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Reply to Anonymous Referee #1 from 21 Oct 2017 1 

Note: Author responses are in plain text following the original referee comment shown in italicized text.  2 

The figures, in particular the captions need some work. My opinion is that figures and captions should be stand 3 
alone, such that a reader should be able to understand what each figure is without reading the text. In some cases 4 
adding a key or a description of symbols in the figure caption would achieve this goal. For example, Figure 3 has no 5 
key for the classified image. 6 

We have added a classification key to Figure 3. Thank you for the suggestion – we have also incorporated 7 
edits throughout to make image captions more complete and descriptive. 8 

Line 50. Missing a reference to Fetterer and Untersteiner (1998). 9 

We have included this reference as well as one to Arntsen et al. 2015.  10 

Line 63. When discussing alternative classification methods, it would be good to enumerate those methods applied 11 
to classification of sea ice. Furthermore, the authors give maximum likelihood classification as an example or an 12 
unsupervised algorithm. Maximum likelihood can be a supervised algorithm. 13 

Each reference on line 63 details a classification method applied to sea ice. We have edited line 98 to 14 
indicate that those references refer to a method applied to image processing generally, and not specifically 15 
to the classification of sea ice.   16 

It is true that maximum likelihood classifiers can be supervised in some cases - we have revised this 17 
discussion of unsupervised classification algorithms to be more precise.  18 

Section 4.1. In the analysis of seasonal evolution of surface characteristics, my guess is that the field of view does 19 
not contain the same ice. The authors should make this clear or state why they think it is the same floe/ice. How fast 20 
is the ice likely to be moving at this location? 21 

You are correct – the ice seen at this location is not a single floe. This explains the sudden increase and 22 
then subsequent decrease in open water fraction in late June, as well as the completely ice-free water by 23 
August. We have included the following sentence in Section 4.2 to clarify that we are looking at Eulerian 24 
rather than Lagrangian view: “The site is Eulerian; it observes a single location in space rather than follow 25 
a single ice floe through its lifecycle as it drifts”.  26 

Line 433. I disagree with the statement that misclassification means that the algorithm fails to replicate human 27 
decision making. That might be the goal but one that is impossible to reach. To my mind, misclassification indicates 28 
that the algorithm doesn’t give the same answer as a human would. 29 

We agree that we are not replicating the decision-making process, but rather the end result. We have 30 
revised this section to clarify our definition of misclassification. Line 474 was changed to: “The algorithm 31 
either assigned the same classification as a human would have, or it did not”, and line 478 has been 32 
rewritten to: “The first type of internal error is misclassification error, where the image classification 33 
algorithm fails to assign the same classification that a human expert would choose”. 34 

Line 531. This analysis is interesting but does it apply to the image used or to all images in general. How might the 35 
result change through time or with season? 36 

This analysis applies specifically to the image used, though there is nothing particularly unique about the 37 
image analyzed. We believe the results are applicable to all images in general, but a complete 38 
demonstration of that is better suited to its own study, and we suggest future work to expand this analysis to 39 
a general rule.  The statistical methods that we use here should be independent of the seasonality of ice (so 40 
long as the metric you are investigating can by captured by the image scale, e.g. this works for melt pond 41 
fraction and not for ice fraction). At the core, we are just using a sample of some size as a means to 42 
estimate a population statistic.  43 

We have added line 598 to detail this in the manuscript: “The statistical approach for determining image 44 
statistics should not depend on the seasonality of the image nor the type of image used so long as the total 45 
area observed is sufficiently greater than the variability in the surface feature being investigated.” 46 
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Line 558. The Central limit Theorem is a mathematical theorem complete with proof. I wouldn’t say that it can be 47 
tested. What you are doing here is evaluating if you can predict the regional/image mean from a set of smaller 48 
samples/local means. One framework to evaluate this is hypothesis testing in which you pose the hypothesis that N 49 
sample means can predict/estimate the regional mean. This test applies the Central Limit Theorem but does not test 50 
it. This section needs to be reworked. 51 

Line 559. The standard definition of the Central Limit Theorem is that independent variables can be added and 52 
normalized by (X - mu)/(sigma/sqrt(n)) to yield a normal distribution N(0,1). Where X is the sample mean, mu 53 
population mean and sigma population standard deviation. 54 

These are good points. We have significantly revised this section. The takeaway message remains largely 55 
the same as in the original version, but both the text and methodology has been improved for new version. 56 
Instead of applying the Central Limit Theorem directly, we instead analyze the sample size required to 57 
estimate the regional mean, and address the difference in measuring from spatially correlated samples 58 
versus randomly selected samples. 59 

Figures: Check figure numbering 60 

Thanks for catching this – we have fixed the figure numbering issue.  61 

Figure 13. The cyan rectangle over the black dots make the dots look green (at least on my screen). The labels in the 62 
key need to match the description in the text. If some of the information is not discussed, I suggest removing it from 63 
the figure. 64 

We have fixed the coloration issue with the mean dots.  65 
 66 
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Reply to Anonymous Referee #2 from 21 Oct 2017 1 

Note: Author responses are in plain text following the original referee comment shown in italicized text.  2 

Line 50. I suggest adding Fetterer and Untersteiner (1998) and Arntsen et al. (2015) to the reference list. 3 

We have added both references to this section. Although the Arntsen et al. 2015 paper uses the method 4 
presented in Miao et al. 2015.   5 

Line 66. This isn’t quite right. Several previous works have demonstrated surface feature retrievals from high-6 
resolution imagery throughout the seasonal evolution of ice surface conditions. 7 

We have reviewed a large number of previous works detailing the classification of high resolution optical 8 
imagery of sea ice (e.g. Arntsen et al., 2015; Fetterer and Untersteiner, 1998; Inoue et al., 2008; Kwok, 9 
2014; Lu et al., 2010; Miao et al., 2015; Perovich et al., 2002b; Renner et al., 2014; Webster et al., 2015), 10 
and have not come across any that are demonstrated on a complete seasonal melt cycle. To the best of our 11 
knowledge no such work exists. We will gladly incorporate further information into this section if the 12 
reviewer can point us to the references they are referring to. 13 

Lines 136+. How does the algorithm differ from that in Miao et al? Please describe any differences. 14 

While this algorithm is inspired by the work of Miao et al. 2015 to use image segmentation followed by 15 
classification with a random forest algorithm, the implementation of that workflow is quite different. To 16 
convey this, we have added line 132: “Our implementation of the segmentation and classification, however, 17 
were custom-built using well known image processing tools (Pedregosa et al., 2011, van der Walt et al., 18 
2014) in an open source format”.  19 

 20 
The algorithm presented by Miao et al. (2015) uses the ENVI GIS software package. As such, there are some 21 
specifics that remain proprietary to ENVI. Where we know how the Miao et al. algorithm behaves, we have 22 
stated the similarities and differences. We use a custom-built segmentation technique (section 3.2) that is 23 
different than the Miao et al. method. In the random forest machine learning technique, we use some attributes 24 
that were developed by Miao et al. (2015) (attributed in line 267 and 303), as well as attributes new to our 25 
method (lines 302-313).  26 

 27 

Line 236. Does this melt pond definition include or exclude melt ponds that are melted through? Relative to previous 28 
works, is it typical to include submerged ice in the melt pond class or is it unique to this approach? 29 

Our melt pond definition, which is provided in lines 239-248. excludes the area of melt ponds that has 30 
melted through completely (see Figure 5). Our approach to the surface classifications was to consider 31 
primarily shortwave optical properties. Submerged ice and melt ponds have similar optical properties and 32 
impact the solar energy balance in the same way. Thus it makes sense to group them into a single category. 33 
Previous works have taken both approaches. Miao et al. (2015), for example, presented a method for 34 
distinguishing general submerged ice from contained melt ponds by analyzing their proximity to open 35 
water. However, separating these classes is not necessary for all applications. Spectral unmixing 36 
algorithms, such as those presented by Rosel et al. 2012, to determine melt pond fraction on a larger scale 37 
consider only aggregate optical properties, and melt pond fraction would necessarily include the general 38 
submerged ice category as well.  39 

Line 241. Submerged ice isn’t a type of melt pond. Please clarify this point. It would be helpful to comment on the 40 
effects of submerged ice on melt pond statistics of area and geometry, especially for scenes of advanced melt in the 41 
marginal ice zone. 42 

Lines 361+. It would be helpful to explicitly include submerged ice in the melt pond class throughout the text and 43 
figures. For example, instead of “Melt pond,” please state “Melt pond and submerged ice” or “Melt pond + 44 
submerged ice.” 45 

To be more clear on our definition, we have changed this category to be “melt pond and submerged ice” 46 
throughout the figures and text.  47 
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Our hope is to spur community discussion with these surface type definitions, and so we have presented 48 
what we feel is the most widely applicable way to standardize ‘ponded ice’. We acknowledge in line 236 49 
that there are different opinions. We found that many experts in the sea ice community have subtly 50 
different definitions of the surface types, even beyond the distinction being made here. (as we discovered 51 
when producing the data for Figure 4.) From a shortwave optical stand point, submerged ice and melt 52 
ponds are functionally the same, and since radiative balance is a primary reason to study ponds, we argue in 53 
line 244-245 that it makes sense to group them as a single category. For a study concerned with pond 54 
geometry this is obviously not the case, and there are methods (such as those discussed in Miao et al. 2015) 55 
to separate general submerged ice from melt ponds. These could easily be applied to our output by an 56 
interested user. 57 

Line 245. Would this criterion also include sea ice darkened by sediment and algae during the melt season? 58 

Yes, though we have not seen either of these features in the images we processed for this paper.  59 

Lines 252 and 307. Please provide more details on the shadow detection step for panchromatic and multispectral 60 
imagery. Does it differ from previous works? 61 

We did not use the shadow category for multispectral imagery. There is not a separate step for shadow 62 
detection, per se, rather an additional training category for the machine learning algorithm. We have edited 63 
the discussion of the shadow category in section 3.3.2 to reflect that we are not presenting shadows as a 64 
classification category. We have also added lines 258-261 to illustrate the differences to previous 65 
approaches to handling shadows.  66 

This step does differ from previous work. In Webster et al. (2015), for example, ridge shadows are directly 67 
masked and set to the maximum pixel values. Our approach also differs from that in Miao et al. (2015), as 68 
our shadow class is not an independent classification in the output and it is only used for images prior to 69 
melt onset. Miao et al. (2016) details a more sophisticated ridge and shadow detection scheme 70 

Line 290. Please describe how image dates are used in the classification scheme. 71 

We have edited lines 296-300 to clarify how image dates are used for classification. The image acquisition 72 
dates are an attribute that the random forest can use to make a prediction. Image date is a simple means of 73 
estimating melt state, which improves the ability of the classifier to correctly predict surface conditions.  74 

Lines 305/491. How does this step distinguish a neighboring ridge from snow-covered ice? It’s not clear, does the 75 
algorithm identify ridges as a separate class? 76 

Line 491 incorrectly implied that we are detecting ridges directly. We’ve edited line 491 to clear up this 77 
point. While we have methods for indirect detection of ridges (i.e. their shadows – see revised lines 258-78 
261) we do not distinguish ridges from snow covered ice. We have reworked lines 309-318 to illustrate that 79 
bright ridge pixels are an example of the benefit of looking at object neighbors, and not a method for 80 
creating a ridge class.   81 

Line 310. Here and elsewhere, trade-offs in computational expenses are mentioned. It would be helpful to give a 82 
ballpark estimate of the computational expense if possible, e.g., is it O(N) or O(Nˆ2)? 83 

The algorithm is roughly O(N), but it is difficult to quantify the computational expense in big-O terms for 84 
this application. High resolution satellite images are quite large, and can easily have millions of image 85 
objects. Therefore, any small increase in the time required to evaluate each image object (such as a more 86 
complex neighbor analysis) dramatically increases the total processing time.  87 

We have edited lines and 197, 274 to refine our meaning behind ‘computational expense’.   88 

Line 313. It’s surprising that the Literal Image Derived Products from the Global Fiducials Library have been 89 
excluded from this analysis, as these publicly available images have been the data source for several analyses of 90 
high-resolution sea ice imagery (Arntsen, Fetterer, Kwok, Webster). Do the authors anticipate that users will find 91 
the algorithm suitable for processing this imagery given its radiometric inconsistencies? Why or why not? 92 

We do not anticipate any issues with the NTM imagery from the Global Fiducials Library, and 1m 93 
resolution is high enough to get good results (see figures 11 and 12). From an image processing standpoint, 94 
the NTM imagery is very similar to panchromatic WorldView imagery, and we therefore do not believe 95 
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processing the NTM imagery would change the discussions of this paper. In unpublished work Arntsen has 96 
tested this algorithm on the NTM imagery with success. 97 

We have added line 151: “The imagery sources chosen for this analysis were selected to be representative 98 
of the variation that exists in optical imagery of sea ice, but there is an abundance of image data that can be 99 
processed with this technique.” 100 

Line 319. Are the different results between experienced and inexperienced users a matter of definition? For 101 
example, how do experienced and inexperienced users classify submerged ice near floe edges? 102 

The experience and inexperienced users had the same classification definitions in front of them as they 103 
worked their way through the training sets. Though some users might have had different opinions of the 104 
surface types on their own, the lack of standard definition is not the reason for disagreement. The 105 
definitions of the ice types, including for example submerged ice, were set in advance and provided to all 106 
users. The differences arise from the user’s ability to interpret the definitions and apply them. We have 107 
added a sentence in the paper clarifying this point (line 329). As we established the definition of melt pond 108 
to include submerged ice on the edge of a floe ahead of time, users were consistent in their classification of 109 
these categories.  110 

Lines 406+. Is this an Eulerian or Lagrangian site? How do the authors distinguish changes due to spatial 111 
heterogeneity from seasonal melt progression? 112 

Line 786/Figure 10. Please state whether this site was Eulerian or Lagrangian in the caption. 113 

The site is Eulerian. We have clarified this in the relevant figure captions and added line 505: “The site is 114 
Eulerian; it observes a single location in space and does not follow a single ice floe through its lifecycle as 115 
it drifts”. 116 

Lines 508+. For the aggregate-scale analysis, what type of ice was present in the analyzed scenes? How might the 117 
results change based on the presence of different sea ice types? 118 

The images used in the aggregate scale analysis contained primarily first year ice in various stages of melt, 119 
and we have noted this in line 522. We have noted in the manuscript in lines 585/591 that this method 120 
applies only to melt pond fraction, as we discovered that the images were not large enough to accurately 121 
capture ice fraction. Within the melt pond fraction category, we do not believe a different ice type would 122 
substantially change the results (lines 594-596), as this analysis is at its core a statistical problem (how to 123 
estimate a population based on a sample).  124 

Lines 760/Figure 4 & 779/Figure 8. I suggest presenting the pixel counts as percentages of the total pixels evaluated 125 
and providing the total pixel count in the caption for ease of reading. 126 

That is a good suggestion. We have added that information to the figure.  127 

Line 782/Figure 9. In the caption or text, please provide the average scene size. 128 

Another good suggestion, which we have also added to the figure caption.  129 

Line 791/Figure 11. I suggest adding the resolution size as a secondary x-axis on the top of the plots for ease of 130 
reading. 131 

We have changed the x-axis to be in units of resolution in meters. The axis is still on a log scale, but as you 132 
suggested, it is much easier to read in this format.  133 

Line 52. Morphology seems like the wrong word here. 134 

Changed ‘morphology of surface conditions’ to ‘morphology of surface features’. The morphology of a 135 
feature is its structure or form, and here we are discussing the difficulty of lower resolution optical sensors 136 
in directly observing the structure of surface features 137 
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Reply to Anonymous Referee #3 from 04 Nov 2017 1 

Note: Author responses are in plain text following the original referee comment shown in italicized text.  2 

Please note that there is a previous effort to realize an open source package for sea ice feature detection: Sea Ice 3 
Imagery Classification with Machine Learning and High-Performance Computing, XSEDE 2016 Polar Compute 4 
Hackathon - Sea Ice Team, Contributers: Alek Petty, Andrew Barrett, Xin Miao, Phil McDowall, Vivek 5 
Balasubramanian, https://github.com/polar-computing/SeaIce Is there any relationship between the author’s package with the 6 
XSEDE 2016 package? Please cite it if necessary. 7 

We had not seen that package prior to this review. Our work has no basis in the code referenced. We 8 
appreciate being informed about another activity and future collaboration between our efforts and this 9 
project may be beneficial to the community. Citation does not seem to be warranted since the code 10 
referenced does not appear to be published yet.  11 

L9: What is “dm-scale”?  12 

‘dm’ here stands for decimeter – the SI term for 10-1 meters.  13 

The terms used in manuscript are not consistent. L13: . . .melt ponds and submerged ice, so this is definition used in 14 
(Miao, 2016). This includes two subclasses: melt pond (MP) and coastal submerged ice. So how did author 15 
calculate MP coverge in L364? How to extract MP from the broad category of “melt ponds and submerged ice”? 16 
Please make it clear. 17 

The definition we use for melt ponds is stated in section 3.3.2, line 243 to 244, and we are consistent with 18 
the usage throughout the manuscript. Our definition is not the same as that used in Miao et al. (2016), as we 19 
do not differentiate between melt ponds and costal submerged ice. We explicitly clarify this difference on 20 
lines 245-249. From a shortwave optical albedo standpoint it is unnecessary to separate these classes, and 21 
therefore we do not attempt to extract melt ponds according to this narrower definition. Other works 22 
present methods to separate these (Miao et al., 2015, for example) that could be applied to the results 23 
presented here for users interested in that application.  24 

We have changed the category name to be “melt ponds and submerged ice” to alleviate some of the 25 
confusion for this category.  26 

L165: Did author consider the possible image distortion due to tilting of sRGB and other images? 27 

For this work, no. As we are not trying to answer any scientific questions based on this sRGB imagery 28 
specifically, we did not attempt to correct image distortions. The algorithm is able to classify images even 29 
with small amounts of off-nadir distortion. Applications that seek to use sRGB imagery to answer scientific 30 
questions should address any image distortion present. As sRGB imagery is not standard (unlike 31 
WorldView), correcting image distortion must be done on a case by case basis using positioning, pointing, 32 
and lens information which was not available in the data we worked with.  33 

L225: One of the major feature of RF is that it only need a small amount of samples, very suitable in labor-intensive 34 
remote sensing project like sea ice detection. 35 

This is true: We have added “[…] even with relatively small training datasets” to line 228.   36 

L236: How did you separate regular melt pond (fresh water) and melt-through MP (salt water)? Why not use the 37 
technique provided in (Miao, 2016)? 38 

We did not differentiate between fresh water melt ponds and salt water melt ponds. Our motivation lies in 39 
short wave optical properties of melt ponds and from that perspective the distinction between salt and fresh 40 
water is not important. We added line 241 to clarify this: “Our surface type definitions focus on the 41 
behavior of a surface in absorption of shortwave radiation and radiative energy transfer”. However, melt 42 
ponds that are completely melted through were classified as open water based on their unique spectral 43 
characteristics (Figure 5).  44 

L 256: I think it makes sense to combine 3.3.4 and 3.3.5 to 3.3.3. 45 



7 
 
 

Thank you for the suggestion. We have combine sections 3.3.4 and 3.3.5 into a single section describing all 46 
of the attributes calculated for each image object.  47 

L191&L255: Did author consider the shadow issues? Shadow is an interesting sea ice feature, please refer to Xin 48 
Miao, Hongjie Xie, Stephen F. Ackley, Songfeng Zheng, “Object-Based Arctic Sea Ice Ridge Detection From High-49 
Spatial-Resolution Imagery”, IEEE Geoscience and Remote Sensing Letters, 13(6): 787-791, 2016. 50 

L307: Can you provide an example? I don’t understand why. 51 

In lines 259-265 we have edited the description of shadow detection to better illustrate our approach, and in 52 
lines 316-323 we have edited the description of detecting ridges in neighboring regions.  53 

Shadows are an interesting feature of sea ice, but classification of shadow regions is beyond the scope of 54 
this paper. We are not trying to present shadow or ridge detection as a stand-alone feature. In spring 55 
panchromatic WorldView imagery, shadows look similar to melt ponds, and lines 259-265 is a simple 56 
method to address the similarity.  57 

The example presented in line 316 (was 307) is an example of how using neighborhood statistics help 58 
identify the classification of an object, and we have reworded it this to be more apparent.  59 

L367: Section 3.6 is very confusing. What do you mean by “larger sample”? Is it “larger number of samples”? 60 
What is “metric” here? L374: you mean ‘observer’ not ‘user’, rite?  61 

We agree that this section as written was confusing, and we have restructured much of this paragraph to 62 
increase its clarity. The larger sample assessed the accuracy of 1000 pixels instead of 100. User and 63 
observer were referring to the same thing, and we have simplified this to a single term. 64 

L381: Figure 7 refer to Figure 8? Very confusing here. 65 

No, but there was a typo in describing Figure 7 here. This sentence has been edited to be more precise in its 66 
reference to Figure 7.   67 

L 389: Fig. 8?? 68 

This line correctly references Figure 8. We have rearranged the order of this sentence to be more clear.  69 

L405: Only 4.1 not 4.2? Then author could remove this subtitle. 70 

We’ve added a section 4.1 here to divide this section into 4.1 and 4.2 71 

Comment: L596: Very positive contribution by sharing the training set! 72 

Thank you!73 
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Open Source Algorithm for Detecting Sea Ice Surface Features in 1 

High Resolution Optical Imagery 2 

Nicholas C. Wright1, Christopher M. Polashenski1,2 3 
1Thayer School of Engineering, Dartmouth College, Hanover, NH, USA 4 
2U.S. Army Cold Regions Research and Engineering Laboratories, Hanover, NH, USA 5 

Correspondence to: N. C. Wright (ncwright.th@dartmouth.edu) 6 

Abstract. Snow, ice, and melt ponds cover the surface of the Arctic Ocean in fractions that change throughout the 7 

seasons. These surfaces control albedo and exert tremendous influence over the energy balance in the Arctic. 8 

Increasingly available m- to dm-scale resolution optical imagery captures the evolution of the ice and ocean surface 9 

state visually, but methods for quantifying coverage of key surface types from raw imagery are not yet well 10 

established. Here we present an open source system designed to provide a standardized, automated, and reproducible 11 

technique for processing optical imagery of sea ice. The method classifies surface coverage into three main categories: 12 

Snow and bare ice, melt ponds and submerged ice, and open water. The method is demonstrated on imagery from four 13 

sensor platforms and on imagery spanning from spring thaw to fall freeze-up. Tests show the classification accuracy 14 

of this method typically exceeds 96%. To facilitate scientific use, we evaluate the minimum observation area required 15 

for reporting a representative sample of surface coverage. We provide an open source distribution of this algorithm 16 

and associated training data sets and suggest the community consider this a step towards standardizing optical sea ice 17 

imagery processing. We hope to encourage future collaborative efforts to improve the code base and to analyze large 18 

datasets of optical sea ice imagery.  19 

1 Introduction 20 

The surface of the sea ice-ocean system exhibits many different forms. Snow, ice, ocean, and melt ponds cover the 21 

surface in fractions that change throughout the seasons. The relative fractions of these surfaces covering the Arctic 22 

ocean are undergoing substantial change due to rapid loss of sea ice (Stroeve et al., 2012), increase in the duration of 23 

melt (Markus et al., 2009; Stroeve et al., 2014), decrease in sea ice age (Maslanik et al., 2011), and decrease in sea ice 24 

thickness (Kwok and Rothrock, 2009; Laxon et al., 2013) over recent decades. As a whole, the changes are reducing 25 

albedo and enhancing the absorption of solar radiation, triggering an ice albedo feedback (Curry et al., 1995; Perovich 26 

et al., 2008; Pistone et al., 2014). Large-scale remote sensing has been instrumental in documenting the ongoing 27 

change in ice extent (Parkinson and Comiso, 2013), thickness (Kurtz et al., 2013; Kwok and Rothrock, 2009; Laxon 28 

et al., 2013), and surface melt state (Markus et al., 2009). An increasing focus on improving prediction of future sea 29 

ice and climate states, however, has also created substantial interest in better observing, characterizing, and modeling 30 

the processes that drive changes in albedo-relevant sea ice surface conditions such as melt pond formation, which 31 

occur at smaller length scales. For these, observations that resolve surface conditions explicitly are needed to 32 

understand the underlying causes of the seasonal and spatial evolution of albedo in a more sophisticated way.  33 
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Explicitly sensing the key aspects of the sea ice surface, including melt pond coverage, degree of deformation, floe 34 

size, and lead distributions, requires evaluating the surface at meter to decimeter scale resolution. Variability in the 35 

spatial coverage and morphology of these surface characteristics, however, occurs over hundreds of meters to tens of 36 

kilometers. Estimates of aggregate scale surface coverage fraction must therefore be made at high resolution over 37 

sample domains of many square kilometers. Quantifying the relative abundance of surface types over domains of 38 

multi-kilometer scale from manned ground campaigns is both time consuming and impractical. Remote sensing 39 

provides a more viable approach for studying these multi-kilometer areas. High resolution optical imagery (e.g. Figure 40 

1) visually captures the surface features of interest, but the methods for analyzing this imagery remain under-41 

developed. 42 

The need for remote sensing methods enabling quantification of meter-scale sea ice surface characteristics has 43 

been well recognized, and efforts have been made to address it. Recent developments in remote sensing of sea ice 44 

surface conditions fall into two categories: (1) methods using low-medium resolution satellite imagery (i.e. having 45 

pixel sizes larger than the typical ice surface feature size) with spectral un-mixing type algorithms to derive aggregate 46 

measures of sub-pixel phenomena (e.g. for melt ponds Markus et al., 2003; Rösel et al., 2012; Rösel and Kaleschke, 47 

2011; Tschudi et al., 2008) and (2) methods using higher resolution satellite or airborne imagery (i.e. having pixel size 48 

smaller than the typical scale of ice surface features) that is capable of explicitly resolving features (e.g. Arntsen et 49 

al., 2015; Fetterer and Untersteiner, 1998; Inoue et al., 2008; Kwok, 2014; Lu et al., 2010; Miao et al., 2015; Perovich 50 

et al., 2002b; Renner et al., 2014; Webster et al., 2015). The first category, those derived from low-medium resolution 51 

imagery, have notable strengths in their frequent sampling and basin-wide coverage. They cannot, however, provide 52 

detailed statistics on the morphology of surface features necessary for assessing our process-based understanding and 53 

have substantial uncertainty due to ambiguity in spectral signal un-mixing. The second category – observations at high 54 

resolutions which explicitly resolve surface properties – can provide these detailed statistics, but were historically 55 

limited by a dearth of data acquisitions. Recent increases in imagery availability from formerly classified defense 56 

(Kwok, 2014) or commercial satellites (e.g. DigitalGlobe), and increases in manned flights over the Arctic (e.g. 57 

IceBridge, SIZRS) have substantially reduced this constraint for optical imagery. Likely increases in collection of 58 

imagery from UAV’s (DeMott and Hill, 2016) and increases in satellite imaging bandwidth (e.g. DigitalGlobe 59 

WorldView 4 launched in 2016) suggest that availability of high resolution imagery will continue to increase.  60 

Processing high resolution sea ice imagery to derive useful metrics quantifying surface state, however, remains a 61 

major hurdle. Recent years have seen numerous publications demonstrating the success of various processing 62 

techniques for optical imagery of sea ice on limited test cases (e.g. Inoue et al., 2008; Kwok, 2014; Lu et al., 2010; 63 

Miao et al., 2015; Perovich et al., 2002b; Renner et al., 2014; Webster et al., 2015). None of these techniques, however, 64 

have been adopted as a standard or been used to produce large-scale datasets, and validation has been limited. 65 

Furthermore, none have been challenged by imagery collected across the seasonal evolution of the ice or used to 66 

process data from multiple sensor platforms. These issues must be addressed to enable in large scale production-type 67 

image processing and use of high resolution imagery as a sea ice monitoring tool.  68 

A unique aspect of high resolution sea ice imagery datasets, which differs from most satellite remote sensing, is 69 

the quantity of image sources and data owners. Distributed collection and data ownership means centralized processing 70 

Deleted: Inoue et al., 2008; Kwok, 2014; Lu et al., 2010; Miao et 71 
al., 2015; Perovich et al., 2002; Renner et al., 2014; Webster et al., 72 
2015)73 

Deleted: conditions74 
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of imagery to produce a single product is unlikely. Instead, we believe that distributed processing by dataset owners 75 

is more likely and the community therefore has a substantial need for a shared, standard processing protocol. 76 

Successful creation of such a processing protocol would increase imagery analysis and result in the production of 77 

datasets suitable for ingestion by models to validate surface process parameterizations. In this paper, we assess 78 

previous publications detailing image processing methods for remote sensing and present a novel scheme that builds 79 

from the strengths and lessons of prior efforts. Our resulting algorithm, the Open Source Sea-ice Processing (OSSP) 80 

Algorithm, is presented as a step toward addressing the community need for a standardized methodology, and released 81 

in an open source implementation for use and improvement by the community.  82 

We began with three primary design goals that guided our development of the image processing scheme. The 83 

method must (1) have a fully automatic workflow and have a low barrier to entry for new users, (2) produce accurate, 84 

consistent results in a standardized output format, and (3) be able to produce equivalent geophysical parameters from 85 

a range of disparate image acquisition methods. To meet these goals, we have packaged OSSP in a user-friendly 86 

format, with clear documentation for start-up. We include a set of default parameters that should meet most user needs, 87 

permitting processing of pre-defined image types with minimal set-up. The algorithm parameters are tunable to allow 88 

more advanced users to tailor the method to their specific imagery input. We chose an open source format to enhance 89 

the ability for the community to explore and improve the code relative to a commercial software. Herein, we discuss 90 

how we arrived at the particular technique we use, and why it is superior to some other possible mechanisms. We then 91 

demonstrate the ability of this algorithm to analyze imagery of disparate sources by showing results from high 92 

resolution DigitalGlobe WorldView satellite imagery in both panchromatic and pansharpened formats, aerial sRGB 93 

(standard Red, Green, Blue) imagery, and NASA Operation IceBridge DMS (Digital Mapping System) optical 94 

imagery. In this paper, we classify imaged areas into three surface types: Snow and ice, melt ponds and submerged 95 

ice, and open water. The algorithm is, however, suitable for classifying any number of categories, should a user be 96 

interested in different surface types, and might be adapted for use on imagery of other surface types. 97 

2 Algorithm Design 98 

Two core decisions were faced in the design of this image classification scheme: (1) Whether to analyze the image by 99 

individual pixels or to analyze objects constructed of similar, neighboring pixels, and (2) which algorithm to use for 100 

the classification of these image units. 101 

Prior work in terrestrial remote sensing applications has shown that object-based classifications are more accurate 102 

than single pixel classifications when analyzing high-resolution imagery (Blaschke, 2010; Blaschke et al., 2014; Duro 103 

et al., 2012; Yan et al., 2006). In this case, ‘high resolution’ has a specific definition dependent on the relationship 104 

between the size of pixels and objects of interest. An image is high resolution when surface features of interest are 105 

substantially larger than pixel resolution and therefore are composed of many pixels. In such imagery, objects, or 106 

groups of pixels constructed to contain only similar pixels (i.e. a single surface type), can be analyzed as a set. The m-107 

dm resolution imagery meets this definition for features like melt ponds and ice floes. Object based classification 108 

enables an algorithm to extract information about image texture and spatial correlation within the pixel group; 109 
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information that is not available in single pixel based classifications and can enhance accuracy of surface type 110 

discrimination. Furthermore, object based classifications are much better at preserving the size and shape of surface 111 

cover regions. Classification errors of individual pixel schemes tend to produce a ‘speckled’ appearance in the image 112 

classification with incorrect pixels scattered across the image. Errors in object based classifications, meanwhile, 113 

appear as entire objects that are mislabeled (Duro et al., 2012). Since our intent is to process high-resolution imagery 114 

and produce measurements not only of the areal fractions of surface type regions, but also to enable analysis of the 115 

size and shape of ice surface type regions (e.g. for floe size or melt pond size determination), the choice of object 116 

based classification over pixel based was clear. 117 

A wide range of algorithms were considered for classifying image objects. We first considered the use of 118 

supervised versus an unsupervised classification schemes. Unsupervised schemes were rejected as they produce 119 

inconsistent, non-intercomparable results. These schemes, such as clustering algorithms, group observations into a 120 

predefined number of categories – even if not all feature types of interest are present in an image. For example, an 121 

image containing only snow-covered ice will still be categorized into the same number of classes as an image with 122 

snow, melt ponds, and open water together – resulting in multiple classes of snow. Since the boundary between classes 123 

also changes in each image, standardizing results across imagery with different sources and of scenes with different 124 

feature content would be challenging at best.  125 

Supervised classification schemes instead utilize a set of known examples (called training data) to assign a 126 

classification to unknown objects based on similarity to user-identified objects. Supervised classification schemes 127 

have several advantages. They can produce fixed surface type definitions, allow for more control and fine tuning of 128 

the algorithm, improve in skill as more points are added to the training data, and allow users to choose what surface 129 

characteristics they wish to classify. While many machine learning techniques have shown high accuracy in remote 130 

sensing applications (Duro et al., 2012), we selected a random forest machine learning classifier over other supervised 131 

learning algorithms for its ability to handle nonlinear and categorical training inputs (Breiman, 2001; DeFries, 2000; 132 

Pal, 2005), resistance to outliers in the training dataset (Breiman, 1996), and relative ease of implementation.  133 

Our scheme, learning from the success of Miao et al. (2015) in classifying aerial imagery, uses an image 134 

segmentation algorithm to divide the image into objects which are then classified with random forest machine learning. 135 

Our implementation of the segmentation and classification, however, were custom-built using well known image 136 

processing tools (Pedregosa et al., 2011; van der Walt et al., 2014) in an open source format. We do not attempt to 137 

assert that our method is the optimal method for processing sea ice imagery. Instead, we argue that it is easily usable 138 

by the community at large, produces highly accurate and consistent results, and merits consideration as a standardized 139 

methodology. In coordination with this publication, we release our code (available at https://github.com/wrightni/ossp 140 

doi:10.5281/zenodo.1133689) with the intention of encouraging movement toward a standardized method. Our hope 141 

is to continue development of the algorithm with contributions and suggestions from the sea ice community.  142 
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3 Methods 151 

3.1 Image Collection and Preprocessing 152 

The imagery used to test the algorithm was selected from four distinct sources in order to assess the algorithm’s ability 153 

to deliver consistent and intercomparable measures of geophysical parameters. We chose high resolution satellite 154 

imagery from DigitalGlobe’s WorldView constellation in panchromatic and 8 band multispectral formats, NASA 155 

Operation IceBridge Digital Mapping System optical imagery, and aerial sRGB imagery collected using an aircraft-156 

mounted standard DLSR camera as part of the SIZONet project. We first demonstrate the technique’s ability to handle 157 

imagery representing all stages of the seasonal evolution of sea ice conditions on a series of 22 panchromatic satellite 158 

images collected between March and August of 2014 at a single site in the Beaufort Sea: 72.0° N 128.0° W. We then 159 

process 4 multispectral WorldView 2 images of the same site, each collected coincident with a panchromatic image 160 

and compare results to assess the benefit of spectral information. Finally, we process a set of 20 sRGB images and 20 161 

IceBridge DMS images containing a variety of sea ice surface types to illustrate the accuracy of the method on aerial 162 

image sources. The imagery sources chosen for this analysis were selected to be representative of the variation that 163 

exists in optical imagery of sea ice, but there is an abundance of image data that can be processed with this technique. 164 

The satellite images were collected by tasking WorldView 1 and WorldView 2 Digital Globe satellites over fixed 165 

locations in the Arctic. Tasking requests were submitted to DigitalGlobe with the support and collaboration of the 166 

Polar Geospatial Center. The panchromatic bands of WorldView 1 and 2 both have a spatial resolution of 0.46m at 167 

nadir. The WorldView 1 satellite panchromatic band samples the visible spectrum between 400 nm and 900 nm, while 168 

the WorldView 2 satellite panchromatic band samples between 450 nm and 850 nm. In addition, WorldView 2 has 8 169 

multispectral bands at 1.84 m nadir resolution, capturing bands within the range of 400nm to 1040nm. Each 170 

WorldView image captures an area of ~700-1300 km2. Of the 22 useable panchromatic collections at the site, 15 were 171 

completely cloud free while 7 of the images were partially cloudy. Images with partial cloud cover were manually 172 

masked and cloud covered areas were excluded from analysis. The aerial sRGB imagery was captured along a 100km 173 

long transect to the north of Barrow, Alaska with a Nikon D70 DSLR mounted at nadir to a light airplane during June 174 

2009. The IceBridge imagery was collected in July of 2016 near 73° N 171° W with a Canon EOS 5D Mark II digital 175 

camera. We utilize the L0 (raw) DMS IceBridge imagery, which has a 10cm spatial resolution when taken from 1500 176 

feet altitude (Dominguez, 2010, updated 2017). 177 

Each satellite image was orthorectified to mean sea level before further processing. Orthorectification corrects for 178 

image distortions caused by off-nadir acquisition angles and produces a planimetrically correct image that can be 179 

accurately measured for distance and area. Due to the relatively low surface roughness of both multiyear and first year 180 

sea ice (Petty et al., 2016), errors induced by ignoring the real topography during orthorectification are small. 181 

Multispectral imagery was pansharpened to the resolution of the panchromatic imagery. Pansharpening is a method 182 

that creates a high resolution multispectral image by combining intensity values from a higher resolution panchromatic 183 

image with color information from a lower resolution multispectral image. The pansharpened imagery used here was 184 

created using a ‘weighted’ Brovey algorithm. This algorithm resamples the multispectral image to the resolution of 185 

the panchromatic image, then each pixel’s value is multiplied by the ratio of the corresponding panchromatic pixel 186 
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value to the sum of all multispectral pixel values. The orthorectification and pansharpening scripts were developed by 189 

the Polar Geospatial Center at the University of Minnesota and utilize the GDAL (Geospatial Data Abstraction 190 

Library) image processing tools (GDAL, 2016). All imagery used was rescaled to the full 8-bit color space for 191 

improved contrast and viewing. No other preprocessing was done to the aerial sRGB imagery or IceBridge DMS 192 

imagery. 193 

3.2 Image Segmentation 194 

A flow chart of the image processing steps taken after pre-processing is presented in Fig. 2. The first task in the image 195 

processing algorithm is to segment the image into groups of similar pixels, called objects. Accurate segmentation 196 

requires finding the boundaries between the natural surface types we wish to differentiate (e.g. the boundary between 197 

ice covered and open ocean), delineating their locations, and using these boundaries to produce image objects. Sea ice 198 

surface types have large differences in reflectivity and tend to change abruptly, rather than gradually over a large 199 

distance. We exploit this characteristic by using an edge detection algorithm to find boundaries between surface types.  200 

Figure 3 contains a visual demonstration of this process. First, a Sobel-Feldman operator (van der Walt et al., 2014) 201 

is applied to the input image (Fig. 3a). The Sobel-Feldman filter applies a discrete differentiation kernel across the 202 

image to find the local gradient of the image intensity. High gradient values correspond to abrupt changes in pixel 203 

intensity, which are likely boundaries between surface types. We scale the gradient values by an amplification factor 204 

of 2 in order to further highlight edge regions in the image. Following the amplification, we threshold the lowest 10% 205 

of the gradient image and set the values to zero. This reduces noise detected by the Sobel-Feldman filter, and eliminates 206 

weaker edges. The amplification factor and gradient threshold percentage are both tuning parameters, which can be 207 

adjusted to properly segment images based on the input image and the strength of edges sought.  208 

The strongest edges in optical imagery of sea ice are typically the ocean-ice interface, followed by melt pond-ice 209 

boundaries, then ice ridges and uneven ice surfaces. In general, the more edges detected, the more segmented the 210 

image will become, and the more computational resources required to later classify the increased number of image 211 

objects. On the other hand, an under-segmented image may miss the natural boundaries between surfaces. Under 212 

segmentation introduces classification error because an object containing two surface types cannot be correctly 213 

classified. An optimally segmented image is one which captures all the natural surface boundaries with minimal over-214 

segmentation (i.e. boundaries placed in the middle of features). The appropriate parameters for our imagery were 215 

tuned by visual inspection of the segmentation results. In such inspection, desired segmentation lines are manually 216 

drawn, and algorithm-determined segmentation lines are overlain and evaluated for completeness.  217 

The result of the edge detection is a gradient map that marks the strength of edges in the image. We use a watershed 218 

segmentation technique to build complete objects based on edge locations and intensity (van der Walt et al., 2014). 219 

We first calculate all local minimum values in the gradient image, where a marker is then placed to indicate the origin 220 

of watershed regions. Each region then begins iteratively expanding in all directions of increasing image gradient until 221 

encountering a local maximum in the gradient image or encountering a separately growing region. This continues until 222 

every pixel in the image belongs to a unique set. With the proper parameter selection, each object will represent a 223 

single surface type. It is often the case that some areas will be over-segmented (i.e. a single surface feature represented 224 
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by multiple objects). Over segmentation can either be ignored, or objects can be recombined if they meet similarity 225 

criteria in an effort to save computational resources. Here we chose to classify objects without recombination. Figure 226 

3b shows the detected edges overlain on top of the input image. 227 

The watershed segmentation algorithm benefits from the ability to create objects of variable size. Large objects 228 

are built in areas of low surface variability while many small objects are created in areas of high variability. This 229 

variable object sizing is well suited to sea ice surface classification because the variability of each surface type occurs 230 

at different scales. Areas of open water and snow covered first year ice, for example, can often be found in large 231 

expanses, while areas that contain melt ponds, ice ridges, or rubble fields frequently cover small areas and are tightly 232 

intermingled with other surface types. Variable object sizes give the fine detail needed to capture surfaces of high 233 

heterogeneity in their full detail, while limiting over segmentation of uniform areas.  234 

3.3 Segment Classification  235 

3.3.1 Overview 236 

Once the image has been divided into regions of the same surface type, each object must be classified as to which 237 

surface type it represents. We classify the objects using a random forest machine learning technique (Breiman, 2001; 238 

Pedregosa et al., 2011). The development of a machine learning algorithm requires multiple iterative steps: 1) Select 239 

attributes with which to classify each object, 2) create a training dataset, 3) classify unknown image objects based on 240 

the training set, and 4) assess performance and refine, starting from step 1. Random forest classifiers excel for their 241 

relative ease of use, flexibility in the choice of attributes that define each object, and overall high accuracy even with 242 

relatively small training datasets. The random forest classifier is only one of many available machine learning 243 

approaches and others may also be suitable. 244 

3.3.2 Surface Type Definitions 245 

Another key challenge to quantitatively monitoring sea ice surface characteristics from high resolution imagery is a 246 

lack of standardized surface type definitions. We noted above that high-resolution sea ice imagery comes from many 247 

sources; each with different characteristics. As we will see below, each image source will need to have its own training 248 

set created by expert human classifiers. The human classifier must train the algorithm according to definitions of each 249 

surface type that are broadly agreed upon in the community for the algorithm to be successful in producing 250 

intercomparable datasets. While at first the definitions of open water, ice and melt ponds might seem intuitive, many 251 

experts in the cryosphere community have differing opinions, especially on transitional states. Deciding where to 252 

delineate transitional states is important to standardization. We have established the following definitions for the three 253 

surface types we sought to separate, binning transitional states in a manner most consistent with their impact on albedo. 254 

Our surface type definitions focus on the behavior of a surface in absorption of shortwave radiation and radiative 255 

energy transfer.  (1) Open Water (OW): Applied to surface areas that had zero ice cover as well as those covered by 256 

an unconsolidated frazil or grease ice. (2) Melt Ponds and Submerged Ice (MPS): Applied to surfaces where a liquid 257 

water layer completely submerges the ice. (3) Ice and Snow: Applied to all surfaces covered by snow or bare ice, as 258 

well as decaying ice and snow that is saturated, but not submerged. The definition of melt ponds includes the classical 259 
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definition of melt ponds where meltwater is trapped in isolated patches atop ice, as well as optically-similar ice 264 

submerged near the edge of a floe. While previous work separates these categories (e.g. (Miao et al., 2015) we did not 265 

attempt to break these ‘pond’ types because the distinction is unimportant from a shortwave energy balance (albedo) 266 

perspective. We further refined the ice and snow category into two sub categories: (3a) Thick Ice and Snow, applied 267 

during the freezing season to ice appearing to the expert classifier to be thicker than 50cm or having an optically thick 268 

snow cover and to ice during the melt season covered by a drained surface scattering layer (Perovich, 2005) of 269 

decaying ice crystals and (3b) Dark and Thin Ice, applied during the freezing season to surfaces of thin ice that are not 270 

snow covered including nilas and young ice. This label was also applied during melting conditions to ice covered by 271 

saturated slush, but not completely submerged in water. This is ice which in some prior publications (e.g. Polashenski 272 

et al., 2012) was labeled as ‘slushy bare ice’. We acknowledge that the boundary between the ice and snow sub-273 

categories is often more a continuum than a defined border but note that distinguishing the two types is useful for 274 

algorithm accuracy. Dividing the ice/snow type creates two relatively homogeneous categories rather than a single 275 

larger category with large internal differences. A user only interested in the categories of ice, ponds, and open water 276 

could simply re-combine them, as we have done for analysis. We created a temporary ‘shadow’ classification category 277 

that was used only in panchromatic WorldView images captured prior to melt onset. This category allowed the 278 

machine learning algorithm to differentiate dark shadows in spring imagery from melt ponds in summer imagery – 279 

surface types that look similar in single-band imagery. This category is used exclusively as a temporary step in 280 

processing that allows us to bypass masking shadow regions directly (e.g. (Webster et al., 2015). As this is not 281 

designed to be a standalone classification category (as opposed to Miao et al., 2015, 2016), objects classified as a 282 

shadow were grouped back with the ice/snow category.  283 

3.3.3 Attribute Selection 284 

Attributes are quantifiable measures of image object properties used by the classifier in discriminating surface types. 285 

An enormous array of possible attributes could be calculated for each image object and could be calculated in many 286 

ways. Examples of properties that could be quantified as attributes include values of the enclosed pixels, the size and 287 

shape of the object, and values of adjacent pixels. The calculation of pixel values aggregated by image objects takes 288 

advantage of the additional information held in the pixel group (as compared to individual pixels). We have compiled 289 

a list representing a relevant subset of such attributes that can be used to distinguish different surface types in Table 290 

1. We included a selection of attributes similar to those used in previous publications (e.g. Miao et al., 2015), as well 291 

as attributes we have developed specifically for our algorithm. 292 

Each image source provides unique information about the surface and it can be expected that a different list of 293 

attributes will be optimal for classification of each image type – even though we seek the same geophysical parameters. 294 

As high-resolution satellite images can have millions of image objects, calculating the attributes of each object quickly 295 

becomes computationally expensive. We have, therefore, determined those that are most valuable for classifying each 296 

image type to use in our classification. For example, pansharpened WorldView 2 imagery has 8 spectral bands which 297 

can inform the classification, while panchromatic versions of the same image have only a single band. Our goal was 298 

to select a combination of attributes that describe the intensity and textural characteristics of the object itself, and of 299 
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the area surrounding the object. Table 1 indicates which attributes were selected for use in classifying each image 312 

type.  313 

We selected attributes by only including those with a high relative importance. The importance of each attribute 314 

is a property of a random forest classifier, and is defined as the number of times a given attribute contributed to the 315 

final prediction of an input. After initial tests with large numbers of attributes, we narrowed our selection by using 316 

only those attributes that contributed to a classification in greater than 1% of cases. For discussion here, we group the 317 

attributes into two broad categories: Those calculated using internal pixels alone (object attributes), and those 318 

calculated from external pixel values (neighbor attributes). 319 

3.3.4 Object Attributes 320 

The most important attributes in the classification of an image segment were found to be aggregate measures of pixel 321 

intensity within the object. We determine these by analyzing the mean pixel intensity of all bands and the median of 322 

the panchromatic band. An important benefit of image segmentation is the ability to calculate estimates of surface 323 

texture by looking at the variability within a group of pixels. The texture is often unique in the different surface types 324 

we seek to distinguish. Open water is typically uniformly absorptive and has minimal intensity variance. Melt ponds, 325 

in contrast, come in many realizations and exhibit a wider range in reflectance, even within individual ponds. To 326 

estimate surface texture, we calculate the standard deviation of pixel intensity values and the image entropy within 327 

each segment. Image entropy, H, is calculated as 328 

! = − $ ∗ log) $ 329 

where p represents the bin counts of a pixel intensity histogram within the segment. We also calculate the size of each 330 

segment as the number of pixels it contains. As sea ice surface characteristics evolve appreciably over time, 331 

particularly before and after melt onset, we use image acquisition date as an attribute in for classification. While date 332 

of melt onset varies, and the reader might argue that a more applicable attribute would be image melt state, melt state, 333 

is not an apriori characteristic of the image. It would therefore need to be manually defined, and not meet our demand 334 

for a fully automated scheme. 335 

In multispectral imagery, we also calculate the ratios between the mean absorption of each object in certain 336 

portions of the spectrum. The important band ratios used for the multispectral WorldView imagery were determined 337 

empirically. We tested every possible band combination, and successively removed the ratios that did not contribute 338 

to more than 1% of object classifications. In sRGB imagery we use the band ratios shown to be informative in this 339 

application by Miao et al. (2015). 340 

In addition to information contained within each object, we utilize information from the surrounding area. To 341 

analyze the surrounding region, we determine the dimensions of a minimum bounding box that contains the object, 342 

then expand the box by five pixels in each direction. All pixels contained within this box, minus those in the object, 343 

are considered to be neighboring pixels. Analogous to the internal attribute calculations, we find the average intensity 344 

and standard deviation of these pixels. We also calculate the maximum single intensity within the neighboring region. 345 

Searching for attributes outside of the object improves the algorithm’s predictive capabilities by providing spatial 346 

context. Bright neighboring pixels (as an analog for an illuminated ridge) often provide information to distinguish, for 347 
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example, a shadowed ice surface from a melt pond. In panchromatic imagery, melt ponds and shadows appear similar 368 

when evaluated solely on internal object attributes. However, a dark region with an immediately adjacent bright region 369 

is more likely to be a shadow than a dark region not adjacent to a bright pixel (e.g. a pond). We do note that it is likely 370 

that a more complex algorithm, for example identifying those pixels in a radius or distance to the edge of the segment, 371 

rather than using a bounding box, would be more reliable. The tradeoff, however, is one of higher computational 372 

expense.  373 

3.4 Training Set Creation 374 

Four training datasets were created to analyze the images selected for this paper. One training set was created for 375 

each imagery source: Panchromatic satellite imagery, multispectral satellite imagery, aerial sRGB imagery, and 376 

IceBridge DMS imagery. Each training set consists of a list of image objects that have been manually classified by a 377 

human and a list of attribute values calculated from those objects and their surroundings. The manual classification is 378 

carried out by multiple sea ice experts. Experienced observers of sea ice can classify the majority (85%+) of segments 379 

in a high resolution optical image with confidence. To address the ambiguity in correct identification of certain 380 

segments, however, we used several (4) skilled sea ice observers to repeatedly classify image objects. For the initial 381 

creation of our training datasets, two of the users had extensive training in the OSSP algorithm and surface type 382 

definitions, while the other two no experience with the algorithm. Users in both categories were briefed on the standard 383 

surface type definitions used for this study (section 3.3.2). Figure 4 shows a confusion matrix to compare user 384 

classifications. Cells in the diagonal indicate agreement between users, while off- diagonal cells indicate disagreement 385 

(Pedregosa et al., 2011). Agreement between the two well-trained users was high (average 94% of segment 386 

identifications; Fig. 4a), while the agreement between a well-trained user and a new user was lower (average of 86%; 387 

Fig 4b). After an in-person review of the training objects among all four users, the overall agreement rose to 97%. The 388 

remaining 3% of objects were cases where the expert users could not agree on a single classification, even after review 389 

of the surface type definitions and discussion. These objects were therefore not used in the final training set. Figure 5 390 

shows a series of surface types that span all our classification categories, including those where the classification is 391 

clear and those where it is difficult. Difficult segments are over-represented in these images for illustrative purposes, 392 

and represent a relatively small fraction of the total surface. 393 

While the skill of the machine learning prediction increases substantially as the size of the training set grows, 394 

creating large training sets is time consuming. We found that training datasets of approximately 1000 points yielded 395 

accurate and consistent results. We have developed a graphical user interface (GUI) to facilitate the rapid creation of 396 

large training sets (see Fig. 6). The GUI presents a user with the original image side by side with an overlay of a single 397 

segment on that image. The user assigns a classification to the segment by visual determination.  398 

The training dataset is a critical component of our algorithm because it directly controls the accuracy of the 399 

machine learning algorithm – and using a consistent training set is necessary for producing intercomparable results. 400 

In coordination with this publication we are releasing our version 1.0 training datasets with the intention that they 401 

would represent a first version of the standard training set to use with each image type. Though we have found this 402 
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training dataset robust through our error analyses below, it is our intention to solicit broader input from the community 409 

to refine and expand the training datasets available and release future improved versions.  410 

In addition to cross-validating the creation of a training dataset between users, we assess the quality of our training 411 

set through an out-of-bag (OOB) estimate, which is an internal measure of the training set’s predictive power. The 412 

random forest method creates an ensemble (forest) of classification trees from the input training set. Each classification 413 

tree in this forest is built using a random bootstrap sample of the data in the training set. Because training samples are 414 

selected at random, each tree is built with an incomplete set of the original data. For every sample in the original 415 

training set, there then exists a subset of classifiers that do not contain that sample. The error rate of each classifier 416 

when used to predict the samples that were left out is called the OOB estimate (Breiman, 2001). The OOB estimate 417 

has been shown to be equivalent to predicting a separate set of features and comparing the output to a known 418 

classification (Breiman, 1996). 419 

3.5 Assigning Classifications 420 

Once the training dataset is complete, the algorithm is prepared to predict the classification of unknown objects in the 421 

images. The random forest classifier is run and a classified image is created by replacing the values within each 422 

segment by the classification label predicted. Figure 3c shows the result of labeling image objects with their predicted 423 

classification. From the classified image, it is possible to produce a number of useful statistics. The most basic 424 

measurement is the total pixel counts for each of the three surface categories. This provides both the total area, in 425 

square kilometers, that each surface covers, and the fraction of each image that is covered by each surface type. It 426 

would also be possible to calculate measurements such as the average segment size for each surface, melt pond size 427 

and connectivity, or floe size distributions. Each of these, however, has its own standardization problems significant 428 

enough to merit their own paper. 429 

For demonstration, we have used the output from our image classification to calculate the fractional melt pond 430 

coverage for each date. The melt pond fraction was defined as the area of melt ponds and submerged ice divided by 431 

the total area covered by ice floes, i.e.: 432 

*+,-	/012	304+567+ = 	 85+69:;
85+69:; + 	85+6=>;

 433 

where the subscript MPS indicates predicted melt ponds and submerged ice and I+S indicates predicted ice and snow.  434 

3.6 Determining Classification Accuracy  435 

The primary measure of classification accuracy was to test the processed imagery on a per pixel basis against human 436 

classification. For every processed image, we selected a simple random sample of 100 pixels chosen from the whole 437 

image and asked four sea ice experts to assign a classification to those pixels. For a single image from each image 438 

source we also asked the sea ice experts to classify and additional 900 pixels. This larger sample was created to 439 

demonstrate a tighter confidence interval, while the smaller samples were chosen to demonstrate consistency across 440 

images. We used the same GUI developed to create training datasets to assess pixel accuracy. Pixels were presented 441 

at random to the user by showing the original image with the given pixel highlighted. The user then identified which 442 
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of the surface type categories best described that pixel. This assignment is then compared to the algorithm’s prediction 460 

behind the scenes. The accuracy, as determined by each of the four experts, was averaged to create a composite 461 

accuracy for each image.  462 

4 Results 463 

4.1 Classification of Four Imagery Sources 464 

The OSSP image processing method proved highly suitable for the task of classifying sea ice imagery. A visual 465 

comparison between the raw and processed imagery, shown in Fig. 7 can quickly demonstrate this in a qualitative 466 

sense. Figure 7 contains a comparison between the original and classified imagery for each source, selected to show 467 

the performance of the algorithm on images that contain a variety of surface types. The colors shown correspond to 468 

the classification category; regions colored black are open water, blue regions are melt ponds and submerged ice, gray 469 

regions are wet and thin ice, and white regions are snow and ice. The quantitative processing results, including surface 470 

distributions and classification accuracy are shown in Table 2. The overall classification accuracy was 96 ± 3% across 471 

20 IceBridge DMS images; 95 ± 3% across 20 aerial sRGB images; 97 ± 2% across 22 panchromatic WorldView 1 472 

and 2 images; and 98 ± 2% across 4 multispectral WorldView 2 images.  473 

The nature of the classification error is presented using a confusion matrix that compares the algorithm 474 

classification with a manual classification for 1000 randomly selected pixels. Four confusion matrices, one for a single 475 

image from each of the four image sources is shown in Fig. 8. Values along the diagonal of the square are the 476 

classifications where the algorithm and the human observer agreed, while values in off-diagonal areas indicate 477 

disagreement. Concentration of error into a particular off-diagonal cell helps illustrate the types of confusion the 478 

algorithm experiences. The number of pixels that fall into off-diagonal cells is low across all imagery types. In the 479 

IceBridge imagery, there is a slight tendency for the algorithm to classify surfaces as open water where a human would 480 

choose melt pond. This is caused by exceptionally dark melt ponds on the edge of melting through (Fig. 5, panels F 481 

and I). Classification of mutlispectral WorldView imagery has a small bias towards classifying melt ponds over dark 482 

or thin ice (Fig. 5, panel D). Aerial sRGB and Panchromatic WorldView images do not have a distinct pattern to their 483 

classification errors. 484 

The internal metric of classification training dataset strength, the Out of Bag Error (OOB) estimates, on a 0.0 to 485 

1.0 scale, are shown in Table 3 for the trees built from our three training sets. The OOB estimate represents the mean 486 

prediction error of the random forest classifier, i.e. an OOB score of 0.92 estimates that the decision tree would predict 487 

92% of segments that are contained in the training dataset correctly.  The discrepancy between OOB error and the 488 

overall classification accuracy is a result of more frequent misclassification of smaller objects; overall accuracy is area 489 

weighted, while the OOB score is not.  490 

4.2 WorldView: Analyzing A Full Seasonal Progression 491 

We analyzed 22 images at a single site in the Beaufort Sea collected between March and August of 2014 to challenge 492 

the method with images that span the seasonal evolution of ice surface conditions. The site is Eulerian; it observes a 493 
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single location in space rather than following a single ice floe through its lifecycle as it drifts. Still, the results of these 506 

image classifications (shown in Fig. 9) illustrate the progression of the ice surface conditions in terms of our four 507 

categories over the course of a single melt season.  While cloud cover impacted the temporal continuity of satellite 508 

images collected at this site, we are still able to follow the seasonal evolution of surface features. A time series of 509 

fractional melt pond coverage calculated from the satellite image site is plotted in Fig. 10. The melt pond coverage 510 

jumps to 22% in the earliest June image, as initial ponding begins and floods the surface of the level first year ice. 511 

This is followed by a further increase to 45% coverage in the next few days. The melt pond coverage then drops back 512 

down to 30% as melt water drains from the surface and forms well defined ponds. The evolution of melt pond coverage 513 

over our satellite observation period is consistent with prior field observations (Eicken, 2002; Landy et al., 2014; 514 

Polashenski et al., 2012) and matches the four stages of ice melt first described by Eicken (2002). The ice at this 515 

observation site fully transitions to open water by mid-July, though it appears that the ice is advected out of the region 516 

in the late stages of melt rather than completing melt at this location.   517 

5 Discussion 518 

5.1 Error  519 

There are four primary sources of error in the OSSP method as presented, two internal to the method and two external. 520 

Internal error is caused by segment misclassification and by incomplete segmentation (i.e. leaving pixels representing 521 

two surface types within one segment). The net internal error was quantified in section 3.6 and 4. External error is 522 

introduced by pixilation – or blurring of real surface boundaries due to insufficient image resolution – and human 523 

error in assigning a ‘ground truth’ value to an aerial or satellite observation during training.  524 

5.1.1 Internal Error 525 

Through assessing the accuracy of each classified image on a pixel-by-pixel basis (section 3.6), we collect all internal 526 

sources of error into one measurement: The algorithm either assigned the same classification as a human would have, 527 

or it did not. Total internal accuracy calculated for the method, relative to human classifiers, is quite good, at 90-99% 528 

across all image types. Our experience is that this level of accuracy approaches the accuracy with which fractional 529 

surface coverage can practically be determined from labor intensive ground campaign techniques such as lidar and 530 

measured linear transects (e.g. Polashenski et al., 2012) 531 

The first type of internal error is misclassification error, where the image classification algorithm fails to assign 532 

the same classification that a human expert would choose. This type of error is best quantified by analyzing the training 533 

datasets. The OOB score for each forest of decision trees (Table 3) provides an estimate of each forest’s ability to 534 

correctly predict objects similar to those used to create the forest (section 3.4). The OOB score is not influenced by 535 

segmentation error, because the objects selected for training dataset use were filtered to remove any objects that 536 

contained more than one surface type. The most commonly misapplied category was the Dark and Thin Ice 537 

subcategory of Ice and Snow. This category often represents surface types that are in a transitional state, and is often 538 

difficult to classify even for a human observer.  539 
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The second type of internal error is segmentation error, where an object is created that contains more than one of 547 

the surface types we are trying to distinguish. This occurs when boundaries between objects are not placed where 548 

boundaries between surfaces exist; an issue most common where one surface type gradually transitions to another. 549 

When this occurs, some portion of that object will necessarily be misclassified. We have compensated for areas that 550 

lack sharp boundaries by biasing the image segmentation towards over-segmentation, but a small number of objects 551 

still contain more than one surface type. During training set creation, we asked the human experts to identify objects 552 

containing more than one surface type. 3.5% of objects were identified as insufficiently segmented in aerial imagery, 553 

and 2% of objects in satellite imagery. This represents the upper limit for the total percentage of insufficiently 554 

segmented objects for several reasons. First, segmentation error was most prevalent in transitional surface types (i.e. 555 

Dark and Thin Ice), which represents a small portion of the overall image and is composed of relatively small objects. 556 

This category is overrepresented in the training objects because objects were chosen to sample each surface type and 557 

not weighted by area. In addition, insufficiently segmented objects are generally composed of only two surface types, 558 

and end up identified as the surface which represents more of the object’s area. Hence the total internal error introduced 559 

by segmentation error is appreciably smaller than misclassification error, likely well under 1%.  560 

5.1.2 External Error 561 

The first form of external error is introduced by image resolution. At lower image resolutions, more pixels of the 562 

image span edges, and smaller features are more likely to go undetected. Pixels on the edge of surface types necessarily 563 

represent more than one surface type, but can be classified as only one. Misclassification of these has the potential to 564 

become a systemic error if edge pixels were preferentially placed in a particular category. We assessed this error’s 565 

impact by taking high resolution IceBridge imagery (0.1m), downsampling to progressively lower resolution, and 566 

reprocessing. Figure 11 shows the surface type percentages for three IceBridge images at decreasing resolution. Figure 567 

12 shows a series of downsampled images and their classified counterparts. Surprisingly, despite clear pixilation and 568 

aliasing in the imagery, little change in aggregate classification statistics occurred as resolution was lowered from 0.1 569 

to 2m. This suggests that at resolutions used for this paper, edge pixels do not significantly impact the classification 570 

results. It may also be possible to forego the pansharpening process discussed in section 3.1, and use 2m multispectral 571 

WorldView imagery directly. 572 

The second type of external error occurs when the human expert fails to correctly label a segment. Even skilled 573 

human observers cannot classify every pixel in the imagery definitively, and indeed the division between the surface 574 

types can sometimes be indistinct even to an observer on the ground. We addressed this concern by employing 575 

observers extensively trained in the sea ice field, both in remote sensing and in-situ observations, comparing multiple 576 

human classifications of the same segments. After discussion, the portion of image objects subject to human observer 577 

disagreement or uncertainty is small. Human observers disagreed on 3% of objects creating our training sets. The 578 

possibility of systemic bias among the expert observer classifications cannot be excluded because real ground truth, 579 

in the form of geo-referenced ground observations from knowledgeable observers was, unfortunately, not available 580 

for any of the imagery. Conducting this type of validation would be helpful, but given high confidence human expert 581 

classifiers expressed in their classifications and low disagreement between them, may not be essential. 582 
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5.1.3 Overall Error 586 

The fact that misclassification dominates the internal error metric suggests that error could be reduced if additional 587 

object attributes used by human experts to differentiate surface types could be identified. The agreement between the 588 

OSSP method and a human (96%+/-3%) is similar to the agreement between different human observers (97%), 589 

meaning that the algorithm is nearly as accurate as a human manually classifying an entire image. If we exclude the 590 

possibility for systemic error in human classification, and assume other errors are unrelated to one another, we can 591 

calculate a total absolute accuracy in surface type determination as approximately 96%. 592 

5.2 Producing Derived Metrics of Surface Coverage 593 

The classified imagery, presented as a raster, (e.g. Fig. 7) is not likely to be the end product used in many analyses. 594 

Metrics of the sea ice state in simpler form will be calculated. We already introduced the most basic summary metrics 595 

in section 4, where we presented fractional surface coverage calculated from the total pixel counts for each of the four 596 

surface categories in each image. We also presented the calculation of melt pond coverage as a fraction of the ice-597 

covered portion of the image, rather than total image area. The calculation of these is straightforward. Other metrics 598 

commonly discussed in the literature that could be produced with minimal additional processing include those 599 

capturing melt pond size, connectivity, or fractal dimension, as well as floe size distribution or perimeter to area ratio. 600 

As with definitions of surface type, standardizing metrics will be necessary to produce intercomparable results. We 601 

discussed the more complex metrics which could be derived from this imagery with several other groups. We 602 

determined that standardizing these and other more advanced metrics will require more input and consensus building 603 

before a community standard can be suggested. We leave determining standard methods for calculating these more 604 

complex metrics to a future work. 605 

Equipped with the images processed by OSSP, we consider what size area must be imaged, classified, and 606 

summarized to constitute ‘one observation’ and how regionally representative such an observation is. Even with the 607 

increasing availability of high resolution imagery, it is unlikely that high resolution imaging will regularly cover more 608 

than a small portion of the Arctic in the near future. As a result, high resolution image analysis will likely remain a 609 

‘sampling’ technique. Since the scale of sea ice heterogeneity varies for each property type, a minimum area unique 610 

to that property must be analyzed to qualify as a representative sample of the surface conditions. Finding that minimum 611 

area involves addressing the ‘aggregate scale’ – the area over which a measured surface characteristic becomes 612 

uniform and captures a representative average of the property in the area (Perovich, 2005). It may also be possible to 613 

determine an aggregate scale statistic within well constrained bounds by random sub-sampling of the region, and 614 

therefore reduce processing time. Here we conduct analysis of these sampling concepts and suggest this analysis of 615 

the aggregate scale be conducted for any metric. 616 

First, we sought to determine the aggregate scale for the simple fractional coverage metrics of ice as a fraction of 617 

total area and melt pond as a fraction of ice area. This would inform us, for example, as to whether processing the 618 

entire area of a WorldView image (up to 1000km2) was necessary, or alternatively if a full WorldView image was 619 

sufficient to constitute a sample. First, we evaluated the convergence of fractional coverage within areas of increasing 620 

size towards the image mean. For a WorldView image depicting primarily first year ice in various stages of melt, we 621 
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created non-overlapping gridded subsections and determined the fractional coverage within each grid cell. The size of 652 

grid cells was varied logarithmically from 100 x 100 pixels (102) to 31622x31622 pixels (104.5) or from 0.0025km2 to 653 

250km2. For each sample size, we gridded the image and evaluated every subsection within the entire image. Figure 654 

13a shows a scatterplot of the fractional melt pond coverage in each image grid plotted against the log of total area of 655 

that grid cell. As the area sampled increases, the melt pond fraction shows lower deviation from the mean, as expected. 656 

To assist in evaluating the convergence towards the mean, we plot the 95% prediction interval for each image subset 657 

size in Fig. 13a (large red dots). The range of pond fraction values between these two points represents the interval 658 

within which 95% of samples of this size would fall. The width of the 95% prediction interval declines linearly with 659 

respect to sample area in log space, shrinking by 0.3 for each order of magnitude that sample area increases. Visually, 660 

it appears that maximum convergence may have been reached at a sample area of ~30km2 (~101.5km2), though there 661 

are an insufficient number of samples at this large area within a single image to be certain. Regardless of whether 662 

convergence is complete, the prediction interval tells us that at 30km2, 95% of areas sampled could be expected to 663 

have pond coverage within 5% of the mean of a full image (~1000km2). This is consistent with prior work that 664 

indicated the aggregate scale for melt pond fraction determination is on the order of several tens of square kilometers 665 

(Perovich, 2005; Perovich et al., 2002a). In Fig. 13b we conduct the same analysis for the total ice-covered fraction 666 

(ponded + unponded ice) of the image. We see the range of the prediction interval generally drops as larger samples 667 

are taken, but does not converge as cleanly or quickly as the pond coverage prediction interval does - a finding that is 668 

unsurprising as ice fraction is composed of discrete floes with sizes much larger than melt ponds. The limited 669 

convergence indicates that the aggregate scale for determination of ice covered fraction is at least on the order of the 670 

scale of a WorldView image, and likely larger. Aggregate scale ice concentration, unlike melt pond fraction, is a 671 

statistic better observed with medium resolution remote sensing platforms such as MODIS or Landsat due to the need 672 

for a larger satellite footprint. WorldView imagery may be particularly useful for determining smaller scale parts of 673 

floe size distributions or for validating larger scale remote sensing of ice fraction, if the larger scale pixels can be 674 

completely contained within the worldview image. Floe size distribution will likely require nesting of scales in order 675 

to fully access both large and small-scale parts of the floe size distribution.  676 

We next investigated whether it is possible to reduce the processing load required to determine the melt pond or 677 

ice fraction of an image within certain error bounds by processing collections of random image subsets. To do this, it 678 

is useful to first establish two definitions: (1) one random sample of size N represents N randomly selected 100x100 679 

pixel boxes, and (2) one adjacent sample of size N is a single area with size 100 A	B	100 A. In other words, a 680 

random sample and an adjacent sample both represent an image area of 10,000*N pixels, but consist of independent 681 

and correlated pixels, respectively. We expect random samples to better represent the total image mean melt pond 682 

fraction because ice conditions are spatially correlated and a single large area is not composed of independent samples. 683 

We evaluated this hypothesis by collecting 1000 random and adjacent samples of size N=100, with replacement. 684 

Results are shown in Fig. 14. In Figure 14a, we plot a histogram of the mean melt pond fraction determined from these 685 

1000 samples. The means determined from sets that contained randomly distributed image areas, are in red. The means 686 

determined from sets of adjacent image areas are in blue. Although both sets represent samples of the same total image 687 
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area, the one composed of independent subsets randomly selected from across the image does a much better job of 738 

representing the mean value, with a smaller standard deviation.  739 

Estimating the mean of a complete image by sampling randomly selected areas of the image becomes a simple 740 

statistics problem. The sample size needed to estimate a population mean to within a certain confidence interval and 741 

margin of error can be determined with the formula: 742 

1 = CD
*E

)
 743 

where n is the sample size, Z is the z-score for the confidence interval required, s is the population standard deviation, 744 

and ME is the margin of error. The standard deviation of random samples with size 100 is ~0.2 (Fig 14b). Assuming 745 

a 95% confidence interval (Z=1.96), and a margin of error of 5%, a sample size of 64 is required. In other words, with 746 

64 random samples of size 100 we can predict the mean melt pond fraction of the total image with 95% confidence to 747 

within 5%. 64 samples of size 100 corresponds to an image area of ~16km2, significantly smaller than the total image 748 

size.   749 

In order to show these results visually, we return to Fig. 13 and place another set of 95% prediction interval bounds 750 

(purple dots). These bounds represent the prediction interval for a random sample of size necessary for the total area 751 

to equal the area on the x axis. The result is quite powerful. By processing as little as 16km2 of the image, collected 752 

from samples randomly distributed across the area, we can determine aggregate melt pond fraction to within 5% of 753 

the true value with a confidence of 95%. We estimate that this 5% margin of error is comparable to the sum of internal 754 

(2-4%) and external errors in our processing algorithm (section 5.1). For large scale processing we suggest that when 755 

the sample confidence interval is below the image processing technique accuracy, sampling of larger areas is no longer 756 

necessary. 757 

A similar analysis is presented in Fig. 14c and 14d for ice fraction. While the WorldView image is likely not large 758 

enough to represent the aggregate scale for ice fraction, randomly sampling the image still provides an expedient way 759 

to determine the mean ice fraction of the image within certain bounds, while processing only a small fraction of the 760 

image. Calculating the 95% prediction interval of random samples representing the total image area shown on the x 761 

axis (purple dots) again shows that the total image mean can be estimated by calculating only a small portion of the 762 

total image.  763 

These explorations of image sampling permit us to recommend that users can estimate the total image pond fraction 764 

by selecting N sets of 100 randomly selected 50x50m regions (where N is selected to provide the desired confidence 765 

interval and margin of error). We suggest a standard, which incorporates some ‘safety factor’, for processing imagery 766 

to produce estimates of melt pond fraction should be to process 25km2 of area contained in at least 100 randomly 767 

located image subsets from domains of at least 100km2. We note that flying a UAV over a domain and collecting 768 

imagery along flight tracks will not count as fully ‘random’ in this context, since the images along-track are spatially 769 

correlated. Since an image does not represent the aggregate scale for ice fraction, we cannot recommend a specific 770 

sampling strategy for the aggregate scale, but note that processing of 25km2 of imagery from randomly distributed 771 

subsets produces a prediction interval around the mean of approximately the same size as the upper limit of uncertainty 772 

for our image processing technique. The statistical approach for determining aggregate statistics should not depend 773 
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on the seasonality of the image nor the type of image used so long as the total area observed is sufficiently greater 854 

than the variability in the surface feature being investigated. However, these recommendations should be considered 855 

provisional, because they are subject to impacts from differences in ice property correlation scales, and should be 856 

further evaluated for accuracy as larger processed datasets are available.  857 

5.3 Community Adoption 858 

We have provided a free distribution of the OSSP algorithm and the training sets discussed in section 3.4 and 4 as a 859 

companion to this publication, complete with detailed startup guides and documentation. This OSSP algorithm has 860 

been implemented entirely in Python using open source resources with release to additional users in mind. The code, 861 

along with documentation, instructional guidelines, and premade training sets (those used for the analyses herein) is 862 

available at https://github.com/wrightni/ossp (doi:10.5281/zenodo.1133689). The software is packaged with default 863 

parameters and version controlled training sets for 4 different imagery sources. The package includes a graphical user 864 

interface to allow users to build custom training datasets that suit their individual needs. The algorithm was constructed 865 

with the flexibility to allow for the classification of any number of features given an appropriate training dataset. 866 

Our intention is that by providing easy access to the code in an open source format, we will enable both specific 867 

inquiries and larger scale image processing that supports community efforts at general sea ice monitoring. We plan to 868 

continue improving and updating the code as it gains users and we receive community feedback. We hope to encourage 869 

others to design their own features and add-ons. Since the predictive ability of the machine learning algorithm 870 

improves as more training data is added, we wish to strongly encourage the use of the GUI to produce additional 871 

training sets and we plan to collate other users training sets into improved training versions. See documentation of the 872 

training set creation GUI for more information on how to share a training set. 873 

The OSSP algorithm helps to bring the goal of having a standardized method for deriving geophysical parameters 874 

from high resolution optical sea ice imagery closer to reality. In the larger picture, developing such a tool is only the 875 

first step. We recall that the motivation behind this development was the need to quantify sea ice surface conditions 876 

in a way that could enable better understanding of the processes driving changes in sea ice cover. The value of the 877 

toolkit will only be realized if it is used for these scientific inquiries. We look forward to working with imagery owners 878 

to facilitate processing of additional datasets.  879 

6. Conclusions 880 

We have implemented a method for classifying the sea ice surface conditions from high resolution optical imagery of 881 

sea ice. We designed the system to have a low barrier to entry, by coding it in an open source format, providing 882 

detailed documentation, and releasing it publicly for community use. The code identifies the dominant surface types 883 

found in sea ice imagery; open water, melt ponds and submerged ice, and snow and ice, with accuracy that averages 884 

96 percent – comparable to the consistency between manual expert human classifications of the imagery. The 885 

algorithm is shown to be capable of classifying imagery from a range of image sensing platforms including 886 

panchromatic and pansharpened WorldView satellite imagery, aerial sRGB imagery, and optical DMS imagery from 887 
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NASA IceBridge missions. Furthermore, the software can process imagery collected across the seasonal evolution of 890 

the sea ice from early spring through complete ice melt, demonstrating it is robust even as the characteristics of the 891 

ice features seasonally evolve. We conclude, based on our error analysis, that this automatic image processing method 892 

can be used with confidence in analyzing the melt pond evolution at remote sites.  893 

With appropriate processing, high resolution imagery collections should be a powerful tool for standardized and 894 

routine observation of sea ice surface characteristics. We hope that providing easy access to the methods and algorithm 895 

developed herein, we will facilitate the sea ice community convergence on a standardized method for processing high 896 

resolution optical imagery either by adoption of this method, or by suggestion of an alternate method complete with 897 

code release and error analysis.  898 
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Data Availability. The OSSP algorithm code is available from https://github.com/wrightni/ossp 902 
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Figures 1023 

 1024 
Figure 1. Examples of imagery from each of the four imaging platforms that we seek to classify in this study. Each type of 1025 
imagery has either a different spatial resolution or and different levels spectral information available.  1026 
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 1032 
Figure 2. Flow diagram depicting the steps taken to classify an image in the OSSP algorithm.  1033 
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 1035 
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 1036 

Figure 3. Visual representation of important steps in the image processing workflow. Panel (a) shows preprocessed 1037 
panchromatic WorldView 2 satellite imagery, taken on July 1, 2014. In panel (b), outlines of the image objects created by 1038 
our edge detection and watershed transformation are shown overlain on top of the image in panel (a). Panel (c) shows the 1039 
result of replacing each object with a value corresponding to the prediction of the random forest classifier. 1040 

 1041 

 1042 

Figure 4. Confusion matrices comparing classification tendencies between two users experienced with the image processing 1043 
algorithm (left) and between an experienced user and a new user (right). Squares are colored based on the value of the cell, 1044 
with darker colors indicating more matches. Values along the diagonal of each confusion matrix represents the agreement 1045 
between each user, while values in off-diagonal regions represent disagreement.  1046 

Deleted: 1065 
Deleted: Important…isual representation of important steps in 1066 
the image processing workflow. Panel (a) shows a section of a 1067 
preprocessed panchromatic WorldView 2 satellite 1068 
image…magery, taken on July 1, 2014. Panel…n panel (b) shows 1069 
), outlines of the outline of …mage objects created from…y our 1070 
edge detection and watershed transformation.…are shown 1071 
overlain on top of the image in panel (a). Panel (c) shows the 1072 
classified …esult after running…f replacing each object through 1073 
a1074 ... [7]

Deleted: 1075 
Deleted: patterns…endencies between two users experienced 1076 
with the image processing algorithm (left) and between an 1077 
experienced user and a new user (right). Squares are colored 1078 
based on the number…alue of pixels in that…he cell, with 1079 
darker colors indicating a larger number…ore matches. Values 1080 
along the diagonal of pixels.1081 ... [8]



33 
 
 

 1082 Deleted: 1084 



34 
 
 

Figure 5. Examples of surfaces seen in aerial imagery of sea ice that span our four classification categories. Panel A: snow 1085 
covered surface. Panel B: Ice with a thin surface scattering layer where disagreement on true classification exists - 1086 
represents a small fraction of total surface area. Panel C: Panel D: Surface transitioning to a melt pond that is not yet fully 1087 
submerged. Panel E: Melt pond. Panel F: Dark melt pond that has not completely melted through. Panel G: Submerged 1088 
ice. Panel H: Brash, mostly submerged, included in the melt pond category. Panel I: Melt pond that has completely melted 1089 
through to open water. Panel J: Open water.  1090 

 1091 

Figure 6. Graphical user interface used to create training datasets and to assess the accuracy of a classified image. Bottom 1092 
left panel shows an overview of the region to provide the user with spatial context. Top left magnifies the image and 1093 
highlights the segment of interest, while top right shows the same region with no segment overlap. The user is allowed to 1094 
choose between any of the relevant surface categories, or to indicate that they are unsure of the classification. As shown, 1095 
the user interface is demonstrating the classification of a segment for use in a training set. This same GUI is also capable of 1096 
asking a user to classify an individual pixel, which can be compared to the final classified image for determining accuracy 1097 
(section 3.6).  1098 
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Figure 7. Side-by-side comparison of preprocessed imagery (left) and the result of classification (right) for each of the four 1108 
imaging platforms. Images depict ice surfaces in varying stages of melt. The NASA IceBridge image, for example, is in very 1109 
late stages of melt ponds that have already melted through to the ocean.  1110 

 1111 

Figure 8. Accuracy confusion matricies comparing the classification of 1000-pixels between a human and the algorithm.  1112 
Squares are colored based on the value of the cell, with darker colors indicating more matches. Values along the diagonal 1113 
of each confusion matrix represents the agreement between each classifier, while values in off-diagonal regions represent 1114 
disagreement.  1115 
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 1127 

Figure 9. Seasonal progression of surface type distributions at the satellite image collection site; 2014 in the Beaufort Sea 1128 
at 72°N 128°W. This site represents a Eulerian observation of the sea ice surface, and does not track a floe across its lifetime. 1129 
Average scene size was 956km2 with a minimum of 304km2 and a maximum of 1321km2 .  1130 

 1131 

 1132 
Figure 10. Evolution of melt pond fraction over the 2014 season at our satellite image collection site; 2014 in the Beaufort 1133 
Sea at 72°N 128°W. This site represents a Eulerian observation of the sea ice surface, and does not track a floe across its 1134 
lifetime. By August, the sea ice extent has retreated north of this location, and we therefore do not capture a full melt pond 1135 
cycle.  1136 
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 1140 

Figure 11. Change in surface coverage percentage as a result of downsampling three IceBridge images. Each plot represents 1141 
a single image, with resolution along the x-axis on a log scale. Imagery starts at the nominal IceBridge resolution of 0.1m 1142 
and is degraded to a maximum of 50m.  1143 
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 1146 

Figure 12. Visual demonstration of the downsampling effect on a single NASA IceBridge image. The top image is shown at 1147 
the original 0.1 m resolution. The middle image is a resolution of 2m - the equivalent of a multispectral WorldView 2 image 1148 
without pansharpening. The bottom has a resolution of 10m, where pixel size has begun to exceed the average melt pond 1149 
size.   1150 
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 1156 

Figure 13. Convergence of melt pond fraction (a) and ice fraction (b) for a WorldView image collected 25 June 2014 at 72°N 1157 
128°W as the area evaluated is increased. Small blue dots represent individual image subsets. For segments of a given size, 1158 
black dots represent the mean value of those samples, red dots represent the 95% prediction interval, and purple dots show 1159 
the 95% prediction interval for the same total area, but calculated from 100 randomly placed, smaller, samples. Cyan 1160 
shaded area represents the error in determination expected from the processing method.  1161 
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 1163 
Figure 14. Histogram of mean (a) and standard deviation (b) of 1000 melt pond fraction estimates, each calculated from 1164 
100 sample areas on a 25 June 2014 WorldView image. The 100 samples were either randomly distributed across the image 1165 
(red) or adjacent to each other (blue). Panels (c) and (d) show the same as (a) and (b), respectively, for ice fraction rather 1166 
than melt pond fraction.  1167 
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Tables 1174 

Attribute MS PAN Aerial 

Mean (Pan)       

Mean (Coastal)       

Mean (Blue)       

Mean (Green)       

Mean (Yellow)       

Mean (Red)       

Mean (Red Edge)       

Mean (NIR1)       

Mean (NIR2)       

Median (Pan)       

StDev (Pan)       

Min Intensity (Pan)       

Max Intensity (Pan)       

StDev (Blue)       

StDev (Green)       

StDev (Red)       

Entropy       

Segment Size       

Image Date       

Coastal / Green       

Blue / NIR1       

Green / NIR1       

Yellow / Red Edge       

Yellow / NIR1       

Yellow / NIR2       

Red / NIR1       

(B1 - NIR1)/(B2 + NIR1)       

(G - R)/(G + R)       

(B - R)/(B + R)1       

(B - G)/(B + G)1       

(G - R)/(2*B - G - R)1       

Neighbor Mean       

Neighbor StDev       

Neighbor Max       

Neighbor Entropy       
1Miao et al. 2015 1175 

Table 1. Attributes used for classifying each of the three image types. Blue squares indicate attributes that were used for 1176 
that image. Dark gray squares indicate attributes that are available, but were not found to be sufficiently beneficial in the 1177 
classification to merit inclusion under our criteria. Light gray squares indicate attribute that are not available on that image 1178 
type (e.g. band ratios on a panchromatic image). NIR is the near infrared wavelength. B1 is the costal WorldView band, 1179 
and B2 is the blue band. R, G, and B, stand for red, green, and blue, respectively. 1180 
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 1188 

Image ID Sensor Type 
Date 

Collected 

Ice + 

Snow 
DTI MPS OW Accuracy 

102001002C214D00 Panchromatic 
11-Mar-

14 
96 3 0 2 97 

103001002E8F0D00 Panchromatic 
18-Mar-

14 
97 3 0 0 97 

102001002BBA0C00 Panchromatic 
19-Mar-

14 
97 2 0 1 96 

103001002FC75200 Panchromatic 
23-Mar-

14 
94 4 0 3 95 

102001002CB77C00 Panchromatic 
27-Mar-

14 
98 2 0 0 100 

1030010030403A00 Panchromatic 
31-Mar-

14 
95 2 0 3 98 

1030010031B65000 Panchromatic 4-Apr-14 96 3 0 1 99 

102001002BA6C100 Panchromatic 8-Apr-14 93 3 0 4 100 

103001002F79A700 Panchromatic 
21-Apr-

14 
93 3 0 4 98 

1030010030371B00 Panchromatic 
24-Apr-

14 
93 7 0 0 98 

103001003102A600 Panchromatic 4-May-14 76 16 0 8 98 

102001003007FA00 Panchromatic 
13-May-

14 
87 3 0 10 97 

10300100306F2E00 Panchromatic 
19-May-

14 
83 4 0 13 96 

102001003035D700 Panchromatic 
13-Jun-

14 
49 7 25 18 95 

1030010033AAC400 Panchromatic 
19-Jun-

14 
20 3 16 61 97 

1020010031DF9E00 Panchromatic 
20-Jun-

14 
27 2 31 39 96 

1020010032B94E00 Panchromatic 
24-Jun-

14 
45 2 41 11 95 

102001003122A700 Panchromatic 
25-Jun-

14 
48 1 37 13 97 

102001002F4F1A00 Panchromatic 
28-Jun-

14 
57 2 28 14 95 

10300100346D1200 Panchromatic 1-Jul-14 38 0 23 39 97 

1030010035C8D000 Panchromatic 12-Jul-14 0 0 0 100 100 

103001003421AB00 Panchromatic 
20-Aug-

14 
0 0 0 100 100 

Deleted: I+S1189 
Deleted: MP1190 
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10300100324B7D00 Multispectral 
13-Jun-

14 
44 7 29 19 96 

1030010033AAC400 Multispectral 
19-Jun-

14 
16 3 19 62 97 

10300100346D1200 Multispectral 1-Jul-14 44 2 26 28 98 

1030010035C8D000 Multispectral 12-Jul-14 0 0 0 100 100 

2016_07_13_05863 IceBridge 13-Jul-16 50 2 34 14 92 

2016_07_13_05882 IceBridge 13-Jul-16 72 1 26 0 97 

2016_07_13_05996 IceBridge 13-Jul-16 70 2 28 0 95 

2016_07_13_06018 IceBridge 13-Jul-16 61 2 36 1 91 

2016_07_13_06087 IceBridge 13-Jul-16 66 1 33 0 99 

2016_07_16_00373 IceBridge 16-Jul-16 9 0 2 89 100 

2016_07_16_00385 IceBridge 16-Jul-16 66 1 14 20 98 

2016_07_16_00662 IceBridge 16-Jul-16 49 1 16 35 98 

2016_07_16_00739 IceBridge 16-Jul-16 67 2 25 6 97 

2016_07_16_01569 IceBridge 16-Jul-16 22 0 7 71 97 

2016_07_16_02654 IceBridge 16-Jul-16 35 0 10 54 95 

2016_07_19_01172 IceBridge 19-Jul-16 62 0 14 24 90 

2016_07_19_01179 IceBridge 19-Jul-16 57 0 10 32 95 

2016_07_19_02599 IceBridge 19-Jul-16 51 0 7 43 99 

2016_07_19_02603 IceBridge 19-Jul-16 69 0 9 22 99 

2016_07_19_02735 IceBridge 19-Jul-16 74 0 25 0 100 

2016_07_19_03299 IceBridge 19-Jul-16 57 0 8 35 96 

2016_07_21_01221 IceBridge 21-Jul-16 49 0 4 47 97 

2016_07_21_01311 IceBridge 21-Jul-16 87 1 5 7 95 

2016_07_21_01316 IceBridge 21-Jul-16 92 0 4 4 99 

DSC_0154 Aerial sRGB 8-Jun-09 43 4 53 0 94 

DSC_0327 Aerial sRGB 8-Jun-09 33 3 63 0 90 

DSC_0375 Aerial sRGB 8-Jun-09 96 0 4 0 99 

DSC_0422 Aerial sRGB 8-Jun-09 88 0 11 0 98 

DSC_0223 Aerial sRGB 
10-Jun-

09 
46 1 53 0 93 

DSC_0243 Aerial sRGB 
10-Jun-

09 
59 1 40 1 98 

DSC_0314 Aerial sRGB 
10-Jun-

09 
89 0 11 0 95 

DSC_0319 Aerial sRGB 
10-Jun-

09 
75 2 19 4 88 



45 
 
 

DSC_0323 Aerial sRGB 
10-Jun-

09 
37 2 61 0 95 

DSC_0338 Aerial sRGB 
10-Jun-

09 
83 2 15 1 95 

DSC_0386 Aerial sRGB 
10-Jun-

09 
80 3 14 3 89 

DSC_0394 Aerial sRGB 
10-Jun-

09 
79 2 10 9 95 

DSC_0412 Aerial sRGB 
10-Jun-

09 
63 2 24 10 92 

DSC_0425 Aerial sRGB 
10-Jun-

09 
56 2 17 24 97 

DSC_0439 Aerial sRGB 
10-Jun-

09 
71 1 6 22 98 

DSC_0441 Aerial sRGB 
10-Jun-

09 
57 0 4 38 98 

DSC_0486 Aerial sRGB 
10-Jun-

09 
53 1 17 29 96 

DSC_0634 Aerial sRGB 
10-Jun-

09 
72 1 14 12 96 

DSC_0207 Aerial sRGB 
13-Jun-

09 
80 1 19 0 96 

DSC_0514 Aerial sRGB 
13-Jun-

09 
86 1 13 0 97 

Results Table 2. The complete results of imagery processed for this analysis. Descriptions for each image includes the image 1191 
type, date collected, the percent of the image that falls into each of the four categories, and the accuracy assessment. 1192 

 1193 

Image Source 
Training 

Dataset Size 

Out-of-bag 

Error 

Panchromatic WorldView 1000 0.94 

Pansharpened WorldView 859 0.89 

Aerial Imagery 945 0.94 

IceBridge Imagery 940 0.91 

Table 3. Out-of-Bag scores for the three training datasets used to classify imagery from each of the four sensor platforms, 1194 
and the number of objects manually classified for each set. 1195 

Deleted: .1196 
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We next test the central limit theorem to see how well we can predict the error bounds from processing a single 

set of independent (i.e. randomly distributed) samples. The central limit theorem states that when taking the mean of 

a sufficiently large number of independent samples of a random variable, the standard error of the mean of the samples 

is equal to  !" where σ is the standard deviation of the sample values and N is the sample size. The standard deviation 

of pond coverage fraction in sets of 100 sub-images ranged from 0.15 to 0.25 across the 1000 sample sets run (see 

histogram in Fig. 14b) This yields a predicted standard error of the mean determined from any one of these sets of 

0.015 to 0.025. The observed standard deviation in the mean values across all 1000 sample sets presented in Fig. 14a 

is 0.0201, indicating that the central limit theorem applies in this case.  

Returning 
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, this time representing twice the standard error determined from the central limit theorem. 
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permits expedient determination of melt pond fraction within that image area with small error bounds. If the total 

image is large enough, the value will be representative of the 
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scale. In this case, processing as little as 5km2 (~0.5%) of the image permits determination of a mean that lies within 

0.025 of the true image mean 95% of the time. Also indicated on the plot is a 5% uncertainty band around the mean  
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A test of the central value theorem again shows that it also applies in this case and provides a good estimate of the 

error of a mean ice fraction calculated from a set of random sub images. The green dots again indicate 
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must process imagery representing at least 5km2 in surface area, selected in at least  
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