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Response to Anonymous Referee #1 

We deeply appreciate the referee's kind remarks about our paper. Detailed comments from referee are numbered 

consecutively and cited in italics, followed by our reply in bold face. We also requested native speakers of 

English to proofread out English writing in the revised manuscript. 10 

Review of revised manuscript: Mechanisms influencing seasonal-to-interannual prediction skill of sea ice extent 
in the Arctic Ocean in MIROC by Ono et al. 

This is a review of the revised manuscript. The authors have taken some effort to address my and the other 
review’s comments. However, I still have two major concerns with the manuscript in its present form: (1) the 
choice of Arctic domain and its influence on the results and conclusions of the study; and (2) the proposed 15 
advection ocean mechanism for winter prediction skill. These major concerns and some additional minor 
comments are outlined below. 

Major Comments: 

1. 1) Choice of Arctic domain 

In my first review (RC1), I outlined a number of concerns directly related to the author’s choice of using an 20 
Arctic domain defined as all gridpoints north of 65N. This choice creates confusion throughout the manuscripts, 
making the results difficult to interpret (see RC1, major comment 1). In my opinion, the authors’ response to RC1 
has not provided a compelling justification for this choice. If the authors insist on retaining this domain choice, 
the results throughout the manuscript need to be carefully caveated, so that readers do not misinterpret the 
findings. Below are some changes that would need to be included if the choice of domain is retained (note that 25 
this list may not be exhaustive). 

Thank you very much for your suggestions. Considering the difference in the Arctic domain, some 
sentences in the previous manuscript were not correct. In the revised manuscript, we partly rewrote the 
text according to referee’s suggestions, but mainly showed the results for the domain north of 65oN. Once 
again, this study focuses on the physical processes in the Arctic Ocean interior because the ocean processes 30 
might contribute to the sea ice reduction in an area north of 65oN (e.g., Polyakov et al., 20111; 20122). In 
that case, for example, the Sea of Okhotsk is not directly connected to the Arctic Ocean and the influences 
of Baffine Bay and Hudson Bay are thought to be small, as we mentioned in the text. Instead, the results 
for the Northern Hemisphere are shown in the revised supplement.  
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1. Polyakov, I. V., and Coauthors.: Fate of early 2000s Arctic warm water pulse, Bull. Amer. Meteor. Soc., 
561-566, doi:10.1175/2010BAMS292.1, 2011. 

2. Polyakov, I. V., Walsh, J. E., and Kwok, R.: Recent changes of arctic multiyear sea ice coverage and the 
likely causes, Bull. Amer. Meteor. Soc., 145-151, doi:10.1175/BAMS-D-11-00070.1, 2012. 

2. 3.33: A line needs to added here explicitly stating that these results are not directly comparable with other 5 
hindcast studies. For example, “It should be noted that the results of this study are not directly comparable with 
other hindcast studies that focus on pan-Arctic SIE (e.g., Chevallier et al., 2013; Sigmond et al., 2013; Wang et 
al., 2013; Msadek et al., 2014; Peterson et al., 2015; Guemas et al., 2016; Sigmond et al., 2016), duo to this 
choice of Arctic Ocean domain.” 

As suggested, we added “Note that the results of this study are not directly comparable with other hindcast 10 
studies that focus on pan-Arctic SIE (e.g., Chevallier et al., 2013; Sigmond et al., 2013; Wang et al., 2013; 
Msadek et al., 2014; Peterson et al., 2015; Guemas et al., 2016; Sigmond et al., 2016), due to the choice of 
Arctic Ocean domain. ” to the text (P4L3-6). 

3. 4.11-12: I recommend explicitly noting the reason for this discrepancy: Winter SIE_AO variability is 
dominated by changes in the Barents and GIN Seas, which have long persistence timescales relative to other 15 
regions of winter ice variability. 

As suggested, we replaced “This is because SIEAO exclude other regions contributing the winter sea ice 
variability.” with “This is because the winter SIEAO variability is dominated by changes in the Barents and 
GIN Seas, which have long persistence timescales relative to other regions of winter sea ice variability.” 
(P4L16-18). 20 

4. 4.21-22: This sentence should be removed, as a comparison with Tietsche et al. (2014) is not appropriate given 
the different domains used in these studies. 

As you pointed out, the sentence in the previous manuscript was not appropriate. In the revised 
manuscript, we removed the sentence. 

5. 4.13-30: To alleviate issues with the choice of Arctic Ocean domain, the authors should consider using a 25 
normalized RMSE (NRMSE) metric, where the RMSE values are normalized by the standard deviation of each 
month. As it currently stands, these RMSE values are difficult to interpret giving the large seasonal cycle in 
RMSE. Put differently, it is hard to know from Fig. 2b what is a “good” or “bad” RMSE value. 

Thank you for your suggestion. We reconstructed Fig. 2b following to your advice and rewrote the caption 
(Please see new Fig.2). We removed “The RMSE for all hindcasts is larger throughout the melting and 30 
early freezing seasons (July-October), before smaller values in November-June.” in the previous 
manuscript and newly added the following sentences to the text. 

“Here, the RMSE values are normalized by the standard deviation of each month.” (P4L20-21).  
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“The RMSE values for the first several months are smaller than the standard deviation for all hindcasts.” 
(P4L26-27). 

6. 5.10-19: The authors have chosen to remove Fig. S3 of the previous supplementary material. This Figure 
should be added back into the supplement, as it provides important context for the results of the study. Also, a 
comment should be added to the text that summer-to-winter differences in SIV-SIE correlations are much less 5 
pronounced when using a northern hemisphere domain for SIE. 

In Figure S3 in the supplement for open discussion, we had calculated SIV and OHC in the domain north 
of 65oN. This was not correct. In the revised version, we recalculated SIV and OHC for the Northern 
Hemisphere and reconstructed a new Fig. S3. Please see the revised supplement. In addition, please read 
the response to referee’s comment 16. 10 

7. 2) Advective ocean mechanism for winter prediction skill 

The authors claim that Figs. 4c-f provide evidence for subsurface OHC anomalies advected from the North 
Atlantic. While plausible, this mechanism is not convincingly shown by Fig. 4. Aside from a small patch of 
positive correlation west of Novaya Zemlya in panels 4c and 4d, there is no clear evidence of OHC anomaly 
advection. Rather, the main signal appears to be a large stationary patch of OHC anomalies throughout the 15 
Barents and GIN Seas, which is present at lags of 9, 6, 3, and 0. The origin of these anomalies is not clear from 
Fig. 4.  

Please read the response to referee’s comment 8. 

8. The authors claim that OHC anomalies “flow into the BS through advection.” What is the evidence for this? 
Either more evidence needs to be provided or the statements about regarding the advection mechanism need to be 20 
appropriately qualified. For example, the advection hypothesis could be referred to as a “plausible mechanism.” 

Certainly, it might be difficult to claim, from Fig. 4c-4f, that OHC anomaly flow into the Barents Sea 
through the advection processes. As you pointed out, the signal mainly appears to be stationary, while 
partly appears to propagate to the eastern part of Barents Sea (in the western part of Novaya Zemlya). 
Considering that the Norwegian Atlantic Current tends to flow into the BS, it would be natural to think 25 
that the North Atlantic might be the source of OHC anomaly in the BS. In the revised manuscript, we 
rewrote the text according to suggestions from referee #1 and referee #2. 

Firstly, we removed the sentences from P5L29 to P6L2 in the previous manuscript, as will be mentioned in 
the response to referee #2’ comment 9. Secondly, we moved the sentences “In contrast … the January 
hindcasts (not shown).” (P6L6-8 in the previous manuscript) to the end of the third paragraph in section 4 30 
(P5L32-P6L2). Thirdly, we rewrote the sentences “Hence, the OHC … December SIEAO.” (P6L3-12 in the 
previous manuscript) as follows. “Considering that the Norwegian Atlantic Current tends to flow into the 
BS (e.g., Polyakov et al., 2005), the North Atlantic might be the source of the OHC anomaly contributing to 
the significant skill of the December SIEAO. A plausible mechanism is as follows: the OHC anomalies 
initialized in the North Atlantic flow into the BS through advection, subsequently emerge at the surface 35 
due to vertical mixing in winter, and affect the December sea ice distribution in the BS and eventually in 
the Arctic Ocean. This hypothesis is partly supported by Nakanowatari et al. (2014). As originally 
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proposed by Bushunk et al. (2017), our results suggest that the initialization of subsurface ocean 
temperature contributes to the skillful prediction of the winter sea ice extent in the BS.” (P6L6-12). 

9. 5.33-6.1: As mentioned in RC1 and RC2, this apparent advection from the North Atlantic is likely an artifact of 
only defining OHC below the mixed layer. When North Atlantic mixed layers deepen, this quantity becomes 
undefined, creating the undefined regions seen in Fig. S4. Therefore, this sentence should be removed. 5 

As pointed out by referee #1 and #2, the sentences from P5L29 to P6L2 in the previous manuscript and 
Fig. S4 were not appropriate. As mentioned above, we removed them. 

Minor comments: 

10. 3.26-27: This statement remains unclear. How are the drifts removed? An additive correction? A regression 
based approach? Is the drift removal lead-time dependent? More detail is needed here. 10 

In the revised version, we added “Here, the climate drift 𝑻𝒅𝒓𝒇  is estimated as follows: 
𝑻𝒅𝒓𝒇 𝝉 = 𝟏

𝑵
(𝑻𝒑𝒌 𝝉 − 𝑻𝒂𝒌(𝝉))𝑵

𝒌!𝟏 , where 𝒌 = 𝟏,⋯ ,𝑵 is the initial time; 𝝉 is the forecast lead time; 𝑻 is the 
monthly quantity of interest, for example, the temperature and sea ice concentration; and the subscripts 𝒑 
and 𝒂 represent the ensemble averaged prediction and the corresponding assimilation, respectively.” to the 
text (P3L27-30). 15 

11. 4.4: The autocorrelation coefficients are the skill of a persistence forecast. I recommend changing this line to: 
“We first examine the potential predictability of SIE_AO (Fig. 1), based on lagged auto-correlation coefficients, 
which is the skill of a persistence forecast.” 

Thank you. As suggested, we changed it (P4L9-10). 

12. 4.9: Change to “…similar to those…” 20 

As suggested, we changed it (P4L14). 

13. 4.10: Change to “..due to differences in the observational time period.” 

As suggested, we changed it (P4L15-16). 

14. 4.25: Change to “…mid-1980s and mid-1990s.” 

As suggested, we changed it (P4L29). 25 

15. 5.14: Change to “…similar features…” 

As suggested, we changed it (P5L15). 
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16. 5.17: I believe Fig. S3 here is referring to the old Fig. S3 (which is no longer in the supplement) 

Thank you. You are quite right. As mentioned in our response to referee’s comment 6, we added the same 
figure as Fig. 3 for the Northern Hemisphere to the revised supplement (Fig. S3), and we rewrote this part 
as follows.  

“For the sea ice extent anomaly calculated in the Northern Hemisphere (Fig. S3), the patterns of the lagged 5 
correlation coefficients are broadly similar to those in Fig. 3. However, the correlations between the SIE 
and SIV are higher than those in the Arctic domain north of 65° N. One reason might be the contribution 
of sea ice variability south of 65° N. One reason might be the contribution of sea ice variability south of 65° 

N. In addition, the correlations between SIE and OHC show weak positive values from June to October in 
the hindcasts. This is partly because the OHC includes the regions where sea ice does not exist throughout 10 
the year.” (P5L18-23). 

17. 5.21: Change to “…model-predicted December SIE_AO” 

As suggested, we changed it (P5L25). 

18. 6.20: Rather than sampling uncertainty, I would suggest that a more likely explanation is errors in sea ice 
thickness initial conditions and model drift. 15 

Based on your suggestion, we replaced “the sampling uncertainty” with “errors in the initial conditions for 
SIT and model drift” (P6L21). 

19. 7.1-3: This sentence needs to be removed (the author’s claimed to have removed it in their response, but seem 
to have forgot). 

Thank you. You are quite right. We removed the sentence (P7L1-3 in the previous manuscript). 20 

 

 

 

 

 25 
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Response to Anonymous Referee #2 

We deeply appreciate the referee's kind remarks about our paper. Detailed comments from referee are numbered 

consecutively and cited in italics, followed by our reply in bold face. We also requested native speakers of 10 

English to proofread out English writing in the revised manuscript.  

 

Overall the authors have done a good job at revising their manuscript. They have invested significant extra work 

in response to the reviewer comments, which I very much appreciate. In my view the results of the paper do merit 

publication, but I think that the points listed below still need to be addressed so that the results are not over-15 

interpreted. 

 

The numbers in the following refer to the numbering of author comments in the response of the authors. 

 

### 20 

Major points: 

1. 20: The authors have followed the suggestion to compute OHC in a way so it better reflects actual temperature 

variations rather than shifts in the mixed-layer depth, which I think is very good. The resulting new Fig. 4 in my 

view confirms that the “advection story” is not really supported by the results. However, the authors now use the 

arguments that “the direct heating and cooling of atmosphere are considered to influence the above OHC 25 

through the sea surface” to explain why they base their further interpretation rather on the OHC according to 

the old definition integral between MLD and 200 m, which in my view is still questionable. Also, the statement 

“Correlation patterns between the SIE_AO and OHC […] are not significant during the winter when the MLD is 

below a depth of 200 m” is in my view misleading: it suggests that statistical significance is involved, although 

the OHC values just become “undefined”. Based on the old OHC definition, the authors state (first with some 30 

caution) that “the negative correlation and regression patterns appear to propagate from the North Atlantic to 
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the BS”, but then (less cautiously and without any revision): “Hence, the OHC anomalies initialized in the North 

Atlantic flow into the BS through advection, subsequently emerge at the surface due to vertical mixing in winter, 

and affect the December sea ice distribution in the BS and eventually in the Arctic Ocean.” Accordingly, the 

corresponding statement in the abstract still reads: “This skill is attributed to the subsurface ocean heat content 

originating in the North Atlantic. The subsurface water flows into the Barents Sea from spring to fall and 5 

emerges at the surface in winter by vertical mixing, and eventually affects the sea ice variability there.” I think 

this is an over-interpretation of the results. 

 

Thank you very much for your suggestions. As mentioned in comments from referee #1 and referee #2, our 

statements on advection processes may be over-interpretation. In the revised manuscript, we alleviated this 10 

part according to two referee’s suggestions.  

 

Firstly, we removed the sentences from P5L29 to P6L2 in the previous manuscript, as will be mentioned in 

the response to referee #2’ comment 9. Secondly, we moved the sentences “In contrast … the January 

hindcasts (not shown).” (P6L6-8 in the previous manuscript) to the end of the third paragraph in section 4 15 

(P5L32-P6L2). Thirdly, we rewrote the sentences “Hence, the OHC … December SIEAO.” (P6L3-12 in the 

previous manuscript) as follows. “Considering that the Norwegian Atlantic Current tends to flow into the 

BS (e.g., Polyakov et al., 2005), the North Atlantic might be the source of the OHC anomaly contributing to 

the significant skill of the December SIEAO. A plausible mechanism is as follows: the OHC anomalies 

initialized in the North Atlantic flow into the BS through advection, subsequently emerge at the surface 20 

due to vertical mixing in winter, and affect the December sea ice distribution in the BS and eventually in 

the Arctic Ocean. This hypothesis is partly supported by Nakanowatari et al. (2014). As originally 

proposed by Bushunk et al. (2017), our results suggest that the initialization of subsurface ocean 

temperature contributes to the skillful prediction of the winter sea ice extent in the BS.” (P6L6-12). 

 25 

In the abstract, we changed “is” to “might be” (P1L13) and added “A plausible mechanism is as follows:” 

before ”the subsurface …” (P1L14). 

 

2. 13 (and 15, 23): I am not convinced by the offered explanation why December SIE_AO should be better 

predictable from January than from April. It may well be related to the result that “the RMSE for April SIC in the 30 

Barents Sea is larger in the April hindcasts than the January hindcasts” (as shown in Fig. B2) - but this only 
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shifts the problem to the question why that should be so! As SIC is assimilated, the April SIC field should be much 

closer to observations right after initialization (at 0-month lag) than after an initialization in January (at 3 

months lag), no? Is something going wrong with the assimilation/initialization? Maybe it’s just me, but in my 

view it would be important to explain this properly. 

 5 

Since the observed SIC is assimilated into the model with one-day interval in this study, as you pointed out, 

the April SIC field should be close to observation in the hindcasts started from April (0 month lag) 

compared to January (3 months lag). In the previous response to RC2, we showed the SIC RMSE in April 

for the January and April hindcasts. We think about the reason why the April SIC RMSE in the Barents 

Sea is larger in the April hindcasts than January as follows: In this study, since we have not assimilated 10 

ocean data beneath sea ice into the model because of no reliable data, initialized ocean states underneath 

the sea ice are considered to be different from the real ocean. Particularly, in the Barents Sea where sea ice 

variability is related to the skillful prediction of December SIEAO, standard deviation of sea ice is larger in 

April than January. In that case, initial shock might be large in April. This is one of the reasons for the 

larger April SIC RMSE in the BS. To improve such a problem, reliable ocean data beneath the sea ice and 15 

the sophisticated assimilation method will be needed in future works. 

 

In the revised manuscript, we added “In this study, since we do not assimilate ocean data beneath the sea 

ice, initialized ocean states underneath the sea ice are considered to be different from the real ocean. 

Particularly, in the BS where sea ice variability is related to the skillful prediction of December SIEAO, 20 

standard deviation of sea ice is larger in April than in January, and thus the initial shock might be large in 

April.” to the text (P6L2-5). 

 

### 

Minor point: 25 

 

3. 7 (and 8, 12): I would argue that in the referenced paper, as you say, statistical significance has been used to 

distinguish “significant predictability” from “no predictability”, but in that case it’s clear that “no predictability” 

implies just not sufficient signal to exceed the noise level given the sample size in that study. However, you 

translate this into the statement “the study has shown that the potential predictability for sea ice extent is 30 

continuously one to two years” - which has lost the link to any quantitative threshold. If you’d rather say 
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something like “in that study, potential predictability remained statistically significant at lead times up to 1-2 

years”. I think that would be more sound. 

 

Thank you. What we would like to say here is the latter sentence “in that study, potential predictability 

remained statistically significant at lead times up to 1-2 years”, as suggested. In the revised manuscript, we 5 

replaced “is continuously one to two years” with “remains statistically significant at lead times up to 1-2 

years” (P2L2). 
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Mechanisms influencing seasonal-to-interannual prediction skill of 
sea ice extent in the Arctic Ocean in MIROC 
Jun Ono1, Hiroaki Tatebe1, Yoshiki Komuro1, Masato I. Nodzu2, Masayoshi Ishii3  
1 Japan Agency for Marine-Earth Science and Technology, Yokohama, 236-0001, Japan 
2 Tokyo Metropolitan University, Hachioji, 192-0397, Japan 5 
3 Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, 305-0052, Japan 

Correspondence to: Jun Ono (jun.ono@jamstec.go.jp) 

Abstract. To assess the skill of seasonal-to-interannual predictions of the detrended sea ice extent in the Arctic Ocean 

(SIEAO) and to clarify the underlying physical processes, we conducted ensemble hindcasts, started on January 1st, April 1st, 

July 1st, and October 1st for each year from 1980 to 2011, for lead times up to three years, using the Model for 10 

Interdisciplinary Research on Climate (MIROC) version 5 initialized with the observed atmosphere and ocean anomalies and 

sea ice concentration. Significant skill is found for the winter months: the December SIEAO can be predicted up to 11 months 

ahead (anomaly correlation coefficient is 0.42). This skill might be attributed to the subsurface ocean heat content 

originating in the North Atlantic. A plausible mechanism is as follows: the subsurface water flows into the Barents Sea from 

spring to fall and emerges at the surface in winter by vertical mixing, and eventually affects the sea ice variability there. 15 

Meanwhile, the September SIEAO predictions are skillful for lead times of up to 2 months, due to the persistence of sea ice in 

the Beaufort, Chukchi, and East Siberian Seas initialized in July, as suggested by previous studies. 

1 Introduction 

The Arctic has warmed more than twice as much as the global average (e.g., Bekryaev et al., 2010; Cohen et al., 

2014), called Arctic amplification. Sea ice reduction under climate change is one of the main processes contributing to Arctic 20 

amplification (e.g., Pithan and Mauritsen, 2014). Arctic summer sea ice extent has declined at about 14 % per decade 

(National Snow and Ice Data Center, 2016, http://nsidc.org/arcticseaicenews/). In September 2012, sea ice extent reached its 

minimum since satellite observations began in the late 1970s. Moreover, Arctic sea ice thickness has decreased by around 

65 % from 1975 to 2012 (Kwok et al., 2009, Lindsay and Schweiger, 2015). 

In contrast to the rapid warming in the Arctic, severely cold winters have occurred more frequently at midlatitudes. 25 

Although the exact cause is still being debated (e.g., Barnes and Screen, 2015), Mori et al. (2014) have shown, using 

ensemble experiments with an atmospheric general circulation model, that the more frequent cold winters at midlatitudes can 

be partly explained by the sea ice decrease in the Barents and Kara Seas. Therefore, further investigation of the mechanisms 

driving Arctic sea ice variability is of great importance for more accurate projections of climate change, not only in the 

Arctic but also for the midlatitudes. 30 
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A previous study based on two and five years perfect-model experiments from January 1st and September 1st has 

shown that the potential predictability for sea ice extent remains statistically significant at lead times up to 1-2 years, 

primarily because of the persistence of ice thickness anomalies from summer to summer and the persistence of sea surface 

temperature anomalies from the melt to growth seasons (Blanchard-Wrigglesworth et al., 2011a; Guemas et al., 2014). These 

features are also found in the results of experiments comparing multiple climate models (Day et al., 2014b; Tietsche et al., 5 

2014). The observed detrended Arctic sea ice extent based on ensemble hindcasts can be predicted up to 2–7 and 5–11 

months ahead for summer and winter, respectively (e.g., Chevallier et al., 2013; Sigmond et al., 2013; Wang et al., 2013; 

Msadek et al., 2014; Peterson et al., 2015; Guemas et al., 2016; Sigmond et al., 2016). In these ensemble hindcasts, it is 

found that the ice thickness and the surface or subsurface water temperatures are closely related to the prediction skill, as 

suggested by idealized or perfect-model experiments with climate models (e.g., Blanchard-Wrigglesworth et al., 2011b; 10 

Chevallier and Salas-Mélia, 2012; Day et al., 2014a). 

Until very recently, the mechanisms by which the above variables contribute to the prediction skill had not been 

quantified. Bushuk et al. (2017) examined the physical mechanisms underlying the prediction skill of regional sea ice extent 

and showed for the first time the importance of the initializations of ocean subsurface and sea ice thickness in their 

dynamical prediction system. 15 

Motivated by the above studies, we first conduct initialized ensemble hindcasts using a climate model to assess the 

seasonal-to-interannual predictability of sea ice extent in the Arctic Ocean and further investigate sources for prediction skill 

and clarify the physical processes linking the prediction skill to its sources. In particular, the present study reveals that 

subsurface ocean heat content originating from the North Atlantic contributes to the predictability of winter sea ice through 

advection and vertical mixing processes, which is somewhat different from the reemergence process of the local subsurface 20 

ocean temperature suggested by Bushuk et al. (2017). 

2 Experimental Designs 

The climate model used here is a low-resolution version of the Model for Interdisciplinary Research on Climate, 

version 5 (MIROC5) (Watanabe et al., 2010), which contributed to the fifth phase of the Coupled Model Intercomparison 

Project and the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5, 2013). The atmospheric 25 

component has a horizontal resolution of T42 spectral truncation (approximately 2.8°) and comprises 40 vertical layers up to 

3 hPa. The oceanic component has horizontal resolutions of 1.4° in longitude and 0.5–1.4° in latitude, and comprises 50 

vertical layers. The sea ice component of MIROC5 contains one-layer thermodynamics (Bitz and Lipscomb, 1999), elastic-

viscous-plastic rheology (Hunke and Dukowicz, 1997), and the subgrid ice thickness distribution (Bitz et al., 2001) with five 

categories; the detailed structure has been described in Komuro et al. (2012). 30 

To initialize MIROC5, we adopted anomaly assimilation for the atmosphere and ocean and full-field assimilation 

for sea ice. Anomalies were calculated as the deviations from the climatology defined by the 1961–2000 period. The 

observed 6-hourly air temperature and wind vectors from the 55-year Japanese Reanalysis (JRA-55) dataset (Kobayashi et 
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al., 2015) were linearly interpolated to the atmospheric model’s grid. The observed monthly ocean temperature, salinity, and 

sea ice concentration (SIC) from the gridded monthly objective analysis produced by Ishii et al. (2006) and Ishii and Kimoto 

(2009) were linearly interpolated to obtain the daily values, and the same grid as the ocean model. The ocean data are based 

on the latest observational databases (the World Ocean Database (WOD05), World Ocean Atlas (WOA05), and Global 

Temperature Salinity Profile Program (GTSPP) provided by the U.S. National Oceanographic Data Center (NODC)) and a 5 

SST analysis (Centennial in situ Observation Based Estimates of variability of SST and marine meteorological variables 

(COBE SST); Ishii et al. (2005); Hirahara et al. (2014)). The SIC data are based on satellite observations from the Nimbus-5 

Scanning Multichannel Microwave Radiometer (SMMR), the Special Sensor Microwave Imager (SSM/I), and the Special 

Sensor Microwave Imager/Sounder (SSMIS; Armstrong et al., 2012). 

In the assimilation runs, the atmospheric anomalies were assimilated into MIROC5 below 100 hPa at 6-hourly 10 

intervals and the oceanic anomalies above 3000 m depth at one-day intervals except in sea ice regions, using a modified 

incremental analysis update scheme (Tatebe et al., 2012). Meanwhile, SIC was assimilated at one-day intervals following 

Lindsay and Zhang (2006) and Stark et al. (2008). These assimilations were conducted over the period 1975–2011 with eight 

ensemble members produced by perturbing the sea surface temperature based on the observational errors. The atmospheric 

and oceanic initial states were obtained from a non-initialized twentieth-century run with historical natural and 15 

anthropogenic forcings. 

On the basis of the assimilation runs, the hindcast experiments were integrated for 3 years from January 1st, 2 years 

and 9 months from April 1st, 2 years and 6 months from July 1st and 2 years and 3 months from October 1st for each year 

from 1980 to 2011. The initial states of the atmosphere and ocean were obtained from the corresponding assimilation runs. 

In addition, a control run with MIROC version 5.2, which is a minor update of MIROC5, was used to interpret the physical 20 

processes contributing to the prediction skill in the hindcasts. This simulation was run with external forcings fixed at the year 

2000 levels under a multi-model inter-comparison project (Day et al., 2016). 

In Sect. 3 and Sect. 4, we analyze the detrended monthly anomalies to extract the internal variations with seasonal-

to-interannual timescales. Here, the detrended components were calculated by subtracting monthly linear trends during 

1980–2009 from the original monthly data, and anomalies are defined as deviations from the climatology from 1980–2009. 25 

Moreover, climate drifts in the hindcasts are removed according to the INTERNATIONAL CLIVAR PROJECT OFFICE 

(ICPO, 2011). Here, the climate drift 𝑇!"# is estimated as follows: 𝑇!"# 𝜏 = !
!

(𝑇!! 𝜏 − 𝑇!!(𝜏))!
!!! , where 𝑘 = 1,⋯ ,𝑁 is 

the initial time; 𝜏 is the forecast lead time; 𝑇 is the monthly quantity of interest, for example, the temperature and sea ice 

concentration; and the subscripts 𝑝 and 𝑎 represent the ensemble averaged prediction and the corresponding assimilation, 

respectively. As mentioned in Sect. 1, sea ice reduction in the Arctic Ocean, especially in the Barents and Kara Seas, could 30 

lead to extreme weather at midlatitudes, which may be related to the warming of the Arctic Ocean interior (e.g., Polyakov et 

al., 2012). To clearly interpret the physical mechanisms influencing sea ice extent in the Arctic Ocean (hereafter SIEAO), 

SIEAO is defined from the cumulative area for all grid cells north of 65° N with SIC greater than 15 %. From this definition, 
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Baffin Bay and Hudson Bay are partially included in the domain, but the directions of the main currents are from the Arctic 

Ocean interior (shelves and basins) to Baffin Bay through the straits of the Canadian Archipelago (e.g., Aksenov et al., 2011). 

Thus, the direct impacts of Baffin Bay and Hudson Bay on the Arctic Ocean interior are considered to be small. Note that the 

results of this study are not directly comparable with other hindcast studies that focus on pan-Arctic SIE (e.g., Chevallier et 

al., 2013; Sigmond et al., 2013; Wang et al., 2013; Msadek et al., 2014; Peterson et al., 2015; Guemas et al., 2016; Sigmond 5 

et al., 2016), due to the choice of Arctic Ocean domain. For comparison, the results for the detrended sea ice extent anomaly 

in the Northern Hemisphere are shown in the supporting information. 

3 Predictability of Arctic Sea Ice Extent 

We first examine the potential predictability of SIEAO (Fig. 1), based on the lagged auto-correlation coefficients, 

which is the skill of the persistence forecast. The lagged correlations with the observations (Ishii et al., 2006; Ishii and 10 

Kimoto, 2009) decrease within the first few months for all of the start months, and those originating between January and 

June subsequently rise again in the winter (November through March). Significant skill in the control run is obtained for 

greater lead times than in the observations, which is consistent with previous studies (e.g., Blanchard-Wrigglesworth et al., 

2011b; Day et al., 2014b). For the SIE in the Northern Hemisphere (Fig. S1a), the correlation patterns are similar to those in 

Day et al. (2014b), except for a lead time of one month for May which may be due to differences in the observational time 15 

period (Fig. S1d). However, the reemergence in winter is weaker than that for SIEAO. This is because the winter SIEAO 

variability is dominated by changes in the Barents and GIN Seas, which have long persistence timescales relative to other 

regions of winter sea ice variability. 

We next evaluate the SIEAO prediction skill (Figs. 2a and 2b), with the anomaly correlation coefficient (ACC) and 

the root-mean-square error (RMSE) between the detrended observations and the hindcasts (e.g., Wang et al., 2013). Here, the 20 

RMSE values are normalized by the standard deviation of each month. In the hindcasts started from July 1st, the ACC for 

September is statistically significant and exceeds that of the persistence forecast, suggesting that September SIEAO can be 

dynamically predicted from the previous July (ACC = 0.79). Although the significance of the ACC is borderline, the results 

suggest that September SIEAO is potentially predictable from April 1st (ACC = 0.37), which is consistent with the results of 

Peterson et al. (2015). The ACC is also significant for the winter SIEAO, in particular for December, except for the hindcasts 25 

started from April 1st, indicating the potential use of dynamical forecasts up to 11 months ahead (ACC = 0.42). The RMSE 

values for the first several lead months are smaller than the standard deviation for all hindcasts. The time series of September 

SIEAO shows that both the assimilation and hindcasts capture the observed interannual variability, although the model 

underestimates the variability in the mid-1980s and mid-1990s (Fig. 2c). The observed SIEAO in December is contained 

within the ensemble spread, excluding the mid-1980s (Fig. 2d). We also show the same figure as Fig. 2 in Fig. S2, except 30 

that the detrended sea ice extent anomaly is calculated for the Northern Hemisphere. The lower ACC at short lead times for 

the hindcasts started from January and April (Fig. S2a) may be due to the lower ACC and higher RMSE for sea ice 

concentration in the Sea of Okhotsk, the Bering Sea, and the Labrador Sea (not shown). The RMSE values in winter are 
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large (Fig. S2b) compared to Fig. 2b because SIEAO does not include the area where sea ice variability is large. The 

difference between Fig. 2d and Fig. S2d is also due to the effect of the domain choice. 

4 Possible Mechanisms for Prediction Skill 

Focusing on both the hindcasts started from January 1st, in which the December SIEAO has high skill even at long 

lead times, and those started from July 1st, in which the September SIEAO is significant, we examine mechanisms for the 5 

prediction skill. Figure 3 shows the lagged cross-correlations between the SIEAO and the sea ice volume in the Arctic Ocean 

(SIVAO) and those between SIEAO and ocean heat content in the Arctic Ocean (OHCAO) for the control run and the hindcasts 

started from January and July. Here, the SIVAO is defined as the sum of the grid cell volumes obtained by multiplying the sea 

ice thickness (SIT) by the SIC and the area for grid cells with SIC greater than 15 % and the OHCAO is the vertically 

integrated temperature multiplied by the density and specific heat capacity of seawater from the surface to a depth of 200 m, 10 

in the same area as the SIEAO. 

The SIVAO has stronger positive correlations with the SIEAO in summer than in winter (Figs. 3a–c), which is 

consistent with Chevallier and Salas-Mélia (2012), while the OHCAO has more persistent negative correlations with the 

SIEAO in winter than in summer (Figs. 3d–f). In the hindcasts started from January 1st, the December SIEAO is significantly 

correlated with the OHCAO from January to December. Similar features can be seen in the hindcasts started from July 1st. 15 

The SIEAO in September is significantly correlated with the SIVAO in July for both of the hindcasts, but only weakly 

correlated with the OHCAO. Thus, sources for the prediction skill of the December and September SIEAO are suggested to be 

the ocean heat content from the surface to a depth of 200 m after January and the sea ice states in July, respectively. For the 

sea ice extent anomaly calculated in the Northern Hemisphere (Fig. S3), the patterns of the lagged correlation coefficients 

are broadly similar to those in Fig. 3. However, the correlations between the SIE and SIV are higher than those in the Arctic 20 

domain north of 65° N. One reason might be the contribution of sea ice variability south of 65° N. In addition, the 

correlations between SIE and OHC show weak positive values from June to October in the hindcasts. This is partly because 

the OHC includes the regions where sea ice does not exist throughout the year. 

We next clarify the physical processes linking the prediction skill to sources of that skill. Figure 4 shows the SIC, 

SIT, and OHC north of 60° N regressed on the model-predicted December SIEAO. The most significant signals for both SIC 25 

and SIT are found in the Barents Sea (BS) of the Arctic Ocean (Figs. 4a and 4b). It is well known that winter sea ice 

variability in the BS dominates that in the Arctic Ocean (e.g., Smedsrud et al., 2013), which is consistent with our results. At 

a lag of 9 months (Fig. 4c), negative correlation and regression coefficients for the OHC are found in regions from the 

northern part of the GIN Sea to the western part of the BS. The signals become strong in the western part of the BS at a lag 

of 6 months (Fig. 4d), and further extend across the entire BS at a lag of 3 months (Fig. 4e) and still appear in the BS at a lag 30 

of zero (Fig. 4f). These features are also found in the control run (Fig. S4), suggesting that the physical processes in the 

hindcasts are not due to processes distorted by the influence of initialization or climate drift in MIROC5. In contrast, the 

December SIEAO cannot be predicted from April 1st (Fig. 2a), although significant regression and correlation coefficients 
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appear in the results for the April hindcasts (Fig. S5). This may be because the RMSE for April SIC in the BS is larger in the 

April hindcasts than the January hindcasts (not shown). In this study, since we do not assimilate ocean data beneath the sea 

ice, initialized ocean states underneath the sea ice are considered to be different from the real ocean. Particularly, in the BS 

where sea ice variability is related to the skillful prediction of December SIEAO, standard deviation of sea ice is larger in 

April than in January, and thus the initial shock might be large in April. 5 

Considering that the Norwegian Atlantic Current tends to flow into the BS (e.g., Polyakov et al., 2005), the North 

Atlantic might be the source of the OHC anomaly contributing to the significant skill of the December SIEAO. A plausible 

mechanism is as follows: the OHC anomalies initialized in the North Atlantic flow into the BS through advection, 

subsequently emerge at the surface due to vertical mixing in winter, and affect the December sea ice distribution in the BS 

and eventually in the Arctic Ocean. This hypothesis is partly supported by Nakanowatari et al. (2014). As originally 10 

proposed by Bushunk et al. (2017), our results suggest that the initialization of subsurface ocean temperature contributes to 

the skillful prediction of the winter sea ice extent in the BS. 

For September, the sea ice states initialized in July persist until September in the Beaufort, Chukchi, and East 

Siberian Seas (Fig. 5), which is consistent with Bushuk et al. (2017). Consequently, this persistence contributes to the 

prediction skill of the September SIEAO. In the hindcasts started from April 1st, the September SIEAO shows similar lagged 15 

correlation patterns to the July hindcasts for SIVAO (Fig. S6a) and OHCAO (Fig. S6b). Thus, the same physical processes as 

the July hindcasts are expected to be present in the April hindcasts. However, the positive regression and correlation patterns 

for SIC and SIT are lower than those for the July hindcasts, particularly in the Pacific Sector of the Arctic Ocean (Figs. S6c 

and S6d). In contrast, similar patterns to Fig. 5 clearly appear in the Pacific sector of the Arctic Ocean for the control 

experiment (Fig. S7). These results suggest that the persistence of sea ice contributes to the skill of September SIEAO started 20 

from April 1st, but errors in the initial conditions for SIT and model drift may lead to unclear signals in Fig. S6. 

5 Concluding Remarks 

 We investigated the predictability of the detrended SIEAO anomaly and its sources based on an ensemble of 

hindcasts using an initialized climate model, MIROC5, and further identified physical processes related to the prediction 

skill. Prediction skill for Arctic winter SIEAO is significantly higher than the persistence forecast, especially for December, 25 

indicating the possibility for dynamical forecasting 11 months ahead. The December SIEAO is significantly correlated with 

the December SIC and SIT in the BS where the subsurface OHC anomalies might be advected from the North Atlantic, and 

subsequently emerge at the surface in winter, and contribute to the sea ice variability there. Our results suggest that sources 

of the December SIEAO prediction skill exist in the North Atlantic and thus initialization of the subsurface water there leads 

to better prediction of the SIEAO in December. Numerical experiments to confirm whether the subsurface OHC anomalies 30 

originating from the North Atlantic control the December sea ice extent in the BS and eventually in the Arctic Ocean will be 

explored in future work. 
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 Significant skill for the September SIEAO is seen only up to 2 months ahead. Improvement in the prediction skill for 

summer SIEAO is dependent upon refinement of the initial state of the SIT. In fact, higher lagged correlations between the 

summer SIEAO and the SIVAO suggest that the initialization of the SIT is important, which is consistent with previous results 

by Day et al. (2014a) and Bushuk et al. (2017). 

 In recent years, the rapid reduction in Arctic sea ice has enabled ships to navigate the Northern Sea Route (e.g., 5 

Stephenson et al., 2014). Under such maritime activities in the Arctic Ocean, forecasts of the local sea ice distribution rather 

than the total sea ice extent become of greater interest for marine users. Recent studies have reported the forecast skills of the 

retreat and advance dates of the sea ice distribution based on statistical methods (e.g., Stroeve et al., 2016; Wang et al., 2016) 

as well as a dynamical forecast system (Sigmond et al., 2016; Bushuk et al., 2017). In the present study, our hindcasts could 

not reproduce precise sea-ice edges from summer to fall. For example, the predicted sea ice distributions in September 2007 10 

are overestimated in the Russian region of the Arctic Ocean. This is because the surface winds, which are thought to be the 

major driving force of sea ice motion in September 2007, are not adequately predicted. Other reasons might be the lower 

resolution of the ocean model or bias in the climatology. Further improvements in the skill to predict sea ice, including its 

spatial pattern, will be provided by climate models with higher resolution, reduced model drift and bias, and improved 

initialization techniques. 15 
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Figure captions 

Figure 1: Lagged auto-correlation coefficients of the detrended SIEAO anomaly derived from (a) observations (Ishii et al., 

2006; Ishii and Kimoto, 2009) and (b) a model control simulation, for each start month, against lead time, following Day et 

al. (2014b). Solid and dashed lines denote values for the September and March target months, respectively. Black dots 

indicate statistical significance at the 95 % confidence level based on a two-sided Student's t-test with 30 and 200 degrees of 5 

freedom in the observations and model, respectively. 

Figure 2: Lead time dependence of (a) SIEAO ACC and (b) SIEAO RMSE (×106 km2) for January, April, July, and October 

start hindcasts. The SIEAO ACC scores of hindcasts, which are higher than those of the persistence forecast and statistically 

significant at the 95 % confidence level based on a two-sided Student's t-test, are denoted by black dots. The SIEAO RMSE 

scores, which are normalized by the standard deviation, are denoted by black dots if the values are less than 1.0. Boxes in (a) 10 

indicate the lead time of the time series shown in (c) and (d). Time series of the detrended SIEAO anomaly for (c) September 

and (d) December, from the observations (OBSE; black line), assimilation (ASSI; red line), and hindcasts started from July 

1st and January 1st (HIND.JUL and HIND.JAN; blue line). HIND.JUL is the September SIEAO at 2 months lead time and 

HIND.JAL is the December SIEAO at 11 months lead time. Blue shading indicates the ensemble spread. In (c), the September 

SIEAO at 5 months lead time started from April 1st (HIND.APR) is superimposed by an aqua line and shading. 15 

Figure 3: Lagged correlation coefficients between the detrended SIEAO anomaly and (a–c) the detrended SIVAO anomaly and 

(d–f) the detrended OHCAO anomaly. Left, middle, and right panels indicate values obtained from the control run (CTRL), 

the hindcasts started from January 1st (HIND.JAN), and the hindcasts started from July 1st (HIND.JUL), respectively. Black 

dots indicate statistical significance at the 95 % confidence level based on a two-sided Student's t-test with 30 and 200 

degrees of freedom in the observations and model. Note that the horizontal and vertical axes in the hindcasts started from 20 

July 1st are different from those in the control run and the hindcasts started from January 1st. 

Figure 4: Lagged correlation (colors) and regression (contours) coefficients between the SIEAO anomaly (×106 km2) in 

December and (a) SIC anomaly (%) at a lag of 0 months, (b) SIT anomaly (cm) at a lag of 0 months, and OHC anomalies 

(×1018 J) at lags of (c) −9, (d) −6, (e) −3, and (f) 0 months, in regions from 60° to 90° N on the basis of the hindcasts started 

from January 1st. Contours are drawn at intervals of 5 (%) from 5 to 25 for SIC and 10 (cm) from 10 to 40 for SIT. In (c–f), 25 

the contours are drawn from −1.0 to −0.1 (×1018 J) at intervals of 0.1 (×1018 J). Stippling indicates regions with statistically 

significant correlation coefficients at the 95 % confidence level. White shading indicates areas where sea ice does not exist. 

A latitude circle of 65° N is also indicated by a thin solid line. 

Figure 5. Lagged correlation (colors) and regression (contours) coefficients between the September SIEAO anomaly (×106 

km2) and (a) SIC anomaly (%) and (b) SIT anomaly (cm), based on the hindcasts started from July 1st. Contours are drawn 30 

at intervals of 5 (%) from 5 to 20 and at intervals of 10 (cm) from 10 to 40 for the SIC and SIT anomalies, respectively. 

Stippling indicates regions with statistically significant correlation coefficients at the 95 % confidence level. White shading 

indicates areas where sea ice does not exist. A latitude circle of 65° N is also indicated by a thin solid line. 
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Figure 1. Lagged auto-correlation coefficients of the detrended SIEAO anomaly derived from (a) observations (Ishii et al., 2006; 

Ishii and Kimoto, 2009) and (b) a model control simulation, for each start month, against lead time, following Day et al. (2014b). 

Solid and dashed lines denote values for the September and March target months, respectively. Black dots indicate statistical 

significance at the 95 % confidence level based on a two-sided Student's t-test with 30 and 200 degrees of freedom in the 5 
observations and model, respectively. 
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Figure 2. Lead time dependence of (a) SIEAO ACC and (b) SIEAO RMSE (×106 km2) for January, April, July, and October start 

hindcasts. The SIEAO ACC scores of hindcasts, which are higher than those of the persistence forecast and statistically significant 

at the 95 % confidence level based on a two-sided Student's t-test, are denoted by black dots. The SIEAO RMSE scores, which are 

normalized by the standard deviation, are denoted by black dots if the values are less than 1.0. Boxes in (a) indicate the lead time 

of the time series shown in (c) and (d). Time series of the detrended SIEAO anomaly for (c) September and (d) December, from the 5 
observations (OBSE; black line), assimilation (ASSI; red line), and hindcasts started from July 1st and January 1st (HIND.JUL 

and HIND.JAN; blue line). HIND.JUL is the September SIEAO at 2 months lead time and HIND.JAL is the December SIEAO at 11 

months lead time. Blue shading indicates the ensemble spread. In (c), the September SIEAO at 5 months lead time started from 

April 1st (HIND.APR) is superimposed by an aqua line and shading.  
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Figure 3: Lagged correlation coefficients between the detrended SIEAO anomaly and (a–c) the detrended SIVAO anomaly and (d–f) 

the detrended OHCAO anomaly. Left, middle, and right panels indicate values obtained from the control run (CTRL), the 

hindcasts started from January 1st (HIND.JAN), and the hindcasts started from July 1st (HIND.JUL), respectively. Black dots 

indicate statistical significance at the 95 % confidence level based on a two-sided Student's t-test with 30 and 200 degrees of 

freedom in the observations and model. Note that the horizontal and vertical axes in the hindcasts started from July 1st are 5 
different from those in the control run and the hindcasts started from January 1st. 
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Figure 4. Lagged correlation (colors) and regression (contours) coefficients between the SIEAO anomaly (×106 km2) in December 

and (a) SIC anomaly (%) at a lag of 0 months, (b) SIT anomaly (cm) at a lag of 0 months, and OHC anomalies (×1018 J) at lags of 

(c) −9, (d) −6, (e) −3, and (f) 0 months, in regions from 60° to 90° N on the basis of the hindcasts started from January 1st. 

Contours are drawn at intervals of 5 (%) from 5 to 25 for SIC and 10 (cm) from 10 to 40 for SIT. In (c–f), the contours are drawn 5 
from −1.0 to −0.1 (×1018 J) at intervals of 0.1 (×1018 J). Stippling indicates regions with statistically significant correlation 

coefficients at the 95 % confidence level. White shading indicates areas where sea ice does not exist. A latitude circle of 65° N is 

also indicated by a thin solid line. 
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 Figure 5. Lagged correlation (colors) and regression (contours) coefficients between the September SIEAO anomaly (×106 km2) and 

(a) SIC anomaly (%) and (b) SIT anomaly (cm), based on the hindcasts started from July 1st. Contours are drawn at intervals of 5 

(%) from 5 to 20 and at intervals of 10 (cm) from 10 to 40 for the SIC and SIT anomalies, respectively. Stippling indicates regions 

with statistically significant correlation coefficients at the 95 % confidence level. White shading indicates areas where sea ice does 5 
not exist. A latitude circle of 65° N is also indicated by a thin solid line. 


