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Abstract.  

Earlier large-scale Greenland ice sheet sea-level projections (e.g., those run during the ice2sea and 
SeaRISE initiatives) have shown that ice sheet initial conditions can have a large effect on the 
projections and give rise to important uncertainties. The goal of the initMIP-Greenland intercomparison 
exercise is to compare, evaluate and improve the initialisation techniques used in the ice sheet 5 
modelling community and to estimate the associated uncertainties. initMIP-Greenland is the first in a 
series of ice sheet model intercomparison activities within ISMIP6 (the Ice Sheet Model 
Intercomparison Project for CMIP6). Two experiments for the large-scale Greenland ice sheet have 
been designed to allow intercomparison between participating models of 1) the initial present-day state 
of the ice sheet and 2) the response in two schematic forward experiments. The forward experiments 10 
serve to evaluate the initialisation in terms of model drift (forward run without additional forcing) and 
in response to a large perturbation (prescribed surface mass balance anomaly), and should not be 
interpreted as sea-level projections. We present and discuss results that highlight the wide diversity of 
data sets, boundary conditions and initialisation techniques used in the community to generate initial 
states of the Greenland ice sheet. We find good agreement across the ensemble for the dynamic 15 
response to SMB changes in areas where the simulated ice sheets overlap, but in general differences 
arise due to the initial size of the ice sheet. The spread in model drift is reduced compared to earlier 
intercomparison exercises. 

1 Introduction 

Ice sheet model intercomparison exercises have a long history, going back to the advent of large-scale 20 
ice sheet models in the early 1990s. The first intercomparison project (EISMINT, the European Ice 
Sheet Modelling INiTiative; Huybrechts et al., 1996) defined three levels of possible comparisons that 
could be distinguished. These include (1) schematic experiments with identical model setup and 
boundary conditions between models (e.g., Huybrechts et al., 1996; Pattyn et al., 2008; Pattyn et al., 
2012; Pattyn et al., 2013), (2) experiments allowing individual modelling decisions (e.g., Payne et al., 25 
2000; Calov et al., 2010; Asay-Davis et al., 2016), and (3) experiments of models applied to real ice 
sheets (e.g., Shannon et al., 2012; Edwards et al., 2014b; Bindschadler et al., 2013, Nowicki et al., 
2013a, b). In this genealogy, the present intercomparison is a type 3 experiment with ice sheets models 
applied to simulate the large-scale present-day Greenland ice sheet. The role of this study is to assess 
the impact of initialisation on model behaviour; it is a precursor to ice-sheet mass budget projections 30 
made using CMIP6-derived climate forcing for the atmosphere and ocean. The initMIP-Greenland 
project is the first intercomparison within ISMIP6, the Ice Sheet Model Intercomparison Project for 
CMIP6 (Nowicki et al., 2016). ISMIP6 is the first ice sheet model intercomparison that is fully 
integrated within CMIP. This is an improvement to earlier initiatives like ice2sea (Gillet-Chaulet et al., 
2012; Shannon et al., 2013; Goelzer et al., 2013; Edwards et al., 2014a; b) and SeaRISE (Sea-level 35 
Response to Ice Sheet Evolution; Bindschadler et al., 2013; Nowicki et al., 2013a, b) that were lagging 
one iteration behind in terms of applied climate forcing. More information on ISMIP6 can be found in 
the description paper (Nowicki et al., 2016) and on the Climate and Cryosphere (CliC) hosted webpage: 
(http://www.climate-cryosphere.org/activities/targeted/ismip6).  
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The initialisation of an ice sheet model forms the basis for any prognostic model simulation and 
encapsulates most of the modelling decisions that distinguish different approaches. It consists of 
defining both the initial physical state of the ice sheet and model parameter values. In the context of 
initMIP-Greenland, we focus on initialisation to the present day as a starting point for centennial time-5 
scale future sea-level change projections (Nowicki et al., 2016). The need for physical ice flow models 
for such projections lies in the dynamic and highly nonlinear response of ice sheet flow to changes in 
climatic forcing at the atmospheric and oceanic boundaries. The surface mass balance (SMB) of the ice 
sheet is governed by the amount of precipitation falling on the surface and by meltwater runoff 
removing mass at the margins. Mass is also lost by melting at surfaces in contact with ocean water and 10 
by calving of icebergs from marine-terminating outlet glaciers. Changes in ice sheet geometry generally 
cause changes in atmospheric conditions over the ice sheet, and hence changes in SMB. The most 
important effect is the height-SMB feedback, which causes decreasing SMB with decreasing ice surface 
elevation and vice versa (e.g., Helsen et al., 2012; Franco et al., 2012; Edwards et al., 2014a; b). An 
important consequence of the relation between SMB and ice flow is that negative SMB removes ice 15 
before it can reach the marine margins and thereby reduces the calving flux (e.g., Gillet-Chaulet et al., 
2012; Goelzer et al., 2013; Fürst et al., 2015). An estimate for the recent balance of processes indicates 
that changes in SMB were responsible for two-thirds of the increasing GrIS mass loss in the period 
2009-2012, with changes in ice discharge from marine-terminating outlet glaciers accounting for the 
remaining third (Enderlin et al., 2014). While the relative importance of outlet glacier dynamics for total 20 
GrIS mass loss has decreased since 2001 (Enderlin et al., 2014) and is expected to decrease further in 
the future (e.g., Goelzer et al., 2013; Fürst et al., 2015), it remains an important aspect for projecting 
future sea-level contributions from the ice sheet on the centennial time scale.  
 
Observations of ice sheet geometry and surface velocity, which ultimately form the target for any 25 
initialisation to the present-day state, exist only since the advent of the satellite era for the last ~25 years 
(e.g., Mouginot et al., 2015). This is a very short period compared to the longer response times of the 
ice sheet, which can be up to several thousand years (Drewry et al., 1992). While detailed observations 
mainly cover the ice surface properties, information for the ice interior and bed conditions is limited to a 
handful of deep ice core drilling sites. 30 
 
Projections of ice sheet response on decadal to centennial timescales are strongly influenced by the 
initial state of the ice sheet model (e.g., Arthern and Gudmundsson, 2010; Nowicki et al., 2013b; 
Adalgeirsdottir et al., 2014; Saito et al., 2016). The prognostic variables and parameters that need to be 
defined for the initial state of an ice sheet model at the present day depend to some extent on the 35 
complexity of the modelling approach, but typically consist of ice temperature (due to its impact on 
both ice rheology and basal slip), ice sheet geometry, and boundary conditions at the base of the ice 
sheet.  
 
Models used for long-term and paleoclimate simulations typically use 'spin-up' procedures to determine 40 
the initial state, where the ice sheet model is run forward in time with (changing) reconstructed or 
modelled climatic boundary conditions (e.g., Huybrechts and de Wolde, 1999; Saito and Greve, 2012; 
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Aschwanden et al., 2013). This implies that at any time during the simulation (except at the beginning 
where arbitrary conditions are set), the model’s state is internally consistent. Imperfections due to 
applied physical approximations, limited spatial resolution, and uncertainty in physical parameters and 
climatic boundary conditions can result in a considerable mismatch between the spun-up state and 
present-day observations. 5 
  
The main alternative to the spin-up approach is to use data assimilation techniques, which leverage 
high-resolution observations of geometry and velocity to initialise ice sheet models to the present-day 
state (e.g., Gillet-Chaulet et al., 2012; Seroussi et al., 2013; Arthern et al., 2015). They typically infer 
poorly constrained basal conditions by inversion to match observed surface velocities for a given 10 
geometry (e.g., Morlighem et al., 2010). This implies that basal conditions remain constant throughout 
the simulation, which is limited to the centennial time scale where this is approximately the case. Data 
assimilation techniques produce an initial state as consistent as possible with observational data, but are 
affected by internal inconsistences (e.g., ice temperature not in equilibrium with the stress regime) and 
by limitations in observations (e.g., inconsistencies between observational datasets (Seroussi et al., 15 
2011)). As data assimilations are designed to best fit observations, errors arising from choices in ice 
parameters, physical processes, model resolution or observational data sets are transferred to basal 
conditions or other parameters obtained by inversion. An intermediate approach is assimilation of the 
geometry of the ice sheet, by finding basal conditions that reduce the mismatch with the observed ice 
sheet surface (Pollard and DeConto, 2012b). This method is typically applied during forward integration 20 
of the model and implies a physically consistent model state in terms of the ice flow, though with a 
degree of compromise over matching observations.  
 
The goal of initMIP-Greenland is to document, compare and improve the techniques used by different 
groups to initialise their state-of-the-art whole-ice-sheet models to the present day as a starting point for 25 
centennial time-scale future sea-level change projections. A related goal is to highlight and understand 
how much of the spread in simulated ice sheet evolution is related to the choices made in the 
initialisation. All three methods currently used for initialisation of ice sheet models (spin-up, 
assimilation of velocity, and assimilation of surface elevation) and variations thereof are represented in 
our ensemble. We first describe our approach and experimental setup in Section 2, and present the 30 
participating models in Section 3. Section 4 concentrates on the results, with the ice sheet model initial 
state explored in Section 4.1, and the impact of initialization on ice sheet evolutions analysed in Section 
4.2. Discussion and conclusions follow in Section 5.  

2 Approach and Experimental setup 

In initMIP-Greenland we focus on standalone ice sheet models, i.e., models not coupled to climate 35 
models. Although some participating models have the capability to produce their own SMB forcing, this 
is not a requirement in the present study. We have chosen to leave most of the modelling decisions to 
the discretion of the participants, which serves to document the current state of the initialisation 
techniques used in the ice sheet modelling community. Conversely, this implies a relatively 
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heterogeneous ensemble with only incidental overlap of modelling choices between different 
submissions. 
 
Experiments for the large-scale Greenland ice sheet have been designed to allow intercomparison of the 
modelled initial present-day states and of the model responses to a large perturbation (Table 1). 5 
Modellers were asked to initialise their model to the present day with the method of their choice (init) 
and then run two forward experiments to evaluate the initialisation in terms of model drift: a control run 
without any change in the forcing (ctrl) and a perturbed run with a large prescribed surface mass 
balance anomaly (asmb). The prescribed SMB anomaly in experiment asmb (Appendix A) implies a 
strongly negative SMB forcing, in line with what may be expected from upper-end climate change 10 
scenarios. Nevertheless, the sea-level contribution from these experiments should not be interpreted as a 
projection, but rather as a diagnostic to evaluate model differences. 
 
Note that the time of initialisation was not strictly defined (in the range 1950-2016), as modellers assign 
different dates to their initial state according to the data sets used. The participants were also largely 15 
free in other modelling decisions, with only the imposed constraint for the forward experiments that all 
boundary conditions remain constant in time. In particular, the SMB is not allowed to change (e.g., with 
surface elevation) other than by the prescribed SMB anomaly. All information and documentation 
concerning the ISMIP6 initMIP-Greenland experiments can be found on the ISMIP6 wiki 
(http://www.climate-cryosphere.org/wiki/index.php?title=InitMIP-Greenland).  20 
 
While modellers were free to use a native model grid of their choice, model output was submitted on a 
common grid to support a consistent analysis (see Appendix C). This implies that results had to first be 
interpolated from the native model grid to the output grid, which for state variables has in most cases 
been done using conservative interpolation (Jones, 1999). In the following we present all results on the 25 
output grid with a horizontal resolution of 5x5 km. Furthermore, all ice sheet results have been masked 
to exclude ice on Ellesmere Island and Iceland.  
 
Table 1 Summary of the ISMIP6-initMIP-Greenland experiments 

Experiment 
Title 

Experiment 
label CMIP6 Label 

(experiment_id) Experiment Description 

Duration 
of the 

simulation Major Purposes 

Initialisation 
init 

ism-init-std initialisation to present day n/a Evaluation 

Control 
ctrl 

ism-ctrl-std unforced control experiment 100 yr Evaluation 

SMB 
anomaly 

asmb 
ism-asmb-std schematic change of SMB forcing  100 yr Evaluation 

 30 
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3 Participating groups and models 

Participants in initMIP-Greenland from 17 groups and collaborations (Table 2) have provided 35 model 
submissions. These submissions cover a wide spectrum of model resolutions, applied physical 
approximations, boundary conditions and initialisation techniques, which makes for a heterogeneous 
ensemble. In some cases, the same group has used two or more different model versions or different 5 
initialisation techniques, with several groups running their models at varying horizontal grid resolution. 
In the following we will refer to each separate submission as a ‘model’, identified by the model ID in 
the table of general model characteristics (Table 3). A detailed description of the individual models and 
initialisation techniques can be found in Appendix B.  
 10 
Table 2 Participants, ice sheet models and modelling groups in ISMIP6-initMIP-Greenland 

Contributors Model Group ID Group 

Victoria Lee, 
Stephen L. Cornford, 
Antony J. Payne, 
Daniel F. Martin 

BISICLES BGC Centre for Polar Observation and Modelling, School of Geographical Sciences, 
University of Bristol, Bristol, UK / Department of Geography, College of 
Science, Swansea University, Swansea, UK / Computational Research Division, 
Lawrence Berkeley National Laboratory, Berkeley, California, USA 

William H. Lipscomb, 
Joseph H. Kennedy 

CISM LANL Los Alamos National Laboratory, Los Alamos, USA / National Center for 
Atmospheric Research, Boulder, USA / Climate Change Science Institute, Oak 
Ridge National Laboratory, Oak Ridge, USA / Computational Sciences and 
Engineering Division, Oak Ridge National Laboratory, Oak Ridge, USA 

Fabien Gillet-Chaulet, 
Olivier Gagliardini  

Elmer IGE Institut des Géosciences de L'Environnement, Univ. Grenoble Alpes, CNRS, 
IRD, Grenoble INP, IGE, F-38000 Grenoble, FR 

Sainan Sun, 
Frank Pattyn 

FETISH ULB Laboratoire de Glaciologie, Université Libre de Bruxelles, Brussels, BE 

Philippe Huybrechts,  
Heiko Goelzer 

GISM VUB Vrije Universiteit Brussel, Brussels, BE 

Sébastien Le clec'h  GRISLI LSCE LSCE/IPSL, Laboratoire des Sciences du Climat et de l’Environnement, CEA-
CNRS-UVSQ, Gif-sur-Yvette, FR 

Fuyuki Saito,  
Ayako Abe-Ouchi  

IcIES MIROC Japan Agency for Marine-Earth Science and Technology, JP / The University of 
Tokyo, Tokyo, JP 

Heiko Goelzer, 
Roderik van de Wal 

IMAUICE IMAU Utrecht University, Institute for Marine and Atmospheric Research (IMAU), 
Utrecht, NL 

Helene Seroussi,  
Nicole Schlegel 

ISSM JPL Caltech’s Jet Propulsion Laboratory, Pasadena, USA 

Helene Seroussi, 
Mathieu Morlighem 

ISSM UCI_JPL Caltech’s Jet Propulsion Laboratory, Pasadena, USA / 
University of California Irvine, USA 

Martin Rückamp,  
Angelika Humbert  

ISSM AWI Alfred Wegener Institute for Polar and Marine Research, DE / University of 
Bremen, DE 

Andy Aschwanden PISM UAF Geophysical Institute, University of Alaska Fairbanks, USA 

Nicholas R. Golledge  PISM ARC Antarctic Research Centre, Victoria University of Wellington, NZ 

Christian Rodehacke PISM DMI Danish Meteorological Institute, DK / Alfred Wegener Institute for Polar and 
Marine Research, DE 

Florian A. Ziemen  PISM MPIM Max Planck Institute for Meteorology, DE 

Ralf Greve SICOPOLIS ILTS Institute of Low Temperature Science, Hokkaido University, Sapporo, JP 
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Ralf Greve,  
Reinhard Calov 

SICOPOLIS ILTS_PIK Institute of Low Temperature Science, Hokkaido University, Sapporo, JP / 
Potsdam Institute for Climate Impact Research, Potsdam, DE 

 
Despite the diversity in modelling approaches (Table 3) and the overlap between different methods, it is 
useful to distinguish the three main classes of initialisation techniques described before: first, those 
using a form of data assimilation (DA) to match observed velocities (DAv); second, those that rely 
solely on model spin-up (SP), and third, the intermediate case of transient assimilation to match surface 5 
elevation (DAs). However, even DAv is typically preceded by some form of spin-up (with the same 
model or a different one) to produce the internal temperature of the ice sheet, and may also be followed 
by a relaxation run to make the velocities and geometry more consistent. The represented cases of DA 
infer a spatially varying basal drag coefficient to minimise the mismatch with observations of velocity 
or geometry. Models using SP use physical parameters and processes to define the basal conditions. 10 
 
Modelling choices also differ based on model purpose and typical application. Many of the SP models 
have been built and used for paleo applications for time periods when possible DA targets are very 
limited and SMB boundary conditions differ from the present. This makes it necessary in those models 
to parameterise SMB, e.g., by using positive-degree-day (PDD) models (e.g., Huybrechts et al., 1991). 15 
In two groups (DMI, MPIM), the ice sheet models and SMB forcing are set up in a similar way as they 
would be for coupled ice sheet-climate simulations. In contrast, the DAv models are built specifically 
for centennial time-scale future projections, while DAs again represents an intermediate case of models 
typically used for long-term simulations, but specifically initialised for the present day. These 
fundamental differences in modelling approaches have to be kept in mind when comparing the models. 20 
The SMB boundary condition in many cases is taken from regional climate model (RCM) simulations, 
but arises in some cases from parameterisations based on the modelled ice sheet geometry applying 
traditional PDD methods. 
 
Table 3 Model characteristics 25 

Numerical method: FD= Finite difference, FE= Finite element, FV= Finite Volume with adaptive mesh refinement 
Ice flow: SIA= Shallow ice approximation, SSA= Shallow shelf approximation, HO= Higher order, HYB= SIA and SSA combined 
Initialisation method: DAv= Data Assimilation of velocity, DAs= Data Assimilation of surface elevation, SP= Spin up 
Initial SMB: RA1= RACMO2.1, RA3= RACMO2.3, HIR= HIRHAM5, MAR= MAR, BOX= BOX reconstruction (synthesis of 
simulation and data), PDD= Positive Degree Day Model, EBM= Energy Balance Model (EBM) 30 
Velocity: RM= Rignot and Mouginot, J= Joughin et al. 
Bed and surface: M= Morlighem et al., B= Bamber et al., H= Herzfeld et al. 
Geothermal Heat Flux (GHF): SR= Shapiro and Ritzwoller, G= Greve, P= Purucker, FM= Fox Maule et al., CST= Constant 
Model resolution (Res) in km. In case of heterogeneous grid resolution, the minimum and maximum resolution are given. 
 35 
Model ID Numeric

s 
Ice 

flow Initialisation   Initial year(s) Initial SMB Velocity Bed Surface GHF Res 
min 

Res 
max 

ARC-PISM FD HYB SP 2000 RA1   B   SR 5 5 
AWI-ISSM1 FE HO DAv 2000 RA3 RM M   SR 2.5 35 
AWI-ISSM2* FE HO DAv 2000 RA3 RM M   SR 2.5 35 
BGC-BISICLES1 FV SSA DAv 1997 - 2006 HIR RM M     1.2 4.8 
BGC-BISICLES2 FV SSA DAv 1997 - 2006 HIR RM M     2.4 4.8 
BGC-BISICLES3 FV SSA DAv 1997 - 2006 HIR RM M     4.8 4.8 
DMI-PISM1 FD HYB SP 2000 PDD   B   SR 5 5 
DMI-PISM2 FD HYB SP 2000 PDD   B   SR 5 5 
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DMI-PISM3 FD HYB SP 2000 PDD   B   SR 5 5 
DMI-PISM4 FD HYB SP 2000 PDD   B   SR 5 5 
DMI-PISM5 FD HYB SP 2000 PDD   B   SR 5 5 
IGE-ELMER1 FE SSA DAv 2000 - 2010 MAR J M     1.5 45 
IGE-ELMER2 FE SSA DAv 2000 - 2010 MAR J M     1 5 
ILTS-SICOPOLIS FD SIA SP 1990 PDD   B   P 5 5 
ILTSPIK-SICOPOLIS FD SIA SP 1990 PDD   H   G 5 5 
IMAU-IMAUICE1 FD SIA SP 1990 RA3   B   SR 5 5 
IMAU-IMAUICE2 FD SIA SP 1990 RA3   B   SR 10 10 
IMAU-IMAUICE3 FD SIA SP 1990 RA3   B   SR 20 20 
JPL-ISSM FE SSA DAv 2012 BOX RM M   SR 1 15 
LANL-CISM FE HO SP 1961 - 1990 RA1   M   CST 4 4 
LSCE-GRISLI FD HYB DAv 2000 MAR J B   FM 5 5 
MIROC-ICIES1 FD SIA DAs 2004 RA1   B B   10 10 
MIROC-ICIES2 FD SIA SP 2004 PDD   B     10 10 
MPIM-PISM FD HYB SP 2006 EBM   B   SR  5 5 
UAF-PISM1 FD HYB SP 2007 RA1   M   SR 1.5 1.5 
UAF-PISM2 FD HYB SP 2007 RA1   M   SR 3 3 
UAF-PISM3 FD HYB SP 2007 RA1   M   SR 4.5 4.5 
UAF-PISM4 FD HYB SP 2007 RA1   M   SR 1.5 1.5 
UAF-PISM5 FD HYB SP 2007 RA1   M   SR 3 3 
UAF-PISM6 FD HYB SP 2007 RA1   M   SR 4.5 4.5 
UCIJPL-ISSM FE HO DAv 2007 RA1 RM M   SR 0.5 30 
ULB-FETISH1 FD SIA DAs 1979 - 2006 MAR   B B FM 10 10 
ULB-FETISH2 FD HYB DAs 1979 - 2006 MAR   B B FM 10 10 
VUB-GISM1 FD HO SP 2005 PDD   B   SR 5 5 
VUB-GISM2 FD SIA SP 2005 PDD   B   SR 5 5 
*Differs from AWI-ISSM1 in the climatic forcing used during temperature spin-up. 

4 Results  

In this section, we first present results of the init experiment, designed to compare the present-day initial 
state between participating models and against observations. These or similar initial model states would 
serve as a starting point for physically-based projections of the Greenland ice sheet contribution to 5 
future sea-level changes (Nowicki et al., 2016). We then present results for the two forward experiments 
that serve to further evaluate the initial states in response to schematic forcing (ctrl, asmb).  

4.1 Evaluation of the initial state 

Because initialisation techniques generally differ in the observational data used as model input, 
boundary condition and assimilation target, we did not prescribe the year(s) of initialisation. The 10 
initialisation times in the ensemble (Table 3) therefore represent the time frame(s) of the observations 
that are used for data assimilation (in case DA) and the simulated SMB used as boundary condition for 
the individual models. For the comparative analysis, we did not attempt to correct the differences 
arising from different initialisation times. Compared to the range of modelling uncertainties, this 
assumption probably holds for the geometry of the ice sheet, but is more questionable for velocity. 15 
However, the sparseness and limited temporal resolution of available observations excludes analysing 
models in their individual reference time frame. Where available, we have used a range of observational 
data sets to compare against.  
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The modelled present-day ice extent (Figure 1) exhibits a large spread among models and ranges from 
the extent of the observed ice sheet proper (excluding connected glaciers and ice caps) to nearly filling 
the entire land above sea level (see also supplementary Figure S2 for individual model results). This 
diversity in the ensemble is representative of the large range of modelling choices and initialisation 5 
techniques. For example, the assumption of what should be modelled (only the ice sheet, or including 
outlying glaciers and ice caps) differs from group to group. Also, models may simulate ice in places 
where no ice is observed. While some models prescribe a fixed (observed) ice mask, most models 
simulate ice margins that are free to evolve according to the balance of ice flow and SMB. In some 
cases, modellers have controlled the extent where ice sheets are allowed to grow, e.g., by prescribing a 10 
negative SMB over observed ice-free regions.  
 
 

 

  

Figure 1 Common ice mask of the ensemble of models in the intercomparison. The colour code indicates the number of models 
(out of 35 in total) that simulate ice at a given location. Outlines of the observed ice sheet proper (Rastner et al., 2012) and all  ice-15 
covered regions (i.e. main ice sheet plus small ice caps and glaciers; Morlighem et al. 2014) are given as black and grey contour 
lines, respectively. A complete set of figures displaying individual model results are given in the supplementary material to this 
publication. 

The diversity of modelling choices equally leads to a large spread in the simulated total ice area and 
volume at the present day (Figure 2, see supplementary Table S1 for the numbers). In comparison with 20 
observations (Morlighem et al., 2014), the initial ice sheet area (horizontal axis in Figure 2) of many 
models is ‘bracketed’ by the observed extent (cf. Figure 1) of the ice sheet proper (black diamond) and 
the extent of the entire ice-covered areas (grey diamond). Differences in observed volume (vertical axis 
in Figure 2) between these two defined areas are small compared to the ensemble spread, i.e. the 
proportional change from including ice caps and glaciers surrounding the Greenland ice sheet to volume 25 
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is much smaller than to area. An alternative data set (Bamber et al., 2013) provides very similar 
numbers for observed volume and area (not shown). Overestimation of ice sheet area (by up to 15%) is 
common, and overestimation of volume (up to 15%) is more prevalent than underestimation.  
 

 5 
Figure 2 Grounded ice area and grounded volume for all models (circles). Observed values (Morlighem et al. 2014) are given for 
the entire ice covered region (grey diamond) and for the region of the ice sheet proper (black diamond) according to the mask of 
Rastner et al. (2012) shown in Figure 1.  

 
As an important boundary condition for the ice sheet simulations, we evaluate the implemented SMB of 10 
the different models. Figure 3 shows the typical applied present-day SMB for three of the models, while 
an overview of all models is given in supplementary Figure S2. In the three cases shown, one model 
applied SMB from a RCM with no modification (AWI-ISSM2), another (MIROC-ICIES) used a PDD 
method and the last (MPIM-PISM) obtains the SMB from an energy balance model (EBM) designed for 
coupling of the ice sheet model to a climate model.  15 
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Figure 3 Typical surface mass balance for the initial state for three different models. Note the unequal scaling for positive and 
negative values. 

 
Because we generally cannot distinguish individual accumulation and ablation processes for the SMB 5 
prescribed during initialisation, we separate the assumed SMB into negative and positive regions (i.e., 
ablation and accumulation zones) for further analysis. Partitioning of mass change processes between 
SMB and dynamic changes (e.g., van den Broeke et al., 2009; Enderlin et al., 2014) would also be an 
important diagnostic to analyse. However, the participating models have not incorporated the required 
mechanisms, and we also lack the necessary forcing, to generate fast dynamical response due to outlet 10 
glacier changes in the current experiments. Displaying the SMB magnitude for accumulation and 
ablation regimes allows us to identify some important outliers (Figure 4a) and frame the model input 
compared to estimates of total SMB from a range of RCMs (Figure 4b). Apparent outliers are models 
with very small ablation zones and large positive SMB (far right in Figure 4a) and those with a large 
ablation area (top in Figure 4a). Several of the remaining models cluster around RCM estimates (van 15 
Angelen et al., 2014; Fettweis et al., 2017; Noël et al., 2016) for the SMB partitioning, again 
considering either all ice-covered regions or only the ice sheet proper. This is mostly the case because 
the models use these or similar products. However, an additional condition required for close agreement 
with RCM estimates is that the modelled ice sheet is close to the observed extent. Models that lie further 
from RCM estimates (in Figure 4b) typically have larger ablation zones and consequently larger 20 
negative SMB.  
 

The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-129
Manuscript under review for journal The Cryosphere
Discussion started: 14 July 2017
c© Author(s) 2017. CC BY 4.0 License.



 

 12 

a  

b  
Figure 4 Negative and positive SMB of all models (a) and for the marked inset excluding outliers (b). Diamonds, squares and 
triangles in (b) give partitioning from average 1979-2000 regional climate model simulations (van Angelen et al., 2014; Fettweis et 
al., 2017, Noël et al., 2016) with masking to the ice-covered region (grey) and to the ice sheet proper (IS, black) according to the 
mask of Rastner et al. (2012). Compare symbol colour to identify individual models with Figures 3-5. Data are available in 
supplementary Table S1.  5 

We further evaluate the prescribed SMB in comparison to point observations (Figure 5). Available SMB 
observations (Machguth et al., 2015; Bales et al., 2009) are sparse, especially in the centre of the ice 
sheet, and have heterogeneous temporal coverage. However, comparison against those observations 
allows for a first-order evaluation of the SMB inputs chosen or produced by the modellers. Overall, 
positive SMB is better represented in the chosen SMB datasets than negative SMB. The order-of-10 
magnitude difference in RMSE between the two measures is partly explained by the relatively low 
accumulation over a large area in the centre of the ice sheet, compared to relatively high ablation over a 
narrow marginal zone, which is easily misrepresented in models with too large an ice extent. While the 
best match with observations in both regions is produced by models using SMB derived from RCMs, 
good agreement with the observed can also be found for some models using PDD. Again, a good match 15 
with the observed ice extent is more important than the SMB model itself.  
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a b c  
Figure 5 Root mean square difference of initial modelled surface mass balance compared to observations for the accumulation 
zone (b and abscissa in a) and the ablation zone (c and ordinate a). The observational data sets are from Bales et al. (2009) for the 
accumulation zone and Machguth et al. (2015) for the ablation zone. 

 5 
The match of the initial ice sheets with observed geometry (Morlighem et al., 2014) is evaluated as the 
root mean square (RMS) difference between modelled and observed ice thickness (Figure 6). 
Interpretation of the diagnostics requires distinction between the different initialisation techniques, 
because the geometry is a prognostic variable in some cases of SP, but a given constraint during 
initialisation for DA. In some cases of SP, the ice sheet area is effectively confined to the observed, 10 
which represents an intermediate case. For models covering a range of horizontal resolutions, accuracy 
generally decreases with coarser horizontal grid resolution (BISICLES, IMAUICE, ELMER), except 
for UAF_PISM, where the trend is not clear. Using a different observational data set (Bamber et al., 
2013) to calculate the diagnostic gives overall similar results (not shown). However, it is noticeable that 
DA models that have been initialised with one data set show lower errors when comparing with that 15 
specific set of observations. This point requires attention, should this diagnostic be used to formally 
evaluate and score the models at some stage.  
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Figure 6 Root mean square difference of initial modelled ice thickness compared to observations (Morlighem et al. 2014). The 
diagnostic has been calculated for subsampled data to reduce spatial correlation, and we show median values for different offsets. 
Letters in the bars denote assimilation targets for methods DAv and DAs and are left empty for SP. 

 5 
To evaluate the match of the models with observed surface ice velocities, we have computed the RMS 
between the modelled and observed (Joughin et al., 2016) velocity magnitude (Figure 7a). Calculating 
the RMS based on the log of the velocities instead (Figure 7b) results in a slightly different picture, 
because errors in high velocities typically occurring at the margins of the ice sheet are weighted less. 
We note that an alternative choice of metric would be one that accounts for spatial variation in 10 
observational uncertainty, such as standardised Euclidean distance. Distinction between models using 
DAv and the rest is again useful, since velocity is not an independent variable in cases where it enters 
the inversion calculations. Models using observed velocities in the DAv procedure could in principle be 
compared with each other to evaluate the success of the inversion technique. However, the comparison 
would have to take into account that some groups use relaxation after the DAv step to get a better 15 
consistency between the ice geometry and velocity. This modifies the results depending on the 
relaxation time. Better internal consistency for a model can be achieved with longer relaxation time, at 
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the expense of a larger discrepancy with the observed geometry. In any case, not every group uses the 
same velocity dataset (e.g., Rignot and Mouginot, 2012; Joughin et al., 2016).  
 
It is interesting to note that DAs techniques using only surface elevation as inversion target can have 
quite low errors in simulated velocities, which implies an overall consistency between geometry and 5 
velocity structure of the modelled ice sheets. Although this consistency is expected based on mass 
conservation, the results confirm that the basic assumptions (e.g., approximation to the force balance 
and rheology structure) are generally close enough to reality. This is particularly important considering 
that DAv techniques can match observed velocities well for almost any given rheology.  

a b   10 
Figure 7 Root mean square difference of the horizontal velocity magnitude (a) and the log of the horizontal velocity magnitude (b) 
compared to observations (Joughin et al., 2016). The diagnostics have been calculated for grid cells subsampled regularly in space 
to reduce spatial correlation; we show median values for different possible offsets of this sampling.  

 

4.2 Results of the forward experiments 15 

The two experiments ctrl and asmb have been performed to further test the modelled initial states in 
terms of their behaviour in typical forward simulations. This is needed to expose model response to 
changing constraints that were present during initialisation. Furthermore, we evaluate the influence of 
the initial state and of modelling decisions pertaining to the initialisation on the results of the forward 
experiments, i.e., the projected ice thickness change and sea-level contribution. 20 
 
The experiment ctrl serves to evaluate the model response in the absence of additional forcing and is an 
important step to understand the consequence of modelling choices for forward experiments. Since we 
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have not specified any assumption on the imbalance between SMB and ice flow at the initial state, the 
ice sheet would ideally exhibit an imbalance that matches observations for a given time interval. Recent 
mass trends (e.g., Velicogna et al., 2014) or thickness changes could then in principle be evaluated with 
existing observational data sets of limited time coverage. Reproducing recent changes seen by GRACE 
(mass change) and altimetry (thickness change), however, is hampered by not knowing the ice sheet 5 
bedrock and surface elevation well at the time that the satellite started to observe, and would also assess 
the accuracy of the SMB input (i.e., for many models, a separate RCM). Furthermore, this would 
require that the experiments aimed for realistic outlet glacier dynamics and ocean forcing (e.g., Nick et 
al., 2013), which is currently not available (Alexander et al., 2016; Schlegel et al., 2016) and has 
deliberately not been included in the present experiments. Approaches to validate models using 10 
hindcasting techniques (Aschwanden et al., 2013; Larour et al., 2014; 2016; Price et al., 2017) currently 
suffer the same limitations of observational data sets with short time coverage, uncertainty in external 
forcing, and limited knowledge of processes responsible for dynamic outlet glacier response.  
 
The simulated ice mass evolution in ctrl (Figure 8a) reflects the wide spread of initial ice mass among 15 
the models and a relatively small mass change for most of them over the course of the 100-year 
experiment. This is because a common approach is to attempt initialisation to a steady state with a given 
SMB forcing, possibly followed by relaxation or by a run with recent SMB forcing. Total mass changes 
in experiment ctrl (Figure 8b) range from ~-25 to +20 mm sea-level equivalent (SLE) when nine 
obvious outliers are ignored. In some cases of the ensemble, the modelled background trend arises from 20 
transient forcing of SMB and temperature over the past, but more often it is due to inconsistencies 
introduced during initialisation.  
 

a b  
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c d  
Figure 8 Ice mass evolution in ctrl (a) and ice mass difference from asmb-ctrl (c). Mass change after 100 years in experiment ctrl (b) 
and from asmb-ctrl (d) related to error in initial ice thickness. Ice volume changes have been converted to sea-level equivalent 
(SLE) assuming an ocean area of 361.8 *106 km2 and the specific ice density from the individual ice sheet models. Filled symbols in 
(b) and (d) represent DAv models. Data in (b) and (d) is available in supplementary Table S1.  5 

 
For DAv models (filled symbols in Figure 8b), the mass trend in experiment ctrl represents an important 
diagnostic to complement the measured accuracy of matching the observed geometry, because it will 
also reflect any inconsistencies between ice velocity and geometry datasets (Seroussi et al., 2011). This 
can be illustrated by considering a forward model run that is started from an exactly specified geometry 10 
as initial state, which typically exhibits a large model drift. Conversely, ice sheet models can be relaxed 
to a steady state when constraints on the target geometry are loosened completely. Match with the 
observed geometry in the initial state and model drift in the forward experiment are therefore 
complementary measures that should be considered together. While this is evident for any single model, 
we only find tentative confirmation amongst the DAv models in our ensemble (filled symbols in Figure 15 
8b), with increasing mass trend for decreasing ice thickness error. 
 
The simulated sea-level contribution of the models, calculated from the difference in mass change 
between asmb and ctrl, shows a large spread of 75 to 290 mm SLE (Figure 8c, d), indicative of the wide 
range of modelled ice sheet extent (and therefore ice thickness error). This relation arises because the 20 
prescribed SMB anomaly has been optimized for the observed geometry, but has not been limited to the 
observed ice sheet extent. The typical SMB field at the end of experiment asmb (illustrated for three 
different models in Figure 9) is strongly negative along the ice sheet margin at the end of the 
experiment, with an ablation zone that covers all of the ice sheet margin and extends several hundred 
kilometres inland in the southwest and northeast of Greenland. For models with (unrealistically) large 25 
initial (present-day) surface areas, the ablation zones are considerably larger (Figure 9b, c), which 
implies dramatic mass loss. The too large ice sheet area is related to the definition of the ice sheet with 
respect to outlying glaciers and, more importantly, due to modelled initial conditions further from the 
present-day. 
 30 
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Figure 9 Typical surface mass balance after 100 years in experiment asmb for the three models in Figure 3. Note the unequal 
scaling for positive and negative values.  

 
Because the thickness change in experiment ctrl in our ensemble (Figure 10a, b, c and Figure S5) is 5 
mostly due to unwanted model drift, we have calculated the mass evolution (Figure 8c) and sea-level 
contribution (Figure 8d) from ice thickness change differences between asmb and ctrl (Figure 10d, e, f 
and Figure S6). This is a common workaround to facilitate model comparison, but it also neglects the 
contribution of any prognostic imbalance and present-day ice sheet evolution in the resulting figures. In 
the centre of the ice sheet, the modelled thickness change (Figure 10d, e, f) is dominated by the 10 
prescribed SMB anomaly and therefore similar between all models (Figure S6), while marginal changes 
show again much larger differences.  
 
In contrast to the large differences in modelled ice volume changes, which may largely be explained by 
differences in initial ice sheet extent, we find that models are similar in the dynamic response within the 15 
region of overlap, i.e., within most of the observed ice mask. For this analysis, we have calculated the 
difference between modelled ice thickness changes (asmb-ctrl) and the time-integrated SMB anomaly 
for each individual model (see Figure 10g, h and i for three examples and Figure S7 for all models). 
This diagnostic, first shown and discussed by Huybrechts et al., (2002), represents ice thickness changes 
due to the flow of the ice in response to changes in SMB: in other words, the extra information gained 20 
by using ice dynamic models over projections of SMB changes alone. 
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Figure 10 Ice thickness change in ctrl after 100 years (top), difference of ice thickness change (asmb-ctrl) after 100 years (middle) 
and dynamic contribution (bottom) for the three models in Figure 3 and Figure 9. Note the nonlinear contour intervals in the top 
row. 

Dynamic thickening happens in regions of steep gradients in negative SMB anomalies around the 
margins of the ice sheet. Dynamic thinning occurs across the line separating positive and negative SMB 5 
anomalies, close to the equilibrium line. This pattern of dynamic response is reproduced by all models 
(see Figure S7), and shows strong similarities for the region of overlap across the entire ensemble. In 
other words, the models agree well at the purpose for which they were developed. 

5 Discussion and conclusion 

We have compared different initialisation techniques used in the ice sheet modelling community across 10 
a wide spectrum of approaches. While long-term processes and adjustment of internal variables (e.g., 
ice temperature and rheology) can be incorporated with SP methods, this occurs at the expense of a 
better match with observations of present-day ice sheet geometry and velocity and hence, the initial 
dynamic state of the ice sheet. Conversely, the initial states produced by the DAv approach exhibit a 
much better match with observations, at the expense of long-term continuity. The DAs method and 15 
other approaches to incorporate DA elements in SP models form an intermediate group. At present, 
none of the methods is capable of combining both aspects (good match with observations and long-term 
continuity) sufficiently well that it would render other methods obsolete for all applications.  
 
DAv is the method of choice for short-term projections, as far as long-term dynamical interactions (e.g., 20 
arising from interaction with the basal conditions, the bedrock or from thermo-mechanical coupling) 
can be neglected. For long-term projections of ice sheet behaviour, where these interactions become 
important, SP and DAs methods are needed. The range of time-scales where this is the case is not well-
defined and may lie anywhere between several decades and several centuries. For the standalone ice 
sheet projections planned for CMIP6 within ISMIP6 (100 to 200-year time scale), all methods may be 25 
required to simulate the response of the Greenland ice sheet to future climate change. 
 
The present ‘come-as-you-are’ approach is well suited to produce an overview of initialisation 
techniques in the community and to compare individual models against observations. However, we have 
encountered difficulties in comparing models because of the wide variety of approaches. Differences in 30 
the initial ice sheet extent have rendered the locally identical SMB anomaly forcing to be different on 
the global scale. Additional problems arise from the use of different grids (unstructured and structured) 
with potential artefacts introduced during interpolation. We have found that estimating mass changes 
consistently across all models becomes a non-trivial undertaking, considering different projection 
errors, interpolations and differences in model ice density. 35 
 
The mismatch between observed and modelled ice sheet extent also needs an urgent solution in view of 
constructing an ensemble of sea-level change projections based on CMIP6 climate model data. The 
large ensemble spread in sea-level contribution in the asmb experiment is mostly due to the “extra” ice 
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in the initial ice sheet geometry. At this stage, it is not clear how to minimize the contribution to sea 
level change due to this bias introduced solely by the experimental setup. Letting each model estimate 
its own SMB anomaly relative to the individual ice sheet geometry would likely reduce this problem, 
but it would complicate any further comparison by removing the constraint of locally identical SMB for 
all models.  5 
 
Compared with earlier ice sheet model intercomparison exercises that have initialised ice sheet models 
for future projections (Bindschadler et al. 2013; Nowicki et al. 2013b), we find considerably less spread 
in the drift of the control experiments. We attribute this improvement to more attention of modellers on 
ice sheet initialisation and to an improved understanding of what is needed to achieve that goal, 10 
including the development of improved bedrock topography datasets (Morlighem et al., 2014). If this 
trend continues, it is reasonable to expect that the uncertainty in simulated ice sheet model evolution 
due to initialisation can be reduced for upcoming projections of the future.  
 
The comparison shows that, despite all the differences, the ice sheet models that took part in this 15 
intercomparison agree well in their dynamic response to the SMB forcing for the region of overlap. This 
is an encouraging sign, given the large diversity of approaches. However, while this good agreement 
means that all models are able to accurately simulate changes in driving stress, other dynamic forcings 
(e.g., changes at the marine-terminating glaciers) were not included in the present set of experiments 
and may lead to a wider variety of responses. To achieve progress in this direction, we need a more 20 
complete understanding of the forcings and mechanisms that drive observed ice sheet changes. Aside 
from SMB, the important questions of how much surface melt water is reaching the bed, how the basal 
drainage system evolves and, most importantly, how the marine-terminating glaciers interact with the 
ocean in fjord systems are under active research.  
 25 
The current 'ensemble of opportunity' approach, just as for GCMs, makes interpretation challenging: in 
other words, it is difficult to assess which choices in method and which uncertain model inputs have 
most influence on the results. Ideally, we would have liked to draw firmer conclusions about the 
influence of modelling choices on the quality of the initialisation and the uncertainty in modelled sea-
level contribution. At the present stage, however, the sample size for a given modelling choice is often 30 
not sufficient and, more importantly, different model characteristics are not independent from each 
other. Similar difficulties have been discussed for the CMIP multi-model ensemble and may have led to 
the IPCC to resort to (slightly arbitrary) expert judgments for some interpretations. Improving the 
uncertainty analysis and enabling a more rigorous intercomparison and evaluation would require an 
experimental design that is more controlled and prescriptive. Ice sheet models are well-placed to be 35 
used in such a design, being far less computationally expensive than e.g. GCMs, and with far fewer 
inputs to choose and outputs to evaluate. The effects of changing model structure (such as physics laws 
and approximations, and resolution) on initialisations and projections is also far easier to evaluate. We 
therefore envision a second stage of the initMIP-Greenland experiments that performs multiple specific 
perturbations of the initial states of several models that can be interpreted in a statistically more 40 
meaningful way.  
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Data availability  
The model output from the simulations described in this paper will initially be distributed via ftp server 
and at a later stage be included in the CMIP6 archive through the Earth System Grid Federation (ESGF) 
with digital object identifiers (DOIs) assigned. In order to document CMIP6’s scientific impact and 
enable ongoing support of CMIP, users are obligated to acknowledge CMIP6, the participating 5 
modelling groups, and the ESGF centres (see details on the CMIP Panel website at http://www.wcrp-
climate.org/index.php/wgcm-cmip/about-cmip). The forcing datasets are equally initially available 
through the initMIP-Greenland wiki and in the future through the ESGF with version control and DOIs 
assigned.  
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6 Appendix A: SMB anomaly forcing 

For the schematic forward experiment that serves to evaluate the initialisation, we have used a 
parameterisation of SMB anomalies (dSMB) as a function of surface elevation and latitude based on the 35 
following goals: 

• to capture the first order pattern of the SMB changes that can be expected from the climate models that will be used 
in ISMIP6 projections 

• to provide an idealized forcing, independent of one particular model or modelling choice 
• to avoid masking problems by generating a forcing applicable to the whole model domain  40 
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The parameterisation has the form dSMB = f(sur, lat): 
dSMB =min[ p3 *(h− p2 )+ p4 *(φ −φ0 ), p1]  
where dSMB is the SMB anomaly, h is the surface elevation, ϕ is the latitude and ϕ0 the reference 
latitude in degrees. The parameters are the constant SMB anomaly in the accumulation area (p1), the 
surface elevation of zero SMB anomaly (p2), the gradient of SMB anomaly with elevation change (p3), 5 
and the SMB anomaly change per degree latitude (p4).  
The target dSMB is calculated from differences in SMB between the periods 2080-99 AD and 1980-99 
AD. We have fitted the parameters independently to output of three models of different complexity 
(Table 4), one RCM (Fettweis et al., 2017), one general circulation model with elevation classes (GCM, 
Vizcaino et al., 2015) and one positive-degree-day model in combination with output from an Earth 10 
system model of intermediate complexity (EMIC-PDD, Goelzer et al., 2012).  
 
Table 4 Parameters with the best fit to the modelled data for SMB models of different complexity.  

Parameter p1 (m yr-1) p2 (m) p3 (m yr-1 m-1) p4 (m yr-1 deg-1) 
RCM  0.0720  2248.4 0.0016 0.1011 
GCM 0.0549  2438.1  0.0007  0.0568 
EMIC-PDD 0.0292  1642.1  0.0023 0.0462 
 
The sensitivity of dSMB to elevation changes is around a factor 2 lower in the GCM compared to the 15 
RCM and is the highest in EMIC-PDD as can be seen by comparing p3 in Table 4. We have used the 
parameter set of medium sensitivity (RCM) for the experiments.  
 
Results for the RCM are shown in Figure 11 with the dSMB from the model (a) and from the 
parameterisation (b) in comparison. While the parameterisation allows for calculating dSMB 20 
everywhere on the grid, results are masked to the same extent as the modelled data, to facilitate 
comparison. These results show that the first order pattern is well captured by the parameterisation. The 
parameterisation works equally well for the two other climate models when proper masking is applied 
to limit the calculation to ice covered regions (not shown). 	
 25 
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Figure 11: SMB anomaly from a model (a) and reproduced by the parameterisation (b). 

 
For the final ISMIP6 forcing data, the parameterisation was applied to the observed geometry (Bamber 
et al., 2013) smoothed by a two-dimensional averaging filter (21x21 points). This step serves to produce 5 
a smooth forcing field for the range of expected model resolutions. The resulting dSMB on 1 km 
resolution was used to generate the forcing for other grids and resolutions by conservative interpolation.  
 
For experiment asmb, the amplitude of the SMB anomaly was implemented as a time-dependent 
function, which increases stepwise every full year to 100 % at year 40. The amplitude is then held 10 
constant (t > 40 yrs) for prolongation of the experiment until year 100. The forcing is therefore 
independent of the time step in the individual models.  
SMB(t) = SMBinit + dSMB*( floor(t) / 40); 0 ≤ t ≤ 40
SMB(t) = SMBinit + dSMB*1.0; t ≥ 40

, 

where SMBinit is the SMB used for the initialisation in each individual model and dSMB is the provided 
SMB anomaly, which is identical for all models. The units of the dSMB in the provided data files are 15 
(meter ice equivalent/year) with an assumed density of 910 kg/m3 and 31556926 s yr-1. Note that for 
models assuming a different ice density, the input data have to converted accordingly. 

7 Appendix B: Detailed model description 

The models and initialisation methods of the individual models are documented in this section.  

7.1 ARC-PISM 20 

A similar approach to that used for previous Antarctic simulations is followed (e.g., Golledge et al., 
2014, 2015), but the length of the runs is modified on the basis that GrIS achieves thermal equilibrium 
faster than e.g. the EAIS. Based on raw input data (Bamber et al., 2001) a 'shallow-ice' only run of 5 
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years is performed to reduce any spurious steep surface gradients in the data. From the output of this 
run, a 50 kyr fixed-geometry run is performed, in which the ice sheet is allowed to come into thermal 
equilibrium with the imposed (present-day) climate. The output from this run is then used for a 15,000 
year spinup simulation, in which full model physics are employed, i.e. all model boundaries are allowed 
to evolve. To minimize drift in this spinup run an initial exploration of parameter space is undertaken to 5 
find an optimal combination of values. Parameter tuning is focused on 6 key controls: enhancement 
factors for the SIA and SSA, maximum and minimum till friction angles, pseudo-plastic exponent 'q', 
and the fraction of overburden pressure supported by the till. These parameters have been found to exert 
the primary controls on location and magnitude of sliding and ice flow by deformation, and in doing so 
most effectively control simulated ice-sheet geometry and volume. To identify an optimal 10 
configuration, an initial ensemble of paired parameter simulations is performed, in which the variance 
between each pair is assessed and all other variables are held constant. Simulations are run at 5 km 
resolution for 500 years under unforced climatic conditions (i.e. present-day) but with freely-evolving 
boundaries. Each run is assessed for degree of drift from initialisation. Subsetting from these 
experiments, a further ensemble of 64 experiments is run, combining all combinations of 2 possible 15 
values for each of the 6 parameters. The 'optimal' configuration is chosen based on 1) the lowest 
deviation from present-day sea-level-equivalent ice volume and 2) the smallest domain-averaged 
thickness mismatch at the end of the run compared to initialisation. For the latter metric, the standard 
deviation of the mismatch was assessed, but differences between runs are minimal. These short runs 
identify the relative control exerted by each parameter over 500 years. To achieve a much longer spinup 20 
that deviates least from the starting conditions, a further seven experiments are undertaken until the 
optimum parameter configuration is found. The final state of the spinup run is then used as the starting 
point for the prognostic (ctrl and asmb) experiments. 

7.2 AWI-ISSM 

The thermo-mechanical coupled Ice Sheet System Model (ISSM, Larour et al., 2012) is used to create 25 
an initial condition. For the initialization, a hybrid procedure that combines assimilation and a 
temperature spin-up over longer periods is setup. The present-day ice sheet geometry (Morlighem et al., 
2016) is used and the observed horizontal surface velocities (Rignot and Mouginot., 2012) are 
assimilated to infer the basal friction coefficient. After an initial relaxation of the ice sheet geometry for 
50 years to avoid spurious noise (with no sliding and a constant temperature field), the temperature 30 
spin-up is performed on a fixed topography with two different climatic forcings: AWI-ISSM1) present-
day climatic and AWI-ISSM2) paleo-climatic conditions. During the inversion, the ice viscosity is kept 
constant using the enthalpy field from the end of the temperature spin-up. As the higher-order 
approximation to the Stokes flow is employed, grid refinements are made during the whole initialization 
procedure (grid sequence 1: hmin=15 km, hmax=50 km; grid sequence 2: hmin=5 km, hmax=50 km, 35 
grid sequence 3: hmin 2.5 km, hmax=35 km. In the vertical 17 layers refined to the base are used. AWI-
ISSM1 is run for 20 kyr, 40 kyr and 5 kyr in each grid sequence while AWI-ISSM2 is run for 125 kyr, 
125 kyr and 25 kyr). Geothermal flux, present day surface temperature and paleo surface temperature 
anomaly is taken from the SeaRISE webpage 
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(http://websrv.cs.umt.edu/isis/index.php/Present_Day_Greenland). Surface mass balance is an annual 
mean for the period 1979-2014 from the downscaled RACMO2.3 model (Noël et al., 2016). 

7.3 BGC-BISICLES 

The initial state is found using data assimilation of velocity followed by relaxation of the surface 
elevation subject to a constant-in-time SMB (Lee et al, 2015). Merged surface ice velocity from Rignot 5 
and Mouginot (2012), is used to infer a 2-D basal traction coefficient and a 2-D stiffening factor 
multiplying the effective viscosity by solving an inverse problem with fixed ice sheet geometry from 
Morlighem et al. (2014). The ice surface is evolved by forcing the model using the 2-D parameters with 
a 1997-2006 mean SMB from HIRHAM5 (Lucas-Picher et al., 2012), subject to fixed calving front 
boundary conditions. The surface is relaxed in this way for 120 years, which is sufficient for the 10 
absolute value of the instantaneous rate of change ice thickness to fall below 0.5 m a-1 in 99 percent of 
the total area of GrIS. This initialization uses a 3-D, steady-state temperature field generated by a high-
order thermomechanical model by Price et al., 2011. For the ctrl and asmb experiments the fixed 
calving front is replaced by a calving model (Taylor 2016), where ice calves if water-filled, surface 
crevasses reach a depth equal to the height of the ice above sea level. A basal melt rate varying between 15 
0 and 4 times ice thickness is also applied in regions where ice is close to fracture. 

7.4 DMI-PISM 

Spinup over one full glacial cycle (125 kyr BP to present) with the following guidelines: freely evolving 
run that inherits the climate memory of the last glacial-interglacial cycle and shall represent the 
currently observed ice sheet state for the contemporary ”year of assignment”. Since we at DMI focus on 20 
coupled climate model-ice sheet model simulations, we value a free run that is consistent with the 
applied forcing higher than a perfect representation of the current observed Greenlandic ice sheet state, 
such as ice sheet geometry. We have found that this procedure is necessary to avoid strong unnatural 
drifts in the ice sheet model component after the full coupling between climate model and the ice sheet 
model is established (Svendsen et al., 2015). The spinup first goes through one complete glacial-25 
interglacial cycle using as base the Era-Interim reanalysis of the period 1979-2012 to determine the 
surface mass balance (SMB) via positive degree days (PDD). The scaling of the datasets is determined 
based on the Greenland temperature index in the SeaRise Greenland Dataset (based on ice core data; 
source SeaRise Reference data set: Greenland_SeaRise_dev1.2.nc). Temporal evolution of the sea level 
is also taken from the same SeaRise Greenland dataset. The ensemble of runs (PISM1, PISM2, PISM3, 30 
PISM4, PISM5) differ in the forcing applied to the Greenland Ice Sheet (GIS). In all cases the forcing 
source is based on the Era-Interim reanalysis covering the period 1979-2012. The only differences are 
the applied PDD factors for the determination of the surface mass balance (SMB) via positive degree 
days (PDD). The following enumeration lists the applied different PDD factors. PISM0: 
PDD_snow=0.012 m/°C day, PDD_ice=0.018 m/°C day; PISM1: PDD_snow=0.010 m/°C day, 35 
PDD_ice=0.016 m/°C day; PISM2: PDD_snow=0.009 m/°C day, PDD_ice=0.014 m/°C day; PISM3: 
PDD_snow=0.008 m/°C day, PDD_ice=0.012 m/°C day; PISM4 PDD_snow=0.004 m/°C day, 
PDD_ice=0.008 m/°C day. 

The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-129
Manuscript under review for journal The Cryosphere
Discussion started: 14 July 2017
c© Author(s) 2017. CC BY 4.0 License.



 

 27 

7.5 IGE-ELMER 

The model is initialised using a control inverse method as in Gillet-Chaulet et al. (2012). For the 
momentum equations, we solve the Shelfy-Stream Approximation (SSA). The vertically-averaged 
viscosity is constant in all simulations and is initialised using the temperature field coming from a paleo 
spin-up (125ky) of the SICOPOLIS model. The limit of the model domain is fixed and corresponds to 5 
the boundary with the ocean: calving front positions are fixed and the calving rate is computed as the 
opposite of the ice flux through the boundary; land-terminated parts can freely retreat or advance up to 
the domain limit. The ice-sheet topography is initialised using the IceBridge BedMachine Greenland V1 
dataset (Morlighem et al., 2014) where missing values for the bathymetry around Greenland have been 
filled using data from Bamber et al. (2013). We use a linear basal friction law. The basal friction 10 
coefficient is constant in all transient simulations and is initialised with the control method so that the 
mismatch between observed and modelled velocities is minimum. As observations, we use a composite 
from the MEaSUREs Greenland Ice Sheet Velocity Map (V1) (Joughin et al., 2010). The ice sheet 
model is then relaxed for 20 years using a 1989-2008 mean SMB from the regional climate MAR forced 
with ERA-Interim. The only difference between IGE-ELMER1 and IGE-ELMER2 is the mesh 15 
resolution as given in Table 3. 

7.6 ILTS-SICOPOLIS 

The model is SICOPOLIS version 3.3-dev in SIA mode and with the melting-CTS enthalpy method 
(ENTM) for ice thermodynamics by Greve and Blatter (2016). The present-day surface temperature 
parameterization is by Fausto et al. (2009), the present-day precipitation is by Ettema et al. (2009) and 20 
the geothermal heat flux is by Greve and Herzfeld (2013) (slightly modified version of the heat flux 
map by Greve (2005)). A spin-up over the last glacial-interglacial period (125,000 years) is carried out. 
Except for initial and final 100-year phases with freely evolving surface and bedrock topography, the 
topography is kept fixed during the spin-up, whereas the temperature evolves freely. This is essentially 
the method that was used for the SeaRISE experiments (documented in detail by Greve and Herzfeld, 25 
2013). The time-dependent forcing for the spin-up is the GRIP δ18O record (Dansgaard et al., 1993; 
Johnsen et al., 1997) converted to a purely time-dependent surface temperature anomaly ΔT by the 
conversion factor 2.4°C/‰ (Huybrechts, 2002). 

7.7 ILTSPIK-SICOPOLIS 

The model version, thermodynamics solver and present-day surface temperature parameterization are 30 
the same as listed in Section 7.5. The present-day precipitation is by Robinson et al. (2010) and the 
geothermal heat flux is produced by Purucker 
(https://core2.gsfc.nasa.gov/research/purucker/heatflux_updates.html) following the technique 
described in Fox Maule et al. (2005). The ice discharge parameterization by Calov et al. (2015), Eq. (3) 
therein with the discharge parameter c = 370 m3 s–1, is applied. A spin-up over the last glacial-35 
interglacial period (135,000 years) with free evolution of all fields (including the ice sheet topography) 
is carried out. The time-dependent forcing for the spin-up is the GRIP δ18O record (Dansgaard et al., 
1993; Johnsen et al., 1997) on the GICC05 time scale (Svensson et al., 2008), converted to a purely 
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time-dependent surface temperature anomaly ΔT by the conversion factor 2.4°C/‰, and further a 7.3% 
gain of the precipitation rate for every 1°C increase of ΔT (Huybrechts, 2002). 

7.8 IMAU-IMAUICE 

The model (de Boer et al., 2014) is initialised to a thermo-dynamically coupled steady state with 
constant, present-day boundary conditions for 200 kyr using the average 1960-1990 surface temperature 5 
and SMB from RACMO2.3 (van Angelen et al., 2014), extended to outside of the observed ice sheet 
mask using the SMB gradient method (Helsen et al., 2012). Bedrock data is from Bamber et al. (2013) 
and geothermal heat flux from Shapiro and Ritzwoller (2004). The model is run in SIA mode with ice 
sheet margins evolving freely within the observed coast mask, outside of which ice thickness is set to 
zero. 10 

7.9 JPL-ISSM 

The ice sheet configuration is set up using data assimilation of present-day conditions and historical 
spin-up similar to the study of Schlegel et al. (2013). SSA is used over the entire domain with a 
resolution varying between 1 km in the fast-flowing areas and along the coast and 15 km in the interior. 
Grounding line migration is based on hydrostatic equilibrium and a sub-element scheme (Seroussi et al., 15 
2014). Observed surface velocities (Rignot and Mouginot, 2012) are first used to infer unknown basal 
friction at the base of the ice sheet (Morlighem et al., 2010). Ice temperature is modeled assuming the 
ice sheet to be in a steady-state thermal equilibrium (Seroussi et al., 2013). A spin up of 50,000 years is 
then done to relax the ice sheet model (Larour et al., 2012) and reduce the initial unphysical transient 
behavior due to errors and biases in the datasets (Schlegel et al., 2016) using mean surface mass balance 20 
from 1979-1988 (Box, 2013). A historical spin up is then done from 1840 to 2012 using reconstructions 
of surface mass balance for this period (Box, 2013). Bedrock topography is interpolated from the 
BedMachine dataset (Morlighem et al., 2014), that combines a mass conservation algorithm for the fast-
flowing ice streams and krigging in the interior of the ice sheet. Initial ice thickness is from the GIMP 
dataset (Howat et al., 2014). Geothermal flux is from Shapiro and Ritzwoller (2004), air temperature 25 
from RACMO2 (van Angelen et al., 2014). SMB from a mass balance reconstruction (Box, 2013) 
averaged over the 2000-2012 period is used in the ctrl experiment. 

7.10 LANL-CISM 

The ice sheet was initialised with present-day geometry and an idealized temperature profile, then spun 
up for 20,000 years using pre-1990 climatological surface mass balance and surface air temperature 30 
from RACMO2. No glacial data were used. The model was spun up for 20,000 years to equilibrate the 
temperature and geometry with the forcing. The model was initialised (prior to spin-up) with present-
day topography and thickness based on the mass-conserving bed method of Morlighem et al. (2011). 
The surface mass balance (SMB) over the ice sheet was a 1961-1990 climatology from RACMO2. In 
grid cells where RACMO2 did not provide an SMB, the SMB was set arbitrarily to -2 m/yr. Surface air 35 
temperatures were also from a 20th century RACMO2 climatology (Ettema et al. 2009). The 
geothermal flux was set spatially uniform to 0.05 W/m2.  
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7.11 LSCE-GRISLI 

The GRISLI spin-up procedure is based on an iterative data assimilation method to infer the basal drag 
from the observed surface velocities. The first step consists in a 30 kyr equilibrium simulation of the 
internal temperature with prescribed ice sheet topography (Bamber et al., 2013), 1979-2005 averaged 
near surface air temperature (Fettweis et al., 2013), geothermal heat flux (Fox Maule et al. 2009), 5 
surface velocities (Joughin at al., 2013) and spatially variating basal drag coefficient from a previous 
GRISLI experiment (Edwards et al., 2014b). From the resulting internal fields, the 1979-2005 mean 
SMB and near-surface air temperature (Fettweis et al., 2013) is used to run a succession of eight 220-yr 
simulations. During the first 20 years, the basal drag coefficient is corrected to limit the deviation from 
prescribed velocities, and then the basal drag is kept constant for 200 years of surface relaxation. At 10 
each iteration, we update the basal drag coefficient with the value computed at the previous iteration. 
The prescribed velocities are the observed velocities corrected for thickness differences at the end of the 
220 years in order to keep the ice flux in GRISLI identical to the observed one. Then, a second 
temperature equilibrium is run for consistency between the temperature field and the inferred basal drag 
coefficient. From this, an additional 220-yr simulation is run to optimise the final basal drag coefficient. 15 
This basal drag coefficient and associated final ice-sheet conditions are used as initial conditions for all 
the initMIP GRISLI experiments. 

7.12 MIROC-ICIES1 

The initialization method as well as other configuration follows Experiment E''s:e1:vm that is presented 
in Appendix A of Saito et al (2016). The field of basal sliding coefficients are relaxed such that the 20 
simulated ice-sheet topography mostly matches the observed geometry using Pollard and Deconto 
(2012b) method. Using the deduced basal sliding coefficients field, a steady-state spin-up under present-
day climate condition with the fixed geometry is performed again. 

7.13 MIROC-ICIES2 

The initialization method as well as other configuration follows Experiment B':v2 presented in Saito et 25 
al. (2016). A free spin-up over 125,000 years is performed following the SeaRISE configuration. 

7.14 MPIM-PISM 

Spinup over one full glacial cycle (135 kyr BP to present), changed parameters at 20 kyr BP (simply 
faster starting from a pre-spun up state at 20 kyr BP than re-running the full glacial cycle for each param 
change). The spinup first goes through one complete glacial cycle using a linear combination of MPI-30 
ESM output. The scaling of the two datasets is determined based on the Greenland temperature index in 
the SeaRise Greenland Dataset (based on GRIP data). Sea level changes are also taken from the SeaRise 
Greenland Dataset. 
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7.15 UAF-PISM 

Spin-up over a glacial cycle combined with a short relaxation run. To define the energy state, a 
“standard” glacial cycle run is performed where the surface can evolve freely, similar to Aschwanden et 
al. (2013) and Aschwanden et al. (2016). The spin-up starts at 125 kyr BP with the present-day 
topography from Howat et al. (2014) using a horizontal grid resolution of 9 km. The grid is refined to 6 5 
km, 4.5 km, and 3 km at 25 kyr BP, 20 kyr BP and 15 kyr BP, respectively. We use a positive degree-
day scheme to compute the climatic mass balance from surface temperature (Fausto et al., 2009) and 
model-constrained precipitation (Ettema et al., 2009). The degree-day factors are the same as in 
Huybrechts (1999). Second, we account for paleo-climatic variations by applying a scalar anomaly term 
derived from the GRIP ice core oxygen isotope record (Dansgaard et al., 1993) to the temperature field 10 
(Huybrechts, 2002). Then we adjust mean annual precipitation in proportion to the mean annual air 
temperature change (Huybrechts, 2002). Finally, sea level forcing, which determines the land area 
available for glaciation, is derived from the SPECMAP marine δ18O record (Imbrie et al., 1992). At the 
end of the spin-up, the computed surface elevation differs from the observed surface elevation. From 
here we perform two sets of 60-year relaxation simulations using the RACMO 1960-1990 averaged 15 
climatic mass balance. In one set (UAF-PISM4-6), we regrid the spun-up state from the 3-km 
simulation to 1.5 km (UAF-PISM4), 3 km (UAF-PISM5) and 4.5 km (UAF-PISM6) and run a 
relaxation where the ice sheet is free to evolve. At the end of this relatively short relaxation, the 
computed surface elevation continues to differ substantially from present-day observation and the 
model states exhibit a large artificial drift. To reduce the mismatch between observed and simulated 20 
surface elevations, we perform a second set, UAF-PISM1-3. Here we regrid the energy state in the ice 
and in the bedrock from the spun-up state from the 3-km simulation to 1.5 km (UAF-PISM1), 3 km 
(UAF-PISM2) and 4.5 km (UAF-PISM3) and combine those fields with the present-day topography 
from Howat et al. (2014) to again run a relaxation where the ice sheet is free to evolve.  

7.16 UCIJPL-ISSM 25 

The ice sheet configuration is set up using data assimilation of present-day conditions (Morlighem et al., 
2010). A relaxation of 50 years is then performed to reduce the initial unphysical transient behavior due 
to errors and biases in the datasets (Seroussi et al., 2011), using mean surface mass balance from 1961-
1990 (van Angelen et al., 2014). A Higher-Order model (HO) is used for the entire domain, with 14 
vertical layers and a horizontal resolution varying between 0.5 km along the coast and 30 km inland. 30 
We perform the inversion of basal friction assuming that the ice is in thermomechanical steady state. 
The ice temperature is updated as the basal friction changes and the ice viscosity is changed 
accordingly. At the end of the inversion, basal friction, ice temperature and stresses are all consistent. 
After the data assimilation, the model is relaxed for 50 years using the mean surface mass balance of 
1961-1990 from RACMO (van Angelen et al., 2014), while keeping the temperature constant. Bed 35 
topography is interpolated from the BedMachine Greenland dataset (Morlighem et al., 2014), that 
combines a mass conservation algorithm for the fast-flowing ice streams and kriging in the interior of 
the ice sheet. Initial ice surface topography is from the GIMP dataset (Howat et al., 2014). For the 
thermal model, surface temperatures from Fausto et al. (2009) and geothermal heat flux from Shapiro 
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and Ritzwoller (2004) are used. Mean surface mass balance of 1961-1990 from RACMO (van Angelen 
et al., 2014) is used in the ctrl experiment.  

7.17 ULB-FETISH 

Model initialisation is based on the method by Pollard and DeConto (2012b) by optimizing basal sliding 
coefficients for the grounded ice sheet in an iterative way through minimizing the misfit between 5 
observed and modelled surface topography. A regularization term is introduced to smooth high-
frequency noise in the basal sliding coefficients (Pattyn, 2017). Initial ice sheet surface and bedrock 
elevation are taken from Bamber et al. (2013) and geothermal heat flux stems from Fox Maule et al. 
(2009). The initialisation runs over a period of 50,000 years forced by a constant surface mass balance 
(Fettweis et al., 2007) and surface temperature (Fausto et al., 2009). During this time, the marine 10 
boundaries are kept fixed in space. For the control and forcing runs, the grounded ice margin and 
grounding line is allowed to move freely, starting from the initialized state. Two model setups were 
considered: FETISH1 is according to SIA; FETISH2 is a hybrid model (superimposed SSA-SIA) with a 
flux condition at the grounding line according to Schoof (2007) and Pollard and DeConto (2012a). 

7.18 VUB-GISM 15 

The model is initialised with a glacial spin-up over the last two glacial cycles and recent climate forcing 
data up to the year 2005 (Fürst et al., 2015). For the spin-up, a synthesized temperature record is used 
based on ice-core data from Dome C, NGRIP, GRIP, and GISP2 (Barker et al., 2011; Andersen et al., 
2004; Dansgaard et al., 1993; Kobashi et al., 2011) and precipitation is scaled by 5% per °C. For the 
period 1958 to 2005, the atmospheric forcing comes from a combination of ECMWF ERA-20 
meteorological reanalysis and ECMWF operational analysis data. Use is made of monthly temperature 
anomalies and yearly precipitation ratios. The ocean forcing from 1958 to 2005 derives from a CMIP5 
model providing temperature anomalies at mid-depth (300-800 m) in 5 surrounding ocean basins with 
respect to the 1960-1990 period. After the year 2005, atmospheric and oceanic forcings are reset to their 
1960-1990 averages in the unforced state. Bedrock elevation and coast mask are based on Bamber et al. 25 
(2013), the pattern of surface accumulation for the period 1950-2000 is based on Bales et al. (2009). 
The higher-order model (GISM1) is initialised with an SIA model (GISM2) to 3 kyr BP. Switching at 3 
kyr BP appeared to be sufficiently early to resolve the main effects of including horizontal stress 
gradients by the present day. 

8 Appendix C: Data request 30 

The requested variables (Table 5) serve to evaluate and compare the different models and initialisation 
techniques. 
 
All 2D data were requested on a regular grid with the following description: Polar stereographic 
projection with standard parallel at 71° N and a central meridian of 39° W (321° E) on datum WGS84. 35 
The lower left corner is at (-800000 m, -3400000 m) and the upper right at (700000 m, -600000 m). 
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This is the same grid (Bamber et al., 2001) as used to provide the SMB anomaly forcing. The output 
was submitted on a resolution adapted to the resolution of the model and was 10 km or 5 km. The data 
were conservatively interpolated to 5 km resolution for diagnostic processing. 
 
If interpolation was required in order to transform the SMB forcing (1 km, same as Bamber et al., 2013) 5 
to the native model grid, and transform model output to the initMIP output grid (20 km, 10 km, 5 km, 1 
km, Bamber et al., 2001), it was requested that conservative interpolation was used. The motivation for 
using a common method for all models is to minimize model-to-model differences due to the choice of 
interpolation methods. In most cases this has been followed by the modellers. 
 10 
We distinguish between state variables (e.g., ice thickness, temperatures and velocities) and flux 
variables (e.g., SMB). State variables were requested as snapshot information at the end of one-year 
(scalars) and five-year periods (2D), while flux variables were averaged over the respective periods. For 
calculation of scalar diagnostics (e.g., total ice mass or ice covered area), it is necessary to correct for 
the area distortions implicit for a given projection (e.g., Snyder, 1987). Some of the variables may not 15 
be applicable for each model, in which case they were omitted. 
 
Table 5 Data request for participation in initMIP-Greenland. 

Type: FL= Flux variable, ST= State variable, CST= Constant 
 20 
Variable name Units Type Standard Name (CF) 

Ice Sheet Altitude  m ST surface_altitude 

Ice Sheet Thickness  m ST land_ice_thickness 

Bedrock Altitude  m ST bedrock_altitude 

Bedrock Geothermal Heat Flux W m-2 CST upward_geothermal_heat_flux_at_ground_level 

Surface mass balance flux kg m-2 s-1 FL land_ice_surface_specific_mass_balance_flux 

Basal mass balance flux kg m-2 s-1 FL land_ice_basal_specific_mass_balance_flux 

Land ice calving flux kg m-2 s-1 FL land_ice_specific_mass_flux_due_to_calving 

Ice thickness imbalance m s-1 FL tendency_of_land_ice_thickness 

X-component of land ice surface velocity m s-1 ST land_ice_surface_x_velocity 

Y-component of land ice surface velocity m s-1 ST land_ice_ surface_y_velocity 

Z-component of land ice surface velocity m s-1 ST land_ice_ surface_upward_velocity 

X-component of land ice basal velocity m s-1 ST land_ice_basal_x_velocity 
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Y-component of land ice basal velocity m s-1 ST land_ice_basal_y_velocity 

Z-component of land ice basal velocity m s-1 ST land_ice_basal_upward_velocity 

X-component of land ice vertical mean velocity m s-1 ST land_ice_vertical_mean_x_velocity 

Y-component of land ice vertical mean velocity m s-1 ST land_ice_vertical_mean_y_velocity 

Surface Temperature of Ice Sheet K ST temperature_at_ground_level_in_snow_or_firn 

Basal Temperature of Ice Sheet K ST land_ice_basal_temperature 

Basal drag Pa ST magnitude_of_land_ice_basal_drag 

Land ice area fraction 1 ST land_ice_area_fraction 

Grounded ice area fraction 1 ST grounded_ice_sheet_area_fraction 

Floating ice sheet area fraction 1 ST floating_ice_sheet_area_fraction 

Ice Mass kg ST  land_ice_mass 

Ice Mass not displacing sea water kg ST land_ice_mass_not_displacing_sea_water 

Area covered by grounded ice m2 ST grounded_land_ice_area 

Area covered by floating ice m2 ST floating_ice_shelf_area 

Total SMB flux kg s-1 FL tendency_of_land_ice_mass_due_to_surface_mass_balance 

Total BMB flux kg s-1 FL tendency_of_land_ice_mass_due_to_basal_mass_balance 

Total calving flux kg s-1 FL tendency_of_land_ice_mass_due_to_calving 
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