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Abstract. Snow, ice, and melt ponds cover the surface of the Arctic Ocean in fractions that change throughout the 7 

seasons. These surfaces control albedo and exert tremendous influence over the energy balance in the Arctic. 8 

Increasingly available m- to dm-scale resolution optical imagery captures the evolution of the ice and ocean surface 9 

state visually, but methods for quantifying coverage of key surface types from raw imagery are not yet well 10 

established. Here we present an open source system designed to provide a standardized, automated, and reproducible 11 

technique for processing optical imagery of sea ice. The method classifies surface coverage into three main categories: 12 

Snow and bare ice, melt ponds and submerged ice, and open water. The method is demonstrated on imagery from four 13 

sensor platforms and on imagery spanning from spring thaw to fall freeze-up. Tests show the classification accuracy 14 

of this method typically exceeds 96%. To facilitate scientific use, we evaluate the minimum observation area required 15 

for reporting a representative sample of surface coverage. We provide an open source distribution of this algorithm 16 

and associated training data sets and suggest the community consider this a step towards standardizing optical sea ice 17 

imagery processing. We hope to encourage future collaborative efforts to improve the code base and to analyze large 18 

datasets of optical sea ice imagery.  19 

1 Introduction 20 

The surface of the sea ice-ocean system exhibits many different forms. Snow, ice, ocean, and melt ponds cover the 21 

surface in fractions that change throughout the seasons. The relative fractions of these surfaces covering the Arctic 22 

ocean are undergoing substantial change due to rapid loss of sea ice (Stroeve et al., 2012), increase in the duration of 23 

melt (Markus et al., 2009; Stroeve et al., 2014), decrease in sea ice age (Maslanik et al., 2011), and decrease in sea ice 24 

thickness (Kwok and Rothrock, 2009; Laxon et al., 2013) over recent decades. As a whole, the changes are reducing 25 

albedo and enhancing the absorption of solar radiation, triggering an ice albedo feedback (Curry et al., 1995; Perovich 26 

et al., 2008; Pistone et al., 2014). Large-scale remote sensing has been instrumental in documenting the ongoing 27 

change in ice extent (Parkinson and Comiso, 2013), thickness (Kurtz et al., 2013; Kwok and Rothrock, 2009; Laxon 28 

et al., 2013), and surface melt state (Markus et al., 2009). An increasing focus on improving prediction of future sea 29 

ice and climate states, however, has also created substantial interest in better observing, characterizing, and modeling 30 

the processes that drive changes in albedo-relevant sea ice surface conditions such as melt pond formation, which 31 

occur at smaller length scales. For these, observations that resolve surface conditions explicitly are needed to 32 

understand the underlying causes of the seasonal and spatial evolution of albedo in a more sophisticated way.  33 
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Explicitly sensing the key aspects of the sea ice surface, including melt pond coverage, degree of deformation, floe 34 

size, and lead distributions, requires evaluating the surface at meter to decimeter scale resolution. Variability in the 35 

spatial coverage and morphology of these surface characteristics, however, occurs over hundreds of meters to tens of 36 

kilometers. Estimates of aggregate scale surface coverage fraction must therefore be made at high resolution over 37 

sample domains of many square kilometers. Quantifying the relative abundance of surface types over domains of 38 

multi-kilometer scale from manned ground campaigns is both time consuming and impractical. Remote sensing 39 

provides a more viable approach for studying these multi-kilometer areas. High resolution optical imagery (e.g. Figure 40 

1) visually captures the surface features of interest, but the methods for analyzing this imagery remain under-41 

developed. 42 

The need for remote sensing methods enabling quantification of meter-scale sea ice surface characteristics has 43 

been well recognized, and efforts have been made to address it. Recent developments in remote sensing of sea ice 44 

surface conditions fall into two categories: (1) methods using low-medium resolution satellite imagery (i.e. having 45 

pixel sizes larger than the typical ice surface feature size) with spectral un-mixing type algorithms to derive aggregate 46 

measures of sub-pixel phenomena (e.g. for melt ponds Markus et al., 2003; Rösel et al., 2012; Rösel and Kaleschke, 47 

2011; Tschudi et al., 2008) and (2) methods using higher resolution satellite or airborne imagery (i.e. having pixel size 48 

smaller than the typical scale of ice surface features) that is capable of explicitly resolving features (e.g. Arntsen et 49 

al., 2015; Fetterer and Untersteiner, 1998; Inoue et al., 2008; Kwok, 2014; Lu et al., 2010; Miao et al., 2015; Perovich 50 

et al., 2002b; Renner et al., 2014; Webster et al., 2015). The first category, those derived from low-medium resolution 51 

imagery, have notable strengths in their frequent sampling and basin-wide coverage. They cannot, however, provide 52 

detailed statistics on the morphology of surface features necessary for assessing our process-based understanding and 53 

have substantial uncertainty due to ambiguity in spectral signal un-mixing. The second category – observations at high 54 

resolutions which explicitly resolve surface properties – can provide these detailed statistics but were historically 55 

limited by a dearth of data acquisitions. Recent increases in imagery availability from formerly classified defense 56 

(Kwok, 2014) or commercial satellites (e.g. DigitalGlobe), and increases in manned flights over the Arctic (e.g. 57 

IceBridge, SIZRS) have substantially reduced this constraint for optical imagery. While high resolution imagery still 58 

does not provide basin-wide coverage, likely increases in collection of imagery from UAV’s (DeMott and Hill, 2016) 59 

and increases in satellite imaging bandwidth (e.g. DigitalGlobe WorldView 4 launched in 2016) suggest that 60 

availability of high resolution imagery will continue to increase.  61 

Processing high resolution sea ice imagery to derive useful metrics quantifying surface state, however, remains a 62 

major hurdle. Recent years have seen numerous publications demonstrating the success of various processing 63 

techniques for optical imagery of sea ice on limited test cases (e.g. Inoue et al., 2008; Kwok, 2014; Lu et al., 2010; 64 

Miao et al., 2015; Perovich et al., 2002b; Renner et al., 2014; Webster et al., 2015). None of these techniques, however, 65 

have been adopted as a standard or been used to produce large-scale datasets, and validation has been limited. 66 

Furthermore, no single method has been used to process data from multiple sensor platforms or documented and 67 

released for wide-spread community use. These issues must be addressed to enable in large scale production-type 68 

image processing and use of high resolution imagery as a sea ice monitoring tool.  69 



3 
 
 

A unique aspect of high resolution sea ice imagery datasets, which differs from most satellite remote sensing, is 70 

the quantity of image sources and data owners. Distributed collection and data ownership means centralized processing 71 

of imagery to produce a single product is unlikely. Instead, we believe that distributed processing by dataset owners 72 

is more likely and the community therefore has a substantial need for a shared, standard processing protocol. 73 

Successful creation of such a processing protocol would increase imagery analysis and result in the production of 74 

datasets suitable for ingestion by models to validate surface process parameterizations. In this paper, we assess 75 

previous publications detailing image processing methods for remote sensing and present a novel scheme that builds 76 

from the strengths and lessons of prior efforts. Our resulting algorithm, the Open Source Sea-ice Processing (OSSP) 77 

Algorithm, is presented as a step toward addressing the community need for a standardized methodology and released 78 

in an open source implementation for use and improvement by the community.  79 

We began with three primary design goals that guided our development of the image processing scheme. The 80 

method must (1) have a fully automatic workflow and have a low barrier to entry for new users, (2) produce accurate, 81 

consistent results in a standardized output format, and (3) be able to produce equivalent geophysical parameters from 82 

a range of disparate image acquisition methods. To meet these goals, we have packaged OSSP in a user-friendly 83 

format, with clear documentation for start-up. We include a set of default parameters that should meet most user needs, 84 

permitting processing of pre-defined image types with minimal set-up. The algorithm parameters are tunable to allow 85 

more advanced users to tailor the method to their specific imagery input. We chose an open source format to enhance 86 

the ability for the community to explore and improve the code relative to a commercial software. Herein, we discuss 87 

how we arrived at the particular technique we use, and why it is superior to some other possible mechanisms. We then 88 

demonstrate the ability of this algorithm to analyze imagery of disparate sources by showing results from high 89 

resolution DigitalGlobe WorldView satellite imagery in both panchromatic and pansharpened formats, aerial sRGB 90 

(standard Red, Green, Blue) imagery, and NASA Operation IceBridge DMS (Digital Mapping System) optical 91 

imagery. In this paper, we classify imaged areas into three surface types: Snow and ice, melt ponds and submerged 92 

ice, and open water. The algorithm is, however, suitable for classifying any number of categories, should a user be 93 

interested in different surface types, and might be adapted for use on imagery of other surface types. 94 

2 Algorithm Design 95 

Two core decisions were faced in the design of this image classification scheme: (1) Whether to analyze the image by 96 

individual pixels or to analyze objects constructed of similar, neighboring pixels, and (2) which algorithm to use for 97 

the classification of these image units. 98 

Prior work in terrestrial remote sensing applications has shown that object-based classifications are more accurate 99 

than single pixel classifications when analyzing high-resolution imagery (Blaschke, 2010; Blaschke et al., 2014; Duro 100 

et al., 2012; Yan et al., 2006). In this case, ‘high resolution’ has a specific definition dependent on the relationship 101 

between the size of pixels and objects of interest. An image is high resolution when surface features of interest are 102 

substantially larger than pixel resolution and therefore are composed of many pixels. In such imagery, objects, or 103 

groups of pixels constructed to contain only similar pixels (i.e. a single surface type), can be analyzed as a set. The m-104 



4 
 
 

dm resolution imagery meets this definition for features like melt ponds and ice floes. Object based classification 105 

enables an algorithm to extract information about image texture and spatial correlation within the pixel group; 106 

information that is not available in single pixel-based classifications and can enhance accuracy of surface type 107 

discrimination. Furthermore, object-based classifications are much better at preserving the size and shape of surface 108 

cover regions. Classification errors of individual pixel schemes tend to produce a ‘speckled’ appearance in the image 109 

classification with incorrect pixels scattered across the image. Errors in object based classifications, meanwhile, 110 

appear as entire objects that are mislabeled (Duro et al., 2012). Since our intent is to process high-resolution imagery 111 

and produce measurements not only of the areal fractions of surface type regions, but also to enable analysis of the 112 

size and shape of ice surface type regions (e.g. for floe size or melt pond size determination), the choice of object-113 

based classification over pixel based was clear. 114 

A wide range of algorithms were considered for classifying image objects. We first considered the use of 115 

supervised versus an unsupervised classification schemes. Unsupervised schemes were rejected as they produce 116 

inconsistent, non-intercomparable results. These schemes, such as clustering algorithms, group observations into a 117 

predefined number of categories – even if not all feature types of interest are present in an image. For example, an 118 

image containing only snow-covered ice will still be categorized into the same number of classes as an image with 119 

snow, melt ponds, and open water together – resulting in multiple classes of snow. Since the boundary between classes 120 

also changes in each image, standardizing results across imagery with different sources and of scenes with different 121 

feature content would be challenging at best.  122 

Supervised classification schemes instead utilize a set of known examples (called training data) to assign a 123 

classification to unknown objects based on similarity to user-identified objects. Supervised classification schemes 124 

have several advantages. They can produce fixed surface type definitions, allow for more control and fine tuning of 125 

the algorithm, improve in skill as more points are added to the training data, and allow users to choose what surface 126 

characteristics they wish to classify. While many machine learning techniques have shown high accuracy in remote 127 

sensing applications (Duro et al., 2012), we selected a random forest machine learning classifier over other supervised 128 

learning algorithms for its ability to handle nonlinear and categorical training inputs (Breiman, 2001; DeFries, 2000; 129 

Pal, 2005), resistance to outliers in the training dataset (Breiman, 1996), and relative ease of implementation.  130 

Our scheme, learning from the success of Miao et al. (2015) in classifying aerial imagery, uses an image 131 

segmentation algorithm to divide the image into objects which are then classified with random forest machine learning. 132 

Our implementation of the segmentation and classification, however, were custom-built using well known image 133 

processing tools (Pedregosa et al., 2011; van der Walt et al., 2014) in an open source format. We do not attempt to 134 

assert that our method is the optimal method for processing sea ice imagery. Instead, we argue that it is easily usable 135 

by the community at large, produces highly accurate and consistent results, and merits consideration as a standardized 136 

methodology. In coordination with this publication, we release our code (available at https://github.com/wrightni/ossp 137 

doi:10.5281/zenodo.1133689) with the intention of encouraging movement toward a standardized method. Our hope 138 

is to continue development of the algorithm with contributions and suggestions from the sea ice community.  139 
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3 Methods 140 

3.1 Image Collection and Preprocessing 141 

The imagery used to test the algorithm was selected from four distinct sources in order to assess the algorithm’s ability 142 

to deliver consistent and intercomparable measures of geophysical parameters. We chose high resolution satellite 143 

imagery from DigitalGlobe’s WorldView constellation in panchromatic and 8 band multispectral formats, NASA 144 

Operation IceBridge Digital Mapping System optical imagery, and aerial sRGB imagery collected using an aircraft-145 

mounted standard DLSR camera as part of the SIZONet project. We first demonstrate the technique’s ability to handle 146 

imagery representing all stages of the seasonal evolution of sea ice conditions on a series of 22 panchromatic satellite 147 

images collected between March and August of 2014 at a single site in the Beaufort Sea: 72.0° N 128.0° W. We then 148 

process 4 multispectral WorldView 2 images of the same site, each collected coincident with a panchromatic image 149 

and compare results to assess the benefit of spectral information. Finally, we process a set of 20 sRGB images and 20 150 

IceBridge DMS images containing a variety of sea ice surface types to illustrate the accuracy of the method on aerial 151 

image sources. The imagery sources chosen for this analysis were selected to be representative of the variation that 152 

exists in optical imagery of sea ice, but there is an abundance of image data that can be processed with this technique. 153 

The satellite images were collected by tasking WorldView 1 and WorldView 2 Digital Globe satellites over fixed 154 

locations in the Arctic. Tasking requests were submitted to DigitalGlobe with the support and collaboration of the 155 

Polar Geospatial Center. The panchromatic bands of WorldView 1 and 2 both have a spatial resolution of 0.46m at 156 

nadir. The WorldView 1 satellite panchromatic band samples the visible spectrum between 400 nm and 900 nm, while 157 

the WorldView 2 satellite panchromatic band samples between 450 nm and 850 nm. In addition, WorldView 2 has 8 158 

multispectral bands at 1.84 m nadir resolution, capturing bands within the range of 400nm to 1040nm. Each 159 

WorldView image captures an area of ~700-1300 km2. Of the 22 useable panchromatic collections at the site, 15 were 160 

completely cloud free while 7 of the images were partially cloudy. Images with partial cloud cover were manually 161 

masked and cloud covered areas were excluded from analysis. The aerial sRGB imagery was captured along a 100km 162 

long transect to the north of Barrow, Alaska with a Nikon D70 DSLR mounted at nadir to a light airplane during June 163 

2009. The IceBridge imagery was collected in July of 2016 near 73° N 171° W with a Canon EOS 5D Mark II digital 164 

camera. We utilize the L0 (raw) DMS IceBridge imagery, which has a 10cm spatial resolution when taken from 1500 165 

feet altitude (Dominguez, 2010, updated 2017). 166 

Each satellite image was orthorectified to mean sea level before further processing. Orthorectification corrects for 167 

image distortions caused by off-nadir acquisition angles and produces a planimetrically correct image that can be 168 

accurately measured for distance and area. Due to the relatively low surface roughness of both multiyear and first year 169 

sea ice (Petty et al., 2016), errors induced by ignoring the real topography during orthorectification are small. 170 

Multispectral imagery was pansharpened to the resolution of the panchromatic imagery. Pansharpening is a method 171 

that creates a high resolution multispectral image by combining intensity values from a higher resolution panchromatic 172 

image with color information from a lower resolution multispectral image. The pansharpened imagery used here was 173 

created using a ‘weighted’ Brovey algorithm. This algorithm resamples the multispectral image to the resolution of 174 

the panchromatic image, then each pixel’s value is multiplied by the ratio of the corresponding panchromatic pixel 175 
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value to the sum of all multispectral pixel values. The orthorectification and pansharpening scripts were developed by 176 

the Polar Geospatial Center at the University of Minnesota and utilize the GDAL (Geospatial Data Abstraction 177 

Library) image processing tools (GDAL, 2016). All imagery used was rescaled to the full 8-bit color space for 178 

improved contrast and viewing. No other preprocessing was done to the aerial sRGB imagery or IceBridge DMS 179 

imagery. 180 

3.2 Image Segmentation 181 

A flow chart of the image processing steps taken after pre-processing is presented in Fig. 2. The first task in the image 182 

processing algorithm is to segment the image into groups of similar pixels, called objects. Accurate segmentation 183 

requires finding the boundaries between the natural surface types we wish to differentiate (e.g. the boundary between 184 

ice covered and open ocean), delineating their locations, and using these boundaries to produce image objects. Sea ice 185 

surface types have large differences in reflectivity and tend to change abruptly, rather than gradually over a large 186 

distance. We exploit this characteristic by using an edge detection algorithm to find boundaries between surface types.  187 

Figure 3 contains a visual demonstration of this process. First, a Sobel-Feldman operator (van der Walt et al., 2014) 188 

is applied to the input image (Fig. 3a). The Sobel-Feldman filter applies a discrete differentiation kernel across the 189 

image to find the local gradient of the image intensity. High gradient values correspond to abrupt changes in pixel 190 

intensity, which are likely boundaries between surface types. We scale the gradient values by an amplification factor 191 

of 2 in order to further highlight edge regions in the image. Following the amplification, we threshold the lowest 10% 192 

of the gradient image and set the values to zero. This reduces noise detected by the Sobel-Feldman filter, and eliminates 193 

weaker edges. The amplification factor and gradient threshold percentage are both tuning parameters, which can be 194 

adjusted to properly segment images based on the input image and the strength of edges sought.  195 

The strongest edges in optical imagery of sea ice are typically the ocean-ice interface, followed by melt pond-ice 196 

boundaries, then ice ridges and uneven ice surfaces. In general, the more edges detected, the more segmented the 197 

image will become, and the more computational resources required to later classify the increased number of image 198 

objects. On the other hand, an under-segmented image may miss the natural boundaries between surfaces. Under 199 

segmentation introduces classification error because an object containing two surface types cannot be correctly 200 

classified. An optimally segmented image is one which captures all the natural surface boundaries with minimal over-201 

segmentation (i.e. boundaries placed in the middle of features). The appropriate parameters for our imagery were 202 

tuned by visual inspection of the segmentation results. In such inspection, desired segmentation lines are manually 203 

drawn, and algorithm-determined segmentation lines are overlain and evaluated for completeness.  204 

The result of the edge detection is a gradient map that marks the strength of edges in the image. We use a watershed 205 

segmentation technique to build complete objects based on edge locations and intensity (van der Walt et al., 2014). 206 

We first calculate all local minimum values in the gradient image, where a marker is then placed to indicate the origin 207 

of watershed regions. Each region then begins iteratively expanding in all directions of increasing image gradient until 208 

encountering a local maximum in the gradient image or encountering a separately growing region. This continues until 209 

every pixel in the image belongs to a unique set. With the proper parameter selection, each object will represent a 210 

single surface type. It is often the case that some areas will be over-segmented (i.e. a single surface feature represented 211 
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by multiple objects). Over segmentation can either be ignored, or objects can be recombined if they meet similarity 212 

criteria in an effort to save computational resources. Here we chose to classify objects without recombination. Figure 213 

3b shows the detected edges overlain on top of the input image. 214 

The watershed segmentation algorithm benefits from the ability to create objects of variable size. Large objects 215 

are built in areas of low surface variability while many small objects are created in areas of high variability. This 216 

variable object sizing is well suited to sea ice surface classification because the variability of each surface type occurs 217 

at different scales. Areas of open water and snow covered first year ice, for example, can often be found in large 218 

expanses, while areas that contain melt ponds, ice ridges, or rubble fields frequently cover small areas and are tightly 219 

intermingled with other surface types. Variable object sizes give the fine detail needed to capture surfaces of high 220 

heterogeneity in their full detail, while limiting over segmentation of uniform areas.  221 

3.3 Segment Classification  222 

3.3.1 Overview 223 

Once the image has been divided into regions of the same surface type, each object must be classified as to which 224 

surface type it represents. We classify the objects using a random forest machine learning technique (Breiman, 2001; 225 

Pedregosa et al., 2011). The development of a machine learning algorithm requires multiple iterative steps: 1) Select 226 

attributes with which to classify each object, 2) create a training dataset, 3) classify unknown image objects based on 227 

the training set, and 4) assess performance and refine, starting from step 1. Random forest classifiers excel for their 228 

relative ease of use, flexibility in the choice of attributes that define each object, and overall high accuracy even with 229 

relatively small training datasets. The random forest classifier is only one of many available machine learning 230 

approaches and others may also be suitable. 231 

3.3.2 Surface Type Definitions 232 

Another key challenge to quantitatively monitoring sea ice surface characteristics from high resolution imagery is a 233 

lack of standardized surface type definitions. We noted above that high-resolution sea ice imagery comes from many 234 

sources; each with different characteristics. As we will see below, each image source will need to have its own training 235 

set created by expert human classifiers. The human classifier must train the algorithm according to definitions of each 236 

surface type that are broadly agreed upon in the community for the algorithm to be successful in producing 237 

intercomparable datasets. While at first the definitions of open water, ice and melt ponds might seem intuitive, many 238 

experts in the cryosphere community have differing opinions, especially on transitional states. Deciding where to 239 

delineate transitional states is important to standardization. We have established the following definitions for the three 240 

surface types we sought to separate, binning transitional states in a manner most consistent with their impact on albedo. 241 

Our surface type definitions focus on the behavior of a surface in absorption of shortwave radiation and radiative 242 

energy transfer.  (1) Open Water (OW): Applied to surface areas that had zero ice cover as well as those covered by 243 

an unconsolidated frazil or grease ice. (2) Melt Ponds and Submerged Ice (MPS): Applied to surfaces where a liquid 244 

water layer completely submerges the ice. (3) Ice and Snow: Applied to all surfaces covered by snow or bare ice, as 245 

well as decaying ice and snow that is saturated, but not submerged. The definition of melt ponds includes the classical 246 
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definition of melt ponds where meltwater is trapped in isolated patches atop ice, as well as optically-similar ice 247 

submerged near the edge of a floe. While previous work separates these categories (e.g. Miao et al., 2015) we did not 248 

attempt to break these ‘pond’ types because the distinction is unimportant from a shortwave energy balance (albedo) 249 

perspective. We further refined the ice and snow category into two sub categories: (3a) Thick Ice and Snow, applied 250 

during the freezing season to ice appearing to the expert classifier to be thicker than 50cm or having an optically thick 251 

snow cover and to ice during the melt season covered by a drained surface scattering layer (Perovich, 2005) of 252 

decaying ice crystals and (3b) Dark and Thin Ice, applied during the freezing season to surfaces of thin ice that are not 253 

snow covered including nilas and young ice. This label was also applied during melting conditions to ice covered by 254 

saturated slush, but not completely submerged in water. This is ice which in some prior publications (e.g. Polashenski 255 

et al., 2012) was labeled as ‘slushy bare ice’. We acknowledge that the boundary between the ice and snow sub-256 

categories is often more a continuum than a defined border but note that distinguishing the two types is useful for 257 

algorithm accuracy. Dividing the ice/snow type creates two relatively homogeneous categories rather than a single 258 

larger category with large internal differences. A user only interested in the categories of ice, ponds, and open water 259 

could simply re-combine them, as we have done for analysis. A temporary fourth category was created to classify 260 

shadows over snow or ice. This category is used exclusively as an intermediate step in processing that allows us to 261 

bypass masking shadow regions (e.g. Webster et al., 2015). As this was not designed to be a standalone classification 262 

category (as opposed to Miao et al., 2015, 2016), objects classified as a shadow were merged into the ice/snow 263 

category (as is done in Webster et al., 2015). Any misclassifications due to shadow cover is accounted for in 264 

measurements of overall classification accuracy (section 5.1).  265 

3.3.3 Attribute Selection 266 

Attributes are quantifiable measures of image object properties used by the classifier in discriminating surface types. 267 

An enormous array of possible attributes could be calculated for each image object and could be calculated in many 268 

ways. Examples of properties that could be quantified as attributes include values of the enclosed pixels, the size and 269 

shape of the object, and values of adjacent pixels. The calculation of pixel values aggregated by image objects takes 270 

advantage of the additional information held in the pixel group (as compared to individual pixels). We have compiled 271 

a list representing a relevant subset of such attributes that can be used to distinguish different surface types in Table 272 

1. We included a selection of attributes similar to those used in previous publications (e.g. Miao et al., 2015), as well 273 

as attributes we have developed specifically for our algorithm. 274 

Each image source provides unique information about the surface and it can be expected that a different list of 275 

attributes will be optimal for classification of each image type – even though we seek the same geophysical parameters. 276 

As high-resolution satellite images can have millions of image objects, calculating the attributes of each object quickly 277 

becomes computationally expensive. We have, therefore, determined those that are most valuable for classifying each 278 

image type to use in our classification. For example, pansharpened WorldView 2 imagery has 8 spectral bands which 279 

can inform the classification, while panchromatic versions of the same image have only a single band. Our goal was 280 

to select a combination of attributes that describe the intensity and textural characteristics of the object itself, and of 281 
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the area surrounding the object. Table 1 indicates which attributes were selected for use in classifying each image 282 

type.  283 

We selected attributes by only including those with a high relative importance. The importance of each attribute 284 

is a property of a random forest classifier, and is defined as the number of times a given attribute contributed to the 285 

final prediction of an input. After initial tests with large numbers of attributes, we narrowed our selection by using 286 

only those attributes that contributed to a classification in greater than 1% of cases. For discussion here, we group the 287 

attributes into two broad categories: Those calculated using internal pixels alone and those calculated from external 288 

pixel values. 289 

3.3.4 Object Attributes 290 

The most important attributes in the classification of an image segment were found to be aggregate measures of pixel 291 

intensity within the object. We determine these by analyzing the mean pixel intensity of all bands and the median of 292 

the panchromatic band. An important benefit of image segmentation is the ability to calculate estimates of surface 293 

texture by looking at the variability within a group of pixels. The texture is often unique in the different surface types 294 

we seek to distinguish. Open water is typically uniformly absorptive and has minimal intensity variance. Melt ponds, 295 

in contrast, come in many realizations and exhibit a wider range in reflectance, even within individual ponds. To 296 

estimate surface texture, we calculate the standard deviation of pixel intensity values and the image entropy within 297 

each segment. Image entropy, H, is calculated as 298 

		𝑯 = −∑𝒑 ∗ 𝐥𝐨𝐠𝟐 𝒑                          ( 1 ) 299 

where p represents the bin counts of a pixel intensity histogram within the segment. We also calculate the size of each 300 

segment as the number of pixels it contains. As sea ice surface characteristics evolve appreciably over time, 301 

particularly before and after melt onset, we use image acquisition date (in Julian day format) as an attribute in for 302 

classification. While date of melt onset varies, and the reader might argue that a more applicable attribute would be 303 

image melt state, melt state, however, is not an apriori characteristic of the image. It would therefore need to be 304 

manually defined for each image. To ensure that the method remains fully automated image acquisition date is used 305 

as a proxy for melt state, whereby larger Julian day values correlate to later in the melt season.  306 

In multispectral imagery, we also calculate the ratios between the mean absorption of each object in certain 307 

portions of the spectrum. The important band ratios used for the multispectral WorldView imagery were determined 308 

empirically. We tested every possible band combination, and successively removed the ratios that did not contribute 309 

to more than 1% of object classifications. In sRGB imagery we use the band ratios shown to be informative in this 310 

application by Miao et al. (2015). 311 

In addition to information contained within each object, we utilize information from the surrounding area. To 312 

analyze the surrounding region, we determine the dimensions of a minimum bounding box that contains the object, 313 

then expand the box by five pixels in each direction. All pixels contained within this box, minus those in the object, 314 

are considered to be neighboring pixels. Analogous to the internal attribute calculations, we find the average intensity 315 

and standard deviation of these pixels. We also calculate the maximum single intensity within the neighboring region. 316 

Searching for attributes outside of the object improves the algorithm’s predictive capabilities by providing spatial 317 
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context. Bright neighboring pixels (as an analog for an illuminated ridge) often provide information to distinguish, for 318 

example, a shadowed ice surface from a melt pond. In panchromatic imagery, melt ponds and shadows appear similar 319 

when evaluated solely on internal object attributes. However, a dark region with an immediately adjacent bright region 320 

is more likely to be a shadow than a dark region not adjacent to a bright pixel (e.g. a pond). We do note that it is likely 321 

that a more complex algorithm, for example identifying those pixels in a radius or distance to the edge of the segment, 322 

rather than using a bounding box, would be more reliable. The tradeoff, however, is one of higher computational 323 

expense.  324 

3.4 Training Set Creation 325 

Four training datasets were created to analyze the images selected for this paper. One training set was created for 326 

each imagery source: Panchromatic satellite imagery, multispectral satellite imagery, aerial sRGB imagery, and 327 

IceBridge DMS imagery. Each training set consists of a list of image objects that have been manually classified by a 328 

human and a list of attribute values calculated from those objects and their surroundings. The manual classification is 329 

carried out by multiple sea ice experts. Experienced observers of sea ice can classify the majority (85%+) of segments 330 

in a high resolution optical image with confidence. To address the ambiguity in correct identification of certain 331 

segments, however, we used several (4) skilled sea ice observers to repeatedly classify image objects. For the initial 332 

creation of our training datasets, two of the users had extensive training in the OSSP algorithm and surface type 333 

definitions, while the other two no experience with the algorithm. Users in both categories were briefed on the standard 334 

surface type definitions used for this study (section 3.3.2). Figure 4 shows a confusion matrix to compare user 335 

classifications. Cells in the diagonal indicate agreement between users, while off- diagonal cells indicate disagreement 336 

(Pedregosa et al., 2011). Agreement between the two well-trained users was high (average 94% of segment 337 

identifications; Fig. 4a), while the agreement between a well-trained user and a new user was lower (average of 86%; 338 

Fig 4b). After an in-person review of the training objects among all four users, the overall agreement rose to 97%. The 339 

remaining 3% of objects were cases where the expert users could not agree on a single classification, even after review 340 

of the surface type definitions and discussion. These objects were therefore not used in the final training set. Figure 5 341 

shows a series of surface types that span all our classification categories, including those where the classification is 342 

clear and those where it is difficult. Difficult segments are over-represented in these images for illustrative purposes, 343 

and represent a relatively small fraction of the total surface. 344 

While the skill of the machine learning prediction increases substantially as the size of the training set grows, 345 

creating large training sets is time consuming. We found that training datasets of approximately 1000 points yielded 346 

accurate and consistent results. We have developed a graphical user interface (GUI) to facilitate the rapid creation of 347 

large training sets (see Fig. 6). The GUI presents a user with the original image side by side with an overlay of a single 348 

segment on that image. The user assigns a classification to the segment by visual determination.  349 

The training dataset is a critical component of our algorithm because it directly controls the accuracy of the 350 

machine learning algorithm – and using a consistent training set is necessary for producing intercomparable results. 351 

In coordination with this publication we are releasing our version 1.0 training datasets with the intention that they 352 

would represent a first version of the standard training set to use with each image type. Though we have found this 353 
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training dataset robust through our error analyses below, it is our intention to solicit broader input from the community 354 

to refine and expand the training datasets available and release future improved versions.  355 

In addition to cross-validating the creation of a training dataset between users, we assess the quality of our training 356 

set through an out-of-bag (OOB) estimate, which is an internal measure of the training set’s predictive power. The 357 

random forest method creates an ensemble (forest) of classification trees from the input training set. Each classification 358 

tree in this forest is built using a random bootstrap sample of the data in the training set. Because training samples are 359 

selected at random, each tree is built with an incomplete set of the original data. For every sample in the original 360 

training set, there then exists a subset of classifiers that do not contain that sample. The error rate of each classifier 361 

when used to predict the samples that were left out is called the OOB estimate (Breiman, 2001). The OOB estimate 362 

has been shown to be equivalent to predicting a separate set of features and comparing the output to a known 363 

classification (Breiman, 1996). 364 

3.5 Assigning Classifications 365 

Once the training dataset is complete, the algorithm is prepared to predict the classification of unknown objects in the 366 

images. The random forest classifier is run and a classified image is created by replacing the values within each 367 

segment by the classification label predicted. Figure 3c shows the result of labeling image objects with their predicted 368 

classification. From the classified image, it is possible to produce a number of useful statistics. The most basic 369 

measurement is the total pixel counts for each of the three surface categories. This provides both the total area, in 370 

square kilometers, that each surface covers, and the fraction of each image that is covered by each surface type. It 371 

would also be possible to calculate measurements such as the average segment size for each surface, melt pond size 372 

and connectivity, or floe size distributions. Each of these, however, has its own standardization problems significant 373 

enough to merit their own paper. 374 

For demonstration, we have used the output from our image classification to calculate the fractional melt pond 375 

coverage for each date. The melt pond fraction was defined as the area of melt ponds and submerged ice divided by 376 

the total area covered by ice floes, i.e.: 377 

𝑴𝒆𝒍𝒕	𝑷𝒐𝒏𝒅	𝑪𝒐𝒗𝒆𝒓𝒂𝒈𝒆 =	 𝑨𝒓𝒆𝒂𝑴𝑷𝑺
𝑨𝒓𝒆𝒂𝑴𝑷𝑺;	𝑨𝒓𝒆𝒂𝑰=𝑺

                ( 2 ) 378 

where the subscript MPS indicates predicted melt ponds and submerged ice and I+S indicates predicted ice and snow.  379 

3.6 Determining Classification Accuracy  380 

The primary measure of classification accuracy was to test the processed imagery on a per pixel basis against human 381 

classification. For every processed image, we selected a simple random sample of 100 pixels chosen from the whole 382 

image and asked four sea ice experts to assign a classification to those pixels. For a single image from each image 383 

source we also asked the sea ice experts to classify and additional 900 pixels. This larger sample was created to 384 

demonstrate a tighter confidence interval, while the smaller samples were chosen to demonstrate consistency across 385 

images. We used the same GUI developed to create training datasets to assess pixel accuracy. Pixels were presented 386 

at random to the user by showing the original image with the given pixel highlighted. The user then identified which 387 

of the surface type categories best described that pixel. This assignment is then compared to the algorithm’s prediction 388 
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behind the scenes. The accuracy, as determined by each of the four experts, was averaged to create a composite 389 

accuracy for each image.  390 

4 Results 391 

4.1 Classification of Four Imagery Sources 392 

The OSSP image processing method proved highly suitable for the task of classifying sea ice imagery. A visual 393 

comparison between the raw and processed imagery, shown in Fig. 7 can quickly demonstrate this in a qualitative 394 

sense. Figure 7 contains a comparison between the original and classified imagery for each source, selected to show 395 

the performance of the algorithm on images that contain a variety of surface types. The colors shown correspond to 396 

the classification category; regions colored black are open water, blue regions are melt ponds and submerged ice, gray 397 

regions are wet and thin ice, and white regions are snow and ice. The quantitative processing results, including surface 398 

distributions and classification accuracy are shown in Table 2. The overall classification accuracy was 96 ± 3% across 399 

20 IceBridge DMS images; 95 ± 3% across 20 aerial sRGB images; 97 ± 2% across 22 panchromatic WorldView 1 400 

and 2 images; and 98 ± 2% across 4 multispectral WorldView 2 images.  401 

The nature of the classification error is presented using a confusion matrix that compares the algorithm 402 

classification with a manual classification for 1000 randomly selected pixels. Four confusion matrices, one for a single 403 

image from each of the four image sources is shown in Fig. 8. Values along the diagonal of the square are the 404 

classifications where the algorithm and the human observer agreed, while values in off-diagonal areas indicate 405 

disagreement. Concentration of error into a particular off-diagonal cell helps illustrate the types of confusion the 406 

algorithm experiences. The number of pixels that fall into off-diagonal cells is low across all imagery types. In the 407 

IceBridge imagery, there is a slight tendency for the algorithm to classify surfaces as open water where a human would 408 

choose melt pond. This is caused by exceptionally dark melt ponds on the edge of melting through (Fig. 5, panels F 409 

and I). Classification of multispectral WorldView imagery has a small bias towards classifying melt ponds over dark 410 

or thin ice (Fig. 5, panel D). Aerial sRGB and Panchromatic WorldView images do not have a distinct pattern to their 411 

classification errors. 412 

The internal metric of classification training dataset strength, the Out of Bag Error (OOB) estimates, on a 0.0 to 413 

1.0 scale, are shown in Table 3 for the trees built from our three training sets. The OOB estimate represents the mean 414 

prediction error of the random forest classifier, i.e. an OOB score of 0.92 estimates that the decision tree would predict 415 

92% of segments that are contained in the training dataset correctly.  The discrepancy between OOB error and the 416 

overall classification accuracy is a result of more frequent misclassification of smaller objects; overall accuracy is area 417 

weighted, while the OOB score is not.  418 

4.2 WorldView: Analyzing A Full Seasonal Progression 419 

We analyzed 22 images at a single site in the Beaufort Sea collected between March and August of 2014 to challenge 420 

the method with images that span the seasonal evolution of ice surface conditions. The site is Eulerian; it observes a 421 

single location in space rather than following a single ice floe through its lifecycle as it drifts. Still, the results of these 422 
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image classifications (shown in Fig. 9) illustrate the progression of the ice surface conditions in terms of our four 423 

categories over the course of a single melt season.  While cloud cover impacted the temporal continuity of satellite 424 

images collected at this site, we are still able to follow the seasonal evolution of surface features. A time series of 425 

fractional melt pond coverage calculated from the satellite image site is plotted in Fig. 10. The melt pond coverage 426 

jumps to 22% in the earliest June image, as initial ponding begins and floods the surface of the level first year ice. 427 

This is followed by a further increase to 45% coverage in the next few days. The melt pond coverage then drops back 428 

down to 30% as melt water drains from the surface and forms well defined ponds. The evolution of melt pond coverage 429 

over our satellite observation period is consistent with prior field observations (Eicken, 2002; Landy et al., 2014; 430 

Polashenski et al., 2012) and matches the four stages of ice melt first described by Eicken (2002). The ice at this 431 

observation site fully transitions to open water by mid-July, though it appears that the ice is advected out of the region 432 

in the late stages of melt rather than completing melt at this location.   433 

5 Discussion 434 

5.1 Error  435 

There are four primary sources of error in the OSSP method as presented, two internal to the method and two external. 436 

Internal error is caused by segment misclassification and by incomplete segmentation (i.e. leaving pixels representing 437 

two surface types within one segment). The net internal error was quantified in section 3.6 and 4. External error is 438 

introduced by pixilation – or blurring of real surface boundaries due to insufficient image resolution – and human 439 

error in assigning a ‘ground truth’ value to an aerial or satellite observation during training.  440 

5.1.1 Internal Error 441 

Through assessing the accuracy of each classified image on a pixel-by-pixel basis (section 3.6), we collect all internal 442 

sources of error into one measurement: The algorithm either assigned the same classification as a human would have, 443 

or it did not. Total internal accuracy calculated for the method, relative to human classifiers, is quite good, at 90-99% 444 

across all image types. Our experience is that this level of accuracy approaches the accuracy with which fractional 445 

surface coverage can practically be determined from labor intensive ground campaign techniques such as lidar and 446 

measured linear transects (e.g. Polashenski et al., 2012) 447 

The first type of internal error is misclassification error, where the image classification algorithm fails to assign 448 

the same classification that a human expert would choose. This type of error is best quantified by analyzing the training 449 

datasets. The OOB score for each forest of decision trees (Table 3) provides an estimate of each forest’s ability to 450 

correctly predict objects similar to those used to create the forest (section 3.4). The OOB score is not influenced by 451 

segmentation error, because the objects selected for training dataset use were filtered to remove any objects that 452 

contained more than one surface type. The most commonly misapplied category was the Dark and Thin Ice 453 

subcategory of Ice and Snow. This category often represents surface types that are in a transitional state and is often 454 

difficult to classify even for a human observer.  455 
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The second type of internal error is segmentation error, where an object is created that contains more than one of 456 

the surface types we are trying to distinguish. This occurs when boundaries between objects are not placed where 457 

boundaries between surfaces exist; an issue most common where one surface type gradually transitions to another. 458 

When this occurs, some portion of that object will necessarily be misclassified. We have compensated for areas that 459 

lack sharp boundaries by biasing the image segmentation towards over-segmentation, but a small number of objects 460 

still contain more than one surface type. During training set creation, we asked the human experts to identify objects 461 

containing more than one surface type. 3.5% of objects were identified as insufficiently segmented in aerial imagery, 462 

and 2% of objects in satellite imagery. This represents the upper limit for the total percentage of insufficiently 463 

segmented objects for several reasons. First, segmentation error was most prevalent in transitional surface types (i.e. 464 

Dark and Thin Ice), which represents a small portion of the overall image and is composed of relatively small objects. 465 

This category is overrepresented in the training objects because objects were chosen to sample each surface type and 466 

not weighted by area. In addition, insufficiently segmented objects are generally composed of only two surface types, 467 

and end up identified as the surface which represents more of the object’s area. Hence the total internal error introduced 468 

by segmentation error is appreciably smaller than misclassification error, likely well under 1%.  469 

5.1.2 External Error 470 

The first form of external error is introduced by image resolution. At lower image resolutions, more pixels of the 471 

image span edges, and smaller features are more likely to go undetected. Pixels on the edge of surface types necessarily 472 

represent more than one surface type, but can be classified as only one. Misclassification of these has the potential to 473 

become a systemic error if edge pixels were preferentially placed in a particular category. We assessed this error’s 474 

impact by taking high resolution IceBridge imagery (0.1m), downsampling to progressively lower resolution, and 475 

reprocessing. Figure 11 shows the surface type percentages for three IceBridge images at decreasing resolution. Figure 476 

12 shows a series of downsampled images and their classified counterparts. Surprisingly, despite clear pixilation and 477 

aliasing in the imagery, little change in aggregate classification statistics occurred as resolution was lowered from 0.1 478 

to 2m. This suggests that at resolutions used for this paper, edge pixels do not significantly impact the classification 479 

results. It may also be possible to forego the pansharpening process discussed in section 3.1, and use 2m multispectral 480 

WorldView imagery directly. 481 

The second type of external error occurs when the human expert fails to correctly label a segment. Even skilled 482 

human observers cannot classify every pixel in the imagery definitively, and indeed the division between the surface 483 

types can sometimes be indistinct even to an observer on the ground. We addressed this concern by employing 484 

observers extensively trained in the sea ice field, both in remote sensing and in-situ observations, comparing multiple 485 

human classifications of the same segments. After discussion, the portion of image objects subject to human observer 486 

disagreement or uncertainty is small. Human observers disagreed on 3% of objects creating our training sets. The 487 

possibility of systemic bias among the expert observer classifications cannot be excluded because real ground truth, 488 

in the form of geo-referenced ground observations from knowledgeable observers was, unfortunately, not available 489 

for any of the imagery. Conducting this type of validation would be helpful, but given high confidence human expert 490 

classifiers expressed in their classifications and low disagreement between them, may not be essential. 491 
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5.1.3 Overall Error 492 

The fact that misclassification dominates the internal error metric suggests that error could be reduced if additional 493 

object attributes used by human experts to differentiate surface types could be identified. The agreement between the 494 

OSSP method and a human (96%+/-3%) is similar to the agreement between different human observers (97%), 495 

meaning that the algorithm is nearly as accurate as a human manually classifying an entire image. If we exclude the 496 

possibility for systemic error in human classification, and assume other errors are unrelated to one another, we can 497 

calculate a total absolute accuracy in surface type determination as approximately 96%. 498 

5.2 Producing Derived Metrics of Surface Coverage 499 

The classified imagery, presented as a raster, (e.g. Fig. 7) is not likely to be the end product used in many analyses. 500 

Metrics of the sea ice state in simpler form will be calculated. We already introduced the most basic summary metrics 501 

in section 4, where we presented fractional surface coverage calculated from the total pixel counts for each of the four 502 

surface categories in each image. We also presented the calculation of melt pond coverage as a fraction of the ice-503 

covered portion of the image, rather than total image area. The calculation of these is straightforward. Other metrics 504 

commonly discussed in the literature that could be produced with minimal additional processing include those 505 

capturing melt pond size, connectivity, or fractal dimension, as well as floe size distribution or perimeter to area ratio. 506 

As with definitions of surface type, standardizing metrics will be necessary to produce intercomparable results. We 507 

discussed the more complex metrics which could be derived from this imagery with several other groups. We 508 

determined that standardizing these and other more advanced metrics will require more input and consensus building 509 

before a community standard can be suggested. We leave determining standard methods for calculating these more 510 

complex metrics to a future work. 511 

Equipped with the images processed by OSSP, we consider what size area must be imaged, classified, and 512 

summarized to constitute ‘one observation’ and how regionally representative such an observation is. Even with the 513 

increasing availability of high resolution imagery, it is unlikely that high resolution imaging will regularly cover more 514 

than a small portion of the Arctic in the near future. As a result, high resolution image analysis will likely remain a 515 

‘sampling’ technique. Since the scale of sea ice heterogeneity varies for each property type, a minimum area unique 516 

to that property must be analyzed to qualify as a representative sample of the surface conditions. Finding that minimum 517 

area involves addressing the ‘aggregate scale’ – the area over which a measured surface characteristic becomes 518 

uniform and captures a representative average of the property in the area (Perovich, 2005). It may also be possible to 519 

determine an aggregate scale statistic within well constrained bounds by random sub-sampling of the region, and 520 

therefore reduce processing time. Here we conduct analysis of these sampling concepts and suggest this analysis of 521 

the aggregate scale be conducted for any metric. 522 

First, we sought to determine the aggregate scale for the simple fractional coverage metrics of ice as a fraction of 523 

total area and melt pond as a fraction of ice area. This would inform us, for example, as to whether processing the 524 

entire area of a WorldView image (up to 1000km2) was necessary, or alternatively if a full WorldView image was 525 

sufficient to constitute a sample. First, we evaluated the convergence of fractional coverage within areas of increasing 526 

size towards the image mean. For a WorldView image depicting primarily first year ice in various stages of melt, we 527 
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created non-overlapping gridded subsections and determined the fractional coverage within each grid cell. The size of 528 

grid cells was varied logarithmically from 100 x 100 pixels (102) to 31622x31622 pixels (104.5) or from 0.0025km2 to 529 

250km2. For each sample size, we gridded the image and evaluated every subsection within the entire image. Figure 530 

13a shows a scatterplot of the fractional melt pond coverage in each image grid plotted against the log of total area of 531 

that grid cell. As the area sampled increases, the melt pond fraction shows lower deviation from the mean, as expected. 532 

To assist in evaluating the convergence towards the mean, we plot the 95% prediction interval for each image subset 533 

size in Fig. 13a (large red dots). The range of pond fraction values between these two points represents the interval 534 

within which 95% of samples of this size would fall. The width of the 95% prediction interval declines linearly with 535 

respect to sample area in log space, shrinking by 0.3 for each order of magnitude that sample area increases. Visually, 536 

it appears that maximum convergence may have been reached at a sample area of ~30km2 (~101.5km2), though there 537 

are an insufficient number of samples at this large area within a single image to be certain. Regardless of whether 538 

convergence is complete, the prediction interval tells us that at 30km2, 95% of areas sampled could be expected to 539 

have pond coverage within 5% of the mean of a full image (~1000km2). This is consistent with prior work that 540 

indicated the aggregate scale for melt pond fraction determination is on the order of several tens of square kilometers 541 

(Perovich, 2005; Perovich et al., 2002). In Fig. 13b we conduct the same analysis for the total ice-covered fraction 542 

(ponded + unponded ice) of the image. We see the range of the prediction interval generally drops as larger samples 543 

are taken, but does not converge as cleanly or quickly as the pond coverage prediction interval does - a finding that is 544 

unsurprising as ice fraction is composed of discrete floes with sizes much larger than melt ponds. The limited 545 

convergence indicates that the aggregate scale for determination of ice covered fraction is at least on the order of the 546 

scale of a WorldView image, and likely larger. Aggregate scale ice concentration, unlike melt pond fraction, is a 547 

statistic better observed with medium resolution remote sensing platforms such as MODIS or Landsat due to the need 548 

for a larger satellite footprint. WorldView imagery may be particularly useful for determining smaller scale parts of 549 

floe size distributions or for validating larger scale remote sensing of ice fraction, if the larger scale pixels can be 550 

completely contained within the worldview image. Floe size distribution will likely require nesting of scales in order 551 

to fully access both large and small-scale parts of the floe size distribution.  552 

We next investigated whether it is possible to reduce the processing load required to determine the melt pond or 553 

ice fraction of an image within certain error bounds by processing collections of random image subsets. To do this, it 554 

is useful to first establish two definitions: (1) one random sample of size N represents N randomly selected 100x100 555 

pixel boxes, and (2) one adjacent sample of size N is a single area with size 100√𝑁	𝑥	100√𝑁. In other words, a 556 

random sample and an adjacent sample both represent an image area of 10,000*N pixels, but consist of independent 557 

and correlated pixels, respectively. We expect random samples to better represent the total image mean melt pond 558 

fraction because ice conditions are spatially correlated and a single large area is not composed of independent samples. 559 

We evaluated this hypothesis by collecting 1000 random and adjacent samples of size N=100, with replacement. 560 

Results are shown in Fig. 14. In Figure 14a, we plot a histogram of the mean melt pond fraction determined from these 561 

1000 samples. The means determined from sets that contained randomly distributed image areas, are in red. The means 562 

determined from sets of adjacent image areas are in blue. Although both sets represent samples of the same total image 563 
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area, the one composed of independent subsets randomly selected from across the image does a much better job of 564 

representing the mean value, with a smaller standard deviation.  565 

Estimating the mean of a complete image by sampling randomly selected areas of the image becomes a simple 566 

statistics problem. The sample size needed to estimate a population mean to within a certain confidence interval and 567 

margin of error can be determined with the formula: 568 

𝒏 = C𝒁𝝈
𝑴𝑬
G
𝟐
             ( 3 ) 569 

where n is the sample size, Z is the z-score for the confidence interval required, s is the population standard deviation, 570 

and ME is the margin of error. The standard deviation of 1000 random samples with size 100 (Fig. 14a) is ~0.05. The 571 

mean melt pond fraction in Fig. 14a is 0.41. To match the sum of internal (2-4%) and external errors in our processing 572 

algorithm (section 5.1) the margin of error is 0.016 (i.e. 4% of 0.41). With s » 0.05, ME = 0.016, and assuming a 95% 573 

confidence interval (Z=1.96) equation 3 gives a required sample size of 38. In other words, 38 random samples of size 574 

100 can predict the mean melt pond fraction of the entire image, ±4%, with 95% confidence. 38 samples of size 100 575 

corresponds to an image area of ~10km2, significantly smaller than the total image size.   576 

In order to show these results visually, we return to Fig. 13 and place another set of 95% prediction interval bounds 577 

(purple dots). These bounds represent the prediction interval for a random sample of size necessary for the total area 578 

to equal the area on the x axis. The result is quite powerful. By processing as little as 10km2 of the image, collected 579 

from samples randomly distributed across the area, we can determine aggregate melt pond fraction to within 4% of 580 

the true value with a confidence of 95%. For large scale processing we suggest that when the sample confidence 581 

interval is below the image processing technique accuracy, sampling of larger areas is no longer necessary. 582 

A similar analysis is presented in Fig. 13b and Fig. 14b for ice fraction. While the WorldView image is likely not 583 

large enough to represent the aggregate scale for ice fraction, randomly sampling the image still provides an expedient 584 

way to determine the mean ice fraction of the image within certain bounds, while processing only a small fraction of 585 

the image. Calculating the 95% prediction interval of random samples representing the total image area shown on the 586 

x axis (purple dots) again shows that the total image mean can be estimated by calculating only a small portion of the 587 

total image.  588 

These explorations of image sampling permit us to recommend that users can estimate the total image pond fraction 589 

by selecting N sets of 100 randomly selected 50x50m regions (where N is selected to provide the desired confidence 590 

interval and margin of error). We suggest a standard, which incorporates some ‘safety factor’, for processing imagery 591 

to produce estimates of melt pond fraction should be to process 25km2 of area contained in at least 100 randomly 592 

located image subsets from domains of at least 100km2. We note that flying over a domain and collecting imagery 593 

along flight tracks will not count as fully ‘random’ in this context, since the images along-track are spatially correlated. 594 

Since a WorldView image does not represent the aggregate scale for ice fraction, we cannot recommend a specific 595 

sampling strategy for the aggregate scale. However, processing of 25km2 of imagery from randomly distributed 596 

subsets produces a prediction interval around the total image mean of approximately the same size as the upper limit 597 

of uncertainty for our image processing technique. The statistical approach for determining aggregate statistics should 598 

not depend on the seasonality of the image nor the type of image used so long as the total area observed is sufficiently 599 
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greater than the variability in the surface feature being investigated. However, these recommendations should be 600 

considered provisional, because they are subject to impacts from differences in ice property correlation scales, and 601 

should be further evaluated for accuracy as larger processed datasets are available.  602 

5.3 Community Adoption 603 

We have provided a free distribution of the OSSP algorithm and the training sets discussed in section 3.4 and 4 as a 604 

companion to this publication, complete with detailed startup guides and documentation. This OSSP algorithm has 605 

been implemented entirely in Python using open source resources with release to additional users in mind. The code, 606 

along with documentation, instructional guidelines, and premade training sets (those used for the analyses herein) is 607 

available at https://github.com/wrightni/ossp (doi:10.5281/zenodo.1133689). The software is packaged with default 608 

parameters and version controlled training sets for 4 different imagery sources. The package includes a graphical user 609 

interface to allow users to build custom training datasets that suit their individual needs. The algorithm was constructed 610 

with the flexibility to allow for the classification of any number of features given an appropriate training dataset. 611 

Our intention is that by providing easy access to the code in an open source format, we will enable both specific 612 

inquiries and larger scale image processing that supports community efforts at general sea ice monitoring. We plan to 613 

continue improving and updating the code as it gains users and we receive community feedback. We hope to encourage 614 

others to design their own features and add-ons. Since the predictive ability of the machine learning algorithm 615 

improves as more training data is added, we wish to strongly encourage the use of the GUI to produce additional 616 

training sets and we plan to collate other users training sets into improved training versions. See documentation of the 617 

training set creation GUI for more information on how to share a training set. 618 

The OSSP algorithm helps to bring the goal of having a standardized method for deriving geophysical parameters 619 

from high resolution optical sea ice imagery closer to reality. In the larger picture, developing such a tool is only the 620 

first step. We recall that the motivation behind this development was the need to quantify sea ice surface conditions 621 

in a way that could enable better understanding of the processes driving changes in sea ice cover. The value of the 622 

toolkit will only be realized if it is used for these scientific inquiries. We look forward to working with imagery owners 623 

to facilitate processing of additional datasets.  624 

6. Conclusions 625 

We have implemented a method for classifying the sea ice surface conditions from high resolution optical imagery of 626 

sea ice. We designed the system to have a low barrier to entry, by coding it in an open source format, providing 627 

detailed documentation, and releasing it publicly for community use. The code identifies the dominant surface types 628 

found in sea ice imagery; open water, melt ponds and submerged ice, and snow and ice, with accuracy that averages 629 

96 percent – comparable to the consistency between manual expert human classifications of the imagery. The 630 

algorithm is shown to be capable of classifying imagery from a range of image sensing platforms including 631 

panchromatic and pansharpened WorldView satellite imagery, aerial sRGB imagery, and optical DMS imagery from 632 

NASA IceBridge missions. Furthermore, the software can process imagery collected across the seasonal evolution of 633 
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the sea ice from early spring through complete ice melt, demonstrating it is robust even as the characteristics of the 634 

ice features seasonally evolve. We conclude, based on our error analysis, that this automatic image processing method 635 

can be used with confidence in analyzing the melt pond evolution at remote sites.  636 

With appropriate processing, high resolution imagery collections should be a powerful tool for standardized and 637 

routine observation of sea ice surface characteristics. We hope that providing easy access to the methods and algorithm 638 

developed herein, we will facilitate the sea ice community convergence on a standardized method for processing high 639 

resolution optical imagery either by adoption of this method, or by suggestion of an alternate method complete with 640 

code release and error analysis.  641 
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Figures 758 

 759 
Figure 1. Examples of imagery from each of the four imaging platforms that we seek to classify in this study. Each type of 760 
imagery has either a different spatial resolution or and different levels spectral information available.  761 
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 762 
Figure 2. Flow diagram depicting the steps taken to classify an image in the OSSP algorithm.  763 

 764 

 765 
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 766 
Figure 3. Visual representation of important steps in the image processing workflow. Panel (a) shows preprocessed 767 
panchromatic WorldView 2 satellite imagery, taken on July 1, 2014. In panel (b), outlines of the image objects created by 768 
our edge detection and watershed transformation are shown overlain on top of the image in panel (a). Panel (c) shows the 769 
result of replacing each object with a value corresponding to the prediction of the random forest classifier. 770 

 771 

 772 
Figure 4. Confusion matrices comparing classification tendencies between two users experienced with the image processing 773 
algorithm (left) and between an experienced user and a new user (right). Squares are colored based on the value of the cell, 774 
with darker colors indicating more matches. Values along the diagonal of each confusion matrix represents the agreement 775 
between each user, while values in off-diagonal regions represent disagreement.  776 
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Figure 5. Examples of surfaces seen in aerial imagery of sea ice that span our four classification categories. Panel A: snow 778 
covered surface. Panel B: Ice with a thin surface scattering layer where disagreement on true classification exists - 779 
represents a small fraction of total surface area. Panel C: Panel D: Surface transitioning to a melt pond that is not yet fully 780 
submerged. Panel E: Melt pond. Panel F: Dark melt pond that has not completely melted through. Panel G: Submerged 781 
ice. Panel H: Brash, mostly submerged, included in the melt pond category. Panel I: Melt pond that has completely melted 782 
through to open water. Panel J: Open water.  783 

 784 
Figure 6. Graphical user interface used to create training datasets and to assess the accuracy of a classified image. Bottom 785 
left panel shows an overview of the region to provide the user with spatial context. Top left magnifies the image and 786 
highlights the segment of interest, while top right shows the same region with no segment overlap. The user is allowed to 787 
choose between any of the relevant surface categories, or to indicate that they are unsure of the classification. As shown, 788 
the user interface is demonstrating the classification of a segment for use in a training set. This same GUI is also capable of 789 
asking a user to classify an individual pixel, which can be compared to the final classified image for determining accuracy 790 
(section 3.6).  791 
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Figure 7. Side-by-side comparison of preprocessed imagery (left) and the result of classification (right) for each of the four 793 
imaging platforms. Images depict ice surfaces in varying stages of melt. The NASA IceBridge image, for example, is in very 794 
late stages of melt ponds that have already melted through to the ocean.  795 

 796 
Figure 8. Accuracy confusion matricies comparing the classification of 1000-pixels between a human and the algorithm.  797 
Squares are colored based on the value of the cell, with darker colors indicating more matches. Values along the diagonal 798 
of each confusion matrix represents the agreement between each classifier, while values in off-diagonal regions represent 799 
disagreement.  800 
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 801 
Figure 9. Seasonal progression of surface type distributions at the satellite image collection site; 2014 in the Beaufort Sea 802 
at 72°N 128°W. This site represents a Eulerian observation of the sea ice surface, and does not track a floe across its lifetime. 803 
Average scene size was 956km2 with a minimum of 304km2 and a maximum of 1321km2 .  804 

 805 

 806 
Figure 10. Evolution of melt pond fraction over the 2014 season at our satellite image collection site; 2014 in the Beaufort 807 
Sea at 72°N 128°W. This site represents a Eulerian observation of the sea ice surface, and does not track a floe across its 808 
lifetime. By August, the sea ice extent has retreated north of this location, and we therefore do not capture a full melt pond 809 
cycle.  810 

 811 
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 812 
Figure 11. Change in surface coverage percentage as a result of downsampling three IceBridge images. Each plot represents 813 
a single image, with resolution along the x-axis on a log scale. Imagery starts at the nominal IceBridge resolution of 0.1m 814 
and is degraded to a maximum of 50m.  815 
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 816 
Figure 12. Visual demonstration of the downsampling effect on a single NASA IceBridge image. The top image is shown at 817 
the original 0.1 m resolution. The middle image is a resolution of 2m - the equivalent of a multispectral WorldView 2 image 818 
without pansharpening. The bottom has a resolution of 10m, where pixel size has begun to exceed the average melt pond 819 
size.   820 

 821 
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 822 
Figure 13. Convergence of melt pond fraction (a) and ice fraction (b) for a WorldView image collected 25 June 2014 at 72°N 823 
128°W as the area evaluated is increased. Small blue dots represent individual image subsets. For segments of a given size, 824 
black dots represent the mean value of those samples, red dots represent the 95% prediction interval, and purple dots show 825 
the 95% prediction interval for the same total area, but calculated from 100 randomly placed, smaller, samples. Cyan 826 
shaded area represents the error in determination expected from the processing method.  827 
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 828 
Figure 14. Histogram of melt pond fraction (a) and ice fraction (b) for 1000 samples, where each sample is the mean surface 829 
fraction within 100, 50m by 50m, squares. The 100 squares were either randomly distributed across the image (red) or 830 
adjacent to each other (blue). Calculated from a 25 June 2014 WorldView image. 831 

 832 

 833 

 834 

 835 

 836 

 837 

  838 



35 
 
 

Tables 839 

Attribute MS PAN Aerial 

Mean (Pan)       

Mean (Coastal)       

Mean (Blue)       

Mean (Green)       

Mean (Yellow)       

Mean (Red)       

Mean (Red Edge)       

Mean (NIR1)       

Mean (NIR2)       

Median (Pan)       

StDev (Pan)       

Min Intensity (Pan)       

Max Intensity (Pan)       

StDev (Blue)       

StDev (Green)       

StDev (Red)       

Entropy       

Segment Size       

Image Date       

Coastal / Green       

Blue / NIR1       

Green / NIR1       

Yellow / Red Edge       

Yellow / NIR1       

Yellow / NIR2       

Red / NIR1       

(B1 - NIR1)/(B2 + NIR1)       

(G - R)/(G + R)       

(B - R)/(B + R)1       

(B - G)/(B + G)1       

(G - R)/(2*B - G - R)1       

Neighbor Mean       

Neighbor StDev       

Neighbor Max       

Neighbor Entropy       
1Miao et al. 2015 840 

Table 1. Attributes used for classifying each of the three image types. Blue squares indicate attributes that were used for 841 
that image. Dark gray squares indicate attributes that are available, but were not found to be sufficiently beneficial in the 842 
classification to merit inclusion under our criteria. Light gray squares indicate attribute that are not available on that image 843 
type (e.g. band ratios on a panchromatic image). NIR is the near infrared wavelength. B1 is the costal WorldView band, 844 
and B2 is the blue band. R, G, and B, stand for red, green, and blue, respectively. 845 
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 846 

Image ID Sensor Type 
Date 

Collected 

Ice + 

Snow 
DTI MPS OW Accuracy 

102001002C214D00 Panchromatic 11-Mar-14 96 3 0 2 97 

103001002E8F0D00 Panchromatic 18-Mar-14 97 3 0 0 97 

102001002BBA0C00 Panchromatic 19-Mar-14 97 2 0 1 96 

103001002FC75200 Panchromatic 23-Mar-14 94 4 0 3 95 

102001002CB77C00 Panchromatic 27-Mar-14 98 2 0 0 100 

1030010030403A00 Panchromatic 31-Mar-14 95 2 0 3 98 

1030010031B65000 Panchromatic 4-Apr-14 96 3 0 1 99 

102001002BA6C100 Panchromatic 8-Apr-14 93 3 0 4 100 

103001002F79A700 Panchromatic 21-Apr-14 93 3 0 4 98 

1030010030371B00 Panchromatic 24-Apr-14 93 7 0 0 98 

103001003102A600 Panchromatic 4-May-14 76 16 0 8 98 

102001003007FA00 Panchromatic 13-May-14 87 3 0 10 97 

10300100306F2E00 Panchromatic 19-May-14 83 4 0 13 96 

102001003035D700 Panchromatic 13-Jun-14 49 7 25 18 95 

1030010033AAC400 Panchromatic 19-Jun-14 20 3 16 61 97 

1020010031DF9E00 Panchromatic 20-Jun-14 27 2 31 39 96 

1020010032B94E00 Panchromatic 24-Jun-14 45 2 41 11 95 

102001003122A700 Panchromatic 25-Jun-14 48 1 37 13 97 

102001002F4F1A00 Panchromatic 28-Jun-14 57 2 28 14 95 

10300100346D1200 Panchromatic 1-Jul-14 38 0 23 39 97 

1030010035C8D000 Panchromatic 12-Jul-14 0 0 0 100 100 

103001003421AB00 Panchromatic 20-Aug-14 0 0 0 100 100 

10300100324B7D00 Multispectral 13-Jun-14 44 7 29 19 96 

1030010033AAC400 Multispectral 19-Jun-14 16 3 19 62 97 

10300100346D1200 Multispectral 1-Jul-14 44 2 26 28 98 

1030010035C8D000 Multispectral 12-Jul-14 0 0 0 100 100 

2016_07_13_05863 IceBridge 13-Jul-16 50 2 34 14 92 

2016_07_13_05882 IceBridge 13-Jul-16 72 1 26 0 97 

2016_07_13_05996 IceBridge 13-Jul-16 70 2 28 0 95 

2016_07_13_06018 IceBridge 13-Jul-16 61 2 36 1 91 

2016_07_13_06087 IceBridge 13-Jul-16 66 1 33 0 99 

2016_07_16_00373 IceBridge 16-Jul-16 9 0 2 89 100 

2016_07_16_00385 IceBridge 16-Jul-16 66 1 14 20 98 
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2016_07_16_00662 IceBridge 16-Jul-16 49 1 16 35 98 

2016_07_16_00739 IceBridge 16-Jul-16 67 2 25 6 97 

2016_07_16_01569 IceBridge 16-Jul-16 22 0 7 71 97 

2016_07_16_02654 IceBridge 16-Jul-16 35 0 10 54 95 

2016_07_19_01172 IceBridge 19-Jul-16 62 0 14 24 90 

2016_07_19_01179 IceBridge 19-Jul-16 57 0 10 32 95 

2016_07_19_02599 IceBridge 19-Jul-16 51 0 7 43 99 

2016_07_19_02603 IceBridge 19-Jul-16 69 0 9 22 99 

2016_07_19_02735 IceBridge 19-Jul-16 74 0 25 0 100 

2016_07_19_03299 IceBridge 19-Jul-16 57 0 8 35 96 

2016_07_21_01221 IceBridge 21-Jul-16 49 0 4 47 97 

2016_07_21_01311 IceBridge 21-Jul-16 87 1 5 7 95 

2016_07_21_01316 IceBridge 21-Jul-16 92 0 4 4 99 

DSC_0154 Aerial sRGB 8-Jun-09 43 4 53 0 94 

DSC_0327 Aerial sRGB 8-Jun-09 33 3 63 0 90 

DSC_0375 Aerial sRGB 8-Jun-09 96 0 4 0 99 

DSC_0422 Aerial sRGB 8-Jun-09 88 0 11 0 98 

DSC_0223 Aerial sRGB 10-Jun-09 46 1 53 0 93 

DSC_0243 Aerial sRGB 10-Jun-09 59 1 40 1 98 

DSC_0314 Aerial sRGB 10-Jun-09 89 0 11 0 95 

DSC_0319 Aerial sRGB 10-Jun-09 75 2 19 4 88 

DSC_0323 Aerial sRGB 10-Jun-09 37 2 61 0 95 

DSC_0338 Aerial sRGB 10-Jun-09 83 2 15 1 95 

DSC_0386 Aerial sRGB 10-Jun-09 80 3 14 3 89 

DSC_0394 Aerial sRGB 10-Jun-09 79 2 10 9 95 

DSC_0412 Aerial sRGB 10-Jun-09 63 2 24 10 92 

DSC_0425 Aerial sRGB 10-Jun-09 56 2 17 24 97 

DSC_0439 Aerial sRGB 10-Jun-09 71 1 6 22 98 

DSC_0441 Aerial sRGB 10-Jun-09 57 0 4 38 98 

DSC_0486 Aerial sRGB 10-Jun-09 53 1 17 29 96 

DSC_0634 Aerial sRGB 10-Jun-09 72 1 14 12 96 

DSC_0207 Aerial sRGB 13-Jun-09 80 1 19 0 96 

DSC_0514 Aerial sRGB 13-Jun-09 86 1 13 0 97 

Results Table 2. The complete results of imagery processed for this analysis. Descriptions for each image includes the image 847 
type, date collected, the percent of the image that falls into each of the four categories, and the accuracy assessment. 848 

 849 
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Image Source 
Training 

Dataset Size 

Out-of-bag 

Error 

Panchromatic WorldView 1000 0.94 

Pansharpened WorldView 859 0.89 

Aerial Imagery 945 0.94 

IceBridge Imagery 940 0.91 

Table 3. Out-of-Bag scores for the three training datasets used to classify imagery from each of the four sensor platforms, 850 
and the number of objects manually classified for each set. 851 


