1 Open Source Algorithm for Detecting Sea Ice Surface Features in

2 High Resolution Optical Imagery

- 3 Nicholas C. Wright¹, Chris M. Polashenski^{1,2}
- 4 ¹Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
- 5 ²U.S. Army Cold Regions Research and Engineering Laboratories, Hanover, NH, USA
- 6 *Correspondence to*: N. C. Wright (ncwright.th@dartmouth.edu)

7 Abstract. Snow, ice, and melt ponds cover the surface of the Arctic Ocean in fractions that change throughout the 8 seasons. These surfaces control albedo and exert tremendous influence over the energy balance in the Arctic. 9 Increasingly available m- to dm-scale resolution optical imagery captures the evolution of the ice and ocean surface 10 state visually, but methods for quantifying coverage of key surface types from raw imagery are not yet well 11 established. Here we present an open source system designed to provide a standardized, automated, and reproducible 12 technique for processing optical imagery of sea ice. The method classifies surface coverage into three main categories: 13 Snow and bare ice, melt ponds and submerged ice, and open water. The method is demonstrated on imagery from four 14 sensor platforms and on imagery spanning from spring thaw to fall freeze-up. Tests show the classification accuracy 15 of this method typically exceeds 96%. To facilitate scientific use, we evaluate the minimum observation area required 16 for reporting a representative sample of surface coverage. We provide an open source distribution of this algorithm 17 and associated training data sets and suggest the community consider this a step towards standardizing optical sea ice 18 imagery processing. We hope to encourage future collaborative efforts to improve the code base and to analyze large 19 datasets of optical sea ice imagery.

20 1 Introduction

21 The surface of the sea ice-ocean system exhibits many different forms. Snow, ice, ocean, and melt ponds cover the 22 surface in fractions that change throughout the seasons. The relative fractions of these surfaces covering the Arctic 23 ocean are undergoing substantial change due to rapid loss of sea ice (Stroeve et al., 2012), increase in the duration of 24 melt (Markus et al., 2009; Stroeve et al., 2014), decrease in sea ice age (Maslanik et al., 2011), and decrease in sea ice thickness (Kwok and Rothrock, 2009; Laxon et al., 2013) over recent decades. As a whole, the changes are reducing 25 26 albedo and enhancing the absorption of solar radiation, triggering an ice albedo feedback (Curry et al., 1995; Perovich 27 et al., 2008; Pistone et al., 2014). Large-scale remote sensing has been instrumental in documenting the ongoing 28 change in ice extent (Parkinson and Comiso, 2013), thickness (Kurtz et al., 2013; Kwok and Rothrock, 2009; Laxon 29 et al., 2013), and surface melt state (Markus et al., 2009). An increasing focus on improving prediction of future sea 30 ice and climate states, however, has also created substantial interest in better observing, characterizing, and modeling 31 the *processes* that drive changes in albedo-relevant sea ice surface conditions such as melt pond formation, which 32 occur at smaller length scales. For these, observations that resolve surface conditions explicitly are needed to 33 understand the underlying causes of the seasonal and spatial evolution of albedo in a more sophisticated way.

34 Explicitly sensing the key aspects of the sea ice surface, including melt pond coverage, degree of deformation, floe 35 size, and lead distributions, requires evaluating the surface at meter to decimeter scale resolution. Variability in the 36 spatial coverage and morphology of these surface characteristics, however, occurs over hundreds of meters to tens of 37 kilometers. Estimates of aggregate scale surface coverage fraction must therefore be made at high resolution over 38 sample domains of many square kilometers. Quantifying the relative abundance of surface types over domains of 39 multi-kilometer scale from manned ground campaigns is both time consuming and impractical. Remote sensing 40 provides a more viable approach for studying these multi-kilometer areas. High resolution optical imagery (e.g. Figure 41 1) visually captures the surface features of interest, but the methods for analyzing this imagery remain underdeveloped. 42

43 The need for remote sensing methods enabling quantification of meter-scale sea ice surface characteristics has 44 been well recognized, and efforts have been made to address it. Recent developments in remote sensing of sea ice 45 surface conditions fall into two categories: (1) methods using low-medium resolution satellite imagery (i.e. having 46 pixel sizes larger than the typical ice surface feature size) with spectral un-mixing type algorithms to derive aggregate 47 measures of sub-pixel phenomena (e.g. for melt ponds Markus et al., 2003; Rösel et al., 2012; Rösel and Kaleschke, 48 2011; Tschudi et al., 2008) and (2) methods using higher resolution satellite or airborne imagery (i.e. having pixel size 49 smaller than the typical scale of ice surface features) that is capable of explicitly resolving features (e.g. Arntsen et 50 al., 2015; Fetterer and Untersteiner, 1998; Inoue et al., 2008; Kwok, 2014; Lu et al., 2010; Miao et al., 2015; Perovich 51 et al., 2002b; Renner et al., 2014; Webster et al., 2015). The first category, those derived from low-medium resolution 52 imagery, have notable strengths in their frequent sampling and basin-wide coverage. They cannot, however, provide 53 detailed statistics on the morphology of surface features necessary for assessing our process-based understanding and 54 have substantial uncertainty due to ambiguity in spectral signal un-mixing. The second category – observations at high 55 resolutions which explicitly resolve surface properties – can provide these detailed statistics but were historically 56 limited by a dearth of data acquisitions. Recent increases in imagery availability from formerly classified defense 57 (Kwok, 2014) or commercial satellites (e.g. DigitalGlobe), and increases in manned flights over the Arctic (e.g. 58 IceBridge, SIZRS) have substantially reduced this constraint for optical imagery. While high resolution imagery still 59 does not provide basin-wide coverage, likely increases in collection of imagery from UAV's (DeMott and Hill, 2016) 60 and increases in satellite imaging bandwidth (e.g. DigitalGlobe WorldView 4 launched in 2016) suggest that 61 availability of high resolution imagery will continue to increase.

62 Processing high resolution sea ice imagery to derive useful metrics quantifying surface state, however, remains a 63 major hurdle. Recent years have seen numerous publications demonstrating the success of various processing 64 techniques for optical imagery of sea ice on limited test cases (e.g. Inoue et al., 2008; Kwok, 2014; Lu et al., 2010; 65 Miao et al., 2015; Perovich et al., 2002b; Renner et al., 2014; Webster et al., 2015). None of these techniques, however, have been adopted as a standard or been used to produce large-scale datasets, and validation has been limited. 66 Furthermore, no single method has been used to process data from multiple sensor platforms or documented and 67 68 released for wide-spread community use. These issues must be addressed to enable in large scale production-type 69 image processing and use of high resolution imagery as a sea ice monitoring tool.

70 A unique aspect of high resolution sea ice imagery datasets, which differs from most satellite remote sensing, is 71 the quantity of image sources and data owners. Distributed collection and data ownership means centralized processing 72 of imagery to produce a single product is unlikely. Instead, we believe that distributed processing by dataset owners 73 is more likely and the community therefore has a substantial need for a shared, standard processing protocol. 74 Successful creation of such a processing protocol would increase imagery analysis and result in the production of 75 datasets suitable for ingestion by models to validate surface process parameterizations. In this paper, we assess 76 previous publications detailing image processing methods for remote sensing and present a novel scheme that builds 77 from the strengths and lessons of prior efforts. Our resulting algorithm, the Open Source Sea-ice Processing (OSSP) 78 Algorithm, is presented as a step toward addressing the community need for a standardized methodology and released 79 in an open source implementation for use and improvement by the community.

80 We began with three primary design goals that guided our development of the image processing scheme. The 81 method must (1) have a fully automatic workflow and have a low barrier to entry for new users, (2) produce accurate, 82 consistent results in a standardized output format, and (3) be able to produce equivalent geophysical parameters from 83 a range of disparate image acquisition methods. To meet these goals, we have packaged OSSP in a user-friendly 84 format, with clear documentation for start-up. We include a set of default parameters that should meet most user needs, 85 permitting processing of pre-defined image types with minimal set-up. The algorithm parameters are tunable to allow 86 more advanced users to tailor the method to their specific imagery input. We chose an open source format to enhance 87 the ability for the community to explore and improve the code relative to a commercial software. Herein, we discuss 88 how we arrived at the particular technique we use, and why it is superior to some other possible mechanisms. We then 89 demonstrate the ability of this algorithm to analyze imagery of disparate sources by showing results from high 90 resolution DigitalGlobe WorldView satellite imagery in both panchromatic and pansharpened formats, aerial sRGB 91 (standard Red, Green, Blue) imagery, and NASA Operation IceBridge DMS (Digital Mapping System) optical 92 imagery. In this paper, we classify imaged areas into three surface types: Snow and ice, melt ponds and submerged 93 ice, and open water. The algorithm is, however, suitable for classifying any number of categories, should a user be 94 interested in different surface types, and might be adapted for use on imagery of other surface types.

95 2 Algorithm Design

96 Two core decisions were faced in the design of this image classification scheme: (1) Whether to analyze the image by 97 individual pixels or to analyze objects constructed of similar, neighboring pixels, and (2) which algorithm to use for 98 the classification of these image units.

99 Prior work in terrestrial remote sensing applications has shown that object-based classifications are more accurate 100 than single pixel classifications when analyzing high-resolution imagery (Blaschke, 2010; Blaschke et al., 2014; Duro 101 et al., 2012; Yan et al., 2006). In this case, 'high resolution' has a specific definition dependent on the relationship 102 between the size of pixels and objects of interest. An image is high resolution when surface features of interest are 103 substantially larger than pixel resolution and therefore are composed of many pixels. In such imagery, objects, or 104 groups of pixels constructed to contain only similar pixels (i.e. a single surface type), can be analyzed as a set. The m105 dm resolution imagery meets this definition for features like melt ponds and ice floes. Object based classification 106 enables an algorithm to extract information about image texture and spatial correlation within the pixel group; 107 information that is not available in single pixel-based classifications and can enhance accuracy of surface type 108 discrimination. Furthermore, object-based classifications are much better at preserving the size and shape of surface 109 cover regions. Classification errors of individual pixel schemes tend to produce a 'speckled' appearance in the image 110 classification with incorrect pixels scattered across the image. Errors in object based classifications, meanwhile, 111 appear as entire objects that are mislabeled (Duro et al., 2012). Since our intent is to process high-resolution imagery 112 and produce measurements not only of the areal fractions of surface type regions, but also to enable analysis of the 113 size and shape of ice surface type regions (e.g. for floe size or melt pond size determination), the choice of object-114 based classification over pixel based was clear.

115 A wide range of algorithms were considered for classifying image objects. We first considered the use of 116 supervised versus an unsupervised classification schemes. Unsupervised schemes were rejected as they produce 117 inconsistent, non-intercomparable results. These schemes, such as clustering algorithms, group observations into a 118 predefined number of categories – even if not all feature types of interest are present in an image. For example, an 119 image containing only snow-covered ice will still be categorized into the same number of classes as an image with 120 snow, melt ponds, and open water together - resulting in multiple classes of snow. Since the boundary between classes 121 also changes in each image, standardizing results across imagery with different sources and of scenes with different 122 feature content would be challenging at best.

123 Supervised classification schemes instead utilize a set of known examples (called training data) to assign a 124 classification to unknown objects based on similarity to user-identified objects. Supervised classification schemes have several advantages. They can produce fixed surface type definitions, allow for more control and fine tuning of 125 126 the algorithm, improve in skill as more points are added to the training data, and allow users to choose what surface 127 characteristics they wish to classify. While many machine learning techniques have shown high accuracy in remote 128 sensing applications (Duro et al., 2012), we selected a random forest machine learning classifier over other supervised 129 learning algorithms for its ability to handle nonlinear and categorical training inputs (Breiman, 2001; DeFries, 2000; 130 Pal, 2005), resistance to outliers in the training dataset (Breiman, 1996), and relative ease of implementation.

131 Our scheme, learning from the success of Miao et al. (2015) in classifying aerial imagery, uses an image 132 segmentation algorithm to divide the image into objects which are then classified with random forest machine learning. 133 Our implementation of the segmentation and classification, however, were custom-built using well known image 134 processing tools (Pedregosa et al., 2011; van der Walt et al., 2014) in an open source format. We do not attempt to 135 assert that our method is the optimal method for processing sea ice imagery. Instead, we argue that it is easily usable 136 by the community at large, produces highly accurate and consistent results, and merits consideration as a standardized 137 methodology. In coordination with this publication, we release our code (available at https://github.com/wrightni/ossp doi:10.5281/zenodo.1133689) with the intention of encouraging movement toward a standardized method. Our hope 138 139 is to continue development of the algorithm with contributions and suggestions from the sea ice community.

140 **3 Methods**

141 **3.1 Image Collection and Preprocessing**

142 The imagery used to test the algorithm was selected from four distinct sources in order to assess the algorithm's ability 143 to deliver consistent and intercomparable measures of geophysical parameters. We chose high resolution satellite 144 imagery from DigitalGlobe's WorldView constellation in panchromatic and 8 band multispectral formats, NASA 145 Operation IceBridge Digital Mapping System optical imagery, and aerial sRGB imagery collected using an aircraft-146 mounted standard DLSR camera as part of the SIZONet project. We first demonstrate the technique's ability to handle 147 imagery representing all stages of the seasonal evolution of sea ice conditions on a series of 22 panchromatic satellite 148 images collected between March and August of 2014 at a single site in the Beaufort Sea: 72.0° N 128.0° W. We then 149 process 4 multispectral WorldView 2 images of the same site, each collected coincident with a panchromatic image 150 and compare results to assess the benefit of spectral information. Finally, we process a set of 20 sRGB images and 20 151 IceBridge DMS images containing a variety of sea ice surface types to illustrate the accuracy of the method on aerial 152 image sources. The imagery sources chosen for this analysis were selected to be representative of the variation that 153 exists in optical imagery of sea ice, but there is an abundance of image data that can be processed with this technique. 154 The satellite images were collected by tasking WorldView 1 and WorldView 2 Digital Globe satellites over fixed 155 locations in the Arctic. Tasking requests were submitted to DigitalGlobe with the support and collaboration of the 156 Polar Geospatial Center. The panchromatic bands of WorldView 1 and 2 both have a spatial resolution of 0.46m at 157 nadir. The WorldView 1 satellite panchromatic band samples the visible spectrum between 400 nm and 900 nm, while 158 the WorldView 2 satellite panchromatic band samples between 450 nm and 850 nm. In addition, WorldView 2 has 8 159 multispectral bands at 1.84 m nadir resolution, capturing bands within the range of 400nm to 1040nm. Each WorldView image captures an area of \sim 700-1300 km². Of the 22 useable panchromatic collections at the site, 15 were 160 161 completely cloud free while 7 of the images were partially cloudy. Images with partial cloud cover were manually 162 masked and cloud covered areas were excluded from analysis. The aerial sRGB imagery was captured along a 100km 163 long transect to the north of Barrow, Alaska with a Nikon D70 DSLR mounted at nadir to a light airplane during June 164 2009. The IceBridge imagery was collected in July of 2016 near 73° N 171° W with a Canon EOS 5D Mark II digital camera. We utilize the L0 (raw) DMS IceBridge imagery, which has a 10cm spatial resolution when taken from 1500 165 166 feet altitude (Dominguez, 2010, updated 2017).

167 Each satellite image was orthorectified to mean sea level before further processing. Orthorectification corrects for 168 image distortions caused by off-nadir acquisition angles and produces a planimetrically correct image that can be 169 accurately measured for distance and area. Due to the relatively low surface roughness of both multiyear and first year 170 sea ice (Petty et al., 2016), errors induced by ignoring the real topography during orthorectification are small. 171 Multispectral imagery was pansharpened to the resolution of the panchromatic imagery. Pansharpening is a method 172 that creates a high resolution multispectral image by combining intensity values from a higher resolution panchromatic 173 image with color information from a lower resolution multispectral image. The pansharpened imagery used here was 174 created using a 'weighted' Brovey algorithm. This algorithm resamples the multispectral image to the resolution of 175 the panchromatic image, then each pixel's value is multiplied by the ratio of the corresponding panchromatic pixel

value to the sum of all multispectral pixel values. The orthorectification and pansharpening scripts were developed by

177 the Polar Geospatial Center at the University of Minnesota and utilize the GDAL (Geospatial Data Abstraction

178 Library) image processing tools (GDAL, 2016). All imagery used was rescaled to the full 8-bit color space for

improved contrast and viewing. No other preprocessing was done to the aerial sRGB imagery or IceBridge DMS

180 imagery.

181 3.2 Image Segmentation

182 A flow chart of the image processing steps taken after pre-processing is presented in Fig. 2. The first task in the image 183 processing algorithm is to segment the image into groups of similar pixels, called objects. Accurate segmentation 184 requires finding the boundaries between the natural surface types we wish to differentiate (e.g. the boundary between 185 ice covered and open ocean), delineating their locations, and using these boundaries to produce image objects. Sea ice 186 surface types have large differences in reflectivity and tend to change abruptly, rather than gradually over a large 187 distance. We exploit this characteristic by using an edge detection algorithm to find boundaries between surface types. 188 Figure 3 contains a visual demonstration of this process. First, a Sobel-Feldman operator (van der Walt et al., 2014) 189 is applied to the input image (Fig. 3a). The Sobel-Feldman filter applies a discrete differentiation kernel across the 190 image to find the local gradient of the image intensity. High gradient values correspond to abrupt changes in pixel 191 intensity, which are likely boundaries between surface types. We scale the gradient values by an amplification factor 192 of 2 in order to further highlight edge regions in the image. Following the amplification, we threshold the lowest 10% 193 of the gradient image and set the values to zero. This reduces noise detected by the Sobel-Feldman filter, and eliminates 194 weaker edges. The amplification factor and gradient threshold percentage are both tuning parameters, which can be 195 adjusted to properly segment images based on the input image and the strength of edges sought.

196 The strongest edges in optical imagery of sea ice are typically the ocean-ice interface, followed by melt pond-ice 197 boundaries, then ice ridges and uneven ice surfaces. In general, the more edges detected, the more segmented the 198 image will become, and the more computational resources required to later classify the increased number of image 199 objects. On the other hand, an under-segmented image may miss the natural boundaries between surfaces. Under 200 segmentation introduces classification error because an object containing two surface types cannot be correctly 201 classified. An optimally segmented image is one which captures all the natural surface boundaries with minimal over-202 segmentation (i.e. boundaries placed in the middle of features). The appropriate parameters for our imagery were 203 tuned by visual inspection of the segmentation results. In such inspection, desired segmentation lines are manually 204 drawn, and algorithm-determined segmentation lines are overlain and evaluated for completeness.

The result of the edge detection is a gradient map that marks the strength of edges in the image. We use a watershed segmentation technique to build complete objects based on edge locations and intensity (van der Walt et al., 2014). We first calculate all local minimum values in the gradient image, where a marker is then placed to indicate the origin of watershed regions. Each region then begins iteratively expanding in all directions of increasing image gradient until encountering a local maximum in the gradient image or encountering a separately growing region. This continues until every pixel in the image belongs to a unique set. With the proper parameter selection, each object will represent a single surface type. It is often the case that some areas will be over-segmented (i.e. a single surface feature represented by multiple objects). Over segmentation can either be ignored, or objects can be recombined if they meet similarity
criteria in an effort to save computational resources. Here we chose to classify objects without recombination. Figure
3b shows the detected edges overlain on top of the input image.

The watershed segmentation algorithm benefits from the ability to create objects of variable size. Large objects are built in areas of low surface variability while many small objects are created in areas of high variability. This variable object sizing is well suited to sea ice surface classification because the variability of each surface type occurs at different scales. Areas of open water and snow covered first year ice, for example, can often be found in large expanses, while areas that contain melt ponds, ice ridges, or rubble fields frequently cover small areas and are tightly intermingled with other surface types. Variable object sizes give the fine detail needed to capture surfaces of high heterogeneity in their full detail, while limiting over segmentation of uniform areas.

222 **3.3 Segment Classification**

223 3.3.1 Overview

224 Once the image has been divided into regions of the same surface type, each object must be classified as to which 225 surface type it represents. We classify the objects using a random forest machine learning technique (Breiman, 2001; 226 Pedregosa et al., 2011). The development of a machine learning algorithm requires multiple iterative steps: 1) Select 227 attributes with which to classify each object, 2) create a training dataset, 3) classify unknown image objects based on 228 the training set, and 4) assess performance and refine, starting from step 1. Random forest classifiers excel for their 229 relative ease of use, flexibility in the choice of attributes that define each object, and overall high accuracy even with 230 relatively small training datasets. The random forest classifier is only one of many available machine learning approaches and others may also be suitable. 231

232 **3.3.2 Surface Type Definitions**

233 Another key challenge to quantitatively monitoring sea ice surface characteristics from high resolution imagery is a 234 lack of standardized surface type definitions. We noted above that high-resolution sea ice imagery comes from many 235 sources; each with different characteristics. As we will see below, each image source will need to have its own training 236 set created by expert human classifiers. The human classifier must train the algorithm according to definitions of each 237 surface type that are broadly agreed upon in the community for the algorithm to be successful in producing 238 intercomparable datasets. While at first the definitions of open water, ice and melt ponds might seem intuitive, many 239 experts in the cryosphere community have differing opinions, especially on transitional states. Deciding where to 240 delineate transitional states is important to standardization. We have established the following definitions for the three 241 surface types we sought to separate, binning transitional states in a manner most consistent with their impact on albedo. 242 Our surface type definitions focus on the behavior of a surface in absorption of shortwave radiation and radiative 243 energy transfer. (1) Open Water (OW): Applied to surface areas that had zero ice cover as well as those covered by 244 an unconsolidated frazil or grease ice. (2) Melt Ponds and Submerged Ice (MPS): Applied to surfaces where a liquid 245 water layer completely submerges the ice. (3) Ice and Snow: Applied to all surfaces covered by snow or bare ice, as well as decaying ice and snow that is saturated, but not submerged. The definition of melt ponds includes the classical 246

247 definition of melt ponds where meltwater is trapped in isolated patches atop ice, as well as optically-similar ice 248 submerged near the edge of a floe. While previous work separates these categories (e.g. Miao et al., 2015) we did not 249 attempt to break these 'pond' types because the distinction is unimportant from a shortwave energy balance (albedo) 250 perspective. We further refined the ice and snow category into two sub categories: (3a) Thick Ice and Snow, applied 251 during the freezing season to ice appearing to the expert classifier to be thicker than 50cm or having an optically thick 252 snow cover and to ice during the melt season covered by a drained surface scattering layer (Perovich, 2005) of 253 decaying ice crystals and (3b) Dark and Thin Ice, applied during the freezing season to surfaces of thin ice that are not 254 snow covered including nilas and young ice. This label was also applied during melting conditions to ice covered by 255 saturated slush, but not completely submerged in water. This is ice which in some prior publications (e.g. Polashenski 256 et al., 2012) was labeled as 'slushy bare ice'. We acknowledge that the boundary between the ice and snow sub-257 categories is often more a continuum than a defined border but note that distinguishing the two types is useful for 258 algorithm accuracy. Dividing the ice/snow type creates two relatively homogeneous categories rather than a single 259 larger category with large internal differences. A user only interested in the categories of ice, ponds, and open water 260 could simply re-combine them, as we have done for analysis. A temporary fourth category was created to classify 261 shadows over snow or ice. This category is used exclusively as an intermediate step in processing that allows us to bypass masking shadow regions (e.g. Webster et al., 2015). As this was not designed to be a standalone classification 262 category (as opposed to Miao et al., 2015, 2016), objects classified as a shadow were merged into the ice/snow 263 264 category (as is done in Webster et al., 2015). Any misclassifications due to shadow cover is accounted for in 265 measurements of overall classification accuracy (section 5.1).

266 **3.3.3 Attribute Selection**

267 Attributes are quantifiable measures of image object properties used by the classifier in discriminating surface types. 268 An enormous array of possible attributes could be calculated for each image object and could be calculated in many 269 ways. Examples of properties that could be quantified as attributes include values of the enclosed pixels, the size and 270 shape of the object, and values of adjacent pixels. The calculation of pixel values aggregated by image objects takes 271 advantage of the additional information held in the pixel group (as compared to individual pixels). We have compiled 272 a list representing a relevant subset of such attributes that can be used to distinguish different surface types in Table 273 1. We included a selection of attributes similar to those used in previous publications (e.g. Miao et al., 2015), as well 274 as attributes we have developed specifically for our algorithm.

Each image source provides unique information about the surface and it can be expected that a different list of attributes will be optimal for classification of each image type – even though we seek the same geophysical parameters. As high-resolution satellite images can have millions of image objects, calculating the attributes of each object quickly becomes computationally expensive. We have, therefore, determined those that are most valuable for classifying each image type to use in our classification. For example, pansharpened WorldView 2 imagery has 8 spectral bands which can inform the classification, while panchromatic versions of the same image have only a single band. Our goal was to select a combination of attributes that describe the intensity and textural characteristics of the object itself, and of the area surrounding the object. Table 1 indicates which attributes were selected for use in classifying each imagetype.

We selected attributes by only including those with a high relative importance. The importance of each attribute is a property of a random forest classifier, and is defined as the number of times a given attribute contributed to the final prediction of an input. After initial tests with large numbers of attributes, we narrowed our selection by using only those attributes that contributed to a classification in greater than 1% of cases. For discussion here, we group the attributes into two broad categories: Those calculated using internal pixels alone and those calculated from external pixel values.

290 **3.3.4 Object Attributes**

291 The most important attributes in the classification of an image segment were found to be aggregate measures of pixel 292 intensity within the object. We determine these by analyzing the mean pixel intensity of all bands and the median of 293 the panchromatic band. An important benefit of image segmentation is the ability to calculate estimates of surface 294 texture by looking at the variability within a group of pixels. The texture is often unique in the different surface types 295 we seek to distinguish. Open water is typically uniformly absorptive and has minimal intensity variance. Melt ponds, 296 in contrast, come in many realizations and exhibit a wider range in reflectance, even within individual ponds. To 297 estimate surface texture, we calculate the standard deviation of pixel intensity values and the image entropy within 298 each segment. Image entropy, H, is calculated as

299

$$H = -\sum p * \log_2 p \tag{1}$$

where *p* represents the bin counts of a pixel intensity histogram within the segment. We also calculate the size of each segment as the number of pixels it contains. As sea ice surface characteristics evolve appreciably over time, particularly before and after melt onset, we use image acquisition date (in Julian day format) as an attribute in for classification. While date of melt onset varies, and the reader might argue that a more applicable attribute would be image melt state, melt state, however, is not an apriori characteristic of the image. It would therefore need to be manually defined for each image. To ensure that the method remains fully automated image acquisition date is used as a proxy for melt state, whereby larger Julian day values correlate to later in the melt season.

In multispectral imagery, we also calculate the ratios between the mean absorption of each object in certain portions of the spectrum. The important band ratios used for the multispectral WorldView imagery were determined empirically. We tested every possible band combination, and successively removed the ratios that did not contribute to more than 1% of object classifications. In sRGB imagery we use the band ratios shown to be informative in this application by Miao et al. (2015).

In addition to information contained within each object, we utilize information from the surrounding area. To analyze the surrounding region, we determine the dimensions of a minimum bounding box that contains the object, then expand the box by five pixels in each direction. All pixels contained within this box, minus those in the object, are considered to be neighboring pixels. Analogous to the internal attribute calculations, we find the average intensity and standard deviation of these pixels. We also calculate the maximum single intensity within the neighboring region. Searching for attributes outside of the object improves the algorithm's predictive capabilities by providing spatial 318 context. Bright neighboring pixels (as an analog for an illuminated ridge) often provide information to distinguish, for

example, a shadowed ice surface from a melt pond. In panchromatic imagery, melt ponds and shadows appear similar

320 when evaluated solely on internal object attributes. However, a dark region with an immediately adjacent bright region

is more likely to be a shadow than a dark region not adjacent to a bright pixel (e.g. a pond). We do note that it is likely

that a more complex algorithm, for example identifying those pixels in a radius or distance to the edge of the segment,

rather than using a bounding box, would be more reliable. The tradeoff, however, is one of higher computational

324 expense.

325 **3.4 Training Set Creation**

326 Four training datasets were created to analyze the images selected for this paper. One training set was created for 327 each imagery source: Panchromatic satellite imagery, multispectral satellite imagery, aerial sRGB imagery, and 328 IceBridge DMS imagery. Each training set consists of a list of image objects that have been manually classified by a 329 human and a list of attribute values calculated from those objects and their surroundings. The manual classification is 330 carried out by multiple sea ice experts. Experienced observers of sea ice can classify the majority (85%+) of segments 331 in a high resolution optical image with confidence. To address the ambiguity in correct identification of certain 332 segments, however, we used several (4) skilled sea ice observers to repeatedly classify image objects. For the initial 333 creation of our training datasets, two of the users had extensive training in the OSSP algorithm and surface type 334 definitions, while the other two no experience with the algorithm. Users in both categories were briefed on the standard surface type definitions used for this study (section 3.3.2). Figure 4 shows a confusion matrix to compare user 335 classifications. Cells in the diagonal indicate agreement between users, while off- diagonal cells indicate disagreement 336 337 (Pedregosa et al., 2011). Agreement between the two well-trained users was high (average 94% of segment 338 identifications; Fig. 4a), while the agreement between a well-trained user and a new user was lower (average of 86%; 339 Fig 4b). After an in-person review of the training objects among all four users, the overall agreement rose to 97%. The 340 remaining 3% of objects were cases where the expert users could not agree on a single classification, even after review 341 of the surface type definitions and discussion. These objects were therefore not used in the final training set. Figure 5 342 shows a series of surface types that span all our classification categories, including those where the classification is 343 clear and those where it is difficult. Difficult segments are over-represented in these images for illustrative purposes, 344 and represent a relatively small fraction of the total surface.

While the skill of the machine learning prediction increases substantially as the size of the training set grows, creating large training sets is time consuming. We found that training datasets of approximately 1000 points yielded accurate and consistent results. We have developed a graphical user interface (GUI) to facilitate the rapid creation of large training sets (see Fig. 6). The GUI presents a user with the original image side by side with an overlay of a single segment on that image. The user assigns a classification to the segment by visual determination.

The training dataset is a critical component of our algorithm because it directly controls the accuracy of the machine learning algorithm – and using a consistent training set is necessary for producing intercomparable results. In coordination with this publication we are releasing our version 1.0 training datasets with the intention that they would represent a first version of *the* standard training set to use with each image type. Though we have found this training dataset robust through our error analyses below, it is our intention to solicit broader input from the community to refine and expand the training datasets available and release future improved versions.

356 In addition to cross-validating the creation of a training dataset between users, we assess the quality of our training 357 set through an out-of-bag (OOB) estimate, which is an internal measure of the training set's predictive power. The 358 random forest method creates an ensemble (forest) of classification trees from the input training set. Each classification 359 tree in this forest is built using a random bootstrap sample of the data in the training set. Because training samples are 360 selected at random, each tree is built with an incomplete set of the original data. For every sample in the original 361 training set, there then exists a subset of classifiers that do not contain that sample. The error rate of each classifier 362 when used to predict the samples that were left out is called the OOB estimate (Breiman, 2001). The OOB estimate 363 has been shown to be equivalent to predicting a separate set of features and comparing the output to a known 364 classification (Breiman, 1996).

365 **3.5 Assigning Classifications**

366 Once the training dataset is complete, the algorithm is prepared to predict the classification of unknown objects in the 367 images. The random forest classifier is run and a classified image is created by replacing the values within each segment by the classification label predicted. Figure 3c shows the result of labeling image objects with their predicted 368 369 classification. From the classified image, it is possible to produce a number of useful statistics. The most basic 370 measurement is the total pixel counts for each of the three surface categories. This provides both the total area, in 371 square kilometers, that each surface covers, and the fraction of each image that is covered by each surface type. It 372 would also be possible to calculate measurements such as the average segment size for each surface, melt pond size 373 and connectivity, or floe size distributions. Each of these, however, has its own standardization problems significant 374 enough to merit their own paper.

For demonstration, we have used the output from our image classification to calculate the fractional melt pond coverage for each date. The melt pond fraction was defined as the area of melt ponds and submerged ice divided by the total area covered by ice floes, i.e.:

378

$$Melt Pond Coverage = \frac{Area_{MPS}}{Area_{MPS} + Area_{I+S}}$$
(2)

379 where the subscript MPS indicates predicted melt ponds and submerged ice and I+S indicates predicted ice and snow.

1

380 **3.6 Determining Classification Accuracy**

381 The primary measure of classification accuracy was to test the processed imagery on a per pixel basis against human 382 classification. For every processed image, we selected a simple random sample of 100 pixels chosen from the whole image and asked four sea ice experts to assign a classification to those pixels. For a single image from each image 383 384 source we also asked the sea ice experts to classify and additional 900 pixels. This larger sample was created to 385 demonstrate a tighter confidence interval, while the smaller samples were chosen to demonstrate consistency across 386 images. We used the same GUI developed to create training datasets to assess pixel accuracy. Pixels were presented 387 at random to the user by showing the original image with the given pixel highlighted. The user then identified which of the surface type categories best described that pixel. This assignment is then compared to the algorithm's prediction 388

behind the scenes. The accuracy, as determined by each of the four experts, was averaged to create a compositeaccuracy for each image.

391 4 Results

392 4.1 Classification of Four Imagery Sources

393 The OSSP image processing method proved highly suitable for the task of classifying sea ice imagery. A visual 394 comparison between the raw and processed imagery, shown in Fig. 7 can quickly demonstrate this in a qualitative 395 sense. Figure 7 contains a comparison between the original and classified imagery for each source, selected to show 396 the performance of the algorithm on images that contain a variety of surface types. The colors shown correspond to 397 the classification category; regions colored black are open water, blue regions are melt ponds and submerged ice, gray 398 regions are wet and thin ice, and white regions are snow and ice. The quantitative processing results, including surface 399 distributions and classification accuracy are shown in Table 2. The overall classification accuracy was $96 \pm 3\%$ across 20 IceBridge DMS images; $95 \pm 3\%$ across 20 aerial sRGB images; $97 \pm 2\%$ across 22 panchromatic WorldView 1 400 401 and 2 images; and $98 \pm 2\%$ across 4 multispectral WorldView 2 images.

402 The nature of the classification error is presented using a confusion matrix that compares the algorithm 403 classification with a manual classification for 1000 randomly selected pixels. Four confusion matrices, one for a single 404 image from each of the four image sources is shown in Fig. 8. Values along the diagonal of the square are the 405 classifications where the algorithm and the human observer agreed, while values in off-diagonal areas indicate 406 disagreement. Concentration of error into a particular off-diagonal cell helps illustrate the types of confusion the 407 algorithm experiences. The number of pixels that fall into off-diagonal cells is low across all imagery types. In the 408 IceBridge imagery, there is a slight tendency for the algorithm to classify surfaces as open water where a human would 409 choose melt pond. This is caused by exceptionally dark melt ponds on the edge of melting through (Fig. 5, panels F 410 and I). Classification of multispectral WorldView imagery has a small bias towards classifying melt ponds over dark 411 or thin ice (Fig. 5, panel D). Aerial sRGB and Panchromatic WorldView images do not have a distinct pattern to their 412 classification errors.

The internal metric of classification training dataset strength, the Out of Bag Error (OOB) estimates, on a 0.0 to 1.0 scale, are shown in Table 3 for the trees built from our three training sets. The OOB estimate represents the mean prediction error of the random forest classifier, i.e. an OOB score of 0.92 estimates that the decision tree would predict 92% of segments that are contained in the training dataset correctly. The discrepancy between OOB error and the overall classification accuracy is a result of more frequent misclassification of smaller objects; overall accuracy is area weighted, while the OOB score is not.

419 4.2 WorldView: Analyzing A Full Seasonal Progression

We analyzed 22 images at a single site in the Beaufort Sea collected between March and August of 2014 to challenge the method with images that span the seasonal evolution of ice surface conditions. The site is Eulerian; it observes a single location in space rather than following a single ice floe through its lifecycle as it drifts. Still, the results of these

- 423 image classifications (shown in Fig. 9) illustrate the progression of the ice surface conditions in terms of our four 424 categories over the course of a single melt season. While cloud cover impacted the temporal continuity of satellite 425 images collected at this site, we are still able to follow the seasonal evolution of surface features. A time series of 426 fractional melt pond coverage calculated from the satellite image site is plotted in Fig. 10. The melt pond coverage 427 jumps to 22% in the earliest June image, as initial ponding begins and floods the surface of the level first year ice. 428 This is followed by a further increase to 45% coverage in the next few days. The melt pond coverage then drops back 429 down to 30% as melt water drains from the surface and forms well defined ponds. The evolution of melt pond coverage 430 over our satellite observation period is consistent with prior field observations (Eicken, 2002; Landy et al., 2014; 431 Polashenski et al., 2012) and matches the four stages of ice melt first described by Eicken (2002). The ice at this 432 observation site fully transitions to open water by mid-July, though it appears that the ice is advected out of the region
- in the late stages of melt rather than completing melt at this location.

434 **5 Discussion**

435 **5.1 Error**

There are four primary sources of error in the OSSP method as presented, two internal to the method and two external. Internal error is caused by segment misclassification and by incomplete segmentation (i.e. leaving pixels representing two surface types within one segment). The net internal error was quantified in section 3.6 and 4. External error is introduced by pixilation – or blurring of real surface boundaries due to insufficient image resolution – and human error in assigning a 'ground truth' value to an aerial or satellite observation during training.

441 **5.1.1 Internal Error**

Through assessing the accuracy of each classified image on a pixel-by-pixel basis (section 3.6), we collect all internal sources of error into one measurement: The algorithm either assigned the same classification as a human would have, or it did not. Total internal accuracy calculated for the method, relative to human classifiers, is quite good, at 90-99% across all image types. Our experience is that this level of accuracy approaches the accuracy with which fractional surface coverage can practically be determined from labor intensive ground campaign techniques such as lidar and measured linear transects (e.g. Polashenski et al., 2012)

448 The first type of internal error is misclassification error, where the image classification algorithm fails to assign 449 the same classification that a human expert would choose. This type of error is best quantified by analyzing the training 450 datasets. The OOB score for each forest of decision trees (Table 3) provides an estimate of each forest's ability to correctly predict objects similar to those used to create the forest (section 3.4). The OOB score is not influenced by 451 452 segmentation error, because the objects selected for training dataset use were filtered to remove any objects that 453 contained more than one surface type. The most commonly misapplied category was the Dark and Thin Ice 454 subcategory of Ice and Snow. This category often represents surface types that are in a transitional state and is often 455 difficult to classify even for a human observer.

456 The second type of internal error is segmentation error, where an object is created that contains more than one of 457 the surface types we are trying to distinguish. This occurs when boundaries between objects are not placed where 458 boundaries between surfaces exist; an issue most common where one surface type gradually transitions to another. 459 When this occurs, some portion of that object will necessarily be misclassified. We have compensated for areas that 460 lack sharp boundaries by biasing the image segmentation towards over-segmentation, but a small number of objects 461 still contain more than one surface type. During training set creation, we asked the human experts to identify objects containing more than one surface type. 3.5% of objects were identified as insufficiently segmented in aerial imagery, 462 463 and 2% of objects in satellite imagery. This represents the upper limit for the total percentage of insufficiently 464 segmented objects for several reasons. First, segmentation error was most prevalent in transitional surface types (i.e. 465 Dark and Thin Ice), which represents a small portion of the overall image and is composed of relatively small objects. 466 This category is overrepresented in the training objects because objects were chosen to sample each surface type and 467 not weighted by area. In addition, insufficiently segmented objects are generally composed of only two surface types, 468 and end up identified as the surface which represents more of the object's area. Hence the total internal error introduced 469 by segmentation error is appreciably smaller than misclassification error, likely well under 1%.

470 **5.1.2 External Error**

471 The first form of external error is introduced by image resolution. At lower image resolutions, more pixels of the 472 image span edges, and smaller features are more likely to go undetected. Pixels on the edge of surface types necessarily 473 represent more than one surface type, but can be classified as only one. Misclassification of these has the potential to 474 become a systemic error if edge pixels were preferentially placed in a particular category. We assessed this error's 475 impact by taking high resolution IceBridge imagery (0.1m), downsampling to progressively lower resolution, and reprocessing. Figure 11 shows the surface type percentages for three IceBridge images at decreasing resolution. Figure 476 477 12 shows a series of downsampled images and their classified counterparts. Surprisingly, despite clear pixilation and 478 aliasing in the imagery, little change in aggregate classification statistics occurred as resolution was lowered from 0.1 479 to 2m. This suggests that at resolutions used for this paper, edge pixels do not significantly impact the classification 480 results. It may also be possible to forego the pansharpening process discussed in section 3.1, and use 2m multispectral 481 WorldView imagery directly.

482 The second type of external error occurs when the human expert fails to correctly label a segment. Even skilled 483 human observers cannot classify every pixel in the imagery definitively, and indeed the division between the surface 484 types can sometimes be indistinct even to an observer on the ground. We addressed this concern by employing 485 observers extensively trained in the sea ice field, both in remote sensing and in-situ observations, comparing multiple 486 human classifications of the same segments. After discussion, the portion of image objects subject to human observer 487 disagreement or uncertainty is small. Human observers disagreed on 3% of objects creating our training sets. The 488 possibility of systemic bias among the expert observer classifications cannot be excluded because real ground truth, 489 in the form of geo-referenced ground observations from knowledgeable observers was, unfortunately, not available 490 for any of the imagery. Conducting this type of validation would be helpful, but given high confidence human expert 491 classifiers expressed in their classifications and low disagreement between them, may not be essential.

492 **5.1.3 Overall Error**

493 The fact that misclassification dominates the internal error metric suggests that error could be reduced if additional

494 object attributes used by human experts to differentiate surface types could be identified. The agreement between the

495 OSSP method and a human (96%+/-3%) is similar to the agreement between different human observers (97%),

- 496 meaning that the algorithm is nearly as accurate as a human manually classifying an entire image. If we exclude the 497 possibility for systemic error in human classification, and assume other errors are unrelated to one another, we can
- 498 calculate a total absolute accuracy in surface type determination as approximately 96%.

499 **5.2 Producing Derived Metrics of Surface Coverage**

500 The classified imagery, presented as a raster, (e.g. Fig. 7) is not likely to be the end product used in many analyses. 501 Metrics of the sea ice state in simpler form will be calculated. We already introduced the most basic summary metrics 502 in section 4, where we presented fractional surface coverage calculated from the total pixel counts for each of the four 503 surface categories in each image. We also presented the calculation of melt pond coverage as a fraction of the ice-504 covered portion of the image, rather than total image area. The calculation of these is straightforward. Other metrics 505 commonly discussed in the literature that could be produced with minimal additional processing include those 506 capturing melt pond size, connectivity, or fractal dimension, as well as floe size distribution or perimeter to area ratio. 507 As with definitions of surface type, standardizing metrics will be necessary to produce intercomparable results. We 508 discussed the more complex metrics which could be derived from this imagery with several other groups. We 509 determined that standardizing these and other more advanced metrics will require more input and consensus building 510 before a community standard can be suggested. We leave determining standard methods for calculating these more 511 complex metrics to a future work.

512 Equipped with the images processed by OSSP, we consider what size area must be imaged, classified, and 513 summarized to constitute 'one observation' and how regionally representative such an observation is. Even with the 514 increasing availability of high resolution imagery, it is unlikely that high resolution imaging will regularly cover more than a small portion of the Arctic in the near future. As a result, high resolution image analysis will likely remain a 515 516 'sampling' technique. Since the scale of sea ice heterogeneity varies for each property type, a minimum area unique 517 to that property must be analyzed to qualify as a representative sample of the surface conditions. Finding that minimum 518 area involves addressing the 'aggregate scale' – the area over which a measured surface characteristic becomes 519 uniform and captures a representative average of the property in the area (Perovich, 2005). It may also be possible to 520 determine an aggregate scale statistic within well constrained bounds by random sub-sampling of the region, and 521 therefore reduce processing time. Here we conduct analysis of these sampling concepts and suggest this analysis of 522 the aggregate scale be conducted for any metric.

First, we sought to determine the aggregate scale for the simple fractional coverage metrics of ice as a fraction of total area and melt pond as a fraction of ice area. This would inform us, for example, as to whether processing the entire area of a WorldView image (up to 1000km²) was necessary, or alternatively if a full WorldView image was sufficient to constitute a sample. First, we evaluated the convergence of fractional coverage within areas of increasing size towards the image mean. For a WorldView image depicting primarily first year ice in various stages of melt, we 528 created non-overlapping gridded subsections and determined the fractional coverage within each grid cell. The size of grid cells was varied logarithmically from 100 x 100 pixels (10^2) to 31622x31622 pixels ($10^{4.5}$) or from 0.0025km² to 529 530 250km². For each sample size, we gridded the image and evaluated every subsection within the entire image. Figure 531 13a shows a scatterplot of the fractional melt pond coverage in each image grid plotted against the log of total area of 532 that grid cell. As the area sampled increases, the melt pond fraction shows lower deviation from the mean, as expected. 533 To assist in evaluating the convergence towards the mean, we plot the 95% prediction interval for each image subset 534 size in Fig. 13a (large red dots). The range of pond fraction values between these two points represents the interval 535 within which 95% of samples of this size would fall. The width of the 95% prediction interval declines linearly with 536 respect to sample area in log space, shrinking by 0.3 for each order of magnitude that sample area increases. Visually, 537 it appears that maximum convergence may have been reached at a sample area of $\sim 30 \text{km}^2$ ($\sim 10^{1.5} \text{km}^2$), though there 538 are an insufficient number of samples at this large area within a single image to be certain. Regardless of whether 539 convergence is complete, the prediction interval tells us that at 30km², 95% of areas sampled could be expected to 540 have pond coverage within 5% of the mean of a full image (~1000km²). This is consistent with prior work that 541 indicated the aggregate scale for melt pond fraction determination is on the order of several tens of square kilometers 542 (Perovich, 2005; Perovich et al., 2002). In Fig. 13b we conduct the same analysis for the total ice-covered fraction 543 (ponded + unponded ice) of the image. We see the range of the prediction interval generally drops as larger samples 544 are taken, but does not converge as cleanly or quickly as the pond coverage prediction interval does - a finding that is 545 unsurprising as ice fraction is composed of discrete floes with sizes much larger than melt ponds. The limited 546 convergence indicates that the aggregate scale for determination of ice covered fraction is at least on the order of the 547 scale of a WorldView image, and likely larger. Aggregate scale ice concentration, unlike melt pond fraction, is a 548 statistic better observed with medium resolution remote sensing platforms such as MODIS or Landsat due to the need 549 for a larger satellite footprint. WorldView imagery may be particularly useful for determining smaller scale parts of 550 floe size distributions or for validating larger scale remote sensing of ice fraction, if the larger scale pixels can be 551 completely contained within the worldview image. Floe size distribution will likely require nesting of scales in order 552 to fully access both large and small-scale parts of the floe size distribution.

553 We next investigated whether it is possible to reduce the processing load required to determine the melt pond or 554 ice fraction of an image within certain error bounds by processing collections of random image subsets. To do this, it 555 is useful to first establish two definitions: (1) one random sample of size N represents N randomly selected 100×100 pixel boxes, and (2) one adjacent sample of size N is a single area with size $100\sqrt{N} \times 100\sqrt{N}$. In other words, a 556 557 random sample and an adjacent sample both represent an image area of 10.000*N pixels, but consist of independent 558 and correlated pixels, respectively. We expect random samples to better represent the total image mean melt pond 559 fraction because ice conditions are spatially correlated and a single large area is not composed of independent samples. 560 We evaluated this hypothesis by collecting 1000 random and adjacent samples of size N=100, with replacement. 561 Results are shown in Fig. 14. In Figure 14a, we plot a histogram of the mean melt pond fraction determined from these 562 1000 samples. The means determined from sets that contained randomly distributed image areas, are in red. The means 563 determined from sets of adjacent image areas are in blue. Although both sets represent samples of the same total image area, the one composed of independent subsets randomly selected from across the image does a much better job of representing the mean value, with a smaller standard deviation.

- 566 Estimating the mean of a complete image by sampling randomly selected areas of the image becomes a simple 567 statistics problem. The sample size needed to estimate a population mean to within a certain confidence interval and 568 margin of error can be determined with the formula:
- 569 $\boldsymbol{n} = \left(\frac{\boldsymbol{Z}\boldsymbol{\sigma}}{\boldsymbol{z}\boldsymbol{\sigma}}\right)^2$

$$\boldsymbol{n} = \left(\frac{\boldsymbol{Z}\boldsymbol{\sigma}}{\boldsymbol{M}\boldsymbol{E}}\right)^2 \tag{3}$$

where n is the sample size, Z is the z-score for the confidence interval required, σ is the population standard deviation, and ME is the margin of error. The standard deviation of 1000 random samples with size 100 (Fig. 14a) is ~0.05. The mean melt pond fraction in Fig. 14a is 0.41. To match the sum of internal (2-4%) and external errors in our processing algorithm (section 5.1) the margin of error is 0.016 (i.e. 4% of 0.41). With $\sigma \approx 0.05$, ME = 0.016, and assuming a 95% confidence interval (Z=1.96) equation 3 gives a required sample size of 38. In other words, 38 random samples of size 100 can predict the mean melt pond fraction of the entire image, ±4%, with 95% confidence. 38 samples of size 100 corresponds to an image area of ~10km², significantly smaller than the total image size.

In order to show these results visually, we return to Fig. 13 and place another set of 95% prediction interval bounds (purple dots). These bounds represent the prediction interval for a random sample of size necessary for the total area to equal the area on the x axis. The result is quite powerful. By processing as little as 10km² of the image, collected from samples randomly distributed across the area, we can determine aggregate melt pond fraction to within 4% of the true value with a confidence of 95%. For large scale processing we suggest that when the sample confidence interval is below the image processing technique accuracy, sampling of larger areas is no longer necessary.

A similar analysis is presented in Fig. 13b and Fig. 14b for ice fraction. While the WorldView image is likely not large enough to represent the aggregate scale for ice fraction, randomly sampling the image still provides an expedient way to determine the mean ice fraction of the image within certain bounds, while processing only a small fraction of the image. Calculating the 95% prediction interval of random samples representing the total image area shown on the x axis (purple dots) again shows that the total image mean can be estimated by calculating only a small portion of the total image.

589 These explorations of image sampling permit us to recommend that users can estimate the total image pond fraction 590 by selecting N sets of 100 randomly selected 50x50m regions (where N is selected to provide the desired confidence 591 interval and margin of error). We suggest a standard, which incorporates some 'safety factor', for processing imagery 592 to produce estimates of melt pond fraction should be to process 25km^2 of area contained in at least 100 randomly 593 located image subsets from domains of at least 100km². We note that flying over a domain and collecting imagery 594 along flight tracks will not count as fully 'random' in this context, since the images along-track are spatially correlated. 595 Since a WorldView image does not represent the aggregate scale for ice fraction, we cannot recommend a specific 596 sampling strategy for the aggregate scale. However, processing of 25km² of imagery from randomly distributed 597 subsets produces a prediction interval around the total image mean of approximately the same size as the upper limit 598 of uncertainty for our image processing technique. The statistical approach for determining aggregate statistics should 599 not depend on the seasonality of the image nor the type of image used so long as the total area observed is sufficiently

- 600 greater than the variability in the surface feature being investigated. However, these recommendations should be
- 601 considered provisional, because they are subject to impacts from differences in ice property correlation scales, and
- should be further evaluated for accuracy as larger processed datasets are available.

603 **5.3 Community Adoption**

604 We have provided a free distribution of the OSSP algorithm and the training sets discussed in section 3.4 and 4 as a 605 companion to this publication, complete with detailed startup guides and documentation. This OSSP algorithm has 606 been implemented entirely in Python using open source resources with release to additional users in mind. The code, 607 along with documentation, instructional guidelines, and premade training sets (those used for the analyses herein) is available at https://github.com/wrightni/ossp (doi:10.5281/zenodo.1133689). The software is packaged with default 608 609 parameters and version controlled training sets for 4 different imagery sources. The package includes a graphical user 610 interface to allow users to build custom training datasets that suit their individual needs. The algorithm was constructed 611 with the flexibility to allow for the classification of any number of features given an appropriate training dataset.

Our intention is that by providing easy access to the code in an open source format, we will enable both specific inquiries and larger scale image processing that supports community efforts at general sea ice monitoring. We plan to continue improving and updating the code as it gains users and we receive community feedback. We hope to encourage others to design their own features and add-ons. Since the predictive ability of the machine learning algorithm improves as more training data is added, we wish to strongly encourage the use of the GUI to produce additional training sets and we plan to collate other users training sets into improved training versions. See documentation of the training set creation GUI for more information on how to share a training set.

The OSSP algorithm helps to bring the goal of having a standardized method for deriving geophysical parameters from high resolution optical sea ice imagery closer to reality. In the larger picture, developing such a tool is only the first step. We recall that the motivation behind this development was the need to quantify sea ice surface conditions in a way that could enable better understanding of the processes driving changes in sea ice cover. The value of the toolkit will only be realized if it is used for these scientific inquiries. We look forward to working with imagery owners to facilitate processing of additional datasets.

625 6. Conclusions

We have implemented a method for classifying the sea ice surface conditions from high resolution optical imagery of sea ice. We designed the system to have a low barrier to entry, by coding it in an open source format, providing detailed documentation, and releasing it publicly for community use. The code identifies the dominant surface types found in sea ice imagery; open water, melt ponds and submerged ice, and snow and ice, with accuracy that averages 96 percent – comparable to the consistency between manual expert human classifications of the imagery. The algorithm is shown to be capable of classifying imagery from a range of image sensing platforms including panchromatic and pansharpened WorldView satellite imagery, aerial sRGB imagery, and optical DMS imagery from

NASA IceBridge missions. Furthermore, the software can process imagery collected across the seasonal evolution of

634 the sea ice from early spring through complete ice melt, demonstrating it is robust even as the characteristics of the 635 ice features seasonally evolve. We conclude, based on our error analysis, that this automatic image processing method 636 can be used with confidence in analyzing the melt pond evolution at remote sites.

637 With appropriate processing, high resolution imagery collections should be a powerful tool for standardized and 638 routine observation of sea ice surface characteristics. We hope that providing easy access to the methods and algorithm 639 developed herein, we will facilitate the sea ice community convergence on a standardized method for processing high 640 resolution optical imagery either by adoption of this method, or by suggestion of an alternate method complete with 641 code release and error analysis.

642

643 The authors declare that they have no conflict of interest.

644

645 The OSSP algorithm code is available from https://github.com/wrightni/ossp Data Availability. 646 (doi:10.5281/zenodo.1133689). Image data and processing results are available at the NSF Arctic Data Center (ADC). 647 Raw and preprocessed image data from DigitalGlobe WorldView images are not available due to copyright, but can 648 be acquired from DigitalGlobe or the Polar Geospatial Center at the University of Minnesota.

649

657

650 Acknowledgements. This work was supported by the Office of Naval Research Award N0001413MP20144 and the 651 National Science Foundation Award PLR-1417436. We would like to thank Donald Perovich and Alexandra Arntsen 652 for their assistance in creating machine learning training datasets. We would also like to thank Arnold Song, Justin 653 Chen, and Elias Deeb for their assistance and guidance with the development of the OSSP code. WorldView satellite 654 imagery was provided with the DigitalGlobe NextView License through the University of Minnesota Polar Geospatial 655 Center. A collection of the aerial imagery was collected by the SIZONet project. Some data used in this paper were 656 acquired by the NASA Operation IceBridge Project.

References

- Arntsen, A. E., Song, A. J., Perovich, D. K. and Richter-Menge, J. A.: Observations of the summer breakup of an 658 659 Arctic sea ice cover, Geophys. Res. Lett., 42(19), 8057–8063, doi:10.1002/2015GL065224, 2015.
- Blaschke, T.: Object based image analysis for remote sensing, ISPRS J. Photogramm. Remote Sens., 65(1), 2–16, 660

doi:10.1016/j.isprsjprs.2009.06.004, 2010. 661

- Blaschke, T., Hay, G. J., Kelly, M., Lang, S., Hofmann, P., Addink, E., Queiroz Feitosa, R., van der Meer, F., van der 662 663 Werff, H., van Coillie, F. and Tiede, D.: Geographic Object-Based Image Analysis - Towards a new paradigm,
- 664 ISPRS J. Photogramm. Remote Sens., 87, 180–191, doi:10.1016/j.isprsjprs.2013.09.014, 2014.
- Breiman, L.: Bagging Predictors, Mach. Learn., 24(2), 123-140, doi:10.1023/A:1018054314350, 1996. 665
- 666 Breiman, L.: Random Forests, Mach. Learn., 45(1), 5-32, doi:10.1023/A:1010933404324, 2001.
- Curry, J. A., Schramm, J. L. and Ebert, E. E.: Sea ice-albedo climate feedback mechanism, J. Clim., 8(2), 240-247, 667 doi:10.1175/1520-0442(1995)008<0240:SIACFM>2.0.CO;2, 1995. 668

- DeFries, R. .: Multiple Criteria for Evaluating Machine Learning Algorithms for Land Cover Classification from
 Satellite Data, Remote Sens. Environ., 74(3), 503–515, doi:10.1016/S0034-4257(00)00142-5, 2000.
- 671 DeMott, P. J. and Hill, T. C. J.: Investigations of Spatial and Temporal Variability of Ocean and Ice Conditions in and
- 672 Near the Marginal Ice Zone. The "Marginal Ice Zone Observations and Processes Experiment" (MIZOPEX) Final
- 673 Campaign Summary, DOE ARM Climate Research Facility, Pacific Northwest National Laboratory; Richland,
- 674 Washington., 2016.
- 675 Dominguez, R.: IceBridge DMS L0 Raw Imagery, Version 1, , doi:10.5067/UMFN22VHGGMH, 2010.
- Duro, D. C., Franklin, S. E. and Dubé, M. G.: A comparison of pixel-based and object-based image analysis with
 selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery,
 Remote Sens. Environ., 118, 259–272, doi:10.1016/j.rse.2011.11.020, 2012.
- Eicken, H.: Tracer studies of pathways and rates of meltwater transport through Arctic summer sea ice, J. Geophys.
 Res., 107(C10), 8046, doi:10.1029/2000JC000583, 2002.
- Fetterer, F. and Untersteiner, N.: Observations of melt ponds on Arctic sea ice, J. Geophys. Res. Ocean., 103(C11),
 24821–24835, doi:10.1029/98JC02034, 1998.
- 683 GDAL: GDAL Geospatial Data Abstraction Library, Version 2.1.0, Open Source Geospatial Found. [online]
 684 Available from: http://gdal.org, 2016.
- Inoue, J., Curry, J. A. and Maslanik, J. A.: Application of Aerosondes to Melt-Pond Observations over Arctic Sea Ice,
 J. Atmos. Ocean. Technol., 25(2), 327–334, doi:10.1175/2007JTECHA955.1, 2008.
- 687 Kurtz, N. T., Farrell, S. L., Studinger, M., Galin, N., Harbeck, J. P., Lindsay, R., Onana, V. D., Panzer, B. and Sonntag,
- J. G.: Sea ice thickness, freeboard, and snow depth products from Operation IceBridge airborne data, Cryosph.,
 7(4), 1035–1056, doi:10.5194/tc-7-1035-2013, 2013.
- Kwok, R.: Declassified high-resolution visible imagery for Arctic sea ice investigations: An overview, Remote Sens.
 Environ., 142, 44–56, doi:10.1016/j.rse.2013.11.015, 2014.
- Kwok, R. and Rothrock, D. A.: Decline in Arctic sea ice thickness from submarine and ICESat records: 1958-2008,
 Geophys. Res. Lett., 36(15), n/a-n/a, doi:10.1029/2009GL039035, 2009.
- Landy, J., Ehn, J., Shields, M. and Barber, D.: Surface and melt pond evolution on landfast first-year sea ice in the
 Canadian Arctic Archipelago, J. Geophys. Res. Ocean., 119(5), 3054–3075, doi:10.1002/2013JC009617, 2014.
- 696 Laxon, S. W., Giles, K. A., Ridout, A. L., Wingham, D. J., Willatt, R., Cullen, R., Kwok, R., Schweiger, A., Zhang,
- J., Haas, C., Hendricks, S., Krishfield, R., Kurtz, N., Farrell, S. and Davidson, M.: CryoSat-2 estimates of Arctic
 sea ice thickness and volume, Geophys. Res. Lett., 40(4), 732–737, doi:10.1002/grl.50193, 2013.
- Lu, P., Li, Z., Cheng, B., Lei, R. and Zhang, R.: Sea ice surface features in Arctic summer 2008: Aerial observations,
 Remote Sens. Environ., 114(4), 693–699, doi:10.1016/j.rse.2009.11.009, 2010.
- Markus, T., Cavalieri, D. J., Tschudi, M. A. and Ivanoff, A.: Comparison of aerial video and Landsat 7 data over
 ponded sea ice, Remote Sens. Environ., 86(4), 458–469, doi:10.1016/S0034-4257(03)00124-X, 2003.
- 703 Markus, T., Stroeve, J. C. and Miller, J.: Recent changes in Arctic sea ice melt onset, freezeup, and melt season length,
- 704 J. Geophys. Res., 114(C12), C12024, doi:10.1029/2009JC005436, 2009.

- Maslanik, J., Stroeve, J., Fowler, C. and Emery, W.: Distribution and trends in Arctic sea ice age through spring 2011,
 Geophys. Res. Lett., 38(13), doi:10.1029/2011GL047735, 2011.
- Miao, X., Xie, H., Ackley, S. F., Perovich, D. K. and Ke, C.: Object-based detection of Arctic sea ice and melt ponds
 using high spatial resolution aerial photographs, Cold Reg. Sci. Technol., 119, 211–222,
 doi:10.1016/j.coldregions.2015.06.014, 2015.
- Miao, X., Xie, H., Ackley, S. F. and Zheng, S.: Object-Based Arctic Sea Ice Ridge Detection From High-Spatial Resolution Imagery, IEEE Geosci. Remote Sens. Lett., 13(6), 787–791, doi:10.1109/LGRS.2016.2544861, 2016.
- Pal, M.: Random forest classifier for remote sensing classification, Int. J. Remote Sens., 26(1), 217–222,
 doi:10.1080/01431160412331269698, 2005.
- Parkinson, C. L. and Comiso, J. C.: On the 2012 record low Arctic sea ice cover: Combined impact of preconditioning
 and an August storm, Geophys. Res. Lett., 40(7), 1356–1361, doi:10.1002/grl.50349, 2013.
- Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss,
 R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M. and Duchesnay, É.: Scikitlearn: Machine Learning in Python, J. Mach. Learn. Res., 12(Oct), 2825–2830 [online] Available from:
- 719 http://jmlr.csail.mit.edu/papers/v12/pedregosal1a.html (Accessed 24 July 2017), 2011.
- Perovich, D. K.: On the aggregate-scale partitioning of solar radiation in Arctic sea ice during the Surface Heat Budget
 of the Arctic Ocean (SHEBA) field experiment, J. Geophys. Res., 110(C3), C03002, doi:10.1029/2004JC002512,
 2005.
- Perovich, D. K., Tucker, W. B. and Ligett, K. A.: Aerial observations of the evolution of ice surface conditions during
 summer, J. Geophys. Res., 107(C10), 8048, doi:10.1029/2000JC000449, 2002a.
- Perovich, D. K., Grenfell, T. C., Light, B. and Hobbs, P. V: Seasonal evolution of the albedo of multiyear Arctic sea
 ice, J. Geophys. Res., 107(C10), 8044, doi:10.1029/2000JC000438, 2002b.
- Perovich, D. K., Richter-Menge, J. A., Jones, K. F. and Light, B.: Sunlight, water, and ice: Extreme Arctic sea ice
 melt during the summer of 2007, Geophys. Res. Lett., 35(11), L11501, doi:10.1029/2008GL034007, 2008.
- 729 Petty, A. A., Tsamados, M. C., Kurtz, N. T., Farrell, S. L., Newman, T., Harbeck, J. P., Feltham, D. L. and Richter-
- Menge, J. A.: Characterizing Arctic sea ice topography using high-resolution IceBridge data, Cryosph., 10(3),
 1161–1179, doi:10.5194/tc-10-1161-2016, 2016.
- Pistone, K., Eisenman, I. and Ramanathan, V.: Observational determination of albedo decrease caused by vanishing
 Arctic sea ice, Proc. Natl. Acad. Sci., 111(9), 3322–3326, doi:10.1073/pnas.1318201111, 2014.
- Polashenski, C., Perovich, D. and Courville, Z.: The mechanisms of sea ice melt pond formation and evolution, J.
 Geophys. Res. Ocean., 117(C1), n/a-n/a, doi:10.1029/2011JC007231, 2012.
- Renner, A. H. H., Gerland, S., Haas, C., Spreen, G., Beckers, J. F., Hansen, E., Nicolaus, M. and Goodwin, H.:
 Evidence of Arctic sea ice thinning from direct observations, Geophys. Res. Lett., 41(14), 5029–5036,
 doi:10.1002/2014GL060369, 2014.
- Rösel, A. and Kaleschke, L.: Comparison of different retrieval techniques for melt ponds on Arctic sea ice from
 Landsat and MODIS satellite data, Ann. Glaciol., 52(57), 185–191, doi:10.3189/172756411795931606, 2011.

- Rösel, A., Kaleschke, L. and Birnbaum, G.: Melt ponds on Arctic sea ice determined from MODIS satellite data using
 an artificial neural network, Cryosph., 6(2), 431–446, doi:10.5194/tc-6-431-2012, 2012.
- Stroeve, J. C., Serreze, M. C., Holland, M. M., Kay, J. E., Malanik, J. and Barrett, A. P.: The Arctic's rapidly shrinking
 sea ice cover: a research synthesis, Clim. Change, 110, 1005–1027, doi:10.1007/s10584-011-0101-1, 2012.
- Stroeve, J. C., Markus, T., Boisvert, L., Miller, J. and Barrett, A.: Changes in Arctic melt season and implifications
 for sea ice loss, Geophys. Res. Lett., 41, 1216–1225, doi:10.1002/2013GL058951.Received, 2014.
- Tschudi, M. A., Maslanik, J. A. and Perovich, D. K.: Derivation of melt pond coverage on Arctic sea ice using MODIS
 observations, Remote Sens. Environ., 112(5), 2605–2614, doi:10.1016/j.rse.2007.12.009, 2008.
- van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager, N., Gouillart, E. and Yu,
 T.: scikit-image: image processing in Python, PeerJ, 2, e453, doi:10.7717/peerj.453, 2014.
- Webster, M. A., Rigor, I. G., Perovich, D. K., Richter-menge, J. A., Polashenski, C. M. and Light, B.: Seasonal
 evolution of melt ponds on Arctic sea ice, J. Geophys. Res. Ocean., 120(9), 1–15,
 doi:10.1002/2015JC011030.Received, 2015.
- Yan, G., Mas, J. -F., Maathuis, B. H. P., Xiangmin, Z. and Van Dijk, P. M.: Comparison of pixel-based and object-
- oriented image classification approaches—a case study in a coal fire area, Wuda, Inner Mongolia, China, Int. J.
 Remote Sens., 27(18), 4039–4055, doi:10.1080/01431160600702632, 2006.

- 761 Figure 1. Examples of imagery from each of the four imaging platforms that we seek to classify in this study. Each type of imagery has either a different spatial resolution or and different levels spectral information available.

Figure 2. Flow diagram depicting the steps taken to classify an image in the OSSP algorithm.

Figure 3. Visual representation of important steps in the image processing workflow. Panel (a) shows preprocessed panchromatic WorldView 2 satellite imagery, taken on July 1, 2014. In panel (b), outlines of the image objects created by our edge detection and watershed transformation are shown overlain on top of the image in panel (a). Panel (c) shows the result of replacing each object with a value corresponding to the prediction of the random forest classifier.

773 Figure 4. Confusion matrices comparing classification tendencies between two users experienced with the image processing

algorithm (left) and between an experienced user and a new user (right). Squares are colored based on the value of the cell,

with darker colors indicating more matches. Values along the diagonal of each confusion matrix represents the agreement

776 between each user, while values in off-diagonal regions represent disagreement.

- 778 Figure 5. Examples of surfaces seen in aerial imagery of sea ice that span our four classification categories. Panel A: snow
- 779 covered surface. Panel B: Ice with a thin surface scattering layer where disagreement on true classification exists -
- 780 represents a small fraction of total surface area. Panel C: Panel D: Surface transitioning to a melt pond that is not yet fully
- 781 submerged. Panel E: Melt pond. Panel F: Dark melt pond that has not completely melted through. Panel G: Submerged 782 ice. Panel H: Brash, mostly submerged, included in the melt pond category. Panel I: Melt pond that has completely melted
- 783 through to open water. Panel J: Open water.

- 785 Figure 6. Graphical user interface used to create training datasets and to assess the accuracy of a classified image. Bottom
- 786 left panel shows an overview of the region to provide the user with spatial context. Top left magnifies the image and
- 787 highlights the segment of interest, while top right shows the same region with no segment overlap. The user is allowed to
- 788 choose between any of the relevant surface categories, or to indicate that they are unsure of the classification. As shown,
- 789 the user interface is demonstrating the classification of a segment for use in a training set. This same GUI is also capable of
- 790 asking a user to classify an individual pixel, which can be compared to the final classified image for determining accuracy 791
- (section 3.6).

- Figure 7. Side-by-side comparison of preprocessed imagery (left) and the result of classification (right) for each of the four
- imaging platforms. Images depict ice surfaces in varying stages of melt. The NASA IceBridge image, for example, is in very
- 795 late stages of melt ponds that have already melted through to the ocean.

Figure 8. Accuracy confusion matricies comparing the classification of 1000-pixels between a human and the algorithm.

798 Squares are colored based on the value of the cell, with darker colors indicating more matches. Values along the diagonal 799 of each confusion matrix represents the agreement between each classifier, while values in off-diagonal regions represent

800 disagreement.

Figure 9. Seasonal progression of surface type distributions at the satellite image collection site; 2014 in the Beaufort Sea
 at 72°N 128°W. This site represents a Eulerian observation of the sea ice surface, and does not track a floe across its lifetime.
 Average scene size was 956km² with a minimum of 304km² and a maximum of 1321km².

Figure 10. Evolution of melt pond fraction over the 2014 season at our satellite image collection site; 2014 in the Beaufort Sea at 72°N 128°W. This site represents a Eulerian observation of the sea ice surface, and does not track a floe across its

815 and is degraded to a maximum of 50m.

Figure 12. Visual demonstration of the downsampling effect on a single NASA IceBridge image. The top image is shown at

- the original 0.1 m resolution. The middle image is a resolution of 2m - the equivalent of a multispectral WorldView 2 image without pansharpening. The bottom has a resolution of 10m, where pixel size has begun to exceed the average melt pond
- size.

black dots represent the mean value of those samples, red dots represent the 95% prediction interval, and purple dots show
 the 95% prediction interval for the same total area, but calculated from 100 randomly placed, smaller, samples. Cyan
 shaded area represents the error in determination expected from the processing method.

Figure 14. Histogram of melt pond fraction (a) and ice fraction (b) for 1000 samples, where each sample is the mean surface fraction within 100, 50m by 50m, squares. The 100 squares were either randomly distributed across the image (red) or adjacent to each other (blue). Calculated from a 25 June 2014 WorldView image.

839 Tables

Attribute	MS	PAN	Aerial
Mean (Pan)			
Mean (Coastal)			
Mean (Blue)			
Mean (Green)			
Mean (Yellow)			
Mean (Red)			
Mean (Red Edge)			
Mean (NIR1)			
Mean (NIR2)			
Median (Pan)			
StDev (Pan)			
Min Intensity (Pan)			
Max Intensity (Pan)			
StDev (Blue)			
StDev (Green)			
StDev (Red)			
Entropy			
Segment Size			
Image Date			
Coastal / Green			
Blue / NIR1			
Green / NIR1			
Yellow / Red Edge			
Yellow / NIR1			
Yellow / NIR2			
Red / NIR1			
(B1 - NIR1)/(B2 + NIR1)			
(G - R)/(G + R)			
$(B - R)/(B + R)^1$			
$(B - G)/(B + G)^1$			
$(G - R)/(2*B - G - R)^1$			
Neighbor Mean			
Neighbor StDev			
Neighbor Max			
Neighbor Entropy			

840 ¹Miao et al. 2015

Table 1. Attributes used for classifying each of the three image types. Blue squares indicate attributes that were used for that image. Dark gray squares indicate attributes that are available, but were not found to be sufficiently beneficial in the

842 that image. Datk gray squares indicate altibutes that are available, but were not iound to be sufficiently beneficial in the sufficiency of the sufficiency of

type (e.g. band ratios on a panchromatic image). NIR is the near infrared wavelength. B1 is the costal WorldView band,

and B2 is the blue band. R, G, and B, stand for red, green, and blue, respectively.

Image ID	Sensor Type	Date Collected	Ice + Snow	DTI	MPS	ow	Accuracy
102001002C214D00	Panchromatic	11-Mar-14	96	3	0	2	97
103001002E8F0D00	Panchromatic	18-Mar-14	97	3	0	0	97
102001002BBA0C00	Panchromatic	19-Mar-14	97	2	0	1	96
103001002FC75200	Panchromatic	23-Mar-14	94	4	0	3	95
102001002CB77C00	Panchromatic	27-Mar-14	98	2	0	0	100
1030010030403A00	Panchromatic	31-Mar-14	95	2	0	3	98
1030010031B65000	Panchromatic	4-Apr-14	96	3	0	1	99
102001002BA6C100	Panchromatic	8-Apr-14	93	3	0	4	100
103001002F79A700	Panchromatic	21-Apr-14	93	3	0	4	98
1030010030371B00	Panchromatic	24-Apr-14	93	7	0	0	98
103001003102A600	Panchromatic	4-May-14	76	16	0	8	98
102001003007FA00	Panchromatic	13-May-14	87	3	0	10	97
10300100306F2E00	Panchromatic	19-May-14	83	4	0	13	96
102001003035D700	Panchromatic	13-Jun-14	49	7	25	18	95
1030010033AAC400	Panchromatic	19-Jun-14	20	3	16	61	97
1020010031DF9E00	Panchromatic	20-Jun-14	27	2	31	39	96
1020010032B94E00	Panchromatic	24-Jun-14	45	2	41	11	95
102001003122A700	Panchromatic	25-Jun-14	48	1	37	13	97
102001002F4F1A00	Panchromatic	28-Jun-14	57	2	28	14	95
10300100346D1200	Panchromatic	1-Jul-14	38	0	23	39	97
1030010035C8D000	Panchromatic	12-Jul-14	0	0	0	100	100
103001003421AB00	Panchromatic	20-Aug-14	0	0	0	100	100
10300100324B7D00	Multispectral	13-Jun-14	44	7	29	19	96
1030010033AAC400	Multispectral	19-Jun-14	16	3	19	62	97
10300100346D1200	Multispectral	1-Jul-14	44	2	26	28	98
1030010035C8D000	Multispectral	12-Jul-14	0	0	0	100	100
2016_07_13_05863	IceBridge	13-Jul-16	50	2	34	14	92
2016_07_13_05882	IceBridge	13-Jul-16	72	1	26	0	97
2016_07_13_05996	IceBridge	13-Jul-16	70	2	28	0	95
2016_07_13_06018	IceBridge	13-Jul-16	61	2	36	1	91
2016_07_13_06087	IceBridge	13-Jul-16	66	1	33	0	99
2016_07_16_00373	IceBridge	16-Jul-16	9	0	2	89	100
2016_07_16_00385	IceBridge	16-Jul-16	66	1	14	20	98

2016_07_16_00662	IceBridge	16-Jul-16	49	1	16	35	98
2016_07_16_00739	IceBridge	16-Jul-16	67	2	25	6	97
2016_07_16_01569	IceBridge	16-Jul-16	22	0	7	71	97
2016_07_16_02654	IceBridge	16-Jul-16	35	0	10	54	95
2016_07_19_01172	IceBridge	19-Jul-16	62	0	14	24	90
2016_07_19_01179	IceBridge	19-Jul-16	57	0	10	32	95
2016_07_19_02599	IceBridge	19-Jul-16	51	0	7	43	99
2016_07_19_02603	IceBridge	19-Jul-16	69	0	9	22	99
2016_07_19_02735	IceBridge	19-Jul-16	74	0	25	0	100
2016_07_19_03299	IceBridge	19-Jul-16	57	0	8	35	96
2016_07_21_01221	IceBridge	21-Jul-16	49	0	4	47	97
2016_07_21_01311	IceBridge	21-Jul-16	87	1	5	7	95
2016_07_21_01316	IceBridge	21-Jul-16	92	0	4	4	99
DSC_0154	Aerial sRGB	8-Jun-09	43	4	53	0	94
DSC_0327	Aerial sRGB	8-Jun-09	33	3	63	0	90
DSC_0375	Aerial sRGB	8-Jun-09	96	0	4	0	99
DSC_0422	Aerial sRGB	8-Jun-09	88	0	11	0	98
DSC_0223	Aerial sRGB	10-Jun-09	46	1	53	0	93
DSC_0243	Aerial sRGB	10-Jun-09	59	1	40	1	98
DSC_0314	Aerial sRGB	10-Jun-09	89	0	11	0	95
DSC_0319	Aerial sRGB	10-Jun-09	75	2	19	4	88
DSC_0323	Aerial sRGB	10-Jun-09	37	2	61	0	95
DSC_0338	Aerial sRGB	10-Jun-09	83	2	15	1	95
DSC_0386	Aerial sRGB	10-Jun-09	80	3	14	3	89
DSC_0394	Aerial sRGB	10-Jun-09	79	2	10	9	95
DSC_0412	Aerial sRGB	10-Jun-09	63	2	24	10	92
DSC_0425	Aerial sRGB	10-Jun-09	56	2	17	24	97
DSC_0439	Aerial sRGB	10-Jun-09	71	1	6	22	98
DSC_0441	Aerial sRGB	10-Jun-09	57	0	4	38	98
DSC_0486	Aerial sRGB	10-Jun-09	53	1	17	29	96
DSC_0634	Aerial sRGB	10-Jun-09	72	1	14	12	96
DSC_0207	Aerial sRGB	13-Jun-09	80	1	19	0	96
DSC_0514	Aerial sRGB	13-Jun-09	86	1	13	0	97

Results Table 2. The complete results of imagery processed for this analysis. Descriptions for each image includes the image type, date collected, the percent of the image that falls into each of the four categories, and the accuracy assessment.

Imaga Sauraa	Training	Out-of-bag	
image source	Dataset Size	Error	
Panchromatic WorldView	1000	0.94	
Pansharpened WorldView	859	0.89	
Aerial Imagery	945	0.94	
IceBridge Imagery	940	0.91	

851 Table 3. Out-of-Bag scores for the three training datasets used to classify imagery from each of the four sensor platforms, and the number of objects manually classified for each set.