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Response to Anonymous Referee #1 

We deeply appreciate the referee's kind remarks about our paper. Detailed comments from referee are numbered 

consecutively and cited in italics, followed by our reply in bold face. 

 10 

This work investigates the seasonal-to-interannual prediction skill of Arctic sea-ice extent (SIE) using a set of 

hindcast experiments performed with the MIROC GCM. The authors investigate prediction skill for detrended 

Arctic SIE, identifying skillful predictions up to one year in advance. They also examine the key physical 

mechanisms impacting prediction skill, concluding that North Atlantic ocean heat content anomalies are a source 

of skill for December SIE predictions and that sea ice volume is a source of skill of September SIE predictions. 15 

 

I commend the authors for their focus on physical mechanisms and their relation to the reported SIE prediction 

skill. However, I have a number of serious concerns with the manuscript in its present form. In particular, my 

major concerns are: (1) the authors’ choice of Arctic domain, and how this choice biases and confuses results 

throughout the manuscript; (2) the definition of ocean heat content and its impact on the proposed advective 20 

ocean heat content mechanism; and (3) the apparent disagreement of SIE lagged correlation values with 

previously published literature. Specific comments detailing these concerns are provided below. 

 

Thank you very much for your concerns on our study. (1) Since we focus on the physical processes in the 

Arctic Ocean, we did not change the domain (please read our responses to referee’s comments 1 and 2). (2) 25 

We recalculated ocean heat content and newly reconstructed Figures 3 and 4, according to your 

suggestions, and also partly rewrote the text. (3) Since our statements in the previous manuscript were not 

correct, we rewrote the text. 

 

Note: I will use the convention p.l throughout this review to refer to page number p and line number l of the 30 

discussion paper.  
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Major Comments:  

Before beginning the major comments, I would like to clarify a convention. The authors use a different lead-
naming convention than the hindcast studies cited on 2.7. For example, a July 1 forecast of September SIE is 
referred to as a “lead-2” forecast in the literature cited on 2.7. In the manuscript, the authors refer to this 
forecast as a “lead-3” forecast. The authors should change their naming convention to be consistent with 5 
previous hindcast studies. I will use the commonly used convention in this review. 

Thank you very much for letting us know about a lead-naming convention. In accordance with your advice, 
we modified the lead-naming and the corresponding text. For example, we replaced “1 year” with “11 
months” in the revised manuscript (1.12). 

Major Comment 1) Choice of Arctic domain  10 

1. The author’s define their Arctic Ocean domain as all gridpoints north of 65N. They also exclude Baffin Bay 
and Hudson Bay from their Arctic Ocean domain without providing any justification for this decision. The Arctic 
Ocean domain choice directly affects the interpretation of essentially all reported results in the paper. I suspect 
that Figures 1, 2, 3, and 4 would all be notably different if the authors analyzed the commonly used pan-Arctic 
domain (i.e. all northern hemisphere gridpoints). Unless the authors have a compelling reason to focus on the 15 
domain north of 65N (and also to exclude Baffin/Hudson Bay), I suggest using a Northern Hemisphere domain 
throughout the paper. This would greatly reduce confusion and make the results more plainly interpretable. This 
would also make these results directly comparable to the seasonal prediction skill estimates that the authors cite 
on 2.7, which would make this work much more relevant to a broader community.  

So far, many previous studies on the predictability of Arctic sea ice extent with climate model have focused 20 
on the Pan-Arctic (or the Northern Hemisphere) domain. Furthermore, recent studies (1Sigmond et al., 
2016; 2Bushuk et al., 2017) have evaluated the regional predictability in the Pan-Arctic domain. On the 
other hand, we focus on physical processes in the Arctic Ocean interior contributing to the seasonal-to-
interannual predictability of the Arctic sea ice extent. In the present study, therefore, we would like to use 
the domain north of 65oN where sea ice has experienced rapid changes especially in the Pacific Sector of 25 
the Arctic Ocean (e.g., 3Comiso, 2012). In that case, the Baffin Bay and Hudson Bay are partly included in 
the domain, but the directions of main surface currents are heading from the Arctic Ocean interior 
(shelves and basins) to the Baffin Bay through the straits of the Canadian Archipelago (e.g., 4Aksenov et al., 
2011). Thus, direct impacts of the Baffin Bay and Hudson Bay on physical processes through the Arctic 
Ocean interior are considered to be small. To clearly extract the impacts of physical processes through the 30 
Arctic Ocean interior on the Arctic sea ice, we did not consider the Hudson Bay and Baffin Bay. 

1. Sigmond, M., Reader, M. C., Flato, G. M., Merryfield, W. J., and Tivy, A.: Skillful seasonal forecast of 
Arctic sea ice retreat and advance dates in a dynamical forecast system, Geophys. Res. Lett., 43, 12457-
12465, doi:10.1002/2016GL071396, 2016. 

2. Bushuk, M., Msadek, R., Winton, M., Vecchi, G. A., Gudgel, R., Rosati, A., and Yang, X.: Skillful 35 
regional prediction of Arctic sea ice on seasonal timescales, Geophys. Res. Lett., 44, 
doi:10.1002/2017GL073155, 2017. 
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3. Comiso, J. C.: Large decadal decline of the Arctic multiyear ice cover, J. Clim., 25, 1176-1193, 2012. 

4. Aksenov, Y. Ivanov, V. V., A. J. G. Nurser, S. Bacon, I. V. Polyakov, A. C. Coward, A. C. N. Garaboto, 
and Moeller, A. B.: The Arctic circumpolar boundary current, J. Geophys. Res., 116, C09017, 
doi:10.1029/2010JC006637, 2011. 

In the revised manuscript, we removed “Note that Hudson Bay and Baffin Bay are excluded” (3.23-24 in 5 
the previous manuscript) from the text, and newly added “In that case, the Baffin Bay and Hudson Bay are 
partly included in the domain, but the directions of main currents are heading from the Arctic Ocean 
interior (shelves and basins) to the Baffin Bay through the straits of the Canadian Archipelago (e.g., 
Aksenov et al., 2011). Thus, direct impacts of the Baffin Bay and Hudson Bay on the Arctic Ocean interior 
are considered to be small.” to the text (3.30-33). In addition, we removed Figures S3 and S4 in the 10 
previous supplement to focus on the physical processes in the domain north 65oN, although Figures S1 and 
S2 are remained to compare the previous studies. 

2. The authors’ definition of Arctic domain and corresponding SIE (SIE_AO in the manuscript) is confusing 
because it systematically excludes many regions of high winter SIE variability, including the Labrador Sea, 
Bering Sea, Sea of Okhotsk, and Hudson Bay. This means that SIE_AO behaves like pan-Arctic SIE during the 15 
summer months, and behaves like GIN and Barents SIE in the winter months. In the melt/growth seasons, 
SIE_AO is a complex mix between these two. For each month, the reader is forced to perform a mental masking 
of the Arctic and think about what regions are actually contributing to SIE_AO variability in that given month. 
This significantly clouds the results of the paper. My specific comments related to this confusion are:  

For the reasons mentioned in our response to referee’s comment 1, the area north of 65oN excluding Baffin 20 
Bay and Hudson Bay is defined as the Arctic domain in this study. As you pointed out, since the Labrador 
Sea, Bering Sea, Sea of Okhotsk, and Hudson Bay are excluded, the signal of winter SIEAO might be 
limited to the Barents Sea and GIN Sea. However, one of the main results of this study is the December 
SIEAO. In that case, positive regression and correlation spatial patterns are seen in the Barents Sea even in 
the results for the Northern Hemisphere domain (please see Figure S4 in the previous supplement). Thus, 25 
the definition of the Arctic domain does not seem to affect the main results of this study, at least, for the 
December SIEAO. 

3. 3.27-32: Figure 1a shows significantly higher melt season to growth season reemergence that Fig S1a. This is 
because Barents/GIN SIE anomalies are more persistent than anomalies in other Arctic regions, and these 
anomalies dominate the winter SIE_AO signal. I suggest checking the ratio of March SIE_AO standard deviation 30 
to pan-Arctic SIE standard deviation. This will indicate the amount of variance being lost due to the chosen AO 
mask (more on this in Major Comment 3, below)  

According to your advice, we checked the ratio of SIEAO standard deviation to pan-Arctic SIE standard 
deviation for March. As a result, the value was 0.64. As you suggested, the remaining 36% is lost due to the 
domain selection, which might be explained by variability in the Labrador Sea, Bering Sea, Sea of Okhotsk, 35 
and Hudson Bay, and affect the difference in the winter reemergence between Figure 1a and Figure S1. In 
the revised manuscript, we removed “In addition, the correlation coefficients are higher than those shown 
in Day et al. (2014b), for example, at a lead time of one month for May. This may be due to differences in 
the observations, temporal periods, and areas used for calculating the sea ice extent (Fig. S1)” (3.30-32 in 
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the previous manuscript) from the text, and then added “As for the SIE in the Northern Hemisphere (Fig. 
S1a), the correlation patterns are similar those in Day et al. (2014b), except for a lead time of one month 
for May which may be due to difference in observations (Fig. S1d). However, reemergence in winter is 
weaker than that for SIEAO. This is because SIEAO exclude other regions contributing to the winter sea ice 
variability.” to the text (4.9-12). 5 

4. 4.4: The RMSE values in Fig. 2b are artificially low because SIE_AO doesn’t have much winter SIE variability.  

Referee is quite correct. We added the reason why the RMSE values are low in winter as follows. “The 
RMSE values in winter are large (Fig. S2b) compared to Fig. 2b because SIEAO does not include the area where sea 
ice variability is large.” to the text (4.28-29). 

5. 4.4-9: Why are the ACC values in Fig 2a and Fig S2a so different? In Fig. S2a there are a number of cases in 10 
which the short lead forecasts are less skillful than the long lead forecasts. For example, for the Jan 1 
initialization, the lead 0-2 skill is substantially lower than the lead 9-11 skill. This is strange behavior and should 
be reported/commented on. Fig S2a is highly relevant as a direct comparison with other hindcast studies. 
Therefore, I believe that this figure should be a centerpiece of this paper.  

In the Sea of Okhotsk, the Bering Sea, and the Labrador Sea, the ACC and RMSE between the 15 
observations and the hindcasts for sea ice concentration are lower and higher at the short lead time, 
respectively, for the hindcasts started in January and April 1st (not shown). This might influence the ACC 
for SIE in the Northern Hemisphere. In the revised manuscript, we added “The lower ACC at the short lead 
time for the hindcasts started from January and April (Fig. S2a) may be due to the lower ACC and higher RMSE for 
sea ice concentration in the Sea of Okhotsk, the Bering Sea, and the Labrador Sea (not shown).” to the text (4.26-28). 20 

6. 4.13-16: The difference between Fig 2d and Fig S2d directly shows the effect of the domain choice. I expect 
this effect to be even larger for Jan, Feb, Mar, Apr sea ice. On the other hand, the September SIE curves in Fig 
2c and Fig S2c are identical.  

As you pointed out, the difference between Figure 2d and Figure S2d is due to the effect of the domain 
choice. In the revised manuscript, we added “The difference between Figure 2d and Figure S2d is also due 25 
to the effect of the domain choice.” to the text (4.29-30).  

7. 4.27-29: The summer to winter differences in SIV-SIE correlations are much less pronounced when using a 
northern hemisphere domain for SIE (Fig 3a vs Fig S3a). This should be commented on in the text. Also, in Fig. 
S3 is SIV/OHC computed north of 65N or using a northern hemisphere domain?  

As you pointed out, correlation coefficients between SIV and SIE are significant in all season for the 30 
Northern Hemisphere domain (Figure S3a in the previous supplement). In the previous manuscript, we 
used the domain north of 65oN for computations of SIV and OHC. However, the same domain as the SIEAO 
should be used, as pointed out by referee #2. The difference between Figure 3a and Figure S3a might be 
due to the calculation method. In the revised manuscript, we recalculated SIV and OHC in the domain 
north of 65oN excluding the Hudson Bay and Baffin Bay (please see new Figure 3). Here OHC is integrated 35 
from the surface to a depth of 200 m, according to referee’s comment 11. On the other hand, we removed 
Figure S3 in the previous supplement for the reasons mentioned in our response to referee’s comment 1. 
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8. 5.5-6: This is not very surprising, given that other most other regions have been excluded!  

As you pointed out, the sentence of “The most significant signals for both SIC and SIT are found in the 
Barents Sea (BS) of the Arctic Ocean (Figs. 4a and 4b)” may be not surprising result. However, even in the 
SIE in the Northern Hemisphere (Figures S4a and S4b in the previous supplement), similar but somewhat 
weak spatial patterns are seen in the BS. This indicates that the BS is one of dominant regions for the 5 
December SIE variability not only in the north of 65oN but also in the Northern Hemisphere. 

9. 5.6-7: This may be true, but the domain choice biases results towards finding a signal in the Barents/GIN seas.  

As mentioned in our response to referee’s comment 8, significant signal in the BS can be seen even in the 
case of the Northern Hemisphere domain, although a signal in the GIN Sea disappears and significant 
signal appear partly in the North Pole, the Labrador Sea, and the Hudson Bay. 10 

Major Comment 2) Definition of OHC and advection mechanism  

10. The authors define ocean heat content by integrating vertically from the base of the mixed layer to 200m 
depth. What is the rationale for excluding the mixed-layer heat content from this integral? I believe it is crucial to 
include the heat content from the mixed layer, as this is the heat that has direct access to the sea ice and 
therefore has greatest potential to influence sea ice variability. Moreover, by excluding the mixed-layer heat 15 
content, the OHC field becomes undefined when mixed layers become deeper than 200m in the winter months. 
This creates a very notable “hole” in the winter OHC fields in the Barents and GIN Seas. The authors claim that 
shifting correlation patterns in Fig 4c-f are evidence of advective processes. However, the main feature that I see 
is a shifting domain over which the OHC field is defined.  

As suggested by the previous studies [e.g., 5Nakanowatari et al., 2014], ocean temperatures around a depth 20 
of 200 m are effective for the sea ice prediction at the long lead-time. Motivated by the previous studies, we 
focused on the subsurface water as one of key variables that could provide memory on seasonal-to-
interannual sea ice variability. In the previous manuscript, we did not consider the heat content within the 
mixed layer, to remove the direct effects due to the atmospheric heating and cooling. However, referee #2 
has also commented the definition of the OHC and advection processes. In the revised manuscript, we 25 
recalculated the OHC. Please read our response to referee’s comment 11. 

5. Nakanowatari, T., Sato, K., and Inoue, J.: Predictability of the Barents sea ice in early winter: Remote 
effects of oceanic and atmospheric thermal conditions from the North Atlantic, J. Clim., 27, 8884-8901, 
doi:10.1175/JCLI-D-14-00125.1, 2014. 

11. I strongly suggest the authors recompute OHC by integrating from the surface to 200m, and produce new 30 
versions of Fig 3 and 4 using this OHC field. This will allow the maps in Fig 4c-f to be defined at all gridpoints, 
and allow for a better assessment of the proposed adjective mechanism. Also, I am interested to see if the winter 
OHC correlations in Fig 3d-f become stronger with this new definition.  

According to your suggestions, we reconstructed Figures 3 and 4 using the OHC from the surface to a 
depth of 200 m (please see new Figures 3 and 4), and rewrote the text (please read Section 4 in the revised 35 
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manuscript). For comparison, we also added Figures 3d-3f and Figures 4c-4f in the previous manuscript to 
supplement as new Figure S4. 

12. Also, is the December SIE_AO time series used in Fig. 4 computed using the model-predicted SIE or 
observed SIE? In other words, is this proposed mechanism based on correlations with observations, or is it a 
“perfect model” mechanism?  5 

In Figure 4, we used only data from the hindcasts (i.e., the model-predicted SIEAO). 

Major Comment 3) Lagged correlation analysis  

13. The lagged correlation results shown in Fig. 1a are significantly higher than those reported in Day et al. 
(2014). On first reading, this seems like a striking discrepancy. However, I believe this difference can primarily 
be attributed to the authors SIE_AO domain choice. It needs to be made very clear that Fig. 1a should not be 10 
compared directly with the Day et al (2014) results. 

As you pointed out, comparison of Figure 1a and result of Day et al. (2014) was not fair. In the revised 
manuscript, we rewrote the text by comparing Figure S1a and Day et al. (2014) as follows. “As for the SIE 
in the Northern Hemisphere (Fig. S1a), the correlation patterns are similar those in Day et al. (2014b), 
except for one month lead time of May which may be due to difference in observations (Figs. S1d)” (4.9-10). 15 

14. Also, SIE_AO lagged correlations with NSIDC data should be added to Fig S1. Note that changing from the 
AO domain to the NH domain would alleviate this concern.  

As suggested, we added “Lagged correlations of SIEAO with NSIDC data” to new Figure S1 (please see new 
Figure S1e). For the reasons mentioned in our response to referee’s comment 1, however, we mainly show 
results using the domain north of 65oN. 20 

Minor Comments:  

15. 1.29: I suggest changing “predictions” to “projections”, to make this distinct from the seasonal predictions 
that are the primary focus of this paper.  

As suggested, we replaced “predictions” with “projections” (1.29). 

16. 2.6: Is this based on detrended SIE or full SIE anomalies? 25 

This is based on detrended SIE. We added “detrended” to the text (2.6). 

17. 3.1: Should specify that this is ocean temperature.  

As suggested, we rewrote the text (3.1). 

18. 3.2: What ocean data goes into the objective analysis of Ishii et al. (2006)? What SIC data is used?  
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Ocean data is based on the latest observational databases [the World Ocean Database (WOD05), World 
Ocean Atlas (WOA05), and Global Temperature Salinity Profile Program (GTSPP) provided by the U.S. 
National Oceanographic Data Center (NODC) and a SST analysis [Centennial in situ Observation Based 
Estimates of variability of SST and marine meteorological variables (COBE SST); 6Ishii et al. (2005); 
7Hirahara et al. (2014)]. Also, SIC data is based on satellite observations from the Nimbus-5 Scanning 5 
Multichannel Microwave Radiometer (SMMR), the Special Sensor Microwave Imager (SSM/I), and the 
Special Sensor Microwave Imager/Sounder (SSMIS; 8Armstrong et al., 2012). 

6. Ishii, M., Shouji, A., Sugimoto, S., and Matsumoto, T.: Objective analyses of SST and marine 
meteorological variables for the 20th century using ICOADS and the Kobe Collection. Int. J. Climatol., 25, 
865-879, doi:10.1002/joc.1169, 2005. 10 

7. Hirahara, S., Ishii, M., and Fukuda, Y.: Centennial-scale sea surface temperature analysis and its 
uncertainty. J. Climate, 27, 57-75, doi:10.1175/JCLI-D-12-00837.1, 2014. 

8. Armstrong, R. L., Knowles, K. W., Brodzik, M. J., and Hardman, M. A.: DMSP SSM/I-SSMIS 
Pathfinder daily EASE-grid brightness temperatures, Jan 1987-Dec 2011. National Snow and Ice Data 
Center, CO, digital media. [Available online at http://nsidc.org/data/nsidc-0032.html.], 2012. 15 

In the revised version, we added “Ocean data is based on the latest observational databases [the World 
Ocean Database (WOD05), World Ocean Atlas (WOA05), and Global Temperature Salinity Profile 
Program (GTSPP) provided by the U.S. National Oceanographic Data Center (NODC) and a SST analysis 
[Centennial in situ Observation Based Estimates of variability of SST and marine meteorological variables 
(COBE SST); Ishii et al. (2005); Hirahara et al. (2014)]. Also, SIC data is based on satellite observations 20 
from the Nimbus-5 Scanning Multichannel Microwave Radiometer (SMMR), the Special Sensor 
Microwave Imager (SSM/I), and the Special Sensor Microwave Imager/Sounder (SSMIS; Armstrong et al., 
2012).” to the text (3.3-9). 

19. 3.19-20: This is unclear and needs to be explained more precisely.  

Probably, we are misleading referee’s comment. Here, we calculated the climate drift following to method 25 
by INTERNATIONAL CLIVAR PROJECT OFFICE (ICPO, 2011) to remove the climate drift from the 
hindcasts. 

20. 3.28: How close is the SIC from Ishii et al. (2006) to SIC observations? Are there any known 
biases/differences?  

Figure A1 shows the differences between Ishii et al. (2006) and HadISST for summer (July-August-30 
September) and winter (January-February-March) sea ice concentration (SIC). Here we used sea ice 
concentration from HadISST as observation because of the same horizontal resolution (1o x 1o). In summer, 
higher SIC (+10%) are seen in the Atlantic Sctor of the Arctic Ocean and lower SIC (-10%) in the Pacific 
Sector (Figure A1a). Although the biased SIC patterns in winter are similar to those in summer except for 
the Okhotsk Sea (Figure A1b), particularly higher SIC (+20%) are apparent in the GIN Sea, Labrador Sea. 35 
However, these differences are smaller than standard deviation in SIC from the HadISST. 
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Figure A1. Differences between Ishii et al. (2006) and HadISST for summer (JAS; July-August-September) 
and winter (JFM; January-February-March) averaged sea ice concentration (SIC, %). Positive and 
negative values mean that SIC is higher and lower in Ishii et al. (2006) than HadISST. 

21. Fig 2: Legends should be added to panels c and d  

As suggested, we added legends to Figures 2c and 2d. Please see new Figure 2. 15 

22. Fig 2 caption: Is July 1 referring to panel c and Jan 1 referring to panel d? This is currently unclear.  

We modified Figure 2 caption. Please see new Figure 2. 

23. 4.18-20: I disagree with the second half of this sentence. The July 1 forecasts appear to have significant skill 
for Oct, Dec, Feb, and Mar.  

Referee is quite right. We removed “only” from the text (5.3). 20 

24. 4.19: What is “the longest lead time” referring to here? Do you mean “long lead times”?  

As you pointed out, “the longest lead time” means long lead times. In the revised manuscript, we replaced 
“the longest” with “long” (5.3). 

25. Figure 4: Text labels should be added to the various panels to make this figure more readable. 
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As suggested, we reconstructed Figure 4. Please see new Figure 4. 

26. 5.24-26: I suggest adding Fig. S7 to the manuscript. Also, in this figure is the September SIE_AO the 
observed time series, or the time series from the hindcast experiments? This needs to be clarified.  

According to your suggestion, we added Figure S7 in the previous supplement to the main text as new 
Figure 5 after the modification using OHC from the surface to 200 m. Please see new Figure 5. Also, this 5 
figure is based on the hindcasts as in Figures 3 and 4. 

27. 6.7-9: These two sentences contradict one another. Please clarify. 

As you pointed out, these two sentences were contradictory. In the revised manuscript, we removed the 
second sentence “Nevertheless, we note that the forecast skill of summer SIEAO is not necessarily low, 
because the hindcasts initialized in January and April have significant skills for SIEAO in August and 10 
September” (6.7-9 of the previous version) from the text. 

 
 
 
 15 

 
 
 
 
 20 

 
 
 
 
 25 
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Response to Anonymous Referee #2 

We deeply appreciate the reviewer's kind remarks about our paper. Detailed comments from reviewer are 

numbered consecutively and cited in italics, followed by our reply in bold face. 

 

### Summary ###  10 

The authors present results on Arctic sea-ice extent prediction skill obtained with a MIROC-based forecast 

system. Further, they explore possible reasons for differences in skill in different times of the year based on 

lagged correlation and regression pat- terns, focussing on preceeding states of the (subsurface) ocean heat 

content and of the sea-ice itself.  

In general, The paper is generally well-written and provides interesting results that merit publication. However, 15 

there are some points that in my view need further scrutiny. For example, the conclusion that the advection of 

subsurface water masses from the Altantic Ocean into the Barents Sea, though plausible, is in my view not 

sufficiently supported by the results shown. Also, the definition of the subsurface ocean heat content and how it’s 

interpreted deserves additional attention, and the rationale behind performing the lagged correlation/regression 

analysis primarily based on the hindcasts rather than on the control run, and what might cause differences 20 

between them, needs clarification. In addition, there is quite a number of minor issues, listed below. 

Therefore I recommend the manuscript should be reconsidered after major revisions.  

 

Thank you very much for your summary comments and suggestions. We respond to specific comments as 

below. 25 

 

### Specific comments ### 

1. P1L8: The term "seasonal-to-interannual" should be shifted in front of "predictions".  

 

As suggested, we corrected it (P1L8). 30 
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2. P1L10: "of up three years" - here is a word ("to") missing. 

 

Thank you. We replaced “of up” with “up to” (P1L10). 

 

3. P1L12: "December SIE_AO can be predicted up to 1 year ahead" - I suggest that this statement should be 5 

made more quantitative, e.g., by providing the ACC, and maybe also substantiated with the corresponding p-

value. 

 

As suggested, we added “(anomaly correlation coefficient is 0.42)” to the text (P1L13). 

 10 

4. P1L13-15: The role of advection as indicated here is in my view insufficiently supported by the results shown; 

see details below. 

 

Please see our response to the referee’s comment 20. 

 15 

5. P1L23: "problem" - just as a side remark, I think this judgmental term adds an unnecessary political 

dimension to this observation. 

 

According to your advice, we removed “An even more serious problem is the decline in Arctic sea ice 

thickness (Kwok et al., 2009), which has decreased by around 65% from 1975 to 2012 (Lindsay and 20 

Schweiger, 2015)”, and added “Moreover, Arctic sea ice thickness has decreased by around 65 % from 

1975 to 2012 (Kwok et al., 2009; Lindsay and Schweiger, 2015)” to the text (P1L23-24). 

 

6. P2L1: "or" - I think I know what is meant, but using "or" here seems illogical. 

 25 

We replaced “two- or five-year” with “two and five years” (P2L1). 

 

7. P2L2: "the potential predictability for sea ice extent is continuously one to two years" - I think this statement 

again needs some numbers; theoretically, marginal (but pratically meaningless) potential predictability should 

be out there for very long lead times, whereas pratically meaningful potential predictability survives much 30 

shorter lead times. At least, something like an ACC threshold which is considered to distinguish "meaningful" 
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from "no" skill should be provided. (Note that "statistical significance" is not necessarily the correct concept 

needed here.) 

 

According to 1Blanchard-Wrigglesworth et al. (2011), predictability is considered to be significant when 

the root mean square deviation of the ensemble of prediction experiments is less than that of the reference 5 

based on an F-test (for example, please see Figure 1 of Blanchard-Wrigglesworth et al. (2011)). However, 

the specific value that is considered to distinguish “meaningful” from “no” skill is not found in the paper. 

It might be overlooked, but we did not add any number to the text. 

 

1. Blanchard-Wrigglesworth, E., Bitz, C. M., and Holland, M. M.: Influence of initial conditions and 10 

climate forcing on predicting Arctic sea ice, Geophys. Res. Lett., 38, L18503, doi:10.1029/2011GL048807, 

2011. 

 

8. P2L5-6: "The observed Arctic sea ice extent based on ensemble hindcasts can be predicted up to 2–7 and 5–11 

months ahead for summer and winter" - see my previous remark.  15 

 

As you pointed out, the specific value like an ACC threshold should be provided in the text. Predictability 

up to 2-7 and 5-11 months are based on the several results by previous studies (e.g., 2Chevallier et al., 2013; 
3Sigmond et al., 2013; 4Wang et al., 2013; 5Msadek et al., 2014; 6Peterson et al., 2015; 7Guemas et al., 2016; 
8Sigmond et al., 2016). For example, Chevallier et al. (2013) have provided values for correlations and 20 

bootstrap test in Table 1. Also, in the study of Sigmond et al. (2016), forecast skill is considered to be 

significant when anomaly correlation coefficient exceeds to 0.296. However, such a value is not necessarily 

described in the previous all papers, although the assessment methods for forecast skill are described. 

Thus, we would like to avoid providing something like an ACC threshold to the text. 

 25 
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9. P2L16: Again, I think that the term "seasonal-to-interannual" needs to be relocated, this time in front of 

"predictability".  

 25 

As suggested, we correct (P2L17). 

 

10. P3L7-8: "eight ensemble members produced by perturbing the sea surface temperature based on the 

observational errors" - I am wondering whether these perturbations are able to generate any meaningful spread, 

given that the 3D ocean and atmosphere are assimilated towards the same, gap-free, reanalyses. Or, are the 30 

differences just very small (and all "assimilations" thereby very similar; note that Fig.2 also shows just one 
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single "assimilation"), but of course sufficient to trigger subsequent divergence during the free forecast/hindcast 

runs due to atmospheric chaos, so that the same effect could have been obtained with quasi arbitrary small initial 

perturbations? Maybe the authors can comment. 

 

Thank you for your comments. As for assimilation experiments, the ensemble spreads for detrended SIEAO 5 

are range from 102 to 103 km2 (not shown) and therefore the time series of SIE for each member appear to 

a single curve. As you pointed out, the spread is very small and therefore the same effect could be obtained 

with small initial perturbations. However, in the present study, we have not conducted any hindcasts with 

small initial perturbations, for example, by the lagged averaged forecast (LAF; 9Hoffman and Kalnay, 

1983) method. Thus we cannot evaluate whether the initial SST perturbations are an effective method for 10 

producing the ensemble members or not, which will be remained as future works. At least, the time series 

of the ratio of ensemble spread for hindcasts to the corresponding RMSE indicates that the ensemble 

spread for hindcasts have values close to the RMSE (Figure B1), although are small for September. The 

initial SST perturbation methods seem to produce the meaningful spread to some extent. 

 15 
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 25 

Figure B1. Time series of the ratio of prediction ensemble spread to the RMSE for (a) September started in 

July 1st and (b) December started in January 1st. 

 

9. Hoffman, R. N., and Kalnay, E.: Lagged average forecasting, an alternative to Monte Carlo forecasting, 

Tellus, 35A, 100-118, doi:10.1111/j.1600-0870.1983.tb00189.x. 30 
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11. P3L17-18: "the detrended components were calculated by subtracting monthly linear trends during 1980–

2009 from the original monthly data, and anomalies are defined as deviations from the climatology from 1980–

2009" - are not the "detrended components" mentioned at the beginning of this sentence already the 

"anomalies"?  

 5 

The “detrended components” are not anomalies. Firstly, anomalies are calculated by the definition 

described in the text, and then the linear trend is removed from anomalies. 

 

12. P4L6-7: "September SIE_AO can be dynamically predicted from the previous July" - again, I think this 

statements needs some quantification; the same holds for the subsequent sentence.  10 

 

As suggested, we added the values of ACC to the text (P4L16, P4L17, and P4L19). 

 

13. P4L8-9: "The ACC is also significant for the winter SIE_AO, in particular for December, except for the 

hindcasts started from April 1st, indicating the potential use of dynamical forecasts up to 1 year ahead" - the fact 15 

that December SIE_AO is more skillfully predicted by the January hindcasts than by the April hindcasts, also 

visible in Fig.2, deserves more explanation. While such "reemergence" of skill is often encountered when simple 

statistical relations - like persistence - are used, in situations with strong seasonal cycles like given for sea ice, to 

my understanding this is not to be expected for dynamical forecasts: the closer to the target date they are 

initialised (taking into account current as well as past observations!), the better should the dynamical forecasts 20 

become. To be specific, the OHC content anomalies put into the January hindcasts should also make it into the 

April hindcasts, although subject to some advection etc. Instead, could this unexpected drop of forecast skill be a 

mere matter of sampling uncertainty?  

 

In the present study, the December SIEAO can be predicted from January 1st but not from April 1st. To 25 

provide more explanation, here we considered two possibilities for the reasons. Firstly, we created the 

same figure as Figure 4 for the control experiment (Figure S3) and the April hindcasts (Figure S5). As in 

Figure 4, significant regression and correlation patterns appear in Figures S3 and S5. This suggests that 

the same physical mechanism occurs in the hindcasts started from April 1st. Thus the sampling 

uncertainty may not be the main reason for difference between the January hindcasts and the April 30 

hindcasts. Secondly, we compared the SIC RMSE between the observations and the hindcasts. In the 
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Barents Sea contributing to the skill of the December SIEAO, the SIC RMSE in April is larger in the April 

hindcasts than the January hindcasts (Figure B2). Possibly, the larger RMSE at 0 month lead time in the 

Barents Sea is the reason why the December SIEAO cannot be predicted by the April hindcasts. In the 

revised manuscript, we added “In contrast, the December SIEAO cannot be predicted from April 1st (Fig. 

2a), although significant regression and correlation patterns appear in the results for the April hindcasts 5 

(Fig. S5). This may be because the RMSE for April SIC in the Barents Sea is larger in the April hindcasts 

than the January hindcasts (not shown).” to the text (P6L6-8).  
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Figure B2. April RMSE for sea ice concentration (%) at (a) 3 months lead time from the January hindcasts 

(HIND.JAN) and (b) 0 month lead time from the April hindcasts (HIND.APR). 25 

 

14. P4L10: "The RMSE for all 10 hindcasts increases throughout the melting and early freezing seasons (July–

October), before decreasing in November–June" - to be precise, it appears that the RMSE does not "increase" 

and "decrease" during those periods, but that it "is larger" and "is smaller" (with the change happening in 

between).  30 
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The sentence in the previous manuscript was not precise. As suggested, we rewrote this part as follows. 

“The RMSE for all hindcasts is larger throughout the melting and early freezing seasons (July-October), 

before smaller values in November-June.” (P4L20-21). 

 

15. P4L18-19: See again my comment on P4L8-9! 5 

 

Please read our response to referee’s comment 13. 

 

16. P4L19: "those started from July 1st, in which only the September SIE_AO is significant" - this statement 

seems to contradict Fig.2 where there are many "significance stipples" for other target months as well. 10 

 

Your comment is quite right. We removed “only” from this sentence (P5L3). 

 

17. P4L22-23: "the SIV_AO is defined as the sum of the grid cell volumes obtained by multiplying the sea ice 

thickness (SIT) by the SIC for grid cells with SIC greater than 15 %" - if I am not mistaken, the multiplication by 15 

the grid-cell areas is missing here, no? 

 

Thank you. As you pointed out, this sentence was not precise, but the SIV itself was correctly calculated. 

We added “and the area” to the text (P5L7). 

 20 

18. P4L23-25: "the OHC_AO is the vertically integrated temperature multiplied by the density and specific heat 

capacity of seawater from the mixed layer depth (MLD) to a depth of 200 m, in the area north of 65◦ N" - (i) The 

way it’s defined here, temperature is vertically integrated instead of averaged, so the distance from the MLD to 

200m directly enters the "OHC" and should thereby dominate variations in "OHC" instead of temperature 

variations, which seems odd. Please clarify.  25 

 

In the previous manuscript, we did not consider the heat content in the mixed layer, in order to remove the 

direct effects due to the atmospheric heating and cooling. However, as you pointed out, our previous 

definition of the OHC is affected by seasonal changes in the distance from the MLD to a depth 200 m (i.e., 

water volume). According to suggestions from referee #1 and referee #2, in the revised manuscript, we 30 

recalculated the OHC from the surface to a depth of 200 m and rewrote the text using new Figures 3 and 4. 
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For comparison, we also added Figures 3d-3f and Figures 4c-4f in the previous manuscript to supplement 

as new Figure S4. 

 

19. (ii) Why is not the same area used as for SIE_AO, that is, excluding Hudson Bay and Baffin Bay? 

As you pointed out, we should calculate in the same region used as for SIEAO. In the revised manuscript, 5 

we recalculated the SIV and OHC in the domain north of 65oN excluding Hudson Bay and Baffin Bay. 

Please see new Figure 3. 

 

20. P5L7-18 and Fig.4c-f: I am not convinced that the "advection and emergence hypothesis" constructed here is 

sufficiently supported by the results shown. Firstly, some of the apparent propagation of ("subsurface") OHC 10 

anomalies from off the Scnadinavian western coast to the eastern Barents Sea might be simply due to a slight 

shift of the area with a mixed layer deeper than 200m (areas with quite deep convection): a larger part of the 

Barents Sea is thereby effectively "masked" in March compared to December in Fig.4 Secondly, the sea-ice edge 

extends further into the Barents Sea in March compared to December (I assume this is true also in these 

simulations), and ocean temperatures under ice are subject to weaker variability (with the surface being tied to 15 

the freezing point). Thirdly, the rather narrow stripe of anomalies off the Scandinavian coast in March - an 

important part of the presented explanation - is not present in the control run (Fig. S6). Maybe some clarification 

could be provided if Fig.S5 was also provided for lags -3, -6, and -9 months? It might also help to clarify things if 

the integration/averaging was done between fixed depths, so that nothing is masked and the MLD changes do not 

superimpose temperature anomaly changes. Even more simply, showing just SST anomalies might help. 20 

 

Thank you for your suggestions. As you pointed out, ocean is masked when the mixed layer depth become 

deeper than a depth of 200 m. Firstly, we recalculated the OHC from the surface to a depth of 200 m in the 

revised manuscript, as mentioned in our response to referee’s comment 18. Next we reconstructed new 

Figure 4 using new OHC and partly rewrote the Section 4 (P5L1-P6L21). 25 

 

21. P5L15-16: "The above features are also found in the control run, suggesting that the advection processes of 

the OHC in the hindcasts are not due to processes distorted by the influence of initialization or climate drift in 

MIROC5" - In fact, I do not quite understand the reason why the main figures related to the lagged correlation 

and regression alaysis are not based on the control run in the first place. Maybe it’s just me, but I am somewhat 30 

confused why this should be done primarily for the hindcasts, where also the statistical sampling is much worse. 
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If the main analysis was based on the control run, however, it would make sense to show corresponding results 

for the hindcasts as a supplement, to prove that the shown relations still hold, no? 

 

Referee comments may be correct. However, the main analysis using data from the hindcast experiments 

appear to be natural, as the first step, in order to investigate the physical processes contributing to the 5 

prediction skill of SIEAO. Meanwhile, since the hindcast data may be influenced by climate drift or 

initialization, a control experiment without initialization and anthropogenic effects is complementally used 

to interpret the analyzed results. 

 

22. P5L24: "the persistence of sea ice states initialized in July persists" - the first word maybe should be 10 

"anomalies" or similar? 

 

Here we would like to state that initialized sea ice states persist until September. In the revised version, we 

changed ”the persistence of sea ice states” to “the sea ice states”. (P6L13). 

 15 

23. P26-27: "possible mechanisms or sources cannot be detected in the hindcasts started from April 1st (Fig. 

S8)" - I’d like to repeat my points that this might be partly due to sampling, and that important regions are 

"masked" due to the MLD-related OHC definition. I would argue that Fig.S6d, based on the control run 

(implying better sampling, although showing March instead of April), supports the notion that the April state 

should be at least as informative as the January state to predict September SIE_AO.  20 

 

In the revised manuscript, we recalculated the OHC from the surface to a depth of 200 m, according to 

suggestions from referee #1 and referee #2, and then reconstructed Figure S8 in the previous supplement 

as new Figure S6. In the hindcasts started from April 1st, the September SIEAO shows similar lagged 

correlation patterns to the July hindcasts for SIVAO (Figure S6a) and OHCAO (Figure S6b). Thus, the same 25 

physical processes as the July hindcasts are expected to work in the April hindcasts. However, the positive 

regression and correlation patterns for SIC and SIT are weaker than those for the July hindcasts, 

particularly in the Pacific Sector of the Arctic Ocean (Figures S6c and S6d). In addition, the same figures 

based on the control experiment as Figure S6c and S6d are shown in Figure S7. Similar positive 

correlation and regression patterns for SIC and SIT clearly appear in the Pacific sector of the Arctic 30 
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Ocean, as in Figure 5. As you pointed out, the sampling uncertainty may be one reason for unclear signals 

in the hindcasts started from April 1st. 

 

In the revised manuscript, we removed “In contrast, possible mechanisms or sources cannot be detected in 

the hindcasts started from April 1st (Fig. S6), at least from the lagged correlation and regression analyses, 5 

although the September SIEAO is weakly correlated with the SIVAO and the OHCAO.” (P5L26-28 in the 

previous manuscript), and then newly added “In the hindcasts started from April 1st, the September 

SIEAO shows similar lagged correlation patterns to the July hindcasts for SIVAO (Fig. S6a) and OHCAO (Fig. 

S6b). Thus, the same physical processes as the July hindcasts are expected to work in the April hindcasts. 

However, the positive regression and correlation patterns for SIC and SIT are weaker than those for the 10 

July hindcasts, particularly in the Pacific Sector of the Arctic Ocean (Figs. S6c and S6d). In contrast, 

similar patterns to Fig. 5 clearly appear in the Pacific sector of the Arctic Ocean for the control experiment 

(Fig. S7). These results suggest that the persistence of sea ice contributes to the skill of September SIEAO 

started from April 1st, but the sampling uncertainty may lead to unclear signals in Fig. S6.” to the text 

(P6L15-21). 15 

 

24. P6L4-6: "Numerical experiments to confirm whether the subsurface OHC anomalies 5 originating from the 

North Atlantic control the December sea ice extent in the BS and eventually in the Arctic Ocean will be explored 

in future work." - I am actually quite curious to see results of such interesting experiments!  

 20 

Thank you for your interest. As mentioned in the text, we will conduct such an experiment in future works. 

 

25. P6L7-9: The first two sentences of this paragraph seem to contradict each other.  

 

As you and referee #1 pointed out, these two sentences were contradictory. We removed the second 25 
sentence “Nevertheless, we note that the forecast skill of summer SIEAO is not necessarily low, because the 
hindcasts initialized in January and April have significant skills for SIEAO in August and September” 
(P6L7-9 in the previous manuscript) from the revised text. 
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26. P6L20: "Further improvements in the predictability of sea ice" - here I would recommend to avoid the term 

"predictability (of)" because in my view "skill to predict" is more accurate.  

 

As suggested, we replaced “predictability” with “skill to predict” (P7L14). 

 5 

27. Fig.2: I would find it helpful if the situations shown in panels c) and d) could be highlighted in panels a) and 

b), e.g., by black boxes around the corresponding fields of the heat maps. Also, do I understand correctly that 

panel c) corresponds to a 3 months lead time, whereas panel d) corresponds to a 11 months lead time? That 

could be stated more clearly in the caption. 

 10 

In the revised manuscript, we reconstructed Figure 2 following your suggestions. Please see new Figure 2. 
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Abstract. To assess the skill of seasonal-to-interannual predictions of the detrended sea ice extent in the Arctic Ocean 

(SIEAO) and to clarify the underlying physical processes, we conducted ensemble hindcasts, started on January 1st, April 1st, 

July 1st, and October 1st for each year from 1980 to 2011, for lead times up to three years, using the Model for 10 

Interdisciplinary Research on Climate (MIROC) version 5 initialized with the observed atmosphere and ocean anomalies and 

sea ice concentration. Significant skill is found for the winter months: the December SIEAO can be predicted up to 11 months 

ahead (anomaly correlation coefficient is 0.42). This skill is attributed to the subsurface ocean heat content originating in the 

North Atlantic. The subsurface water flows into the Barents Sea from spring to fall and emerges at the surface in winter by 

vertical mixing, and eventually affects the sea ice variability there. Meanwhile, the September SIEAO predictions are skillful 15 

for lead times of up to 2 months, due to the persistence of sea ice in the Beaufort, Chukchi, and East Siberian Seas initialized 

in July, as suggested by previous studies. 

1 Introduction 

The Arctic has warmed more than twice as much as the global average (e.g., Bekryaev et al., 2010; Cohen et al., 

2014), called Arctic amplification. Sea ice reduction under climate change is one of the main processes contributing to Arctic 20 

amplification (e.g., Pithan and Mauritsen, 2014). Arctic summer sea ice extent has declined at about 14 % per decade 

(National Snow and Ice Data Center, 2016, http://nsidc.org/arcticseaicenews/). In September 2012, sea ice extent reached its 

minimum since satellite observations began in the late 1970s. Moreover, Arctic sea ice thickness has decreased by around 

65 % from 1975 to 2012 (Kwok et al., 2009, Lindsay and Schweiger, 2015). 

In contrast to the rapid warming in the Arctic, severely cold winters have occurred more frequently at midlatitudes. 25 

Although the exact cause is still being debated (e.g., Barnes and Screen, 2015), Mori et al. (2014) have shown, using 

ensemble experiments with an atmospheric general circulation model, that the more frequent cold winters at midlatitudes can 

be partly explained by the sea ice decrease in the Barents and Kara Seas. Therefore, further investigation of the mechanisms 

driving Arctic sea ice variability is of great importance for more accurate projections of climate change, not only in the 

Arctic but also for the midlatitudes. 30 
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A previous study based on two and five years perfect-model experiments from January 1st and September 1st has 

shown that the potential predictability for sea ice extent is continuously one to two years, primarily because of the 

persistence of ice thickness anomalies from summer to summer and the persistence of sea surface temperature anomalies 

from the melt to growth seasons (Blanchard-Wrigglesworth et al., 2011a; Guemas et al., 2014). These features are also found 

in the results of experiments comparing multiple climate models (Day et al., 2014b; Tietsche et al., 2014). The observed 5 

detrended Arctic sea ice extent based on ensemble hindcasts can be predicted up to 2–7 and 5–11 months ahead for summer 

and winter, respectively (e.g., Chevallier et al., 2013; Sigmond et al., 2013; Wang et al., 2013; Msadek et al., 2014; Peterson 

et al., 2015; Guemas et al., 2016; Sigmond et al., 2016). In these ensemble hindcasts, it is found that the ice thickness and the 

surface or subsurface water temperatures are closely related to the prediction skill, as suggested by idealized or perfect-

model experiments with climate models (e.g., Blanchard-Wrigglesworth et al., 2011b; Chevallier and Salas-Mélia, 2012; 10 

Day et al., 2014a). 

Until very recently, the mechanisms by which the above variables contribute to the prediction skill had not been 

quantified. Bushuk et al. (2017) examined the physical mechanisms underlying the prediction skill of regional sea ice extent 

and showed for the first time the importance of the initializations of ocean subsurface and sea ice thickness in their 

dynamical prediction system. 15 

Motivated by the above studies, we first conduct initialized ensemble hindcasts using a climate model to assess the 

seasonal-to-interannual predictability of sea ice extent in the Arctic Ocean and further investigate sources for prediction skill 

and clarify the physical processes linking the prediction skill to its sources. In particular, the present study reveals that 

subsurface ocean heat content originating from the North Atlantic contributes to the predictability of winter sea ice through 

advection and vertical mixing processes, which is somewhat different from the reemergence process of the local subsurface 20 

ocean temperature suggested by Bushuk et al. (2017). 

2 Experimental Designs 

The climate model used here is a low-resolution version of the Model for Interdisciplinary Research on Climate, 

version 5 (MIROC5) (Watanabe et al., 2010), which contributed to the fifth phase of the Coupled Model Intercomparison 

Project and the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5, 2013). The atmospheric 25 

component has a horizontal resolution of T42 spectral truncation (approximately 2.8°) and comprises 40 vertical layers up to 

3 hPa. The oceanic component has horizontal resolutions of 1.4° in longitude and 0.5–1.4° in latitude, and comprises 50 

vertical layers. The sea ice component of MIROC5 contains one-layer thermodynamics (Bitz and Lipscomb, 1999), elastic-

viscous-plastic rheology (Hunke and Dukowicz, 1997), and the subgrid ice thickness distribution (Bitz et al., 2001) with five 

categories: the detailed structure has been described in Komuro et al. (2012). 30 

To initialize MIROC5, we adopted anomaly assimilation for the atmosphere and ocean and full-field assimilation 

for sea ice. Anomalies were calculated as the deviations from the climatology defined by the 1961–2000 period. The 

observed 6-hourly air temperature and wind vectors from the 55-year Japanese Reanalysis (JRA-55) dataset (Kobayashi et 
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al., 2015) were linearly interpolated to the atmospheric model’s grid. The observed monthly ocean temperature, salinity, and 

sea ice concentration (SIC) from the gridded monthly objective analysis produced by Ishii et al. (2006) and Ishii and Kimoto 

(2009) were linearly interpolated to obtain the daily values, and the same grid as the ocean model. Ocean data is based on the 

latest observational databases [the World Ocean Database (WOD05), World Ocean Atlas (WOA05), and Global 

Temperature Salinity Profile Program (GTSPP) provided by the U.S. National Oceanographic Data Center (NODC) and a 5 

SST analysis [Centennial in situ Observation Based Estimates of variability of SST and marine meteorological variables 

(COBE SST); Ishii et al. (2005); Hirahara et al. (2014)]. Also, SIC data is based on satellite observations from the Nimbus-5 

Scanning Multichannel Microwave Radiometer (SMMR), the Special Sensor Microwave Imager (SSM/I), and the Special 

Sensor Microwave Imager/Sounder (SSMIS; Armstrong et al., 2012). 

In the assimilation runs, the atmospheric anomalies were assimilated into MIROC5 below 100 hPa at 6-hourly 10 

intervals and the oceanic anomalies above 3000 m depth at one-day intervals except in sea ice regions, using a modified 

incremental analysis update scheme (Tatebe et al., 2012). Meanwhile, SIC was assimilated at one-day intervals following 

Lindsay and Zhang (2006) and Stark et al. (2008). These assimilations were conducted over the period 1975–2011 with eight 

ensemble members produced by perturbing the sea surface temperature based on the observational errors. The atmospheric 

and oceanic initial states were obtained from a non-initialized twentieth-century run with historical natural and 15 

anthropogenic forcings. 

On the basis of the assimilation runs, the hindcast experiments were integrated for 3 years from January 1st, 2 years 

and 9 months from April 1st, 2 years and 6 months from July 1st and 2 years and 3 months from October 1st for each year 

from 1980 to 2011. The initial states of the atmosphere and ocean were obtained from the corresponding assimilation runs. 

In addition, a control run with MIROC version 5.2, which is a minor update of MIROC5, was used to interpret the physical 20 

processes contributing to the prediction skill in the hindcasts. This simulation was run with external forcings fixed at the year 

2000 levels under a multi-model inter-comparison project (Day et al., 2016). 

In Sect. 3 and Sect. 4, we analyze the detrended monthly anomalies to extract the internal variations with seasonal-

to-interannual timescales. Here, the detrended components were calculated by subtracting monthly linear trends during 

1980–2009 from the original monthly data, and anomalies are defined as deviations from the climatology from 1980–2009. 25 

Moreover, climate drifts in the hindcasts are removed according to the INTERNATIONAL CLIVAR PROJECT OFFICE 

(ICPO, 2011). As mentioned in Sect. 1, sea ice reduction in the Arctic Ocean, especially in the Barents and Kara Seas, could 

lead to extreme weather at midlatitudes, which may be related to the warming of the Arctic Ocean interior (e.g., Polyakov et 

al., 2012). To clearly interpret the physical mechanisms influencing sea ice extent in the Arctic Ocean (hereafter SIEAO), 

SIEAO is defined from the cumulative area for all grid cells north of 65° N with SIC greater than 15 %. In that case, the 30 

Baffin Bay and Hudson Bay are partly included in the domain, but the directions of main currents are heading from the 

Arctic Ocean interior (shelves and basins) to the Baffin Bay through the straits of the Canadian Archipelago (e.g., Aksenov 

et al., 2011). Thus, direct impacts of the Baffin Bay and Hudson Bay on the Arctic Ocean interior are considered to be small. 
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For comparison, the results for the detrended sea ice extent anomaly in the Northern Hemisphere are shown in the supporting 

information. 

3 Predictability of Arctic Sea Ice Extent 

We first examine the potential predictability of SIEAO (Fig. 1), based on the lagged auto-correlation coefficients, 

which is called the persistence forecast. The lagged correlations with the observations (Ishii et al. (2006) and Ishii and 5 

Kimoto (2009)) decrease within the first few months for all of the start months, and those originating between January and 

June subsequently rise again in the winter (November through March). Significant skill in the control run is obtained for 

greater lead times than in the observations, which is consistent with previous studies (e.g., Blanchard-Wrigglesworth et al., 

2011b; Day et al., 2014b). As for the SIE in the Northern Hemisphere (Fig. S1a), the correlation patterns are similar those in 

Day et al. (2014b), except for a lead time of one month for May which may be due to difference in observations (Fig. S1d). 10 

However, reemergence in winter is weaker than that for SIEAO. This is because SIEAO exclude other regions contributing to 

the winter sea ice variability. 

We next evaluate the SIEAO prediction skill (Figs. 2a and 2b), with the anomaly correlation coefficient (ACC) and 

the root-mean-square error (RMSE) between the detrended observations and the hindcasts (e.g., Wang et al., 2013). In the 

hindcasts started from July 1st, the ACC for September is statistically significant and exceeds that of the persistence forecast, 15 

suggesting that September SIEAO can be dynamically predicted from the previous July (ACC is 0.79). Although the 

significance of the ACC is borderline, the results suggest September SIEAO is potentially predictable from April 1st (ACC is 

0.37), which is consistent with the results of Peterson et al. (2015). The ACC is also significant for the winter SIEAO, in 

particular for December, except for the hindcasts started from April 1st, indicating the potential use of dynamical forecasts 

up to 11 months ahead (ACC is 0.42). The RMSE for all hindcasts is larger throughout the melting and early freezing 20 

seasons (July–October), before smaller values in November–June. These seasonal changes in the RMSE are consistent with 

past studies (e.g., Tietsche et al., 2014). The time series of September SIEAO shows that both the assimilation and hindcasts 

capture the observed interannual variability, although the model underestimates the variability in the mid- to late 1980s and 

in the extreme year 2007 (Fig. 2c). The observed SIEAO in December is contained within the ensemble spread, excluding the 

mid-1980s (Fig. 2d). We also show the same figure as Fig. 2 in Fig. S2, except that the detrended sea ice extent anomaly is 25 

calculated in the Northern Hemisphere. The lower ACC at the short lead time for the hindcasts started from January and 

April (Fig. S2a) may be due to the lower ACC and higher RMSE for sea ice concentration in the Sea of Okhotsk, the Bering 

Sea, and the Labrador Sea (not shown). The RMSE values in winter are large (Fig. S2b) compared to Fig. 2b because SIEAO 

does not include the area where sea ice variability is large. The difference between Fig. 2d and Fig. S2d is also due to the 

effect of the domain choice. 30 
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4 Possible Mechanisms for Prediction Skill 

Focusing on both the hindcasts started from January 1st, in which the December SIEAO has high skill even at the 

long lead-time, and those started from July 1st, in which the September SIEAO is significant, we examine mechanisms for the 

prediction skill. Figure 3 shows the lagged cross-correlations between the SIEAO and the sea ice volume in the Arctic Ocean 

(SIVAO) and those between SIEAO and ocean heat content in the Arctic Ocean (OHCAO) for the control run and the hindcasts 5 

started from January and July. Here, the SIVAO is defined as the sum of the grid cell volumes obtained by multiplying the sea 

ice thickness (SIT) by the SIC and the area for grid cells with SIC greater than 15 % and the OHCAO is the vertically 

integrated temperature multiplied by the density and specific heat capacity of seawater from the surface to a depth of 200 m, 

in the same area as the SIEAO.  

The SIVAO has stronger positive correlations with the SIEAO in summer than in winter (Figs. 3a–c), which is 10 

consistent with Chevallier and Salas-Mélia (2012), while the OHCAO has more persistent negative correlations with the 

SIEAO in winter than in summer (Figs. 3d–f). In the hindcasts started from January 1st, the December SIEAO is significantly 

correlated with the OHCAO from January to December. Similar feature can be seen in the hindcasts started in July 1st. The 

SIEAO in September is significantly correlated with the SIVAO in July for both the hindcasts, but weakly with the OHCAO. 

Thus, sources for the prediction skill of the December and September SIEAO are suggested to be the ocean heat content from 15 

the surface to a depth of 200 m after January and the sea ice states in July, respectively. For the sea ice extent anomaly 

calculated in the Northern Hemisphere (Fig. S3), the patterns of lagged correlation coefficients are broadly similar to those in 

Fig. 3, but the correlations in the control are stronger and those in the hindcasts are weaker. One reason might be the 

contribution of sea ice variability south of 65° N. 

We next clarify the physical processes linking the prediction skill to sources of that skill. Figure 4 shows the SIC, 20 

SIT, and OHC north of 60° N regressed on the December SIEAO. The most significant signals for both SIC and SIT are found 

in the Barents Sea (BS) of the Arctic Ocean (Figs. 4a and 4b). It is well known that winter sea ice variability in the BS 

dominates that in the Arctic Ocean (e.g., Smedsrud et al., 2013), which is consistent with our results. At a lag of 9 months 

(Fig. 4c), negative correlation and regression coefficients for the OHC are found in regions from the northern part of the GIN 

Sea to the western part of the BS. The signals become strong in the western part of the BS at a lag of 6 months (Fig. 4d), and 25 

further extend across the entire BS at a lag of 3 months (Fig. 4e) and still appear in the BS at a lag of zero (Fig. 4f). These 

features are also found in the control run (Fig. S3), suggesting that the physical processes in the hindcasts are not due to 

processes distorted by the influence of initialization or climate drift in MIROC5.  

In the analyses for Figs. 3 and 4, the direct heating and cooling of atmosphere are considered to influence the above 

OHC through the sea surface. The impact of the subsurface water on the December SIEAO is examined by the same analyses 30 

using the OHC integrated from the mixed layer depth (MLD) to a depth of 200 m. Correlation patterns between the SIEAO 

and OHC are similar to those in Fig. 3d-3f (Fig. S4a-S4c), although are not significant during the winter when the MLD is 

below a depth of 200 m. In addition, the negative correlation and regression patterns appear to propagate from the North 
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Atlantic to the BS (Fig. S4d-S4g). This suggests that the subsurface water from the North Atlantic contributes to the winter 

sea ice variability in the BS. 

Hence, the OHC anomalies initialized in the North Atlantic flow into the BS through advection, subsequently 

emerge at the surface due to vertical mixing in winter, and affect the December sea ice distribution in the BS and eventually 

in the Arctic Ocean. This is one of the reasons why the hindcasts started from January 1st have significant skill for the 5 

December SIEAO. In contrast, the December SIEAO cannot be predicted from April 1st (Fig. 2a), although significant 

regression and correlation patterns appear in the results for the April hindcasts (Fig. S5). This may be because the RMSE for 

April SIC in the Barents Sea is larger in the April hindcasts than the January hindcasts (not shown). 

As suggested by Bushunk et al. (2017), our results also suggest that the initialization of subsurface ocean 

temperature contributes to the skillful prediction of the winter sea ice extent in the BS. However, the underlying mechanisms 10 

are partly different in that the advection process from the North Atlantic is important in our results, which is consistent with 

results based on statistical methods using reanalysis data (e.g., Nakanowatari et al., 2014). 

For September, the sea ice states initialized in July persists until September in the Beaufort, Chukchi, and East 

Siberian Seas (Fig. 5), which is consistent with Bushuk et al. (2017). Consequently, this persistence contributes to the 

prediction skill of the September SIEAO. In the hindcasts started from April 1st, the September SIEAO shows similar lagged 15 

correlation patterns to the July hindcasts for SIVAO (Fig. S6a) and OHCAO (Fig. S6b). Thus, the same physical processes as 

the July hindcasts are expected to work in the April hindcasts. However, the positive regression and correlation patterns for 

SIC and SIT are weaker than those for the July hindcasts, particularly in the Pacific Sector of the Arctic Ocean (Figs. S6c 

and S6d). In contrast, similar patterns to Fig. 5 clearly appear in the Pacific sector of the Arctic Ocean for the control 

experiment (Fig. S7). These results suggest that the persistence of sea ice contributes to the skill of September SIEAO started 20 

from April 1st, but the sampling uncertainty may lead to unclear signals in Fig. S6. 

5 Concluding Remarks 

 We investigated the predictability of the detrended SIEAO anomaly and its sources based on an ensemble of 

hindcasts using an initialized climate model, MIROC5, and further identified physical processes related to the prediction 

skill. Prediction skill for Arctic winter SIEAO is significantly higher than the persistence forecast, especially for December, 25 

indicating the possibility for dynamical forecasting 11 months ahead. The December SIEAO is significantly correlated with 

the December SIC and SIT in the BS where the subsurface OHC anomalies are advected from the North Atlantic, and 

subsequently emerge at the surface in winter, and contribute to the sea ice variability there. Our results suggest that sources 

of the December SIEAO prediction skill exist in the North Atlantic and thus initialization of the subsurface water there leads 

to better prediction of the SIEAO in December. Numerical experiments to confirm whether the subsurface OHC anomalies 30 

originating from the North Atlantic control the December sea ice extent in the BS and eventually in the Arctic Ocean will be 

explored in future work. 



 

28 
 

 Significant skill for the September SIEAO is seen only up to 2 months ahead. Nevertheless, we note that the forecast 

skill of summer SIEAO is not necessarily low, because the hindcasts initialized in January and April have significant skills for 

SIEAO in August and September. Improvement in the prediction skill for summer SIEAO is dependent upon refinement of the 

initial state of the SIT. In fact, higher lagged correlations between the summer SIEAO and the SIVAO suggest the initialization 

of the SIT is important, which is consistent with previous results by Day et al. (2014a) and Bushuk et al. (2017). 5 

 In recent years, the rapid reduction in Arctic sea ice has enabled ships to navigate the Northern Sea Route (e.g., 

Stephenson et al., 2014). Under such maritime activities in the Arctic Ocean, forecasts of the local sea ice distribution rather 

than the total sea ice extent become of greater interest for marine users. Recent studies have reported the forecast skills of the 

retreat and advance dates of the sea ice distribution based on statistical methods (e.g., Stroeve et al., 2016; Wang et al., 2016) 

as well as a dynamical forecast system (Sigmond et al., 2016; Bushuk et al., 2017). In the present study, our hindcasts could 10 

not reproduce precise sea-ice edges from summer to fall. For example, the predicted sea ice distributions in September 2007 

are overestimated in the Russian region of the Arctic Ocean. This is because the surface winds, which are thought to be the 

major driving force of sea ice motion in September 2007, are not adequately predicted. Other reasons might be the lower 

resolution of the ocean model or bias in the climatology. Further improvements in the skill to predict sea ice, including its 

spatial pattern, will be provided by climate models with higher resolution, reduced model drift and bias, and improved 15 

initialization techniques. 
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Figure captions 

Figure 1: Lagged auto-correlation coefficients of the detrended SIEAO anomaly derived from (a) observations (Ishii et al. 

(2006) and Ishii and Kimoto (2009)) and (b) a model control simulation, for each start month, against lead time, following 

Day et al. (2014b). Solid and dashed lines denote values for the September and March target months, respectively. Black 

dots indicate statistical significance at the 95 % confidence level based on a two-sided Student's t-test with 30 and 200 5 

degrees of freedom in observation and model, respectively. 

Figure 2: Lead-time dependence of (a) SIEAO ACC and (b) SIEAO RMSE (×106 km2) for January, April, July, and October 

start hindcasts. SIEAO ACC (RMSE) scores of hindcasts, which are higher (lower) than those of persistence forecast and 

statistical significance at the 95% confidence level based on a two-sided Student's t-test, are denoted by black dots. Boxes in 

(a) indicate the lead time of the time series shown in (c) and (d). Time series of the detrended SIEAO anomaly for (c) 10 

September and (d) December, from the observation (OBSE; black line), assimilation (ASSI; red line), and hindcasts started 

from July 1st and January 1st (HIND.JUL and HIND.JAN; blue line). HIND.JUL is the September SIEAO at 2 months lead 

time and HIND.JAL is the December SIEAO at 11 months lead time. Blue shading indicates the ensemble spread. In (c), the 

September SIEAO at 5 months lead time started from April 1st (HIND.APR) is superimposed by aqua line and shading. 

Figure 3: Lagged correlation coefficients between the detrended SIEAO anomaly and (a–c) the detrended SIVAO anomaly and 15 

(d–f) the detrended OHCAO anomaly. Left, middle, and right panels indicate values obtained from the control run (CTRL), 

the hindcasts started from January 1st (HIND.JAN), and the hindcasts started from July 1st (HIND.JUL), respectively. Black 

dots indicate statistical significance at the 95 % confidence level based on a two-sided Student's t-test with 30 and 200 

degrees of freedom in the observation and model. Note that the horizontal and vertical axes in the hindcasts started from July 

1st are different from those in the control run and the hindcasts started from January 1st. 20 

Figure 4: Lagged correlation (colors) and regression (contours) coefficients between the SIEAO anomaly (×106 km2) in 

December and (a) SIC anomaly (%) at a lag of 0 months, (b) SIT anomaly (cm) at a lag of 0 months, and OHC anomalies 

(×1018 J) at lags of (c) −9, (d) −6, (e) −3, and (f) 0 months, in regions from 60° to 90° N on the basis of the hindcasts started 

from January 1st. Contours are drawn at intervals of 5 (%) from 5 to 25 for SIC and 10 (cm) from 10 to 40 for SIT. In (c–f), 

the contours are drawn from −1.0 to −0.1 (×1018 J) at intervals of 0.1 (×1018 J). Stippling indicates regions with statistically 25 

significant correlation coefficients at the 95 % confidence level. White shading indicates areas where sea ice does not exist. 

A latitude circle of 65° N is also indicated by a thin solid line. 

Figure 5. Lagged correlation (colors) and regression (contours) coefficients between September SIEAO anomaly (x106 km2) 

and (a) SIC anomaly (%) and (b) SIT anomaly (cm), based on the hindcasts started from July 1st. Contour ranges for SIC 

and SIT anomalies are 5 to 20 with intervals of 5 % and 10 to 40 with interval of 10 cm, respectively. Stippling indicates 30 

regions with statistically significant correlation coefficients at the 95 % confidence level. White shading indicates areas 

where sea ice does not exist. A latitude circle of 65° N is also indicated by a thin solid line. 
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Figure 1. Lagged auto-correlation coefficients of the detrended SIEAO anomaly derived from (a) observations (Ishii et al. (2006) 

and Ishii and Kimoto (2009)) and (b) a model control simulation, for each start month, against lead time, following Day et al. 

(2014b). Solid and dashed lines denote values for September and March target months, respectively. Black dots indicate statistical 

significance at the 95% confidence level based on a two-sided Student's t-test with 30 and 200 degrees of freedom in observation 5 
and model, respectively. 
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Figure 2. Lead-time dependence of (a) SIEAO ACC and (b) SIEAO RMSE (×106 km2) for January, April, July, and October start 

hindcasts. SIEAO ACC (RMSE) scores of hindcasts, which are higher (lower) than those of persistence forecast and statistical 

significance at the 95% confidence level based on a two-sided Student's t-test, are denoted by black dots. Time series of the 

detrended SIEAO anomaly for (c) September and (d) December, from the observation (black line), assimilation (red line), and 5 
hindcasts started from July 1st and January 1st (blue line). Blue shading indicates the ensemble spread. In (c), September SIEAO 

started from April 1st is superimposed by aqua line and shading. 
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Figure 3. Lagged correlation coefficients between the detrended SIEAO anomaly and (a–c) the detrended SIVAO anomaly and (d–f) 

the detrended OHCAO anomaly. Left, middle, and right panels indicate values obtained from the control run (CTRL), the 

hindcasts started from January 1st (HIND.JAN), and the hindcasts started from July 1st (HIND.JUL), respectively. Black dots 

indicate statistical significance at the 95% confidence level based on a two-sided Student's t-test with 30 and 200 degrees of 5 
freedom in observation and model. Note that horizontal and vertical axes in the hindcasts started from July 1st are different from 

those in the control run and the hindcasts started from January 1st. 
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Figure 4. Lagged correlation (colors) and regression (contours) coefficients between SIEAO anomaly (×106 km2) in December and 

(a) SIC anomaly (%) at lag 0 month, (b) SIT anomaly (cm) at lag 0 month, and OHC anomalies (×1018 J) at lag (c) −9, (d) −6, (e) 

−3, and (f) 0 months, in regions from 60° to 90°N on the basis of the hindcasts started from January 1st. Contour intervals are 5 5 
(%) from 5 to 25 for SIC and 10 (cm) from 10 to 40 for SIT. In (c–f), contours are drawn from −1.0 to −0.1 (×1018 J) with interval 

of 0.1 (×1018 J). Stipples indicate regions with statistically significant correlation coefficient at the 95% confidence level. White 

shading indicates areas where sea ice does not exist. Latitude circle of 65oN is also indicated by thin solid line. 
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 Figure 5. Lagged correlation (colors) and regression (contours) coefficients between September SIEAO anomaly (x106 km2) and (a) 

SIC anomaly (%) and (b) SIT anomaly (cm), based on the hindcasts started from July 1st. Contour ranges for SIC and SIT 

anomalies are 5 to 20 with intervals of 5 % and 10 to 40 with interval of 10 cm, respectively. Stippling indicates regions with 

statistically significant correlation coefficients at the 95 % confidence level. White shading indicates areas where sea ice does not 5 
exist. A latitude circle of 65° N is also indicated by a thin solid line. 


