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Abstract. Temperature increases cause a unique type of damage to permafrost. This damage is often expressed as the 10 

degradation of permafrost thermal stability, which is very important for engineering design, resource development, and 

environmental protection in cold regions. This study evaluates the degradation of permafrost stability over the Qinghai-Tibet 

Plateau (QTP) from the 1960s to the 2000s using estimated decadal mean annual air temperatures (MAATs) by integrating 

remote sensing-based estimates of mean annual land surface temperatures (MASTs), leaf area index (LAI) and fractional snow 

cover values, and decadal mean MAATs taken at 152 weather stations using geographically weighted regression (GWR). The 15 

results reflect a continuous rise of approximately 0.04 °C/a in the decadal mean MAAT values over the past half century. 

Climate warming has led to a reduction in permafrost stability in the past half century. The total degraded area of stability is 

approximately 153.7610
4
 km

2
, which corresponds to 87.98% of the permafrost area in the 1960s. The stability of 75.24% of 

the extremely stable permafrost, 89.56% of the stable permafrost, 90.3% of the sub-stable permafrost, 92.31% of the 

transitional permafrost, and 32.8% of the unstable permafrost has been reduced to lower levels of stability. Approximately 20 

49.4% of the unstable permafrost and 95.95% of the extremely unstable permafrost has degraded to seasonally frozen ground. 

The sensitivity of the permafrost to climate is dependent on its stability level. The mean elevations of the extremely stable, 

stable, sub-stable, transitional, unstable, and extremely unstable permafrost areas increased by 88 m, 97 m, 155 m, 185 m, 161 

m and 250 m, respectively. The degradation mainly occurred from the 1960s to the 1970s and from the 1990s to the 2000s. This 

degradation has led to increases in risks to infrastructure, increased flood risks, reductions in ecosystem resilience, and positive 25 

climate feedback effects. It therefore affects the well-being of millions of people and sustainable development at the Third 

Pole. 

1 Introduction 

Permafrost is defined as soil or rockearth materials that includesinclude ice or organic material and remains at or below 

0 °C for at least two years (Permafrost Subcommittee, National Research Council of Canada. 1988; Williams et al., 30 
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1989). Temperature rise causes a unique type of dynamic damage to permafrost (Zhu et al., 2016). This damage is often 

expressed as the degradation of permafrost thermal stability, which is very important for engineering design, 

construction, resource development, the carbon and water cycles, and ecological protection in cold regions (Collett, 2002; 

Cheng and Wu, 2007; Tarnocai et al, 2009; Schuur et al, 2009; Schaefer et al, 2011; Hinzman et al., 2013; Mu et al., 

2015).  5 

In terms of middle- and high-altitudeelevation permafrost regions, the area of permafrost in China is the largest in the world, as 

the Qinghai-Tibet Plateau (QTP) is the largest in the world. The permafrost in the QTP experiences higher temperatures than 

those seenobserved in Siberia and the Arctic, which are more sensitive to global climate warming and human activity (Wu et al. , 

2002; Haeberli and Hohmann, 2008; Li et al., 2008; Ran et al., 2012; Ran and Li, 2016). On 

Monitoring and simulation show that substantial permafrost degradation is occurring on the QTP,. For example, the mean 10 

annual air temperature (MAAT) increased by approximately 0.2~0.4 °C from the 1970s to the late 1990s (Wang et al., 2000). 

From 1961–2010, the decadal average MAAT rose by 1.3 °C, with an average rate of increase of 0.03 °C/a (Jin et al., 2011; 

Ran and Li, 2016). Correspondingly, significant permafrost degradation is occurring. From 1996 to 2001, the thickness of the 

active layer increased by 0.15~0.50 metres, and the mean annual ground temperature (MAGT) rose by 0.1–0.5 °C in the past 

30 years (Yang et al., 2010). At Xidatan, which is near the city of Golmud and at the northern boundary of the permafrost on 15 

the QTP along the Qinghai-Tibet Railway (QTR), the lower limit of permafrost (the lowest elevation of permafrost occurrence) 

moved upward by approximately 25 m from 1975 through 2002 (Nan et al., 2003). The lower limit of permafrost on the 

northern and southern slopes of the Bayan Har Mountains, where a region of discontinuous permafrost occurs in the southern 

part of Qinghai provinceProvince, moved upward by approximately 100 metres and 90 metres, respectively, from 1991 to 2010 

(Luo et al., 2012). During 2006 to 2012, on the southern side of the Tanggula Mountains permafrost region along the QTR, 20 

both the engineered structures and ongoing climate change caused the permafrost degradation to accelerate. The permafrost 

table declinedFor the areas of undisturbed permafrost and permafrost under an embankment, the active layer deepened by 

0.29 m and 0.41 m, and the ground temperature at a depth of 10 m rose by 0.03 ℃ and 0.06 ℃, respectively, within areas of 

undisturbed permafrost and the permafrost under the embankment (Sun et al., 2014). Cheng et al. (2012) reported on the 

decadal changes in permafrost distribution on the QTP over the past 50 years (1960–2009) and demonstrated that the rate of 25 

permafrost loss had accelerated since the 1980s, and about one-fifth of the total area of permafrost that existed in the 1960s has 

degraded.  

However, many of these studies focus on either the local or in situ scales, and few studies have focused on the regional scale. 

Although the decadal changes in the permafrost distribution over the QTP were simulated by Cheng et al. (2012), this study 

emphasized the migration of permafrost “boundaries” based on the relationshiprelation between air temperature and the lower 30 

limit of the permafrost. Naturally, these boundaries are continuous, inexact representations of the permafrost distribution and 

permafrost degradation (Yang et al., 2010). Ran and Li (2016) assessed the degradation of permafrost stability in China over 

the past 30 years; however, this study used a near-surface air temperature reanalysis dataset with low resolution and large 

uncertainties. These studies are not comprehensive and do not adequately reflect changes in the thermal state of the permafrost, 

带格式的: 字体: 五号, 英语(美国)



3 

 

especially in the interior of permafrost zones and at high spatial resolution. More importantly, the response time and the depth 

to which permafrost is affected by climate warming depend on the extents, durations, amplitudes, and rates of climate warming  

and are closely related to soil types, surface coverage, ice content, groundwater occurrence, geothermal anomalies, and human 

activities (Cheng and Jin, 2013). The complex physical mechanisms of the interactions between climate change and permafrost 

are currently poorly understood (Jin et al., 2011), and a large of degree of uncertainty may exist in their evaluations. The 5 

current warming climate may not cause large areas of permafrost to disappear, because the thermal inertia of permafrost may 

allow it to persist for a long time (Cheng et al., 2012). Therefore, the utility of assessing changes in permafrost “boundaries” is 

limited in specific applications, especially in the field of engineering (Cheng, 1984; Harris, 1986; Wu et al., 2002; Ran and Li, 

2016). 

Additionally, regional-scale evaluations usually rely on meteorological data. The most commonly used variable is air 10 

temperature, but measurements of this quantity are sparse on the Qinghai-Tibetan Plateau.QTP. Although the sparse air 

temperature measurements are interpolated onto grids based on digital elevation models (DEMs), the uncertainty of the 

gridded air temperatures is significant because of the heterogeneity of the surface characteristics, including snow cover and 

vegetation, and the locations of weather stations (Vancutsem et al., 2010). Fortunately, the remote sensing era has led to 

changes in this situation. Thermal infrared remote sensing provides direct observations of land surface temperatures (LSTs) at 15 

high spatial and temporal resolutions. For example, the Moderate Resolution Imaging Spectroradiometer (MODIS) LST 

product is freely available and has been validated over large areas via a series of field campaigns. Its accuracy is better than 1 K℃ 

(0.5 K℃ in most cases) (Wan et al, 2002; 2004; 2008). Remote sensing-based estimates of LSTs provide a key 

high-resolution temperature pattern of the land surface that can potentially be used in monitoring of permafrost degradation. 

However; however, criteria for using LST estimates to distinguish permafrost types are not traditionally available, and the 20 

relatively short time series of LST data does not meet the needs of long-term permafrost monitoring. Of the three commonly 

used predictors for permafrost, the MAGT and permafrost thickness are the most direct indicators of the thermal stability of 

permafrost (Cheng, 1984); however, long-term measurements of the MAGT and permafrost thickness are almost impossible 

due to the high cost of drilling boreholes. The MAAT is frequently used in mapping the distribution of permafrost. It is easy 

to measure and has high spatial representativeness. Importantly, long-term in situ measurements of MAATs are available, 25 

and it is possible to estimate MAATs over the QTP using remote sensing-based methodsTherefore, the remote sensing-based 

LST values must be converted to MAATs, which are commonly used in mapping permafrost. . Therefore, the remote 

sensing-based LST values can be converted to MAATs and used to monitor the permafrost thermal state, although the 

potential problems of the MAAT model in predicting permafrost degradation are well known. For example, the performance 

of the MAAT model is generally affected by the thermal inertia of deep soil layers and geothermal flux (Smith and 30 

Riseborough, 2002; Jin et al., 2006; Wu et al., 2010a).  

Several previous studies have demonstrated the potential of satellite-based methods in estimating near-surface air 

temperatures (Hachem et al., 2009; 2012; Vancutsem et al., 2010; Yao and Zhang, 2013). The variation in the uncertainty is 

mainly related to the underlying surface type, the amount of solar radiation, and cloud cover (Vancutsem et al., 2010; 
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Hachem et al., 2012; Ran et al., 2015). Snow, which has high albedo in the visible and near-infrared bands and high emissivity 

in the thermal inferred band, a high absorption rate in the infrared and thermal infrared band, high heat capacity, and low 

thermal conductivity, influences the thermal shift in LSTs and air temperatures. This influence varies with the time of snowfall, 

snow accumulation, snow depth and snow density (Henderson-Sellers and Hughes, 1982; Zhang, 2005). Vegetation is another 

important factor that affects the thermal shift of LSTs and air temperatures. This process is very complex. In general, the 5 

extinction effect of vegetation cover will reduce the amount of solar radiation reaching the ground surface. The vegetation 

canopy affects the water and heat balance of the soil-atmosphere system by intercepting rainfall and transpiring water. The 

vegetation fraction, vegetation height and vegetation type are important input parameters in the vegetation parameterizations 

used in land surface models (Lawrence et al., 2011). However, it is more important that such as snow cover and vegetation, 

the amount of solar radiation, and cloud cover (Henderson-Sellers and Hughes, 1982; Zhang, 2005; Vancutsem et al., 2010; 10 

Lawrence et al., 2011; Hachem et al., 2012; Ran et al., 2015). Additionally, the highly accurate remote sensing-based snow 

cover and vegetation products are also available. All of these remote sensing-based data products are very important for 

estimating the MAAT, which is an air temperature index used in monitoring the thermal stability of permafrost.  

Therefore, the objective of this study is to evaluate the degradation of permafrost stability over the QTP during the past 50 

years using a thermal stability classification system,from 1960 to 2010 by integrating multi-criterion remote sensing 15 

observations and an air temperature observation network. The paper is organized as follows. In this section, we describe the 

gaps in the evaluation of permafrost degradation in previous studies and the objective of the paper. In section 2, the permafrost 

classification system and the methodology and data used in this paper are described. Section 3 presents the results and analyses 

the characteristics of permafrost stability degradation. In section 4, we summarize the paper and conclude. 

2 Methods and Datasets 20 

In this study, the degradation of permafrost stability is evaluated based on the MAAT model and the improved MAAT data 

over the QTP in the past half century. The MAAT in situ measurement data at 152 sites over the QTP and remote sensing 

data with six independent variables were combined using a Geographically Weighted Regression (GWR) model to estimate 

the MAAT with a 1 km resolution over the QTP during the past five decades. 

2.1 Permafrost thermal stability classification system 25 

We use the thermal stability permafrost classification system proposed by Cheng (1984). UsingIn this system, permafrost is 

classified into extremely stable, stable, sub-stable, transitional, unstable, and extremely unstable types, as shown in Table 1. 

Obviously, itThis system is more useful to describe permafrost degradation from an engineering perspective, rather than 

changes in the extent of permafrost. Three criteria, the MAGT, the permafrost thickness, and the MAAT, were used to assess 

the stability types. The MAGT is the most direct indicator of the thermal state of permafrost. However, long-term 30 

measurements of the MAGT are almost impossible, due to the high cost of drilling boreholes. The MAAT criterion is 
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available in this system to assess the stability types. On the QTP, a MAAT of −2 The MAAT is frequently used in mapping 

the distribution of permafrost. It is easy to measure and has high spatial representativeness. Importantly, long-term in situ 

measurements of MAATs are available, and it is possible to estimate MAATs over the QTP using remote sensing-based 

methods, as introduced in the section above. The MAAT is therefore used in this paper. On the QTP, a MAAT of −2℃ has 

typically been used to distinguish permafrost from seasonally frozen ground (Cheng, 1984; Ran and Li, 2016). The 5 

permafrost stability system was proposed based on the MAGT measurement as an index by analysis of the three-dimensional 

zonation of the high-elevation permafrost (vertical, latitudinal, and aridity). It is a high level summary of high altitude 

permafrost zonation. The MAAT index was given according to the statistical relation between MAGT, elevation, and the in 

situ MAAT measurement (Cheng, 1984). However, the extremely unstable type in the Chengthermal stability classification 

system proposed by Cheng (1984) refers to regions that include cave ice and frozen gravel below the lower limit of 10 

permafrost., which is a very scattered distribution. In this paper, a MAAT of −1 ℃ is simply used to distinguish extremely 

unstable permafrost from seasonally frozen ground. 

2.2 Simulation of MAAT using geographically weighted regression 

In this study, geographically weighted regression (GWR) is used to simulate MAATs. Local parameters are employed in the 

GWR model to estimate MAATs while considering the spatial locations of meteorological stations (Brunsdon et al., 1998; 15 

Kumar et al., 2012). The weighting is a function of the distance between the location of each regression point and the sites 

where observations are available. The GWR model used in the present study is shown below in Equation (1): 
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(1) 

where iy iy  is the MAAT at pixel i, ikx ikx
 is the k

th
 explanatory factor at pixel i, ),(0 ii  ),(0 ii   and20 

),( iik  ),( iik 
 represent the intercept and slope for the k

th
 explanatory factor, m is the number of explanatory 

factors, and i i  is the residual term.  

The quantities 
),(0 ii  ),(0 ii 

 and 
),( iik  ),( iik 

 are estimated using Equation (2): 

YWXXWX ii
T

ii
T

ii ),(）),(（),(̂ 1   YWXXWX ii
T

ii
T

ii ),(）),(（),(̂ 1                                                                                                         

(2) 25 

where 
),(̂ ii  ),(̂ ii 

is an unbiased estimation of the regression coefficients. It is a vector that includeincludes an 

intercept and m regression coefficients associated with m explanatory factors., i.e., the 6 independent variables selected by a 
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stepwise linear regression analysis (see below). X X  is a matrix of explanatory factors ( mn  mn  ); ),( iiW 

),( iiW   is the spatial weight matrix, which is a diagonal matrix; Y Y  is a vector ( 1n  1n  ) for the dependent 

variables, i.e., the decadal mean MAAT in the 1960s, 1970s, 1980s, 1990s, and 2000s; and n is the number of MAAT 

observation stations for each year. 

In this study, the Gaussian function is used as a spatial weighting function, as shown in Equation (3): 5 

))(
2

1
exp(),( 2

r

d
W i

ii  ))(
2

1
exp(),( 2

r

d
W i

ii                                                                                                                                       

(3) 

where id id  is the distance between the ith observation station and the point to be estimated, and r is the bandwidth 

parameter. To accommodate different station densities, the corrected Akaike information criterion (AICc) is used to determine 

the optimal bandwidth parameters.  10 

A stepwise linear regression analysis is used to select the independent variables for the GWR model. As shown in  (Table 2, 

the). The analysis shows that the use of the MAST, the leaf area index (LAI), the fractional snow cover (FSC), 

altitudeelevation, latitude, and longitude as independent variables (i.e., Model 6) results in the highest degree 

of explanatory power. for the past five decades, and the significance level is less than 0.0001. The variance inflation factor 

(VIF) wasis used to assess the multicollinearity of the model. A VIF value <1.5 shows that the degree of tolerance is high, 15 

and the multicollinearity of the model is thus acceptable. We assume that The performance of the pattern of vegetation, snow 

cover, and LST are consistent over the past 50 years. The GWR model isin the 2010s is shown in Table 2. The five GWR 

models are then used to estimate the decadal mean MAAT over the QTP infor the past 50 yearsfive decades. The SAGA 

(System for Automated Geoscientific Analyses) (Conrad et al., 2015) is used to implement the GWR. Specifically, the GWR 

for multiple predictor grids geoprocessing tool is used. The Gaussian weighting function and the global search range are 20 

used.  

Due to the unavailability of the vegetation, snow cover, and LST datasets during the 1960s to 2000s, the effect of the 

dynamics of vegetation, snow cover, and LST on MAAT during this period is unknown. This will inevitably cause some 

errors in the estimation of MAAT. Recent studies show that vegetation is increasing overall during the past 30 years, and the 

snow cover is decreasing overall during the past 15 years over the QTP (Wang et al., 2016; Huang et al., 2017). The effect of 25 

vegetation and snow cover change on MAAT and its feedback process is highly complex. For example, the vegetation-snow 

interaction effect on MAAT is related to humidity (Zhong et al., 2010; Wang et al., 2013; Wu et al., 2015; Yuan et al., 2017). 

However, we believe this error mainly occurs at the local level in the nature vegetation dominated areas where the change 

has occurred at the local level within the last 50 years (Wang et al., 2016; Huang et al., 2017), and it can be partially 

compensated by the in situ MAAT measurement over the QTP for the past 50 years. 30 
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2.3 Evaluation of the degradation of permafrost thermal stability 

The following linear regression model is used to evaluate the warming rate or degradation rate over the QTP in the past 50 

years.:  

 bxY a  bxY a                                                                                                                                                         

(4) 5 

where Y denotes the MAAT or permafrost area, x is the time,    is the error, a is the intercept, and b is the slope (i.e., the 

warming rate or the degradation rate). The statistical significance of the warming ratesrate or degradation rate is evaluated 

using Student’s t-test.  

Thirteen altitudeelevation ranges (<3600 m, 3600-3800 m, 3800-4000 m, 4000-4200 m, 4200-4400 m, 4400-4600 m, 

4600-4800 m, 4800-5000 m, 5000-5200 m, 5200-5400 m, 5400-5600 m, 5600-5800 m, and >5800 m) are used to evaluate 10 

the altitudeelevation dependence of the warming rate. The degradation of permafrost thermal stability is evaluated from two 

perspectives, the change in area of the different thermal stability types and the spatial heterogeneity of the change. For the 

area change, we calculate the total area of each thermal stability type during the past five decades and the rate of change (i.e., 

the degradation rate) using the linear regression model shown in Equation (4). The spatial pattern of the degradation of 

permafrost thermal stability is evaluated at two levels. At the pixel level, the spatial distribution of the degradation is 15 

evaluated. At the level of the thermal stability types, a transfer matrix is used to evaluate the conversions among the thermal 

stability types (Stehman, 1997). We also analyse the changes in the altitudeelevation histograms for each thermal stability 

type in the past 50 years. 

2.4 Datasets 

2.4.1 Mean annual land surface temperature 20 

MODIS Terra/Aqua daytime and nighttime LST products (MOD11A1 and MYD11A1, version 5) with a spatial 

resolution of 1 km and covering 2006 to 2010 were acquired from the Distributed Active Archive Center (DAAC) 

operated by the U.S. National Aeronautics and Space Administration (NASA). These data are used in this study to 

estimate MASTs. A pragmatic approach proposed by Ran et al.,. (2015) and Ran et al., (; 2017) wasis employed to 

estimate the MASTs using the four daily MODIS LST products. This approach assumes that the arithmetic average of 25 

the daytime and nighttime LSTs represent the daily mean LST with acceptable accuracy, and the daily amplitude of LST 

is more homogeneous than the LST itself (Liu et al., 2006; Kogan et al., 2011; Ran et al., 2015). The approach allows the 

full use of every value at any time in any pixel of the MODIS LST products through the use of the temporally and 

spatially complete LST daily amplitude, which is interpolated using a gap filling algorithm (Garcia, 2010). This 

algorithm employs a penalized least squares regression based on discrete cosine transforms that explicitly utilizesutilize 30 

information from a time series to predict the missing values. The penalized least squares regression is a thin-plate spline 
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smoother for a generally one-dimensional data array, and it can trade off fidelity to the data versus the roughness of the 

mean function (Garcia, 2010; Wang, et al., 2012). This approach is easy to implement and independent of other 

observations. Validation shows that the scheme is effective in restorerestoring the missing values in MODIS 

instantaneous LST observations and produceproduces a spatially and temporally continuous daily average LST dataset 

that displays good agreement with observations made at the ground surface. The errors in the resultresults originate 5 

mainly from the original instantaneous LST MODIS products. A more detailed description of this scheme can be found 

in Ran et al.,. (2015) and Ran et al., (; 2017). 

 The temporally and spatially continuous daily mean LSTs from January 1, 2006 to December 31, 2010 and the corresponding 

MASTs used in this study are produced using the above approach. 

2.4.2 Fractional snow cover 10 

Arithmetic mean values of daily cloud-removed FSC products from 2006 to 2010 are used in this study. This product is 

derived from the daily MODIS 500-m snow cover product (MOD10A1) using a gap filling process based on a cubic spline 

interpolation algorithm. A comparison with reference FSC Sr data obtained from Landsat Enhanced Thematic Mapper Plus 

(ETM++) shows the high accuracy with which this product reflects snow cover information over the QTP (Tang et al., 2013). 

The cloud-removed FSC products were acquired from the Cold and Arid Regions Science Data Center atin Lanzhou in, 15 

China (http://westdc.westgis.ac.cn). 

2.4.3 Leaf area index 

Annual mean LAI values obtained from the Global Land Surface Satellite (GLASS), which make up a high -quality LAI 

product with an eight-day temporal resolution and a 1-km spatial resolution and cover the period from 2006 to 2010, wereare 

used in this study. The GLASS LAI product is derived from the fused MODIS and CYCLOPES LAI products, and the 20 

remaining effects of cloud contamination have been removed using MODIS time series surface reflectance data and general 

regression neural networks (Xiao et al., 2014). The results of validation show that the GLASS LAI product has a lower 

uncertainty than the MODIS and CYCLOPES LAI products (Xiang et al., 2014). The GLASS LAI product was acquired from 

the GLASS project website (http://glass-product.bnu.edu.cn/en). 

2.4.4 In situ MAAT observations 25 

The MAAT measurements, which were collected at 152 stations from 1960 to 2010131 stations for the 1960s and 1970s, 133 

stations for the 1980s, 144 stations for the 1990s, and 152 stations for the 2000s within the QTP and the surrounding area, 

were acquired from the data centre of the China Meteorological Administration (http://cdc.nmic.cn). The distribution of 

thesethe 152 stations for the 2000s is shown in Figure 1. The density of stations in the eastern QTP is higher than other years. 

The decadal mean MAAT values over the past 50 yearsfive decades are used in this study. 30 
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2.4.5 Validation data 

Validation of the long-term stability of permafrost is difficult due to the limited amounts of reference data that are available. 

In this study, we evaluate the results by comparing the estimated permafrost distribution in the 2000s with previous 

regional-scale permafrost maps and borehole measurements at individual sites. The permafrost maps that cover the QTP from 

Li and Cheng, (1996), Nan et al. (2002), and Zou et al., (2016) are used at the regional scale. In particular, the map of Zou et al., 5 

(2016) integrates the MODIS eight-day LST product within the framework of the temperature at the top of the permafrost 

(TTOP) model (Smith and Riseborough, 1996), and careful validation of this map has been performed using MAGT data. At 

the site scale, the MAGT values used in this study were collected from 142 boreholes presented in the existing literature (Yu 

et al., 2008; Wang et al., 2013; Luo et al., 2013) and the International Permafrost Association (IPA)-International Polar Year 

(IPY) Thermal State of Permafrost (TSP) Snapshot Borehole Inventory downloaded from the National Snow and Ice Data 10 

Center (NSIDC) (http://nsidc.org) (International Permafrost Association, 2010). The distribution of these boreholes is shown 

in Figure 1. 

2.4.6 Ancillary data 

The distribution of water bodies in the MODIS land cover product (MOD12Q1) and the map showing the distribution of 

glacier ice from the second Chinese glacier inventory are used to support the permafrost area statistics. The MOD12Q1 15 

product is used for consistency with the other remote sensing products employed in this study. On the other hand, the glacier 

extents from the second Chinese glacier inventory are compiled based on Landsat TM/ETM+ images acquired from 2004 to 

2011, as well as other ancillary data, such as digital elevation models (DEMs). The robust band ratio segmentation method is 

first used to delineate the glacier outlines, and intensive manual improvements are then performed to improve its accuracy. 

An error assessment shows that the area error for all of the glaciers in China is approximately 3.2% (Guo et al., 2015). 20 

3 Results and Discussion 

Decadal mean MAAT estimates with a resolution of 1 km over the QTP in the past 50 years are produced using the GWR 

model. The mean coefficient of determination of this model is approximately 0.95. The permafrost stability map in the past 

five decades is then produced based on the simulated MAAT and the permafrost stability types defined in Table 1. 

3.1 Change of MAAT over the QTP in the past 50 years 25 

The MAATs over the QTP have risen continuously in the past 50 years. The mean MAAT values for the 1960s, 1970s, 

1980s, 1990s, and 2000s are -2.38 ℃, -1.85 ℃, -1.78 ℃, -1.32 ℃, and -0.58 ℃, respectively. These values reflect a 

continuous rise with a rate of approximately 0.04 °C/a. This value is higher than the global average warming rate, as well as 

the estimated warming rates for the QTP reported by Cheng et al. (2012) and Ran et al. (2016) that are based on interpolated 

altitudeelevation-based air temperature data or surface air temperature reanalysis data. The warming rate in the western part 30 

http://nsidc.org/
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of the QTP is higher than that in the eastern part and depends on altitudeelevation, as shown in FigureFigures 2 and Figure 3. 

The warming rate increases with increasing altitudeelevation from approximately 0.33 ℃ per decade at 3600 m to 0.49 ℃ per 

decade at 5200 m. This finding is similar to that of previous studies (Liu and Chen, 2000; Qin et al., 2009). The physical 

mechanisms of this phenomenon may be related to the combined effects of the cloud-radiation and snow-albedo feedbacks 

(Giorgi et al., 1997; Liu et al., 2009).; Pepin et al., 2015). These elevated warming rates may have a substantial impact on the 5 

thermal stability of the permafrost. 

3.2 Thermal stability degradation 

Based on the map of permafrost stability types covering the past five decades (Figure 4a-e), we analyse the degradation from 

three perspectives, including temporal changes, spatial changes in the map plane, and spatial changes with altitudeelevation. 

3.2.1 Temporal dynamics of thermal stability 10 

The permafrost thermal stability has degraded continuously over the past 50 years. The area occupied by the stable types has 

decreased continuously, and the area occupied by the unstable types has increased continuously (Table 3). The areas 

occupied by the extremely stable, stable, sub-stable, and transitional types display net decreases of approximately 8.9910
4
 

km
2
 (72.79%), 27.0610

4
 km

2
 (70.12%), 9.3010

4
 km

2
 (27.24%), and 1.1810

4
 km

2
 (4.77%) from the 1960s to the 2000s, 

respectively. In particular, the stable type displays the most serious degradation, and its rate of loss is approximately 6.1510
4
 15 

km
2
 (15.94%) per decade. Moreover, the area occupied by the unstable type has increased by approximately 3.9910

4
 km

2
 

(9.02%) at a rate of 1.0610
4
 km

2
 (2.4%) per decade. Specifically, this degradation mainly occurred during the 1960s to 

1970s and the 1980s to 1990s for the extremely stable type, the 1960s to the 1970s and the 1990s to the 2000s for the stable 

type, and the 1980s to the 2000s for the sub-stable type. The area occupied by the extremely unstable type has not changed 

substantially. Overall, the warming climate has caused a degradation of permafrost stability. If glaciers and the extremely 20 

unstable type are included, the total area of the permafrost regionarea has decreased significantly from 174.7610
4
 km

2 
in the 

1960s to 133.110
4
 km

2 
in the 2000s at a rate of approximately 9.5210

4
 km

2
 (5.45%) per decade, and this loss of area 

occurred mainly during the 1960s to the 1970s and the 1990s to the 2000s (Table 3). 

3.2.2 Spatial changes in thermal stability 

The degradation of thermal stability has occurred over a broad region of permafrost on the QTP within the past 50 years, 25 

especially during the 1960s to the 1970s and the 1990s to the 2000s. The degradation of permafrost stability in the western 

QTP was serious during the 1960s to the 1970s. In the subsequent 40 years, the degradation of permafrost stability in the 

QTP was relatively homogeneous (Figure 4f-i). Specifically, the extents of the extremely stable, stable, and sub-stable types 

retreated from the south to the north (Figure 4a-e). The extents of the transitional, unstable, and extremely unstable types 

extended northward correspondingly. Approximately 42.30% of the area occupied by the extremely stable type, 42.09% of 30 
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the area occupied by the stable type, and 39.83% of the area occupied by the sub-stable type have degraded to the stable, 

sub-stable, and transitional types from the 1960s to the 1970s, respectively. At the same time, approximately 57.26% of the 

area occupied by the transitional type, 29.34% of the area occupied by the unstable type, and 59.47% of the area occupied by 

the extremely unstable type, have degraded to the unstable type, the extremely unstable type, and seasonally frozen ground, 

respectively. Overall, approximately 75.24% of the area occupied by the extremely stable type, 89.56% of the area occupied 5 

by the stable type, 90.3% of the area occupied by the sub-stable type, 92.31% of the area occupied by the transitional type, 

and 32.8% of the area occupied by the unstable type have degraded to lower levels of stability in the past 50 years (Table 4). 

The reduction in the area occupied by the permafrost is mainly due to the degradation of the area occupied by the unstable and 

extremely unstable types. Approximately 49.4% of the area occupied by the unstable type and 95.95% of the area occupied by 

the extremely unstable type has degraded to seasonally frozen ground (Table 4). The total degraded area is approximately 10 

153.7610
4
 km

2
, which accounts for 87.98% of the area occupied by the permafrost region in the 1960s (Figure 4j). The area 

of permafrost for which the stability has not changed is approximately 2110
4
 km

2
 (12.02%). This area is mainly distributed 

in the central part of the plateau, which contains extremely high mountains, and it is dominated by the extremely stable type.  

It should be noted thatNotably, the stability of an area ofa permafrost area of approximately 1.6310
4
 km

2
 has increased. 

This area is found primarily east of Lhasa in the southeastern part of the QTP, which is a major centre of marine glaciers and 15 

snow cover in China (Figure 4j). The increased permafrost stability in this area may have large uncertainties; the uncertain 

MAAT trend is estimated using regression parameters that are appropriate for low-altitudeelevation areas, due to the lack of 

long-term MAAT measurements in the high mountain regions where glaciers and snow are prevalent. In snow-dominated 

regions, the MAAT trend cannot simply be used to infer changes in permafrost stability because the ground temperature is 

independent of the MAAT (Stieglitz et al., 2003; Lawrence et al., 2008). The effects of snow or glacier cover may be more 20 

important than those of the MAAT. Although records of long-term snow cover and glacier changes in the past 50 years are 

not available in this study, the sensitivity of glacier and snow cover in a warming climate is dependent on the area of the 

glaciers and the climate zone. Low snow–climate sensitivities have been found in continental interior climates with relatively 

cold and dry winters (Brown and Mote, 2009). Larger glaciers have lower climate sensitivities (Ding and Haeberli, 1996; Ye 

et al., 2001).  25 

Additionally, the complex process and limited knowledge for permafrost-glacier interactions may enhance the uncertainty 

(Haeberli, 2005; Otto and Keuschnig, 2014). Therefore, we believe the permafrost stability in this area has not changed 

substantially in the past 50 years, based on this low climate sensitivity. 

3.2.3 AltitudeElevation changes in permafrost stability type distributiondistributions 

The altitudeelevation statistics of the distribution of the permafrost stability types over the QTP in the past five decades 30 

indicate that the altitudeelevation occupied by each permafrost stability type in the QTP has risenincreased continuously 

(Table 5, Figure 5). For the extremely stable type, the mean altitudeelevation of the distribution decreased from 5240 m to 

5161 m from the 1960s to the 1970s and then rose continuously at a rate of approximately 56.4 m per decade. The reduction 
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in altitudeelevation is mainly due to the degradation of the extremely stable permafrost type in the Kailas Mountains. As a 

whole,This caused the fluctuation of the mean elevation for extremely stable permafrost during the 1970s to 1980s and 

reduced its statistical significance (low R in Table 5) for the increasing rate of mean elevation over the past 50 years. Overall, 

in the past 50 years, the mean rate of riseincrease of the extremely stable type has been approximately 24.7 m per decade. 

Moreover, the mean altitudeselevation of the stable, sub-stable, transitional, unstable, and extremely unstable types have 5 

risen at a rate of 23.6 m, 36.3 m, 43 m, 36.5 m, and 56.2 m, respectively. Overall, the mean altitudeselevation of the 

extremely stable, stable, sub-stable, transitional, unstable, and extremely unstable types increased by 88 m, 97 m, 155 m, 185 

m, 161 m, and 250 m in, respectively, over the past 50 years. This result indicates that the climate sensitivity of permafrost is 

dependent on the stability level. The extremely unstable permafrost type is the most sensitive of the permafrost types to 

climate warming. As in the last section, the degradation mainly occurred from the 1960s to the 1970s and from the 1990s to 10 

the 2000s. 

3.34 Discussion 

3.34.1 Cross validation and uncertainty analysis 

We validate the permafrost extent only in the 2000s because long-term records of permafrost stability and extent are not 

available in earlier periods, as mentioned in section 2.4.5. Comparison of the estimated permafrost extent in the 2000s with 15 

the permafrost map provided by Zou et al., (2016) shows that the difference is small. Within permafrost areas, the extremely 

unstable type of permafrost mainly refers to cave ice and frozen gravel, which are distributed below the lower limit of 

permafrost (Cheng, 1984). This kind of permafrost is usually not counted in the total area of permafrost. Therefore, the 

permafrost area in the 2000s is approximately 107.19 10
4 
km

2 
if glaciers and lakes are neglected. This result is closely 

similar to that of Zou et al., (2016), who showed that the permafrost area in the 2000s was approximately 106.4710
4 
km

2
. 20 

The permafrost distribution is also very similar to that presented by Zou et al., (2016) (Figure 65b). The consistency between 

the two distributions is 92%, and the kappa coefficient is approximately 0.82. At the site scale, 89% of the 142 locations are 

consistent with the borehole survey, whereas this proportion is only 74%, 28%, and 86% for the maps of Li and Cheng, (1996), 

Nan et al. (2002), and Zou et al. (2016), respectively. These proportions indicate that the accuracy of the permafrost extent 

identified in this study is at least comparable with that of Zou et al. (2016). 25 

The uncertainty of the results may result primarily from the thermal inertia of deep soil layers in cold regions, errors in the 

geothermal fluxMAAT model, insufficient resolution, inaccuracies in the surface station data, or the sparseness of these 

stations, which are especially sparse in high mountain areas. FirstFirst, the response time and the depth to which permafrost is 

affected by climate warming depend on the extents, durations, amplitudes, and rates of climate warming and are closely related 

to soil types, surface coverage, ice content, groundwater occurrence, geothermal anomalies, and human activities (Stieglitz et 30 

al., 2003; Zhang, 2005; Lawrence et al., 2008; Cheng and Jin, 2013; Westermann et al., 2016). For example, the low heat 

conductivity of soil leads to lags between increases in surface temperatures and the subsequent increases in permafrost 
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temperature or reductions in permafrost thickness (Li et al., 1996). The delay time is longer for permafrost thickness than 

temperature and varies with the thermal stability type (Li et al., 1996; Wu et al., 20102010a). For the stable type, the 

degradation of permafrost may be delayed by “thermal offset” and “seasonal offset” effects in the permafrost table due to the 

negative heat budget; i.e., the amount of heat released from the active layer during the winter is greater than the amount of 

heat absorbed in summer (Smith and Riseborough, 2002; Wu et al., 20102010a). For the unstable type, a positive heat budget 5 

appears in the upper soil layer that leads to a greater degradation rate than that seen in stable permafrost, since the thickness of 

the unstable type is smaller than that of the stable type (Li et al., 1996; Wu et al., 2010).2010a). However, the complex 

physical mechanisms of the interactions between climate change and permafrost are currently poorly understood ( Jin et al., 

2011), and a large degree of uncertainty may exist in previous evaluations as well as the permafrost area change over the past 

50 years in this study. Despite current warming, large permafrost areas may persist due to the thermal inertia of permafrost 10 

(Cheng et al., 2012). Second, the thawing of the base of the permafrost induced by the geothermal heat flux leads to the 

permafrost degrading from bottom to top (Jin et al., 2006; Wu et al., 2010).2010a). The MAAT model cannot reflect the 

change of geothermal flux from the crustal interior. Additionally, the geothermal flux data are generally limited or 

unavailable. The missing geothermal heat flux may lead to a delay in permafrost degradation, especially for the stable 

permafrost, because the geothermal flux is independent of air temperature. Third, although the resolution of the simulation 15 

has been significantly improved to 1 km, it is still coarse relative to the degradation rate of mountain permafrost. ItsThe 

degradation of mountain permafrost is presented in terms of the increase in the elevation of the lower limit of the permafrost, 

which is generally aboutapproximately a hundred metres. On the other hand, aA 1 km change in the horizontal extent change 

may correspond to a change in altitudeelevation of hundreds of metres. Last, the lack of long-term MAAT measurements in 

the glacier- and snow -dominated high mountain regions may lead to errors in the estimated MAATs. 20 

3.3Overall, the “accelerated degradation” effect of the MAAT model may be partly counteracted by the “delayed 

degradation” effect of the missed geothermal heat flux. Long-term observation shows that the mean increasing rate of ground 

temperature at 10-20 m depth in the QTP is approximately 0.024 ℃ (Zhao et al., 2010; Wu et al., 2010b; Jin et al., 2011), 

which is comparable with the warming rate of air temperature. This shows that the evaluation results of permafrost stability 

degradation using the MAAT model is generally accepted at the overall QTP scale. 25 

4.2 The implications of the degradation of thermal stability 

The degradation of permafrost stability in the QTP has important impacts on the safety of infrastructure in the permafrost 

regions, water quality, ecosystem health, and the feedbacks on regional and global climates. First, as the permafrost stability 

degrades, the risk of deterioration and damage to engineered structures in permafrost zones will increase. This indicates that 

the measures used to prevent permafrost degradation may need to be enhanced for new structures. For example, permafrost 30 

accounted for 90.1% of a 10-km-long segment of the QTR from Golmud to Lhasa in the 1960s, and these permafrost areas 

were dominated by the sub-stable type; however, after 50 years (i.e., in the 2000s), these permafrost areas accounted for only 

67.77% and were dominated by the unstable type. For “warm” permafrost areas that are dominated by unstable permafrost, an 
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enhanced measure to prevent permafrost degradation, i.e., the proactive roadbed cooling approach, has been successfully 

applied in constructing the QTR (Cheng, 2004; 2005; Cheng et al., 2008). Second, the degradation of permafrost in the QTP 

may affect the hydrologic cycle in the Third Pole region, which includes the QTP and the surrounding arid regions. 

Permafrost controls the distribution, recharge, flow paths, discharge, dynamics, and hydrochemistry of groundwater (Cheng 

and Jin, 2013). The degradation of permafrost affects the interactions among the surface water, subsoil water, and 5 

groundwater by changing the hydraulic conductivity and hydraulic connectivity of the soil. The degradation of the ice-rich 

permafrost itself makes important contributions to surface runoff and the development of thermokarst lakes in the inner 

Tibetan Plateau (Zhang et al., 2013). The enhanced drainage may lead to increases in flood risk (Larsen et al., 2008) and 

reductions in ecosystem resilience via seasonal shifts in stream flow and groundwater abundance, because the decrease in 

permafrost water storage capacity in the QTP will lead to a reduction in dry-season water availability. All of these changes will 10 

affect the well-being of millions of people and sustainable development at the Third Pole, which contains the headwater areas 

of several of the major rivers in Southeast Asia, such as the Yellow, Yangtze, Mekong, Yarlung Zangbo and Shiquan Rivers. 

The Third Pole also includes many inland rivers, such as the Shiyang, Heihe, Shule, and Tarim Rivers, in northwestern China. 

Last, the permafrost region in the QTP contains approximately 160 Pg of organic carbon (Mu et al., 2015) and many 

thermokarst lakes and wetlands (Niu et al., 2011; Luo et al., 2015). Thawing of the permafrost may lead to the disappearance 15 

or growth of thermokarst lakes (Smith et al., 2005), which may further affect greenhouse gas emissions and produce a 

feedback effect on climate change (Tarnocai et al., 2009; Schuur et al. 2009; Schaefer et al., 2011; McCalley et al., 2014). 

Additionally, changes in thermokarst lakes may both accelerate and delay permafrost thawing (Westermann et al., 2016; You 

et al., 2017). 

45 Conclusions 20 

This study evaluates the stability degradation of permafrost over the QTP from the 1960s to the 2000s based on the estimated 

decadal means of the mean annual air temperatures (MAATs) over the Qinghai-Tibet Plateau (QTP) in the past 50 years 

obtained by integrating remote sensing-based mean annual land surface temperatures (MASTs), leaf area index (LAI) and 

fractional snow cover values, and decadal mean MAATs measured at 152 weather stations using a geographically weighted 

regression (GWR) model. Cross validation shows that the accuracy of the estimated permafrost extent is greater than that of 25 

previous maps.  

The decadal mean MAATs reflect a continuous rise at a rate of approximately 0.04 °C/a during the past half century. The 

warming rate increases with increasing altitudeelevation from approximately 0.33 ℃ per decade at 3600 m to 0.49 ℃ per 

decade at 5200 m and then decreases as altitudeelevation increases further. Climate warming has led to the degradation of 

permafrost stability in the past half century. The area occupied by the stable permafrost types has continuously decreased, and 30 

the area occupied by the unstable permafrost types has continuously increased. The total degraded area is approximately 

153.7610
4
 km

2
, which accounts for 87.98% of the permafrost area in the 1960s. The stability of 75.24% of the area occupied 
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by the extremely stable type, 89.56% of the area occupied by the stable type, 90.3% of the area occupied by the sub-stable type, 

92.31% of the area occupied by the transitional type, and 32.8% of the area occupied by the unstable type have degraded to 

lower levels.The stability for all permafrost types have degraded to lower levels. The extent of the extremely stable, stable, and 

sub-stable types retreated from the south to the north, whereas the extent of the transitional, unstable, and extremely unstable 

types extended northward. The mean elevations of the extremely stable, stable, sub-stable, transitional, unstable, and extremely 5 

unstable types increased by 88 m, 97 m, 155 m, 185 m, 161 m and 250 m, respectively. This result indicates that the climate 

sensitivity of permafrost is dependent on the stability level. The degradation mainly occurred during two periods that include 

the 1960s to the 1970s and the 1990s to the 2000s. The degradation of permafrost stability in the QTP has important impacts 

on the safety of infrastructure, flood risks, ecosystem resilience, and climate feedbacks, as well as the well-being of millions 

of people and sustainable development at the Third Pole. 10 

However, theThe uncertainties inherent in this analysis cannot be discounted. These uncertainties are due to asynchronous 

changes in near-surface air temperatures and deep soil layer temperatures, the missing geothermal flux, insufficient 

resolution, or the inaccuracies and sparseness of the surface station data employed. As this evaluation is empirically based, 

obtaining more convincing results requires additional data, especially from the deep layers of soils. The development of new, 

fast, and inexpensive sensors and robust machine learning methods will assist in this effort. A physically based definition of 15 

permafrost stability and an improved physically based model will contribute to the prediction of permafrost stability 

degradation and its interactions with the engineering stability of infrastructure, the water cycle, and climate change. 
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Table 1. Classification system used to assess permafrost stability (Cheng, 1984) 

Type 
Mean annual ground 

temperature (℃) 

Thickness of 

permafrost (m) 

Mean annual air 

temperature (℃) 

Extremely stable  <-5.0 170 <-8.5 

Stable  -3.0~-5.0 110~170 -6.5~-8.5 

Sub-stable  -1.5~-3.0 60~110 -5.0~-6.5 

Transitional  -0.5~-1.5 30~60 -4.0~-5.0 

Unstable  +0.5~-0.5 0~30 -2.0~-4.0 

Extremely unstable  >+0.5  -1.0>-~-2.0 
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Table 2. The statistics of the stepwise linear regression analysis  

Model Independent variables Adjusted R
2
 

Significance level 

1 MAST 0.83 
0.00 

2 MAST, LAI 0.87 
0.00 

3 MAST, LAI, FSC 0.88 
0.00 

4 MAST, LAI, FSC, AltitudeElevation 0. 90 
0.00 

5 MAST, LAI, FSC, AltitudeElevation, Longitude 0.91 
0.00 

6 MAST, LAI, FSC, AltitudeElevation, Longitude, Latitude 0.93 
0.00 
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Table 3. The area statistics of the permafrost thermal stability types over the QTP in the past 50 years (104 km2) 

Permafrost 

stability 
1960s 1970s 1980s 1990s 2000s 

Net change (1960s 

to 2000s) 

2000s 

except 

forexcluding 

glaciers  

Change rate  

(10
4 

km
2
/decade) 

      Area 
Percent 

(%) 
  

Extremelyremely 

stable 
12.35 8.56 8.74 5.66 3.36 -8.99 -72.79  1.86 -2.09 

Stable 38.59 28.30 27.64 20.91 11.53 -27.06 -70.12  10.39 -6.15 

Sub-stable 34.14 34.75 34.09 31.94 24.84 -9.30 -27.24  24.03 -2.14 

Transitional 24.73 23.95 23.59 23.39 23.55 -1.18 -4.77  23.12 -0.29 

Unstable 44.22 43.89 43.70 46.51 48.21 3.99 9.02  47.80 1.06 

Extremely 

unstable 
20.73 21.05 20.54 20.16 21.63 0.90 4.34  21.56 0.09 

Total area 174.76 160.50 158.32 148.57 133.10 -41.66 -23.84  128.76 -9.52 
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Table 4. Transfer matrix of permafrost stability types from the 1960s to the 2000s in the QTP (%) 

1960s 

2000s 
Extremely 

stable 
Stable Sub-stable Transitional Unstable 

Extremely 
unstable 

Seasonally 
frozen ground 

Extremely stable 24.75  0.78  0.00  0.00  0.00  0.00  0.00  

Stable 59.42  9.67  1.33  0.02  0.00  0.00  0.00  

Sub-stable 15.82  50.93  8.37  1.45  0.03  0.00  0.00  

Transitional 0.00  35.91  23.18  6.16  0.57  0.00  0.00  

Unstable 0.00  2.72  67.07  66.82  17.19  0.66  0.00  

Extremely 

unstable 
0.00  0.00  0.05  25.49  32.80  3.39  0.12  

Seasonally 

frozen ground 
0.00  0.00  0.00  0.06  49.40  95.95  99.88  

Class changes 75.25  90.34  91.63  93.84  82.81  96.61  0.13  
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Table 5. The mean change in altitudeelevation of the permafrost thermal stability types over the QTP in the past 50 years (unit: 

metre) 

Permafrost stability 1960s 1970s 1980s 1990s 2000s Rate (m/decade) R
2
 

Extremely stable 5240 5161 5169 5232 5328 24.7 0.34 

Stable 5050 5052 5055 5094 5147 23.6 0.80 

Sub-stable 4881 4932 4937 4985 5036 36.3 0.96 

Transitional 4756 4799 4804 4859 4941 43.0 0.91 

Unstable 4614 4670 4675 4713 4775 36.5 0.94 

Extremely unstable 4392 4503 4513 4565 4642 56.2 0.94 
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Figure 1. The distribution of in situ MAAT observation stations and MAGT boreholes over the QTP. 
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Figure 2. Spatial variability of MAAT warming rates over the QTP in the past 50 years. 
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Figure 3. Warming rates with increasing elevation. These rates are derived from MAATs estimated using MODIS LSTs. Error bars 

display the standard deviations. 
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Figure 4. The permafrost stability map in each decade (a-e) and its spatial changes from the 1960s to the 2000s (f-j) over the QTP 

during the past 50 years.  
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Figure 5. Changes in altitude distribution for extremely stable (a), stable (b), sub-stable (c), transitional (d), unstable (e), and 

extremely unstable (f) permafrost over the QTP in the past 50 years. 
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Figure 6. Comparison of the permafrost extent between the results of this study (a) and the new permafrost map presented by Zou 

et al., (2016) (b). 
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