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Abstract. With its high albedo, low thermal conductivity and large water storing capacity, snow strongly modulates the surface

energy and water balance which makes it a critical factor in mid to high-latitude and mountain environments. However, esti-

mating the snow water equivalent (SWE) is challenging in remote sensing applications already at medium spatial resolutions of

1 km. Here, we present an ensemble-based data assimilation framework to estimate peak SWE distributions at the 1 km scale.

The scheme assimilates fractional snow covered area (fSCA) retrievals from remote sensors in a simple simple snow model5

forced by statistically downscaled reanalysis data. The basic idea is to relate the timing of the snow cover depletion (accessible

from satellite products) to pre-melt SWE, while at the same time obtaining the subgrid scale distribution. Subgrid SWE is

assumed to be lognormally distributed, which can be translated to a modeled time series of fSCA through the snow model. As-

similation of satellite-derived fSCA facilitates the estimation of the average SWE and coefficient of variation, while taking into

account uncertainties in both the model and the assimilated data sets. As an extension to previous studies, our method makes10

use of the novel (to snow data assimilation) ensemble smoother with multiple data assimilation (ES-MDA) scheme combined

with analytical Gaussian anamorphosis to assimilate time series of MODIS and Sentinel-2 fSCA retrievals. The scheme is

applied to Arctic sites near Ny Ålesund (79◦N, Svalbard, Norway) where field measurements of fSCA and SWE distributions

are available. The method is able to successfully recover accurate estimates of peak subgrid SWE distributions on most of the

occasions considered. Through the ES-MDA assimilation, the root mean squared error (RMSE) for the fSCA, peak mean SWE15

and peak subgrid coefficient of variation is improved by around 75%, 60% and 20% respectively when compared to the prior,

yielding RMSEs of 0.01, 0.09 m water equivalent (w.e.) and 0.13 respectively. The ES-MDA either outperforms or at least

nearly matches the performance of other ensemble-based batch smoother schemes with regards to various evaluation metrics.

Given the modularity of the method, it could prove valuable for a range of satellite-era hydrometeorological reanalyses.

1 Introduction20

The spatiotemporal distribution of the seasonal snow cover is a key control on the terrestrial surface energy and water balance

in mid to high latitude regions and mountainous areas (Boike et al., 2003; Barnett et al., 2005). With its high albedo and

large water holding capacity, snow is a modulator of the global radiation balance and hydrological cycle, making it one of the
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drivers of the atmospheric circulation and the associated climate (Andreadis and Lettenmaier, 2006; Liston, 1999). Since the

snow water equivalent (SWE) can exhibit considerable variability over small distances (Clark et al., 2011), mapping the SWE

distribution remains a difficult task (Dozier et al., 2016).

The primary controls on the distribution and variability of SWE are topography, vegetation, precipitation, wind, radiation

and avalanching (Sturm and Wagner, 2010; Clark et al., 2011). While topography and vegetation are relatively fixed in time, the5

other controls vary strongly over a range of spatiotemporal scales. In unforested regions, snow tends to be affected by wind drift

(e.g. Gisnås et al., 2014) leading to accumulation in areas with preferential deposition, such as topographic depressions or the

lee-side of a ridge. The scale of such features can vary dramatically across the landscape. Nonetheless, the processes occurring

at a given site are often consistent from year to year and so the SWE distribution is often quite similar to the climatological snow

distribution pattern (Sturm and Wagner, 2010; Kępski et al., 2017). Manual measurement surveys are usually impractical for10

mapping SWE over large areas given their limited support, large spacing and small extent (Blöschl, 1999). Instead, modeling

and remote sensing can be employed to map SWE.

Snow models range in complexity from relatively simple single layer models, such as the Utah Energy Balance model

(UEB; Tarboton and Luce, 1996; You et al., 2014), to detailed multilayer snowpack models such as Crocus (Vionnet et al.,

2012) and SNOWPACK (Bartelt and Lehning, 2002). Some snow models (e.g. ALPINE3D; Lehning et al., 2006) can also be15

run in distributed mode to simulate the snow distribution over large areas. The accuracy of the model results is limited by the

hydrometeorological forcing data, be it from reanalyses or local measurements, whose errors are typically the major source of

uncertainty in snow modeling (De Lannoy et al., 2010; Raleigh et al., 2015). In addition, snow models are generally developed

as point scale models and even if they are run as distributed models the grid scale values predicted by the model may not

be representative of the corresponding process scale (Blöschl, 1999). For example, if a snow model is forced by near point20

scale hydrometeorological measurements, the model results will only be representative for a grid cell if that particular point

is representative of the mean conditions within the grid cell. To circumvent this problem, probabilistic snow depletion curve

(SDC) parametrizations have been developed (Liston, 1999; Luce and Tarboton, 2004; Liston, 2004) in which a probability

distribution function is assigned to the SWE within a grid cell at peak accumulation. Assuming uniform melt across the grid

cell, this allows for a direct relationship between the mean SWE, melt depth and the fractional snow covered area (fSCA)25

of the grid cell. Liston (2004) used such a SDC parametrization in conjunction with land cover specific subgrid coefficients

of variation of SWE with the ClimRAMS model to map the fSCA over North America. As a result, the total snow-covered

area increased considerably compared to the control run. Aas et al. (2017) used a tiling approach to represent subgrid snow

variability in the WRF model coupled to the Noah land surface scheme over southern Norway. The tiling reduced the cold bias

in the modeled near-surface air temperatures and greatly improved the match to the observed fSCA evolution. Nevertheless,30

due to the inherently large uncertainties in the forcing, modeling alone is usually not a sufficiently accurate tool for mapping

SWE. Instead, models need to be combined with relevant data from remote sensing.

Snow related data sets can be acquired from a variety of remote sensing platforms with near global coverage. The Gravity

Recovery and Climate Experiment (GRACE) twin satellites allow for the retrieval of terrestrial water storage (TWS), from

which SWE can be recovered at around 100 km spatial resolution (e.g. Niu et al., 2007). Passive microwave (PM) satellite35
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sensors can retrieve SWE based on brightness temperature at a resolution of around 25 km. However, PM SWE retrievals

have problems over forested areas and complex topography, as well as for wet and deep snowpacks (Foster et al., 2005). Both

gravimetric and PM sensors are able to retrieve SWE independent of cloud coverage resulting in gap free time series. While

not capable of measuring SWE, moderate resolution optical sensors such as MODIS can retrieve binary information on snow

cover (i.e. snow or no snow), fSCA and snow grain size (Hall et al., 2002; Salomonson and Appel, 2004; Painter et al., 2009)5

at approximately 500 m resolution with a daily revisit frequency. In addition, higher resolution optical sensors, e.g. on board

the Landsat and Sentinel-2 satellites, can map fSCA at around 30 m resolution (e.g. Cortés et al., 2014). Optical sensors can

not see through clouds which results in data gaps over most snow covered regions. To obtain gap free time series, it is thus

necessary to either interpolate optical remote sensing data in time and space, or ingest them in models.

Data assimilation (DA) methods can objectively fuse uncertain information from observations and models. Deterministic10

SWE reconstruction techniques (Girotto et al., 2014b) that directly insert remotely sensed fSCA data in models represent the

simplest form of snow data assimilation. Such schemes back-calculate peak SWE from the disappearance date of the snow

cover (as determined from fSCA retrievals) using snowmelt models. Martinec and Rango (1981) used Landsat fSCA retrievals

during the melt season in conjunction with a simple degree day snowmelt model to estimate the peak mean SWE. Similarly,

Cline et al. (1998) used Landsat fSCA retrievals combined with a distributed energy balance model to reconstruct the SWE15

distribution. More recently, Molotch and Margulis (2008) used fSCA information from multiple sensors for deterministic SWE

reconstruction. Durand et al. (2008) introduced a probabilistic framework for SWE reconstruction. This was based on assim-

ilating synthetic fSCA retrievals during the ablation into the SSiB3 land surface model coupled to the SDC of Liston (2004)

using the ensemble smoother (ES; Van Leeuwen and Evensen, 1996) in batch mode (c.f. Dunne and Entekhabi, 2005). The

assimilation of synthetic fSCA in this twin experiment was used to correct annual biases in the snowfall and facilitated the20

recovery of the SWE distribution. Using the Durand et al. (2008) framework, Girotto et al. (2014b) assimilated Landsat fSCA

retrievals to recover the SWE distribution, yielding a significant reduction in RMSE relative to deterministic SWE reconstruc-

tion. Subsequently, Girotto et al. (2014a) used the same framework to perform a 27 year reanalysis of SWE distributions.

Recently, Margulis et al. (2015) modified this probabilistic approach by adopting a particle batch smoother (PBS) as opposed

to the ES for the assimilation of fSCA retrievals to estimate the SWE distribution. The PBS was found to outperform the ES,25

considerably reducing the RMSE. Based on this work, Margulis et al. (2016) adopted the PBS framework to conduct a 30 year

reanalysis of SWE over the Sierra Nevada (USA) using Landsat fSCA retrievals. Cortés et al. (2016) applied the same PBS

framework to construct a 30 year reanalysis of SWE over 6 instrumented basins in the Andes. Cortés and Margulis (2017)

subsequently adopted this approach to perform a 31 year SWE reanalysis over the entire extratropical Andes.

Several other snow DA techniques have recently been employed. Andreadis and Lettenmaier (2006) assimilated MODIS30

fSCA retrievals into the VIC model through the ensemble Kalman filter (EnKF; Evensen, 2009) using a simple SDC for the

SWE-fSCA inversion. However, the improvement compared to the open loop (OL, i.e. no DA) run was only modest which

was also found in similar studies (Clark et al., 2006; Slater and Clark, 2006). A Bayesian technique was used by Kolberg and

Gottschalk (2006) to assimilate Landsat fSCA retrievals into a snow model with a probabilistic SDC to estimate the peak SWE

distribution. They found a significant reduction in uncertainty when retrievals were assimilated simultaneously as opposed to35
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sequentially. At the continental scale, a multisensor assimilation of both GRACE TWS and MODIS fSCA using the ES and

EnKF for TWS and fSCA respectively yielded significant improvements relative to the OL (Su et al., 2010). De Lannoy et al.

(2010) used the EnKF in a twin experiment to assimilate synthetic PM SWE retrievals and greatly outperformed the OL. This

was extended to a real multisensor experiment by jointly assimilating PM SWE and MODIS fSCA retrievals (De Lannoy et al.,

2012). Li et al. (2017) used the ES to assimilate PM SWE retrievals and estimate the SWE distribution, markedly outperforming5

the OL. Of late, particle filter (PF; see Van Leeuwen, 2009) schemes have been gaining popularity in snow DA studies (Charrois

et al., 2016; Magnusson et al., 2017). For example, Charrois et al. (2016) assimilated synthetic optical reflectance retrievals

into Crocus using the sequential importance re-sampling PF at a point scale and considerably outperformed the OL.

It is worth emphasizing that the most popular schemes in the snow DA community, both the EnKF and the PF, are filters

(i.e. sequential techniques). As such, they are Markovian of order 1 (memoryless): the future state at a given point in time10

depends only on the present state. Furthermore, observations are assimilated sequentially with only the current observation

affecting the current state. Batch smoothers (Dunne and Entekhabi, 2005), on the other hand, take into account the entire

history of a model trajectory within a batch (observation window) and as such have memory (non-Markovian) so that they are

better suited for reanalysis problems.

In this study, we build on the probabilistic SWE reconstruction technique outlined in Girotto et al. (2014b) to recover15

subgrid SWE distributions (SSD) for a study area in the Arctic based on fSCA retrievals from MODIS and Sentinel-2. The

novelty of our study lies in the use of an iterative batch smoother scheme, namely the ensemble smoother with multiple data

assimilation (ES-MDA; Emerick and Reynolds, 2013). To update physically bounded parameters we make use of analytical

Gaussian anamorphosis (Bertino et al., 2003). We investigate the performance of the ES-MDA in terms of SWE reconstruction

and compare it to the ES and the PBS employed by Girotto et al. (2014b) and Margulis et al. (2015) respectively. The results20

are evaluated against independent field measurements of fSCA and snow surveys conducted over six snow seasons.

2 Study area

2.1 Physical characteristics and climate

The study area is located in NW Svalbard close to the research town of Ny-Ålesund (78◦55′N, 11◦50′E) on the Brøgger

peninsula. Field measurements are available from three sites (Figure 1). “Bayelva” about two kilometers west of Ny-Ålesund25

is the main study site where multiyear in situ records on e.g. the surface energy balance, permafrost thermal regime and

snow distribution are available (Westermann et al., 2009; Gisnås et al., 2014; Boike et al., 2017). In addition, snow surveys

for a single season (2016) are available from “Steinflåen plateau” and “Kvadehuksletta”. All sites feature gently undulating

topography with small hills and surfaces characterized by patterned ground features, leading to strong differences in snow

cover due to wind drift. Bayelva and Kvadehuksletta are located between 10 and 50 m a.s.l., while the Steinflåen plateau is at30

a higher elevation of around 200 m a.s.l.. Kvadehuksletta is exposed to most wind directions, whereas Bayelva and Steinflåen

plateau are partly sheltered by mountains. The sites are located within the continuous permafrost zone (Boike et al., 2003) with

a maximum active layer depth of around 1.5 m at the Bayelva site (Westermann et al., 2009).
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Figure 1. Top left: location of Svalbard (in red) in the Arctic. Top right: map of Svalbard, the study area is close to Ny-Ålesund. Bottom:

Sentinel-2A true color image (taken 02.07.2016) of the western Brøgger Peninsula with the three study sites Kvadehuksletta, Steinflåen

plateau and Bayelva; green dots: snow survey probe locations; blue polygons: MODIS pixels; yellow diamond: automatic camera system on

Scheteligfjellet; yellow shading: field of view of the camera; contour lines courtesy of the NPI (2014) DEM.

The Bayelva site is located around the heavily instrumented Bayelva climate and soil monitoring station (Boike et al., 2017).

This area has been the subject of extensive studies spanning permafrost (Roth and Boike, 2001; Boike et al., 2008; Westermann

et al., 2011a), the surface energy balance (Boike et al., 2003; Westermann et al., 2009), CO2 exchange (Lüers et al., 2014;

Cannone et al., 2016), ecology (Kohler and Aanes, 2004), snow (Bruland et al., 2001; Gisnås et al., 2014; López-Moreno et al.,

2016), hydrology (Nowak and Hodson, 2013) and satellite retrieval validation (Westermann et al., 2011b, 2012). The surface5

cover at Bayelva and Kvadehuksletta alternates between bare soil, rocks and sparse low vegetation (Westermann et al., 2009),

while the more elevated Steinflåen plateau is predominantly covered by loose rocks.
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The climate of western Svalbard is influenced by the relatively warm West Spitsbergen ocean current causing a maritime

climate with mild winters and cool summers for this latitude (Esau et al., 2012). At Ny-Ålesund the winter, summer and annual

(1981-2010) average air temperatures were -12.0 ◦C, 3.8 ◦C and -5.2 ◦C, respectively, while the average annual precipitation

was 427 mm (Førland et al., 2011). Between September/October and May the precipitation mainly falls as snow, although rain

on snow events have become more frequent due to the warming of the local climate (Nowak and Hodson, 2013; López-Moreno5

et al., 2016). The seasonal snow cover usually forms in late September or early October and lasts until mid June to early July,

with a melt season of around one month (Winther et al., 2002). The dominant energy source during the snowmelt is radiation

(longwave and shortwave), while the heat flux required to warm the frozen ground underlying the snow is an important energy

sink (Boike et al., 2003; Westermann et al., 2009).

2.2 Field measurements10

Manual surveys of snow depth and density were carried out in April/May for six years at the Bayelva site and for one year

(2016) at the two other sites (Table 1). At this time, the snow depth is near its maximum but the snowpack is still dry. The

snow density was sampled in vertical layers at every fifth point. As no systematic stratification of the snow density was found,

SWE was finally calculated from snow depth and the average snow density at each site in a given year. At Bayelva, the snow

density was generally confined to a range of 350±50 kg m−3 for all the surveys, while the snow density was found to be15

around 450 kg m−3 at Steinflåen plateau in 2016. At Kvadehuksletta and Steinflåen plateau, the surveys were conducted along

transects with regular sample intervals (see Figure 1). A randomized array of sample points was employed for Bayelva in most

years, except for the first two years where transects were used.

Location z̄ [m a.s.l.] σz [m] Area [km2] Survey years Samples per survey

Bayelva 23 9 0.5 2008, 2009, 2013-2016 853t, 617t, 105r

Steinflåen plateau 210 11 1.1 2016 45t

Kvadehuksletta 55 6 0.9 2016 30t

Table 1. Overview of the study sites and snow surveys. z is the mean elevation and σz is the standard deviation in the elevation both based

on the NPI (2014) DEM. Key: t=transect, r=randomized array.

Basal ice layers resulting from rain on snow events (Kohler and Aanes, 2004; Westermann et al., 2011a) occur in the area

and can constitute a major source of uncertainty for SWE measurements. In 2016, the depth of basal ice layers was measured20

using ice screws and their contribution to the SWE was accounted for. In addition, internal ice layers and the spatial variability

of average snow densities (see above) contribute to the uncertainty of the measurements. Furthermore, only a limited number

of sampling points is available, so that the obtained snow distributions are expected to deviate to a certain extent from the true

snow distributions in the area. Although the snow surveys coincide closely with peak SWE, some accumulation (ablation) may

occur after (before) the surveys. To assess the magnitude of this error source, we used snow depth measurements at the Bayelva25
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station (Boike et al., 2017) to compare the snow depth at the survey dates to the maximum snow depth for each snow season.

We found an average relative difference of 8% (maximum: 17%, minimum: 0.3%).

In 2012, 2013 and 2016, an automatic time-lapse camera was deployed near the summit of Scheteligfjellet (694 m a.s.l.;

c.f. Figure 1) overlooking the Bayelva site. The camera was a standard digital camera triggered by a Harbortronics time-lapse

system, delivering daily images except for prolonged periods with low cloud cover. The raw camera images were orthorectified5

at a 1 m resolution and snow was mapped for each pixel using a threshold on the intensity, so that fSCA could be determined

for each image. The orthorectified images for two of the years are freely available in Westermann et al. (2015a).

In 2008, aerial images were obtained for the Bayelva site for five dates in June during the beginning of the snowmelt period.

This was accomplished by mounting a digital camera to a UAV flying at an altitude of 100 to 250 m above ground which

took between 700 and 1000 images per mission at nadir angles. As the images were taken in a near random fashion over the10

entire area, fSCA was calculated by averaging over the fSCA determined for each image using a simple threshold criterion.

GPS-based surveys of the remaining snow patches were available for five additional dates, so that a complete fSCA time series

is available for the snowmelt period in 2008.

3 Method

3.1 Simple snow model15

To efficiently run a large number of ensemble members, a simple snow model (SSM) is employed, which computes snowmelt

rates according to surface energy balance formulations (as in the CryoGrid 3 ground thermal model; Westermann et al., 2016).

The model is a blend of a single layer mass balance scheme, based on the UEB model (Tarboton and Luce, 1996; You et al.,

2014), and the Liston (2004) SDC. Many internal snow processes (occurring inside the snowpack), including heat conduction

and melt water percolation, are omitted. In addition, several external processes such as sublimation and deposition are ignored.20

In the following sections, we describe the governing equations of the SSM (see Table 2 for the model constants).

3.1.1 Snow depletion curve

We use the SDC parametrizations discussed in Liston (1999), Luce and Tarboton (2004) and Liston (2004) which parametrize

the relationship between fSCA, melt depth and SWE by using a probability density function (pdf) to represent the peak subgrid

SWE distribution (SSD). A key assumption is that the melt rate is spatially uniform within each grid cell. The relationship25

between the accumulated melt depth (Dm), the peak SSD pdf (fP ), and the fSCA within the grid cell at time t is given by

fSCA(t) =

∞∫
Dm(t)

fP (D)dD. (1)
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Similarly, the mean SWE depth is given by

D(t) =

∞∫
Dm(t)

(D−Dm(t))fP (D)dD. (2)

Following Liston (2004) we parametrize the peak SSD using a two parameter lognormal pdf fP = fP (D|µ,χ) where µ is

the peak mean SWE and χ= σ/µ is the peak subgrid coefficient of variation (σ is the standard deviation). Our choice of

parametric distribution was motivated by independent measurements of the SSD which fit reasonably well to a lognormal5

distribution (Bruland et al., 2001). Equations (1) and (2) can both be solved analytically as presented in Liston (2004).

3.1.2 Mass and Energy Balance

To obtain the instantaneous net accumulation rate, A(t), we follow the UEB model through (You et al., 2014)

A(t) = P (t)−M(t) , (3)

where P (t) is the precipitation rate and M(t) is the melt rate. Sublimation is not considered as it is a relatively small contribu-10

tion to the mass balance at our study area (Westermann et al., 2009). We use a linear transition to delineate between snowfall

and rainfall (You et al., 2014), with thresholds given in Table 2. We only consider rainfall as a positive contribution to the mass

balance during non-melting conditions when the rainwater generally refreezes in the snowpack (Westermann et al., 2011a). For

melting conditions (where Dm > 0), we assume that rainfall directly becomes runoff.

The melt rate, M , is calculated based on a simplified snow energy balance defined by15

QM (t) =Q∗R(t) +QP (t)−QH(t)−QE(t)−QG(t) , (4)

where QM is the snowmelt flux, Q∗R is the global radiation, QP is the heat advected by precipitation, QH is the sensible heat

flux, QE is the latent heat flux and QG is the ground heat flux. The last three fluxes are defined as positive when directed away

from the surface and vice versa for the first two on the right hand side of (4). The SSM differs from UEB in that we calculate

the surface energy balance for a melting snowpack, i.e. isothermal at 0◦C, at all times. In this case, the global radiation is20

Q∗R = (1−αS)S↓+L↓− εSσSBT
4
0 , (5)

in which S↓ and L↓ are the downwelling shortwave and longwave irradiances and the last term is the upwelling longwave ra-

diation for the assumed isothermal snowpack at T0 =273.15 K. The snow albedo (αS) is parametrized prognostically through

the continuous reset formulation following Dutra et al. (2010), which computes the albedo for time increments ∆t by distin-

guishing between accumulating, steady and ablating conditions:25

αS(t+ ∆t) =


αS(t) + min(1,A(t)∆t/τS)(αmax−αS(t)) , A(t)> 0 ,

max(αS(t)− τA∆t,αmin) , A(t) = 0 ,

(αS(t)−αmin)exp(−τF ∆t) +αmin , A(t)< 0 .

(6)
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Here, αmin and αmax are the minimum and maximum snow albedo values respectively, while τA and τF are aging (decay) rates

for non-melting and melting snow respectively. τS is a threshold for daily snowfall which if exceeded leads to a reset of the

snow albedo to its maximum value. This simple decay and reset type of snow albedo parametrization has been shown to perform

reasonably well at Bayelva (Pedersen and Winther, 2005). The heat advected by rainfall (QP ) is computed as in Tarboton and

Luce (1996), while the turbulent fluxes of sensible (QH ) and latent (QE) heat are evaluated following Westermann et al. (2016).5

The ground heat flux (QG) is parametrized through a simple e-folding relationship during the melting period, i.e.

QG =Q0exp
(
dHtm/z

2
E

)
, (7)

where Q0 is the initial ground heat flux, dH is the thermal diffusivity of the ground, zE is the effective depth of the heat

transfer below the base of the snowpack and tm is the number of days with melting conditions after peak accumulation. Q0

is a perturbation parameter (see Table 4) that is updated in the assimilation, dH is selected according to field measurements10

(Westermann et al., 2009) and zE is set so that the ground heat flux decays to near zero a month into the melt season.

The snowmelt flux QM can now be evaluated through (4). We recall that an isothermal snowpack at 0◦C is assumed for

(4), which is only justified for a melting snowpack. In this case, positive QM correspond to melting and SWE reduction, while

negative values correspond to refreezing of melt water and thus SWE increase. For a dry snowpack (as is generally the case

before the snowmelt), negative QM values would lead to a cooling of the snowpack, which is not considered in this simple15

snowmelt scheme. To discard unphysical values (negative melt rates) we only consider days with net melting conditions, i.e.

positive daily average snowmelt fluxes. Thus, the daily averaged melt rate Mn at day n (lasting from tn to tn+1) is given by

Mn = max

 1

ρwLf∆t

tn+1∫
tn

QM (t)dt, 0

 , (8)

where ρw is the density of fresh water, Lf is the latent heat of fusion and ∆t is the daily time step. We emphasize that the

effects of refreezing are still considered at a subdaily time resolution in (8). Similarly, the daily averaged precipitation rate is20

Pn =
1

∆t

tn+1∫
tn

P (t)dt . (9)

Now the daily averaged net accumulation rate can be obtained through

An = Pn−Mn , (10)

and the accumulated melt depth Dm is accounted for through

Dm,n+1 = max(Dm,n−An∆t,0)H (µ) . (11)25

The peak mean SWE µ is updated via

Λ = µn + max(An∆t−Dm,n+1,0) , (12)
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through

µn+1 = ΛH (Λ− τS) , (13)

where the alternative Heaviside function is defined through H(x) = 0 if x≤ 0, and H(x) = 1 otherwise. Consequently, in (13)

the peak mean SWE µ is only non-zero if Λ exceeds the threshold τS . Note that the formulation in (11) gradually resets the

melt depth towards zero in the case of snowfall after the onset of melt, following Liston (2004). This means that fSCA is not5

reset to unity in the case of new snowfall after a melting period unless the new snowfall leads to an increase in the peak SWE.

In the study area, snowfall events occurred rarely during the snowmelt period and the new snow cover lasted only a short

time. At sites where such events are more frequent, Durand et al. (2008) presents an alternative solution, albeit at an increased

computational cost. The annual model integrations start in the beginning of September when the surface is assumed to be snow

free so that both µ and Dm are initialized as zero. Both µ and Dm are reset to zero following the complete disappearance of10

the snowpack, defined as when the fSCA decreases below 0.01 to account for the infinite tail of fP . The model resolution is

defined by the footprint of (area encompassed by) the snow surveys for each site (see Table 1 and Figure 1).

Symbol Name Value Units (SI) Reference

αmax Maximum snow albedo 0.85 − Dutra et al. (2010)

τS Threshold snowfall 0.01 m (w.e.) Dutra et al. (2010)

τF Aging constant for melting snow 2.78× 10−8 s−1 Dutra et al. (2010)

τA Aging constant for non-melting snow 9.26× 10−8 s−1 Dutra et al. (2010)

TR Threshold temperature for rain 276.15 K You et al. (2014)

TS Threshold temperature for snow 272.15 K You et al. (2014)

εS Emissivity of snow 0.99 − Westermann et al. (2016)

dH Thermal diffusivity of the ground 6× 10−7 m2 s−1 Westermann et al. (2009)

zE Effective transfer depth 1 m -

∆t Daily time step 86400 s -

Lf Specific latent heat of fusion 3.35× 105 J kg−1 Tarboton and Luce (1996)

ρw Density of fresh liquid water 103 kg m−3 Tarboton and Luce (1996)

σSB Stefan-Boltzmann constant 5.67× 10−8 W m−2 K−4 Tarboton and Luce (1996)

Table 2. List of the model constants used in the simple snow model runs along with the corresponding reference studies.

3.1.3 Forcing

Forcing terms in the form of precipitation, air temperature, relative humidity and wind speed, as well as downwelling long-

wave and shortwave radiation are required to diagnose the mass and energy balance in (3) and (4). These terms are obtained15

by downscaling ERA-Interim reanalysis data (Dee et al., 2011) at 0.75◦ resolution following Østby et al. (2017). This method
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uses the linear theory of orographic precipitation in Smith and Barstad (2004) to downscale precipitation and a modification of

the TopoSCALE approach (Fiddes and Gruber, 2014) for the remaining fields. The reanalysis forcing is downscaled onto 1 km

resolution DEM grid cells centered on each of the study sites. The downscaling is performed based on the mean physiographic

conditions (elevation, slope and aspect) within each of these grid cells. The resulting values at 1 km spatial and 6 hourly tempo-

ral resolution are linearly interpolated in time to facilitate a stable computation of the time evolution of turbulent energy fluxes5

following Westermann et al. (2016). From these fluxes, and the remaining surface energy balance fields, diurnally averaged

melt rates are calculated. Similarly, diurnally averaged rainfall and snowfall rates are computed by delineating between rain

and snow in the time interpolated precipitation rate (You et al., 2014) and then taking diurnal averages. While the resolution of

the downscaled forcing data do not exactly match the model resolution (i.e. the footprint of the snow surveys, Section 3.1.2),

the mismatch is small considering the gentle topography of the study sites (Section 2.1).10

3.2 Satellite retrievals

We make use of satellite retrievals between May and September which contain the snowmelt period for all the investigated

years. Only retrievals that fall inside the melt season are assimilated as these contain information about the snow cover de-

pletion. Due to frequent cloud cover, the effective revisit frequency of fSCA retrievals is irregular, with prolonged data gaps

occurring regularly. An overview of the number of available scenes is given in Table 3.15

Location Melt season # of MODIS scenes # of Sentinel 2 scenes

Bayelva 2008, 2009, 2012, 2013, 2014, 2015, 2016 8, 9, 8, 9, 6, 14, 11 −, −, −, −, −, −, 7

Steinflåen plateau 2016 5 8

Kvadehuksletta 2016 11 7

Table 3. Number of MODIS and Sentinel-2 scenes per melt season with field measurements available for the three study sites.

3.2.1 MODIS

We employ version 6 of the level 3 daily 500 m resolution fSCA retrievals from the Moderate Resolution Imaging Spectrora-

diometer (MODIS) on board the satellites Terra (MOD10A1 product; Hall and Riggs, 2016a) and Aqua (MYD10A1 product;

Hall and Riggs, 2016b). The retrieval algorithm is based on an linear fit of the normalized difference snow index (NDSI)

measured by MODIS to fSCA retrievals from ground truth Landsat scenes as described in Salomonson and Appel (2004). The20

NDSI exploits the fact that snow is highly reflective in the visible, but a good absorber in the shortwave infrared which sets it

apart from other natural surfaces such as clouds, vegetation and soil (Painter et al., 2009).

We average over all the pixels for each day and study site (see Figure 1). This average is only taken if cloud free (as

determined by the MODIS cloud mask) retrievals are available for each of these pixels. If both Terra and Aqua retrievals are

available for a given day only the former are used. Despite small deviations in the measurement footprint (see Figure 1), we25
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compare MODIS fSCA retrievals to the field measurements of fSCA obtained from the automatic camera system, UAV and

GPS surveys (Section 2.2). From this comparison, we estimate a RMSE of σMOD = 0.13 for the MODIS fSCA. We use σ2
MOD as

the observation error variance in the corresponding diagonal entries of the observation error covariance matrix (Section 3.3.2).

3.2.2 Sentinel-2

For the year 2016, we complement the MODIS fSCA retrievals with aggregated 20 m resolution retrievals from the Sentinel-2A5

mission (Drusch et al., 2012). fSCA estimates are derived from the level 1C orthorectified top of the atmosphere reflectance

product, with cloud-free scenes manually selected. For this purpose, NDSI is computed from reflectances (r) from a visible

(b3, centered on 0.56µm) and a shortwave infrared band (b11, centered on 1.61µm) through

NDSIS2 =
rb3− rb11

rb3 + rb11
. (14)

Each pixel is then either classified as snow covered (NDSI≥ 0.4) or snow free (NDSI< 0.4), where the NDSI threshold was10

chosen in line with Hall et al. (2002). The binary (snow/no snow) pixels are then aggregated to the approximate footprint of

the independent snow surveys conducted at each site (Figure 1) to obtain Sentinel-2 derived fSCA estimates. Therefore, the

areal extent of the Sentinel-2 fSCA retrievals closely matches the areas of the corresponding study sites given in Table 1. The

retrieval process is illustrated schematically in Figure 2. By comparing the Sentinel-2 retrievals to the field measurements of

fSCA from the automatic camera system in 2016 we estimate a RMSE of σS2 = 0.09. We use σ2
S2 as the observation error15

variance in the corresponding diagonal entries of the observation error covariance matrix (Section 3.3.2).

3.3 Ensemble Data Assimilation

In this section we outline how the prior ensemble of model realizations is set up and how it is updated to a posterior ensemble

through the assimilation of fSCA satellite retrievals using ensemble-based batch smoother schemes.

3.3.1 Ensemble Generation20

The prior ensemble of model realizations is generated by independently drawing perturbation parameter values from the dis-

tributions listed in Table 4. These perturbation parameters are held constant throughout integration of the model for each water

year. Two of these are multiplicative bias parameters that perturb the mass balance through the net accumulation rate

An,j = bP,jPn− bM,jMn,j ,

for j ∈ 1 :Ne where Ne is the number of ensemble members. We inherently assume the model forcing to be the major source25

of uncertainty (De Lannoy et al., 2010; Raleigh et al., 2015). Furthermore, we assume that the error in the forcing can be

modeled through constant multiplicative biases (fixed throughout the annual integration) in the mass balance. Consequently,

the bias parameters are modeled as a positive definite lognormal random variables. This is in line with the perturbations in

Girotto et al. (2014b) on the precipitation rate, but we also perturb the melt rate. Moreover, we assume that the ensemble of net

accumulation rates is on average unbiased due to the applied downscaling method (Østby et al., 2017) and thus assign the two30
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Figure 2. Top panel: Sentinel-2 NDSI estimates from an example scene (taken 04.06.2016) over the Brøgger Peninsula with Kvadehuksletta,

Steinflåen plateau and Bayelva marked with red, green and blue polygons; coastline in orange. Middle panels: NDSI histograms of the same

example scene (Kvadehuksletta: left, Steinflåen plateau: middle; Bayelva: right) with the threshold at NDSI= 0.4 marked. Bottom panel:

Time series of Sentinel-2 NDSI-based fSCA retrievals for the 2016 melt season.

bias parameters a mean of unity. The precipitation rates are also perturbed by the same bias parameter in the computation of

the heat advected by precipitation (QP ) in the surface energy balance that contributes to the melt rate Mn.

In addition to the mass balance forcing, the peak subgrid coefficient of variation χ (Section 3.1.1) is a source of uncertainty.

We assume a prior mean of 0.4 for χ, which corresponds to the value provided by Liston (2004) for “Arctic tundra”. Moreover,

χ is assumed to be double bounded between 0 and 0.8, with negative values being unphysical and the upper bound close to the5

maximum value in Liston (2004). Furthermore, both the initial ground heat flux at the onset of melt (Q0) and the minimum

snow albedo (αmin) are uncertain and we also assume that these are double bounded.
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Symbol Name Distribution Support Mean Variance Units

χ Coefficient of variation Logit-normal (0,0.8) 0.4 0.01 -

Q0 Initial ground heat flux Logit-normal (0,40) 20 20 Wm−2

αmin Minimum snow albedo Logit-normal (0.45,0.55) 0.5 0.02 -

bP Precipitation bias Lognormal (0,∞) 1 0.04 -

bM Melt bias Lognormal (0,∞) 1 0.01 -

Table 4. Overview of the distributions from which the prior ensemble of perturbation parameters are independently drawn.

The probability distributions of double bounded random variables are modeled as logit-normal distributions, with the logit

transform for a variable x bounded between a and b given by

x̃= logit(a,b)(x) = ln

(
x− a
b− a

)
− ln

(
1− x− a

b− a

)
, (15)

while the inverse transform is given by

x= logit−1(a,b)(x̃) = a+ (b− a)/
(

1 + e−x̃
)
. (16)5

To generate a prior ensemble of a logit-normally distributed random variable, we first apply the logit transform to the mean.

Then, Ne ensemble members of Gaussian white noise with a consistent variance are added and finally the inverse transform

is applied. We emphasize that through the perturbation parameters we effectively perturb the melt rate, precipitation rate and

coefficient of variation. By performing a subsequent ensemble integration of the SSM we also get an ensemble of state variables

that are consistent with the prior perturbation parameter ensemble.10

3.3.2 Batch Smoothers

Here, we describe the ES-MDA, the main batch smoother scheme used in the assimilation, as well as the ES and the PBS that

are used for comparison. In a batch smoother all the observations, in this case all fSCA retrievals from the snow cover depletion

during one melt season, are assimilated at once in a single batch (Dunne and Entekhabi, 2005), as opposed to sequentially as

in a filter (Bertino et al., 2003). We follow the conventional notation in the DA literature, as laid out in Ide et al. (1997).15

Let Ne, No, Na, Ns, Np and Nt denote the number of ensemble members, observations, assimilation cycles, state variables,

perturbed parameters and time steps during an annual (September-August) model integration. X is the (Ns×Nt)×Ne matrix

containing the ensemble of states (fSCAn,j , Dm,n,j , Dn,j and µn,j) and Θ is the Np×Ne matrix containing the ensemble of

perturbation parameters listed in Table 4. The No× 1 observation vector y contains all the fSCA satellite retrievals during the

ablation season (Section 3.2), Y is the No×Ne matrix containing the ensemble of perturbed fSCA satellite retrievals and Ŷ20

is the No×Ne matrix containing the ensemble of predicted fSCA observations. Additionally, H is the observation operator

(mapping from the state space to the observation space) and R is the No×No observation error covariance matrix which is a

diagonal matrix containing the observation error variances (Section 3.2).
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The ensemble smoother with multiple data assimilation (ES-MDA Emerick and Reynolds, 2013) is an iterative scheme,

requiring multiple ensemble model integrations and analysis steps. Collecting the perturbed and predicted observations during

the ensemble integration into a batch and performing the analysis step is referred to as one assimilation cycle and we will let

the current iteration number be denoted as `. In such a case, the ES-MDA scheme is set up as follows, for ` ∈ 0 :Na iterations:

1. Run an ensemble model integration, i.e. for n ∈ 0 : (Nt− 1) time steps compute5

X
(`)
n+1 =M

(
X(`)

n ,Θ(`)
)
, (17)

whereM is the SSM operator defined through equations (1), (2), (11) and (13).

2. If ` < Na (otherwise stop the algorithm here) collect the batch of predicted observations

Ŷ(`) = HX(`) , (18)

and perturbed observations10

Y(`) = y⊗1T +
√
α(`)R1/2ε(`) , (19)

where⊗ is the outer product, 1 is anNo×1 vector of ones, the T superscript denotes the transpose, α(`) is the observation

error inflation coefficient and ε(`) is a No×Ne matrix containing zero mean Gaussian white noise with a variance of 1.

3. Transform the perturbation parameters using analytical Gaussian anamorphosis functions ψ (Bertino et al., 2003)

Θ̃
(`)

= ψ
(
Θ(`)

)
, (20)15

ψ is the natural logarithm and the logit for the biases and the remaining perturbation parameters respectively.

4. Perform the Kalman-like analysis step in the transformed space

Θ̃
(`+1)

= Θ̃
(`)

+ C(`)
Θ̃Ŷ

(
C(`)

ŶŶ
+α(`)R

)−1(
Y(`)− Ŷ(`)

)
, (21)

the transformed perturbation parameter-predicted observation and predicted observation error covariance matrices are

C(`)
Θ̃Ŷ

=
1

Ne
Θ̃

(`)′

Ŷ(`)′T , (22)20

and

C(`)
ŶŶ

=
1

Ne
Ŷ(`)′Ŷ(`)′T , (23)

respectively, in which primes (′) denote anomalies (deviations from the ensemble mean).

5. Apply the appropriate inverse transforms to recover the updated perturbation parameters

Θ(`+1) = ψ−1
(

Θ̃
(`+1)

)
, (24)25

ψ−1 is the exponential and the inverse logit for the biases and the remaining perturbation parameters respectively.
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The observation error inflation coefficient α(`) in (21) together with the iterations sets the ES-MDA apart from the traditional

ensemble smoother (ES; Van Leeuwen and Evensen, 1996). For Na = α(`) = 1, the ES scheme is recovered, which was used

in the probabilistic SWE reconstruction of Durand et al. (2008) and Girotto et al. (2014b). The idea behind the ES-MDA is

to perform multiple smaller analysis steps as opposed to one abrupt analysis step. In the case of a non-linear model, this is

expected to yield a better approximation of the true posterior (Emerick and Reynolds, 2013). A requirement for the ES-MDA5

to give a nearly unbiased estimate (c.f. Stordal and Elsheikh, 2015) is that the coefficients satisfy
∑Na−1

`=0 1/α(`) = 1. In our

case this is accomplished by setting all the coefficients to α(`) =Na and specifying Na before any assimilation cycles are

carried out. We emphasize that the analysis step (21) only updates the perturbation parameters and a consistent ensemble of

states is found from the subsequent ensemble model integration. The model constants listed in Table 2 remain unchanged by

the analysis and the integration. As mentioned, the perturbation parameter matrix Θ̃ in (21) is transformed through analytical10

Gaussian anamorphosis (Bertino et al., 2003) to ensure that the priors are Gaussian. In this case, the Kalman-like analysis step

(21) is variance minimizing for a linear model (Van Leeuwen and Evensen, 1996). The entire methodology, with ES-MDA as

the DA scheme, is depicted in Figure 3.

Margulis et al. (2015) introduced the particle batch smoother (PBS) for snow data assimilation. In this scheme, each particle

(i.e. ensemble member; Van Leeuwen, 2009) is given an equal prior weight of 1/Ne. Then, after an ensemble model integration,15

the normalized posterior importance weights wj ∈ [0,1] are diagnosed through the analysis step

wj = p
(
y|X̂j

)
p
(
X̂j

)
/

Ne∑
j=1

(
p
(
y|X̂j

)
p
(
X̂j

))
, (25)

where X̂j = [Xj ; Θj ] is the augmented state vector for the j-th particle and the Gaussian likelihoods are given by

p
(
y|X̂j

)
= c0exp

[
−0.5

(
y− Ŷj

)T
R−1

(
y− Ŷj

)]
. (26)

This is a direct application of Bayes’ rule in which the normalizing denominator has two important consequences. Firstly,20

c0 = 1/

√
(2π)

No |R| cancels out thus avoiding errors introduced through floating point arithmetic ((2π)No is generally large).

Secondly, the prior weights p(X̂j) also cancel as they are equal for all particles. With Gaussian likelihoods, (25) becomes

wj =

exp
[
−0.5

(
y− Ŷj

)T
R−1

(
y− Ŷj

)]
∑Ne

j=1 exp
[
−0.5

(
y− Ŷj

)T
R−1

(
y− Ŷj

)] , (27)

where the posterior weights wj sum to unity. The posterior ensemble still spans the range of the prior ensemble, as the analysis

step only changes the relative weights of the ensemble members and not their position within the state and perturbation param-25

eter space. Through the individual ranking of the states and perturbation parameters followed by a cumulative summation of

the correspondingly sorted weights, the marginal cumulative distribution functions are readily recovered, facilitating the esti-

mation of quantile values. Note that the PBS is equivalent to running a particle filter without re-sampling and using the prior

as the importance density (see Van Leeuwen, 2009). As such, the PBS corresponds to the generalized likelihood uncertainty
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Figure 3. Flowchart depicting the methodology with the ES-MDA as the DA scheme. Symbols are defined in the text.

estimation method (GLUE; Beven and Binley, 1992) with a Gaussian likelihood function. Due to the absence of re-sampling,

even for medium dimensional systems with a large number of observations to be assimilated, the PBS can become degenerate

with very few particles carrying the majority of the importance weights (Van Leeuwen, 2009). Nevertheless, a major advantage

of the PBS is its computational efficiency, requiring only one ensemble model integration and one efficient analysis step (27).

In this study, the PBS and the ES are used to benchmark the ES-MDA.5
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4 Results

4.1 Interannual variability and comparison to field measurements

In this section, we present results of the ES-MDA scheme with 100 ensemble members and 4 assimilation cycles (Section

3.3.2) for all the years and sites where snow surveys were conducted. Figure 4 shows the time series of the prior and posterior

fSCA (left panel) and mean SWE (right panel) estimates, as well as the assimilated fSCA satellite retrievals (left panel) and the5

independently observed peak mean SWE (from the snow surveys, right panel). The assimilation generally brings the posterior

estimates closer to the observed fSCA and considerably constrains the spread of the ensemble compared to the prior. For

some occasions, such as Bayelva 2008, Bayelva 2009 and Kvadehuksletta 2016, the timing of the snowmelt in the prior is

significantly biased by as much as three weeks compared to the assimilated fSCA retrievals. Even if the prior ensemble does

not encompass the retrievals, the iterative ES-MDA scheme allows the posterior to converge towards the fSCA observations10

(left panels), leading to much improved SWE estimates (right panels). On other occasions, such as 2015 at Bayelva and 2016

at Steinflåen plateau, the prior ensemble is a reasonable estimate and the assimilation merely constrains the spread of the

ensemble and adjusts the median slightly. Both for Bayelva in 2015 and Kvadehuksletta in 2016, some of the early fSCA

retrievals, which indicate a slight ablation, are completely ignored by the assimilation, as this early onset of melt is inconsistent

with the model - even when biases are accounted for. However, this ablation could be real and due to processes not accounted15

for in the model, such as wind erosion.

Field measurements of peak mean SWE are available for years with low (2008, 2016), medium (2013, 2015) and high (2009,

2014) values of peak mean SWE, ranging from 0.08 m w.e. (Kvadehuksletta 2016) to 0.48 m w.e. (Bayelva 2014). With the

exception of two cases (Bayelva 2013 and Steinflåen plateau 2016), the assimilation brings the ensemble median closer to the

observed peak mean SWE, while at the same time constraining the spread of the ensemble. We emphasize that the assimilation20

performs a global bias correction for peak SWE. This is especially evident for Kvadehuksletta 2016 for which the assimilation

unrealistically truncates the duration of the snow season as a result of a strong correction for the positive bias. Both in 2008

and 2009 for Bayelva, ES-MDA shifts the estimates to better match field measurements of SWE (which were not assimilated),

despite the prior range being far from the observations. The posterior ensemble median peak mean SWE is generally close to

the independently observed peak mean SWE, but absolute relative differences up to 40% (minimum 0.5%, mean 19%) occur.25

Figure 5 displays the prior, posterior and observed subgrid SWE distributions (SSDs) for the years and sites with field

measurements. Again, with the exception of Bayelva 2013 and Steinflåen plateau 2016, the assimilation brings the mean of

the peak SSD closer to the observations. The agreement between the posterior and observed mean value is striking for a

number of years and sites, such as Bayelva in 2009 and 2014 as well as Kvadehuksletta in 2016. Furthermore, the shapes of

the observed and posterior distributions agree well, e.g. for Bayelva 2008, Bayelva 2013 and Bayelva 2016. Once more, the30

correction from prior to posterior is largest for Bayelva 2008 and Bayelva 2009, for which the prior fSCA was furthest from

the satellite retrievals. The prior ensemble SSD, apart from Bayelva 2013, is generally too positively skewed (i.e. has a long

tail) compared to the observed SSD. On some occasions the match between the posterior and observed SSDs is poor, such

as Steinflåen plateau 2016 and Bayelva 2015. We conclude that the analysis typically improves the fit between modeled and
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Figure 4. Time evolution of the prior (red) and ES-MDA (Na = 4, Ne = 102) posterior (blue) fSCA (first column) and mean SWE (D; sec-

ond column); shading: 90th percentile range; solid lines: ensemble median; yellow dots: assimilated MODIS and Sentinel-2 fSCA retrievals;

dotted black line: independently observed peak mean SWE (µ) from snow surveys (Section 2.2); x-axis: months. These results are from a

single run.

observed snow distributions. Some of the observed distributions, such as that for Kvadehuksletta 2016, are hard to match as

they do not conform well to a lognormal distribution, most likely due to the limited number of sample points (Section 2.2).

The posterior bias parameters can be directly evaluated by comparing the bias corrected forcing to field measurements. Due

to a lack of snowfall observations (see Boike et al., 2017), an evaluation of the precipitation bias parameter is not possible.

However, the melt bias parameter can be evaluated by comparing the estimated snowmelt flux (which is directly proportional5

to the perturbed melt depth) to field-based values. For June 2008, Westermann et al. (2009) estimate an average snowmelt flux
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Figure 5. Prior (red), ES-MDA (Na = 4, Ne = 102) posterior (blue) and the corresponding independently observed (from snow surveys;

dashed black) peak subgrid SWE distributions; shaded areas: 90th percentile range; solid lines: ensemble median; markers: mean value. These

results are from a single run.

of 27 Wm−2, which compares well to the ES-MDA posterior median (averaged for the same period) of 29 Wm−2, while the

prior median is too low with 19 Wm−2.

In ensemble-based data assimilation the spread of the posterior ensemble should represent the uncertainty. To verify this one

can compare two metrics: the residual, i.e. the instantaneous posterior RMSE of the ensemble relative to the corresponding

independent field measurement, and the ensemble standard deviation (e.g. Evensen, 2009). For this comparison we define the5

relative residual as the ratio of the residual to the standard deviation. Ideally this ratio should have a value of 1 which indicates
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Prior ES-MDA ES PBS

Symbol Bias RMSE R2 Bias RMSE R2 Bias RMSE R2 Bias RMSE R2

fSCA (106) 0.21 0.02 0.80 0.03 0.01 0.97 0.03 0.01 0.97 0.03 0.01 0.97

µ (8) [m w.e.] 0.13 0.21 0.01 0.06 0.09 0.77 0.06 0.12 0.76 0.06 0.08 0.76

χ (8) 0.01 0.16 0.00 −0.02 0.13 0.37 0.02 0.14 0.33 −0.03 0.13 0.06

Table 5. Summary of evaluation metrics, i.e. bias, RMSE and square correlation coefficient (R2), for the fSCA, peak SWE (µ) and peak

subgrid coefficient of variation (χ). These metrics are based on comparisons to all the field measurements presented in Section 2.2 with the

number of observations for the comparisons in brackets next to the corresponding symbols. All the metrics are averaged over 100 independent

runs each with 100 ensemble members. The ES-MDA was run with Na = 4 assimilation cycles.

that the two metrics are equal so that the posterior ensemble spread accurately captures the estimation uncertainty. For the

fSCA, peak mean SWE and peak subgrid coefficient of variation the average (over all available field measurements) relative

residuals were 2.22, 1.53 and 1.66 respectively, so the posterior ensemble underestimates the uncertainty. This effect has been

extensively described by Evensen (2009), it arises in part because of model structural errors related to neglected physical

processes (Section 3.1). Still, the assimilation is generally able to simultaneously (but not to the same extent) reduce the spread5

and the error in the ensemble (Figure 4).

4.2 Evaluation of data assimilation schemes

In addition to the ES-MDA scheme, we evaluate the PBS and ES (Section 3.3.2) with regards to field measurements, using an

ensemble size of 100 members for all schemes. Three error metrics are summarized in Table 5: the bias (mean error), RMSE

and the square correlation coefficient. For the fSCA, all the schemes achieve a major improvement relative to the prior with10

an almost tenfold reduction in bias, a halving of RMSE and an almost perfect correlation to the field measurements of fSCA

(Section 2.2). For the peak mean SWE (µ), the PBS performs best in terms of RMSE and bias, followed closely by ES-MDA

which, in turn, has the highest correlation coefficient. With regards to the peak subgrid coefficient of variation (χ), ES-MDA

performs best across all the metrics, tying with ES for (absolute) bias and the PBS for RMSE. As considerably more field

measurements are available for fSCA than for µ and χ, the evaluation for fSCA must be considered more robust. The scatter15

plots in Figure 6 visualize the performance of the prior and all the considered DA schemes relative to the field measurements.

Observed, prior and posterior peak mean SWE and peak subgrid coefficient of variation for different years/sites are shown

in Figure 7. As discussed in Section 4.1, the assimilation moves the posterior peak mean SWE estimates closer to the observed

peak mean SWE in most cases when compared to the prior. However, clear performance differences are found between the

different schemes for a number of situations. In 2008, the PBS is not able to correct for as much of the bias in the peak20

mean SWE compared to the ES-MDA and the ES. For the remaining years, the performance of the schemes in terms of
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Figure 6. Scatter plots of the prior median (left panels) as well as ES-MDA (Na = 4; left-middle panels), ES (right-middle panels) and PBS

(right panels) posterior median estimates of fSCA (top panels), peak mean SWE µ (middle panels) and peak subgrid coefficient of variation

χ (lower panels) versus the observations (field measurements); error bars: 90th percentile range; all DA schemes were run with 102 ensemble

members; one to one: dotted black line; linear best fit: solid red line. These results are from a single run.

estimating peak mean SWE is similar, but the spread of the ES is by far the largest, followed by the PBS and the ES-MDA.

The PBS ensemble shows indications of degeneracy for some years (e.g. 2008 and 2009) where the median coincides with

either the 5th or 95th percentile value. This indicates that the majority of the weight in the PBS is carried by just a few ensemble

members. For the coefficient of variation, the 90th percentile range of the ES-MDA posterior ensemble typically encompassed

the observed value (with two exceptions), while this was not true to the same extent for the ES (three exceptions) and the PBS5

(five exceptions). These performance differences explain the higher correlation coefficient for the coefficient of variation for

the ES-MDA scheme (Table 5). The PBS also shows signs of degeneracy (e.g. Bayelva 2009, complete degeneracy) for the

coefficient of variation estimation. On some occasions (e.g. Bayelva in 2008, 2009 and 2014), the posterior ensemble median

is effectively pulled closer to the observed coefficient of variation when compared to the prior. On the same occasions the

ensemble spread is slightly constrained. Compared to the peak mean SWE, it is much harder to constrain estimates of the10

coefficient of variation regardless of scheme, although it is possible to shift the ensemble in the right direction.

We gauged the sensitivity of the three batch smoother schemes with respect to ensemble size and the number of assimilation

cycles by considering the fractional improvement (FI) in RMSE that was achieved through the analysis step based on all
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Figure 7. Prior median, observed, ES-MDA (with Na = 4) posterior median, PBS posterior median and ES posterior peak mean SWE µ

(upper panel) and peak subgrid coefficient of variation χ (lower panel); error bars: 90th percentile range; all DA schemes were run with 102

ensemble members. These results are from a single run.

available field measurements (Figure 8). On the one hand, the PBS requires an ensemble size of 1000 to converge to a stable

FI of around 75%, 20% and 60% for the fSCA, peak subgrid coefficient of variation, and peak mean SWE respectively. On

the other hand, ES-MDA with 4 assimilation cycles converges at already 100 ensemble members at similar FIs to the PBS.

The ES performs worst regardless of ensemble size, with FIs of around 70%, 10% and 55% even with 105 ensemble members

requiring 100 ensemble members for convergent results. For all schemes the available validation data suggests that the greatest5

improvements are achieved for fSCA, followed by peak mean SWE, while by far the lowest improvements are found for

the peak subgrid coefficient of variation. With 100 ensemble members, the ES-MDA converges to a stable performance at 4

assimilation cycles, i.e. there is no marked improvement of FI for more cycles (Figure 8, bottom right).

4.3 Effects of observation error and assimilation frequency

The effects of observation error and assimilation frequency are studied by running the ES-MDA (Ne = 102, Na = 4) and10

assimilating first only MODIS and then both MODIS and Sentinel-2 retrievals for the 2016 snow season at all study sites. As

discussed in Section 3.2, the Sentinel-2 fSCA retrievals are based on higher resolution optical reflectance retrievals. As such

they are expected to be less prone to representativeness error and thus observation error since the area in which the snow surveys

were conducted is more accurately covered by the retrievals. Furthermore, the Sentinel-2 scenes used for fSCA retrievals were
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manually checked to be cloud free, which was not the case for the MODIS scenes. Table 6 summarizes various performance

metrics for the two different runs. For the peak mean SWE depth (µ), there is no difference when including Sentinel-2 fSCA

retrievals in the assimilation. For the coefficient of variation (χ), however, there is an increase in FI for both the bias and the

RMSE, as well as an increase in the square correlation coefficient. Sentinel-2 fSCA retrievals with lower observation error help

to further constrain the shape of the snow depletion curve which explains the improvement in the χ estimation. We emphasize5

that this evaluation is based on the only 3 available field measurements of µ and χ in 2016 (from the snow surveys), so that

these preliminary results need to be consolidated by future studies with more validation data.

MODIS MODIS+S2

Symbol # of obs FI Bias FI RMSE R2
prior R2

post FI Bias FI RMSE R2
prior R2

post

µ [m w.e.] 3 0.61 0.62 0.67 1.00 0.61 0.62 0.69 1.00

χ 3 -0.77 0.11 0.00 0.41 -0.60 0.15 0.00 0.48

Table 6. Summary of evaluation metrics, i.e. fractional improvement in bias and RMSE as well as prior and posterior square correlation

coefficient (R2), using the ES-MDA (Ne = 102, Na = 4) for peak mean SWE (µ) and coefficient of variation (χ) when assimilating only

MODIS as well as assimilating both MODIS and Sentinel-2 observations. These metrics are based on a comparison to all the snow surveys

conducted in 2016 (see Table 1) and are averaged over 100 independent runs each with 100 ensemble members.

5 Discussion

5.1 Interannual variability and comparison to field measurements

For all considered years and sites, the ES-MDA scheme both brings the ensemble median fSCA closer to the observed fSCA10

and significantly constrains the spread of the ensemble (Figure 4). Thus, the posterior effectively fills the gaps in the remotely

sensed fSCA time series using a physically based snow model which is bias-corrected through the assimilation, while at the

same time accounting for uncertainties in the retrievals. In addition, the ES-MDA is generally able to correct the prior estimates

of the peak mean SWE towards the independently observed values, which is essentially achieved through a bias correction of

the model forcing. Although the downscaled forcing is biased, it is a more reliable input than forcing data obtained directly15

from coarse-scale reanalyses (Østby et al., 2017). For example, the lapse rate correction on temperature in the downscaling

(c.f. Fiddes and Gruber, 2014) influences the snowfall and melt rates at the more elevated Steinflåen plateau. This effect is not

captured in the reanalysis product (Dee et al., 2011) for which the elevation of the nearest grid point is near sea level.

An inherent equifinality problem (see Beven, 2006) exists in SWE reconstruction since different perturbation parameter sets

can provide similar results. For example, if the prior fSCA melts out earlier than the observations this could be due to the prior20
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Figure 8. Fractional improvement in RMSE through the analysis step (1 being perfect and 0 no effect) as a function of the number of ensemble

members for the fSCA, peak mean SWE µ and coefficient of variation χ; top left: particle batch smoother, PBS; top right; ensemble smoother,

ES; bottom left; ensemble smoother with multiple data assimilation, ES-MDA; bottom right: FI as a function of assimilation cycles in the ES-

MDA. The FI for Ne ≤ 100 are averaged over 100 independent ensemble model integrations. Errors were computed based on comparisons

to all the corresponding field measurements presented in Section 2.2.

precipitation having a negative bias, the prior melt having a positive bias or a combination of these two. The opposite would

be true if the prior fSCA melts out too late. It is not possible to resolve this equifinality problem with observations of fSCA

alone. A key assumption in deterministic SWE reconstruction is that the melt flux is more constrained than the precipitation so

that uncertainty in the melt is ignored (Slater et al., 2013). We perturb both the precipitation and the melt, although the latter

is assigned a lower uncertainty (Table 4). Through the assimilation we obtain snowmelts that are consistent with the observed5

snow cover depletion. The close match of the posterior peak mean SWE estimates to the independent field measurements

(Figure 7) suggests that the assimilation yields consistent accumulations and that the inherent equifinality problem is of minor

consequence.
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Figure 5 shows that for most years the prior median is a poor estimate of the observed peak mean SWE. This indicates that

a deterministic (no assimilation and unperturbed) run is not a good representation of the true state. In addition to biases in

the precipitation and melt forcing, crucial processes for peak SWE, such as deposition, are not included in the simple snow

model. Furthermore, the subgrid variability of the SWE is typically overestimated in the prior, with the prior distributions

typically being too skewed. To circumvent these issues, a more sophisticated model (e.g. ALPINE3D; Lehning et al., 2006)5

accounting for wind drift could be employed, and the climatological snow distribution pattern (Sturm and Wagner, 2010) could

help formulate the prior peak subgrid coefficient of variation distribution.

The posterior distributions are on the other hand much closer to the observed distributions for most of the years and sites

considered. This suggests that there is sufficient information contained in the remotely sensed snow cover depletion to constrain

the peak SSD estimates. On some occasions, especially for Bayelva 2015, the posterior SSD is far from the observed SSD both10

in shape and in mean. However, the posterior estimate is still slightly better than the prior, indicating that the assimilation has a

positive effect on the outcome. A similar marginal performance is found for Steinåen plateau in 2016, but the number of SWE

point observations (see Table 1) is not sufficient to reliably constrain the shape of the observed distribution in this case.

5.2 Evaluation of data assimilation schemes

Compared to the ES and the PBS, which were used in previous studies (e.g. Durand et al., 2008; Girotto et al., 2014b; Margulis15

et al., 2015), the ES-MDA exceeds or at least nearly matches in performance for all the evaluation metrics considered, i.e. bias,

RMSE and correlation coefficient for fSCA, peak mean SWE and peak subgrid coefficient of variation. The performance gain

over the ES is explained by the iterative nature of the ES-MDA, performing a sequence of smaller corrections in the analysis

steps as opposed to one abrupt correction (Emerick and Reynolds, 2013; Stordal and Elsheikh, 2015). Particularly in the case

of a non-linear model, as is the case for the SSM, this process of simulated annealing (c.f. Stordal and Elsheikh, 2015) in the20

ES-MDA leads to a better approximation of the posterior than a single analysis step.

At least with a low number of ensemble-members the ES-MDA also outperforms the PBS. A possible reason for this is that

the PBS posterior ensemble spans the same range as the prior ensemble and only changes the relative weights of the ensemble

members in the analysis. Thus, if the prior ensemble is so biased that it does not encompass the observations, the PBS is

incapable of correcting the posterior towards the observations outside the bounds of the prior. In such a case, the region with25

high likelihood is very small and not necessarily close to the observations. A good example is the 2008 season at Bayelva (c.f.

Figure 4 and Figure 7) for which the prior is far away from the observed fSCA. Consequently, the PBS is unable to shift the

ensemble outside the prior range as opposed to both the ES and the ES-MDA. In several years, the PBS also shows signs of

degeneracy, i.e. a large part of the weight is carried by a very low number of particles. As the PBS is essentially a particle

filter without re-sampling (Van Leeuwen, 2009), the weights can quickly converge on just a few particles in high likelihood30

regions. Therefore, the remaining particles become redundant even for low-dimensional systems with a relatively large number

of observations such as the one considered here.

The sensitivity analysis for the ensemble size is consistent with higher dimensional models. The ES-MDA requires relatively

few ensemble members for convergence, similar to the EnKF (Evensen, 2009), while the PBS requires a larger ensemble for
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convergence as with the PF (Van Leeuwen, 2009). The number of assimilation cycles required for convergence of the ES-MDA

(4 cycles) is also in line with previous studies (Emerick and Reynolds, 2013). While the PBS and the ES-MDA have not yet

been compared with respect to improvement in RMSE, our findings are in agreement with previous studies for both the PBS

versus the ES (Margulis et al., 2015) and the ES-MDA versus the ES (Emerick and Reynolds, 2013).

A major downside of the ES-MDA is the computational cost. The ES-MDA requires Na + 1 ensemble model integrations5

and Na analysis steps, where Na (typically ≥ 2) is the number of assimilation cycles (Section 3.3.2). On the other hand, the

ES requires only two ensemble model integrations and a single analysis step, while the PBS only needs one ensemble model

integration and a single analysis step. Based on a sensitivity analysis (Section 4.2) we set Na = 4, so the computational cost

of the ES-MDA is higher than for the other schemes. For more complex models, such as Crocus (Vionnet et al., 2012) and

SNOWPACK (Bartelt and Lehning, 2002), the ES-MDA could prove to be prohibitively expensive. However, an adaptive10

version of the ES-MDA (Le et al., 2016) could be employed instead in which the inflation coefficients are calculated on the

fly based on a cost function and the iterations stop once the algorithm converges. This scheme could significantly reduce the

computational costs for applications of the ES-MDA, as it is equivalent to the ES in years for which the prior encompasses

the fSCA retrievals, requiring only one iteration. In years where the prior is far from the observations to be assimilated, on

the other hand, multiple data assimilation steps are performed. Furthermore, both the snow model (which has no interaction15

between neighboring grid cells) and the ES-MDA algorithm can be parallelized using high performance computing.

5.3 Effects of observation error and assimilation frequency

All the DA methods have problems constraining the spread of the peak subgrid coefficient of variation (χ, see Figure 7) al-

though they can pull the median in the right direction. A likely reason is the limited information available in the remotely

sensed snow cover depletion, with either too sparse or too uncertain fSCA retrievals. It is worth considering fSCA retrievals20

from even more sensors such as Landsat and PROBA-V, which increases the chances of obtaining more cloud-free scenes.

With more scenes available, it may be possible to better constrain the posterior χ ensemble: even with just a few additional

retrievals from Sentinel-2 the performance was improved with respect to χ estimation across all evaluation metrics. This also

points towards the benefits of including higher resolution fSCA retrievals from the Landsat and Sentinel-2 satellites which will

be more representative and thus accurate. The effective MODIS footprint is inhomogeneous and differs markedly from the25

nominal 500 m pixel resolution when the view angle deviates from nadir (Peng et al., 2015). So, even for gridded applications,

there is a considerable representativeness error in MODIS fSCA, although this is reduced when several pixels are aggregated.

5.4 Outlook

Several extensions to the presented ensemble-based data assimilation framework could be considered. The first is to change the30

grid scale of the framework from the order of 1 km to larger or smaller scales. For the latter, it would be possible to assimilate

only Landsat and Sentinel-2 based fSCA retrievals and operate at a grid scale on the order of 100 m in line with the work of

e.g. Girotto et al. (2014a). For the former, one would aggregate the satellite retrievals even further and perform the assimilation
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at a grid scale on the order of 10 km or larger. This implementation could be problematic as the uniform snowmelt assumption

in the SDC (Liston, 2004) may no longer be justified across such large grid cells.

Furthermore, the method could be applied to a larger domain in spatially distributed mode (i.e. multiple grid cells). In this

case, fSCA assimilation could be complemented by the assimilation of GRACE TWS and/or PM SWE retrievals which can

also improve SWE estimates during the entire build-up, not only at peak SWE. Both TWS and PM retrievals could constrain5

the large-scale areal average SWE estimate within the domain and thus further bias-correct the multiple grid-scale peak mean

SWE estimates. However, GRACE TWS retrievals feature a very coarse resolution (around 100 km) so that they would only be

useful in conjunction with fSCA retrievals for very large scale applications. On the other hand, the use of higher resolution PM

SWE retrievals (order 25 km) in the assimilation has shown particular promise (e.g. De Lannoy et al., 2012; Li et al., 2017).

At the same time, PM SWE retrievals are not accurate in complex topography and forested areas as well as for wet and deep10

snowpacks (Foster et al., 2005), which might limit the applicability of such multisensor assimilation approaches.

The major problem in the assimilation of fSCA retrievals is the occurrence of clouds which causes extended gaps in time

series obtained from optical sensors. As discussed, using fSCA retrievals from even more sensors could help to fill in the gaps

in the remotely sensed snow cover depletion and further constrain the peak subgrid coefficient of variation (χ). The use of

additional higher resolution fSCA retrievals with lower representativeness error (and thus observation error) could also prove15

especially beneficial for constraining χ.

To reduce the computational costs of the ES-MDA, the adaptive ES-MDA (Le et al., 2016) should be considered. Further-

more, the bias corrected ES-MDA outlined in Stordal and Elsheikh (2015) may be worth pursuing for future applications,

especially when applied to bigger domains with possibly even larger misfits between the prior and the observations. Using a

more complex snow model such as Crocus (Vionnet et al., 2012) or SNOWPACK (Bartelt and Lehning, 2002) may not only20

improve the modeled melt rates, but also offer the possibility to assimilate snow grain size retrievals (c.f. Painter et al., 2009),

as noted by Durand et al. (2008). In addition, the method could be applied in a fully coupled land-atmosphere model. The

intermediate complexity atmospheric research model (ICAR; Gutmann et al., 2016) shows particular promise in terms of an

atmospheric model that can efficiently and iteratively be run in ensemble mode, as required for applications of ES-MDA. In

principle, one could run ICAR in ensemble mode coupled to a land surface model with an adequately complex snow scheme25

and assimilate fSCA (and possibly PM and TWS) retrievals with the ES-MDA to deliver a snow reanalysis.

As snow is a crucial driver for many terrestrial and atmospheric processes, the presented framework has the potential to

improve process modeling in a range of disciplines, especially since the spatial resolution is considerably higher than in passive-

microwave derived SWE data sets. For example, the subgrid variability of permafrost temperatures is closely tied to that of

SWE depth (e.g. Gisnås et al., 2016), which has major implications for permafrost mapping (e.g. Westermann et al., 2015b,30

2017). Similarly, snow cover information is an important component of many ecological models (e.g. Kohler and Aanes, 2004),

and peak SWE is intimately linked to stream flow which is crucial for hydrology and water resource management (Andreadis

and Lettenmaier, 2006; Barnett et al., 2005). Finally, knowledge of the snow distribution and snowmelt is of interest for tourism

given its importance for e.g. skiing, hiking and backcountry travel.
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6 Conclusions

In this study, we use the ensemble smoother with multiple data assimilation (ES-MDA) scheme to estimate peak SWE dis-

tributions at the kilometer scale from time series of remotely sensed fractional snow covered area (fSCA) from MODIS and

Sentinel-2. The ES-MDA is combined with analytical Gaussian anamorphosis to update perturbation parameters that were

either lower or double bounded in physical space. The data assimilation is applied to a simple snow model based on the surface5

energy balance coupled to a probabilistic snow depletion curve. The scheme is driven by statistically downscaled ERA-Interim

reanalysis data. As such, both the model forcing and the satellite retrievals are globally available.

The results are compared to field measurements of peak SWE distributions and fSCA from Arctic sites near Ny-Ålesund

(79◦N, Svalbard, Norway) so that the performance can be evaluated with respect to the estimated fSCA, peak mean SWE and

peak subgrid coefficient of variation. From this study, the following conclusions can be drawn:10

– At the kilometer scale, the ES-MDA is able to successfully assimilate fSCA retrievals into the simple snow model and

estimate the peak subgrid SWE distribution prior to the snowmelt.

– A physically-based interpolation of the remotely sensed fSCA time series is obtained that takes into account uncertainties

in both the model and the retrievals.

– For the peak mean SWE, the ES-MDA features an average RMSE of 0.09 m w.e. compared to field measurements.15

– For the peak subgrid coefficient of variation that controls the width and skewness of the distribution, the ES-MDA usually

manages to pull the posterior median in the right direction, but the spread of the ensemble was difficult to constrain.

– By including higher resolution fSCA retrievals from Sentinel-2, the posterior peak subgrid coefficient of variation en-

semble can be better constrained. This highlights the potential benefits of assimilating additional higher resolution fSCA

retrievals from sensors on board the Landsat and Sentinel-2 satellites in future work.20

– In line with previous studies, the ES-MDA converges with as low as 100 ensemble members and 4 assimilation cycles.

– With this ES-MDA configuration, the fractional improvement in RMSE from prior to posterior is around 75%, 60% and

20% for the fSCA, peak mean SWE and peak subgrid coefficient of variation.

– The ES-MDA exceeds or at least nearly match the performance of the particle batch smoother and the ensemble smoother

for all evaluation metrics considered.25

As the scheme exploits high and medium resolution satellite images from optical sensors, it is capable of estimating snow dis-

tribution at considerably higher spatial resolutions than traditional SWE products, e.g. based on passive microwave retrievals.

On the other hand, the scheme can only recover the peak subgrid SWE distribution prior to the onset of melt, as opposed to

providing information on the seasonal evolution of the snow distribution, so that it can rather complement than replace existing

SWE retrieval algorithms. However, the method could become a part of satellite-era hydrometeorological reanalysis schemes30

with a wide range of applications.
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