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S1 Detailed methods

S1.1 Averaged rate of height changes by stacking
We estimated the average elevation loss rate rs of every resolution cell by temporally averaging multiple height change estimates.
The temporal stacking had two advantages: it provided a single quantity to characterize a pixel’s elevation loss and it reduced the
uncertainty. rs was estimated by generalized least squares and so accounted for the temporally varying accuracy of the rate estimates
and their correlations.

Before optimally combining multiple estimates, the uncertainty of the individual elevation loss rate estimates had to be known. It
was derived from that of the interferometric phases, which in turn was estimated from the observed coherence magnitude [5]. The
phase noise in a single interferogram is inversely related to the coherence magnitude, as predicted by the Cramer-Rao bound of the
standard error [6]

σφ =
1√
2L

√
1− γ2

γ
(S1)

where L is the effective number of looks after range spectral filtering. The standard error of the height estimate was then computed
using σh = k−1

z σφ. This uncertainty was then used to estimate that of the height changes ∆h(ti, ti+1) between two acquisitions at
times ti and ti+1. We did this using the following stochastic model, expressed in terms of the true height change ∆h(ti, ti+1)

r(ti, ti+1) = − 1

ti+1 − ti
(
∆h(ti, ti+1) + εh(ti+1) − εh(ti+1)

)
(S2)

where εh(ti+1) represented the error at time ti+1, i.e. a zero-mean random variable with standard deviation σh(ti+1). The height errors
εh(ti+1) were assumed not correlated between acquisitions [10]. The accuracy of these uncertainty estimates will be assessed in Sec.
S1.3.

The stacked elevation loss rate rs was computed from the time series of estimates r(ti, ti+1) assuming a constant rate. The design
matrix in the generalized least-squares approach was given by a vector of all ones. The stochastic information was given by the
uncertainty estimates derived from Eq. (S2). The model fitting gave the average elevation loss rate rs as well as its standard error. The
estimate of this standard error could in theory be refined by estimating the overall noise level from the residuals, but it was deemed
too noisy because of the small number of TanDEM-X acquisition. However, such an estimation allowed us to test the accuracy of the
uncertainty models (Sec. S1.3). Its rationale was that if the uncertainty model of (S2) was accurate and the assumption of a constant
rate applied, the updated uncertainty estimates were expected to be similar to the original one.

S1.2 Biases in height change estimates
Deviations between the observed ∆h and the actual mean elevation changes between two interferogram acquisitions can arise because
the phase centre in one interferogram does not represent the mean elevation height. In the main document, we show the bias caused
by surface changes that are widespread in the tundra, namely snowmelt and vegetation phenology and the influence of water bod-
ies. We now provide a more detailed assessment of these three error sources, before analysing those associated with sub-resolution
heterogeneity and geometric distortions.

Snowmelt was found to induce spurious measurements of ground surface elevation loss. Fig. S1a shows TanDEM-X height
changes of around 1 metre between early June, when late-lying snow banks in gullies and at breaks in slopes were still widespread on
Kurungnakh, and late June, when they had largely disappeared. The observed elevation loss suggests that over snow the TanDEM-X
height measurement was located close to the top of the presumably wet or refrozen snow pack, consistent with results from glaciology
[2]. As snow packs often accumulate at locations where rapid permafrost degradation is expected (e.g. gullies, breaks in slope at
slumps), the apparent elevation loss may be misinterpreted as mass wasting; areas with residual snow cover should hence be discarded.
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Figure S1: Error sources in the tundra are made evident by non-zero height changes ∆h (top row) occurring in discrete locations
associated with specific land cover (optical images in the bottom row). a) Apparent subsidence on Kurungnakh between 08 June
and 30 June occurs over snowbanks (arrows) that are clearly visible in the ASTER image from 15 June. b) Apparent uplift in the
Tuktoyaktuk coastlands between 01 June and 15 July over dense shrub patches that are marked by a high near infrared reflectance
(shown in red) in a Sentinel-2 image from 2016. c) Spurious height changes from 13 August to 24 August over water surfaces such as
lakes or a river branch on Samoylov, an island close to Kurungnakh. The water bodies, including polygonal ponds, are characterized
by their dark appearance in a 2016 Sentinel-2 image. Water-induced errors are also visible in a). The ∆h images also indicate the
uncertainty of the estimates, with black areas corresponding to low accuracies.

Dense shrub cover was found to be associated with apparent height changes during the summer season. In the Tuktoyaktuk
coastlands, we observed apparent elevation increases of around 30-60 cm in early summer in areas with high abundance of tall and
dense deciduous shrubs (Fig. S1b). Conversely, we found only very limited shrub-induced biases in July and August (see Fig. 3).
The observed elevation increase was likely mainly related to phenological changes (moisture, leaf growth in early summer) rather
than changes in height owing to the magnitude of the change [11]. As dense shrub cover is commonly encountered in permafrost
disturbances like gullies or stabilized slumps [7], the phenology may hence mask actual surface elevation decreases in early summer.

Over water surfaces, the observed phase was influenced by surface waves due to the non-zero along-track baseline (Eq. 1).
Changing wind conditions and currents translated to apparent height changes of several metres over water surfaces in some of our data
(Fig. S1c). As the inferred ∆h were essentially useless, these areas would have had to be masked if we had not delineated thermokarst
disturbances manually. What caused more concern were sub-resolution water bodies, which are widespread in lowland tundra regions.
Spurious height changes were also seen over polygonal terrain, but they were subtle (Fig. S1c). We chose a different approach to
detect these errors by looking at time series of observed height changes. This approach was based on the model predictions in Fig.
S2a), according to which the wave-induced phase contribution is expected to be larger over lakes than over terrain with sub-resolution
waterbodies, but of the same sign, for an entire time series . We hence expected the observed ∆h to be temporally correlated with
those over lakes, and such a positive correlation was indeed observed (Fig. S3). This error source is not expected to be relevant for the
hillslope disturbances studied here, but it will have to be considered when studying lowland thermokarst and gullies with surface flow.

We now focus on errors that are related to the heterogeneity within the resolution cell and to geometric distortions. When all parts
of the resolution cell scatter equally strongly (in an effective sense that accounts for the distortions due to the slant-range geometry), the
height measurement will reflect the average surface height, and differences therein the volumetric height change. A simple illustration
is depicted in Fig. S2c, which shows a retreating scarp observed along the strike direction. Assuming the scarp and the terraces above
and below to scatter equally, the interferometrically determined height ĥ is expected to be equal to the average geometric height z̄

ĥ =
1

kz
arg

∫ a

0

eikzz(x)dx =
1

kz
arg eikz z̄ ·

∫ a

0

eikz(z(x)−z̄)dx
z−z̄� 2π

kz≈ z̄ (S3)

However, this relation breaks down in heterogeneous resolution cells.
The presence of multiple surface covers, such as undisturbed moss and disturbed mineral soil, complicates the interpretation of

the radar data as the aggregation process for the complex coherence depends on the size, slope and reflectivity of the surfaces present
within the resolution cell. To assess the induced errors, we modelled the complex coherence and from it the height estimates of an
ablating inclined scarp using the backscattering coefficients observed in adjacent pixels [12]. As the headwall retreats, the weakly
reflecting mossy upland tundra is replaced by a disturbed, more strongly reflecting surface. The latter will ’pull’ the phase centre down
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Coherence and phase are influenced by water movements and the height distribution
a) impact of wind speed on φ and |γ| over water b) impact of height distribution on φ and |γ| c) measurement of the average height
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Figure S2: Surface characteristics influence the observed coherence and can also contribute to the phase. a) Over water surfaces,
wind-induced movements lead to changes of the surface structure during the effective along-track baseline of around 0.01 s, causing
decorrelation and phase offsets φmov. The predictions are based on the model by [3] when the look direction and the wind direction
coincide; for mixed pixels, the land and water contributions are assumed to add incoherently, with the relative contribution of water
being denoted by α. b) A distribution of heights within the resolution cell (e.g. irregular topography, vegetation) causes geometric
decorrelation. For the simple two-layer model, the loss of coherence and the geometric phase contribution φgeom depend on the
relative backscatter contribution of the two layers η and on the height difference ∆z with respect to 1

kz
. c) The measured height h is

approximately equal to the average height according to Eq. S3 for equal scattering contributions from all surfaces, here illustrated for
a retreating scarp (looking along the strike direction).

Errors due to sub-resolution water bodies
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Figure S3: A bias induced by the presence of subsurface waterbodies is indicated by the temporal relation between ∆h over different
tundra types (vertical axis; mean ± 2 standard errors) and a nearby lake (horizontal axis; mean, uncertainty too small to be evident).
The magnitude of the relation increases with the abundance of waterbodies (from left to right). All three locations are around 5 km
northeast of Kurungnakh island.

to a larger extent than the reduction in the mean geometric height (Fig. S4). A second effect, which depends on the orientation of the
slump with respect to the look direction, is due to the changing projection into the slant-range geometry. The overall bias was found
to be very sensitive to the position of the headwall within the resolution cell (Fig. S4). However, for an incremental retreat of the
headwall, it was predicted to largely average out when aggregating multiple resolution cells. Another source of bias in heterogeneous
resolution cells may arise due to temporal changes in the surface reflectivity, e.g. due to changing surface moisture. In wet conditions,
the backscattering coefficients of both upland tundra and the disturbed areas were found to increase (by around 0.5 dB and 1.0 dB).
Due to the stronger ’pulling’ effect of the disturbed area, the estimated height decreases even when the headwall position remains
constant. However, we estimated this effect to be small (≈ 10 cm), but it may be temporally correlated with moisture conditions and
precipitation.

The role of geometric distortions was also assessed by the comparison of observations from different orbits. In theory, incompatible
estimates of the same area could for instance be induced by the partial shadowing within a resolution cell at a scarp when the radar
looks downslope rather than upslope. We found for the slumps in the overlap area in the Tuktoyaktuk coastlands area that the estimated
rates were generally consistent within the noise level (Fig. S5). Arguably, the hilly rather than mountainous terrain and the manual
delineation of the active areas, which discarded e.g. layover areas with unreliable estimates, helped to limit the influence of the
geometric distortions.
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Bias at retreating headwall due to heterogeneity
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Figure S4: Bias of the InSAR-derived ∆h compared to the true volumetric height change for a retreating headwall. It is induced by
the higher backscattering from the disturbed slope compared to the undisturbed upland surface (headwall height of 5 m, representative
backscatter values) and also due to the changing projection into the slant-range geometry. Initially, the entire resolution cell is covered
by undisturbed tundra (headwall position = 0). As the headwall retreats across the resolution cell (horizontal axis), the height change
is underestimated (i.e. the elevation loss overestimated) for both an incremental 1 m retreat of the headwall (a,c) and for the total (b,d)
retreat, i.e. when compared to the initial situation. For the incremental retreat, the bias changes sign after 2-5 m of headwall retreat.
The radar system parameters match those of the descending orbit (Tuktoyaktuk coastlands).
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Figure S5: Crossover-analysis from the ascending and descending orbit of the observed elevation loss rates in the overlap area in the
Mackenzie Delta area. The mean (stacked) rates in July and August in a) and the individual 11 day rate estimates in b) are broadly
consistent.

S1.3 Uncertainty analysis at the pixel level
We now give a detailed description of how we assessed the accuracy of the uncertainty estimates of the estimated height changes ∆h
for each pixel. Such an independent assessment was deemed necessary as the internal uncertainty estimates relied on two types of
assumptions: i) those related to the model of the phase noise that only considers decorrelation, and ii) the lack of consideration of
errors unrelated to decorrelation. Assumptions i) include the reliance on the Gaussian speckle model and on the approximate Cramer
Rao bound, and the fact that the coherence magnitude |γ| was not known but had to be estimated to the data. The assessment of their
impact on the estimates of the decorrelation-induced uncertainty required a data-driven approach.

Before turning to the decorrelation-induced error, we first show that all non-decorrelation error sources, i.e. inaccuracies due to
assumptions ii), were negligible by comparison. Quantitatively, they were estimated to be at least an order of magnitude smaller than
the noise error of 30-60 cm (Fig. S6). The first neglected error source was due to inaccuracies in the baseline information: it was
estimated to be well below 1 mm for a typical relief of 100 m [6]. Secondly, the errors induced by inaccurate referencing of the
height were also found to be much smaller than the noise level. This was indicated by the analysis over stable areas, from which a
very conservative estimate of around 2 cm was obtained by attributing all the observed height change (also due to noise and actual
movements) to a reference error (Fig. S6). Thirdly, phase unwrapping errors could lead to large errors of either sign, but they did not
occur in our approach based on interferogram differencing as the observed height changes over the short temporal intervals were small
compared to the height of ambiguity. Finally, it neglected an error in the reference DEM, which our approach based on the differencing
of the wrapped phases required to account for the small differences in kz between two acquisitions. According to Eq. 1, such an error
δh induced an error in the estimated height difference of ∆kzδh. A representative difference in kz of δkz

kz
≈ 0.1% corresponds to an

error of 3 cm assuming a conservative DEM accuracy of 30 m.

S4



Assessment of the height referencing and the uncertainty estimates
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Figure S6: Assessment of the height referencing and of the coherence-based uncertainty estimates over stable areas in all study regions
(columns). The height referencing is accurate to within around 2 cm, as indicated by the observed mean height changes within the
stable areas (top row); standard deviation of these estimates is 1-2 cm). The coherence-based uncertainty estimates are compared to the
variability within the stable areas (e.g. drained thaw lake basins, DTLB) and to the temporal variability of all land pixels across (second
row). The variability-based estimates are expressed as a scaling-factor s, with s < 1 indicating smaller variability than expected based
on the coherence, i.e. conservative estimates. Stability factors < 1 are observed in around 75% of the cases. The standard deviation
within the stable areas is shown in the third row, yielding values of 30-60 cm.

To assess the validity of the coherence-based uncertainty estimates, we directly compared them to observations [10, 9]. Our
analyses indicated that these uncertainty estimates were reliable to within 30%, with a tendency of being conservative, i.e. on the safe
side. The assessment was conducted in two ways that were based on different assumptions about the spatial or temporal characteristics
of the height changes.

First, we analysed the observed spatial variability of ∆h in stable regions, which should only be due to noise in a perfectly
homogeneous area [10]. From the observed spatial variability within a window, we derived an alternative estimate of the overall
magnitude of the noise, which could then be compared to the coherence-based one. We did this using a generalized least-squares
approach. It was almost identical to that for temporal stacking discussed in Sec. S1.1, but applied to a spatial window rather than a
time series. It required as input the relative uncertainty of the height changes within the window for each interferogram, which we
modelled using the Cramer-Rao phase noise estimate assuming no spatial auto-correlation. We then derived an absolute noise standard
deviation from the observed variability and compared it to what was expected based on the coherence-based pixel-level uncertainties:
their ratio was expressed as a scaling factor sσ . A value of sσ less than one, i.e. when the stability-based uncertainty estimate is
smaller than the original one, indicates that the coherence-based estimates are conservative. We observed this in 75% of the studied
stable areas (Fig. S6). The estimated sσ was based on two crucial assumptions. First, the homogeneity of the stable regions in terms
of their height changes: a violation of this assumption would lead to an overestimation of sσ (i.e. a conservative estimate). Second,
the absence of spatial auto-correlation; positive auto-correlation would lead to an underestimation of sσ . However, auto-correlation is
typically not considered a problem [9] and also we found little indication of auto-correlation: the estimated auto-correlation length in
the stable areas was considerably smaller than the resolution of the multi-looked product (3.0± 0.9 m vs 12 m).

Second, we derived an estimate of the noise level by analysing the temporal variability of ∆h for each pixel. In order for this
estimate to be valid, we had to assume that the rate of height change was constant. This critical assumption was not the only problem,
as the brevity of the time series precluded the robust estimation of the absolute noise level. The estimation itself was based on the
temporal least-squares stacking of Sec. S1.1. Like for the spatial analysis, we expressed the new estimate of the standard error in terms
of a scaling factor sσ . Over land, the distribution of sσ turned out to be fairly broad (median absolute deviation of around 0.3). The
median values of the four analysed regions were comparable to those found using the spatial analysis (but a bit lower, between 0.7 and
1.1; Fig. S6). In summary, the two data-driven assessment showed that the coherence-based uncertainty estimates were reliable, if a
little conservative.
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S1.4 Uncertainty analysis at the landform level
We now describe how these pixel-level elevation changes and their uncertainties were spatially aggregated to produce mean values for
each thaw slump. The key advantage of spatial aggregation is that the noise level can be reduced. The aggregation was conducted by
forming the median within the manually delineated active part of the landform. We opted for the median because it is less susceptible
to outliers, but for the most part the results for the mean are similar (relative differences across all slumps of 4± 6%).

We estimated the uncertainty of the aggregated height changes by parameteric bootstrapping. Bootstrapping is a popular method
for characterizing the sampling properties – e.g. the standard error – for estimators in a computer-intensive way that is based on
sampling [1]. Its key idea is to approximate the unknown distribution behind the data by an estimate derived from the data and to use
this distribution to simulate the data-generating process. Here, we applied it to the spatially aggregated rates and we approximated the
unknown distribution of the data by assuming that the noise could be described by the coherence-based error estimates. Specifically, we
assumed that the noise was not spatially auto-correlated and that it could be approximated by a Gaussian distribution with a standard
deviation given by (S1) [5]. The true rate, i.e. the expected value of the distribution, was estimated from the data. From the distribution
of the data for each pixel within the landform, we drew B = 1000 random samples, computed the aggregate of each sample and
estimated the standard error across the B samples [1].

S1.5 Hypothesis tests of deformation time series
Were the observed elevation loss dynamics consistent with the hypothesized energy-limited ablation losses? The uncertainty in the
estimated height changes suggests the use of statistical hypothesis testing to address this question. To this end, we employed parametric
bootstrap testing, similar to the characterization of the aggregate uncertainties [1]. The test statistic measures the deviation of the
observed time series r(ti, ti+1) from the hypothesized one rh(ti, ti+1). The test statistic D was based on normalized rates:

D =

N−1∑
i=1

∣∣∣∣∣ r(ti, ti+1)∑N−1
j=1 |r(tj , tj+1)|

− rh(ti, ti+1)∑N−1
j=1 |rh(tj , tj+1)|

∣∣∣∣∣ (S4)

i.e. it measured the magnitude of the difference between rates normalized so that the absolute values sum to one. The idea of a statistical
test is to analyse the distribution ofD when the null hypothesis applies, i.e. when r tracks rh, and compare this to the observedD. The
distribution under the null hypothesis was not completely known, as the true time series r(ti, ti+1) was only prescribed by rh(ti, ti+1)
up to an unknown scale factor. In the bootstrapping approach, this scale factor was estimated (using least squares) and the noisy rate
observations were sampled as in Sec. S1.4 to approximate the distribution of D [1]. The outcome of the test was reported as a p-value,
which was estimated by counting the fraction of samples that exceeded the actually observed D. We did this not only for the energy
balance model (assuming a horizontal surface), but also for a model of uniform rate.

S1.6 Clustering of deformation time series
To explore the synchronicity and temporal similarity of the height changes of the active landforms, fuzzy C-means clustering was
employed [8]. It grouped all the landforms into clusters such that the members of the same cluster shared similar temporal evolutions.
This clustering approach is fuzzy in that each landform l is not assigned into one and only one group c, but instead its association to
all groups is characterized by a fractional degree of membership ul,c. The membership of a landform depends on its dissimilarity to
all Nc cluster centres; the dissimilarity is quantified by a distance function [4].

The choice of the distance function is critical for a successful partitioning of the data. To make the algorithm insensitive to the
overall magnitude, we used the statistic D of (S4). A second degree of freedom in the clustering was given by the degree of fuzziness
m, which we set to 1.3 as recommended by [4].

C-means is an iterative algorithm that requires an initial membership allocation for all Nl landforms, which we determined ran-
domly [4]. We repeated the initialization 100 times and chose the final clustering that minimized the total within-cluster dissimilarity
J defined by [8]

J =

Nl∑
l=1

Nc∑
c′=1

(ul,c′)
m
D2(l, c′) (S5)

To compute the cluster centres and the memberships, the number of clusters Nc had to be prescribed. We did not prescribe it
directly but rather inferred it from the data by performing the partitioning for several values of Nc and subsequently choosing a value
that was in some sense optimal [8]. The quality of a partitioning is generally difficult to quantify, but most approaches focus on the
total within-cluster dissimilarity J . This dissimilarity decreases with Nc as the clusters have to represent fewer landforms and thus
become increasingly homogeneous. The value of J in itself is thus a poor indicator of the quality of the clustering, but the change of
J with the number of clusters is [8]. Ideally, if one has found a parsimonious but representative partitioning, reducing the number of
clusters should lead to sharp increase in J whereas increasing Nc should have little impact. The idea is hence to look for a kink or
elbow in the curve of J vs Nc [8]. For the slumps in the Tuktoyaktuk coastlands, such a kink occurred at Nc = 3, but the choice was
not clear-cut as minor ones also occurred at 5 and 7 clusters (Fig. S7). The plausibility of the partitioning into three clusters was also
supported by the similar clustering results obtained when studying the ascending and descending orbits separately.
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Figure S7: The within-cluster dissimilarity J decreases sharply at Nc = 3 clusters but barely changes when Nc is increased to four
clusters. This suggests that three clusters provide a reasonable and parsimonious partitioning of the data.

S2 Additional material

Study area
Parameter Tuktoyaktuk CL A Tuktoyaktuk CL D Kurungnakh Bykovsky

Orbit direction A D D A
Number of acquisitions 7 5 8 6
CoSSc slant range resolution (m) 1.8 1.2 1.2 1.2
CoSSc azimuth resolution (m) 3.3 6.6 6.6 6.6
Polarization VV HH HH HH
Incidence angle (◦) 46 38 25 35
Height of ambiguity (m) 14 14 8 11
Effective along-track baseline (ms) 12 7 10 9

Table S1: TanDEM-X data properties for all study sites and orbits. The Tuktoyaktuk coastlands were covered by two orbits. The orbit
direction was either ascending (A) or descending (D) and the antenna always pointed to the right.
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Slump properties and prediction of their activity in the Tuktoyaktuk coastlands
a) Aspect b) Slump size distribution c) Predicted probability of detectable activity
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Figure S8: Statistics of thaw slumps in the Tuktoyaktuk coastlands. a) Headwall orientations (darker colour represents slumps whose
area exceeds 2 ha); b) Size distribution (histogram and scatter plot); c) Predicted probability of activity plotted with black line for
each explanatory variable (all other explanatory variables set to their median) with observed distribution of each variable for the active
slumps above and the inactive ones below (white line: median, dark colour: interquartile range, light colour: 10th and 90th percentile,
dots: remaining values). The direction factor c is the cosine between look direction and headwall orientation.
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Figure S9: Manual delineation of the actively mass-wasting parts of landforms, shown here for thaw slumps in the Tuktoyaktuk
Coastlands (lower left corner: 69.5 N 133.0 E). a) The stacked rate of volume losses is mostly close to zero over land, except where
rapid permafrost degradation occurs as here at three thaw slumps (grey arrows). b) Sentinel-2 false colour image showing the two
slumps highlighted in a), whose barely vegetated scar zone of mineral soil is clearly visible (greenish colour). c) Close-up of the
elevation loss rate around two slumps: the manually delineated pixels around the headwall are shown with a black margin; the uplift
on the slump floor is indicated with grey arrows.
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Comparison of precipitation and radiation data sets
a) CERES satellite vs in-situ radiation data b) precipitation gauges in Inuvik and TVC
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Figure S10: Comparison of the forcing data sets (Tuktoyaktuk coastlands). a) The incoming shortwave radiation (ISW) estimates
in the CERES satellite data set and the in-situ measurements at Trail Valley Creek (TVC) match well: R2 = 0.89, relative bias
RB = 5%. The net longwave radiation (LW) shows larger deviation: R2 = 0.77, RB = 25%. b) The precipitation data sets show
large discrepancies. The manually read weighing gauge at Inuvik and the automatic tipping bucket gauge at TVC (45 km to the
northeast) have R2 = 0.54 and RB = 18%. The collocated gauges at TVC match to with R2 = 0.81 and RB = 52%.

Tuktoyaktuk coastlands landforms that do not fit well into clusters
a) Illustrative examples for each cluster: normalized elevation loss rates
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b) Slump 152 is classified as C1 in both orbits but shows a speed-up in mid-August
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Figure S11: Examples of landforms in the Tuktoyaktuk coastlands that do not fit well into the clusters. a) Examples arranged according
to the three clusters that they are assigned to (cf. Fig. 4). b) Slump 152, which was imaged from both sides, shows a speed-up in
mid-August (like C2) but not in mid July (unlike C2) and is classified as C1. The spatial (arrows) and local patterns of activity match
well in the images from both orbits (shown in radar coordinates, range direction horizontal).
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Observed elevation loss rates (cm d−1) in the Tuktoyaktuk coastlands, A orbit, Cluster C1
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Figure S12: Observed elevation loss rates at slumps with detectable activity covered by the ascending orbit whose elevation loss dy-
namics in the second half of summer were classified as C1. For each slump, the number in the upper left gives the number, a star
indicates a significant deviation from uniform dynamics after mid-July, and the plot shows the elevation loss at slump headwalls (ag-
gregated median rate: black circle, standard error: grey error bars; horizontal position: between two subsequent radar acquisitions) and,
where detected, at slump floors (median: brown circle, standard error: brown error bar; negative values indicate elevation increases).
The dates in 2015 are plotted on the horizontal axis, with each tick representing a radar acquisition.

S10



Observed elevation loss rates (cm d−1) in the Tuktoyaktuk coastlands, A orbit, Cluster C2
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Figure S13: Same as Fig. S12 but for cluster C2.
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Observed elevation loss rates (cm d−1) in the Tuktoyaktuk coastlands, A orbit, Cluster C3
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Figure S14: Same as Fig. S12 but for cluster C3.

Observed elevation loss rates (cm d−1) in the Tuktoyaktuk coastlands, D orbit, Cluster C1
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Figure S15: Same as Fig. S12 but for the descending orbit.
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Observed elevation loss rates (cm d−1) in the Tuktoyaktuk coastlands, D orbit, Cluster C2
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Figure S16: Same as Fig. S15 but for cluster C2.

Observed elevation loss rates (cm d−1) in the Tuktoyaktuk coastlands, D orbit, Cluster C3
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Figure S17: Same as Fig. S15 but for cluster C3.

Cluster membership of Tuktoyaktuk coastlands thaw slumps vs geometric and topographic properties
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Figure S18: Distribution of topographic and geometric slump properties for all three clusters C1–C3 in the Tuktoyaktuk coastlands. a
is the headwall aspect.
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Association between headwall elevation loss rates and slump characteristics
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Figure S19: Headwall elevation loss rates in the Tuktoyaktuk Coastlands and how they are associated with slump characteristics. The
data and the characteristics are identical to those in Fig. 5.

Residual snow on the Bykovsky Peninsula
a) Summer-time elevation losses b) Snow patches in Landsat image

Figure S20: Residual snow cover potentially induced biases in the TanDEM-X elevation change estimates in early summer on the
Bykovsky peninsula. a) Elevation loss rate rs: this is a detail (identical colour code) of Fig. 6 around inset c2. b) False-colour Landsat-
7 image (30 m resolution) from 09 July that shows snow patches in light blue (white arrows). The black stripes are gaps without data
caused by sensor malfunction. A more exhaustive mapping was not possible owing to cloud cover, even on 09 July: the pink patch on
the lower left is a cloud.
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Summer elevation loss rate on Kurungnakh
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Figure S21: Observed elevation losses on Kurungnakh Island in radar coordinates (slant range from right to left), using the same
colour code as in Fig. 2. The stacked rate rs was estimated from acquisitions between 11 July and 24 August, after the ablation of
most late-lying snow banks. However, snow is suspected to have caused the apparent subsidence in gullies (inset A). The layover-
affected viewing geometry induced a poor imaging quality of the cliffs in the east (inset B) as well as an azimuth ambiguity. Note the
spurious signal over water bodies.
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Figure S22: Disappearence of snow cover at slumps in the Tuktoyaktuk coastlands. The markers show the proportion of slumps at
which snow cover could be detected in Landsat 7/8 panchromatic images (15m resolution) along with the estimated standard error
(error bar). The error estimate did not account for the biased sampling as only certain regions where imaged and not obscured by
clouds for each day. The vertical lines at the top show the dates of the TanDEM-X acquisitions.
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[10] P. Rizzoli, B. Bräutigam, T. Kraus, M. Martone, and G. Krieger. Relative height error analysis of TanDEM-X elevation data.
ISPRS Journal of Photogrammetry and Remote Sensing, 73:30 – 38, 2012.

[11] S. Solberg, D. J. Weydahl, and R. Astrup. Temporal stability of X-band single-pass InSAR heights in a spruce forest: Effects of
acquisition properties and season. IEEE Transactions on Geoscience and Remote Sensing, 53(3):1607–1614, March 2015.

[12] A. J. Wilkinson. Synthetic aperture radar interferometry: a model for the joint statistics in layover areas. In Proceedings of the
1998 South African Symposium on Communications and Signal Processing, 1998., pages 333–338, Sep 1998.

S16


