucleation (red). Solid lines denote slow crystal growth

SJ04 (Smedsrud and Jenkins, 2004), one of the class of growth laws we labelled f3 previously. Dashed lines denote fast crystal growth

RJW15 (Rees Jones and Wells, 2015), previously labelled f1. Calculations with the growth law f2 based on SO94 (Svensson and Omstedt,

1994) are very similar to the RJW15 results. Note that in the model of SJ04, a constant aspect ratio of 0.02 is assumed, whereas in SO94 and

RJW15, a constant thickness 0.05 mm is assumed. Note also that the solid red curve in panel (e) is approximately zero.
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This suggests that small-scale frazil-ice processes, which are hard to constrain in models, can have major implications for our

understanding of the dynamics of plumes of ISW beneath Antarctica’s floating ice shelves.

5 Conclusions

The theory of frazil-ice dynamics pioneered by Daly (1984) encompasses the nucleation, growth and removal of frazil ice.

It describes the evolution of the size distribution of a population of crystals. We have applied this theory to understand ice5

formation in a supercooled ocean mixed layer and in a plume of ISW underneath a floating ice shelf. Understanding frazil-

ice processes is significant to our understanding of ice–ocean interaction in the earliest, most explosive phase of ice growth.

We have identified critical conditions for a self-sustained frazil-ice explosion, which occurs when secondary nucleation ex-

ceeds crystal removal. Crystal growth rate affects such explosions by changing the crystal size distribution, and also alters

the transient evolution of frazil ice, promoting faster increases in frazil concentration. We determined steady-state crystal size10

distributions, and found that these were relatively insensitive to crystal growth rate, but sensitive to secondary nucleation and

crystal removal. Thus measurement of crystal sizes could be used to estimate the nucleation rate indirectly. Finally, we showed

that the parameterization of crystal growth rate and nucleation can dramatically affect the fate of plumes of supercooled ice

shelf water, with implications for ice accretion on ice shelves and ocean circulation. Although our understanding of crystal

growth rate has advanced recently, our understanding of crystal nucleation remains limited. Our calculations suggest that this15

is potentially a significant uncertainty, and is a topic ripe for future research.

Code availability. Please see https://github.com/davidreesjones/frazil-dynamics for software code to reproduce calculations and figures in

the paper (Rees Jones, 2017).
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