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Abstract. We document the density and hydrologic properties of bare, ablating ice in a mid-elevation (1215 m a.s.l.) 10 

supraglacial internally drained catchment in the Kangerlussuaq sector of the western Greenland Ice Sheet. We find water-

saturated, low-density (0.43–0.91 g cm-3, μ=0.69 g cm-3) ice to at least 1.1 m depth below the ice sheet surface. This near-

surface, low-density ice consists of alternating fractured porous ice and clear solid ice lenses, overlain by a thin (<0.5 m), 

even lower density (0.33–0.56 g cm-3, μ=0.45 g cm-3) unsaturated weathering crust.  Ice density data from 10 shallow (0.9–

1.1 m) ice cores along an 800 m transect suggest an average 14–18 cm of specific meltwater storage within this low-density 15 

ice. Water saturation of this ice is confirmed through measurable water levels (1–29 cm above hole bottoms, μ=10 cm) in 

84% of cryoconite holes and rapid refilling of 83% of 1m drilled holes sampled along the transect. These findings are 

consistent with descriptions of shallow, depth-limited aquifers on the weathered surface of glaciers worldwide, and confirm 

the potential for substantial transient meltwater storage within porous low-density ice on the Greenland Ice Sheet ablation 

zone surface. A conservative estimate for the ~63 km2 supraglacial catchment yields 0.009–0.012 km3 of liquid meltwater 20 

storage in near-surface, porous ice. Further work is required to determine if these findings are representative of broader areas 

of the Greenland Ice Sheet ablation zone, and to assess the implications for sub-seasonal mass balance processes, surface 

lowering observations from airborne and satellite altimetry, and supraglacial runoff processes. 

1 Introduction 

Each summer a vast hydrologic network of lakes and rivers forms on the surface of the western Greenland Ice Sheet ablation 25 

zone in response to surface melting (Chu, 2014; Smith et al., 2015). Evidence suggests that most or all of this water is 

efficiently delivered via supraglacial rivers to moulins, crevasses, and, ultimately, to proglacial rivers and surrounding 

oceans (van As et al., 2017; Colgan et al., 2011; Lindbäck et al., 2015; Rennermalm et al., 2013; Smith et al., 2015). The 

assumption of efficient meltwater delivery is reflected in regional climate and surface mass balance models of Greenland that 

instantaneously credit ablation zone surface runoff to the ocean with no physical representation of hydrologic processes 30 
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taking place on the bare ice surface (Smith et al., 2017). Field studies and satellite remote sensing, however, have found 

evidence of substantial meltwater runoff delays on daily to monthly timescales in the ablation zone (van As et al., 2017; 

Karlstrom and Yang, 2016; Koenig et al., 2015; Lindbäck et al., 2015; Overeem et al., 2015; Rennermalm et al., 2013; Smith 

et al., 2017). Similar runoff delays are observed in supraglacial environments elsewhere (Karlstrom et al., 2014; Munro, 

1990), owing to the presence of a degraded, porous “weathering crust” (Müller and Keeler, 1969) on the bare ice surface of 5 

glaciers and ice sheets that stores meltwater, delaying its delivery to supraglacial channels via porous sub-surface flow 

(Irvine-Fynn et al., 2011; Karlstrom et al., 2014; Munro, 2011). The porous weathering crust may also provide a substrate for 

internal and/or surficial refreezing of meltwater (Hoffman et al., 2014; Paterson, 1972; Willis et al., 2002), similar to 

meltwater transport, storage, and refreezing in snow and firn (Cox et al., 2015; Forster et al., 2014; Harper et al., 2012; 

Machguth et al., 2016). The presence of weathering crust in Greenland, however, has gone largely undocumented, and little 10 

is known about its effect on hydrologic processes in the bare ice ablation zone, where >85% of ice sheet surface meltwater 

runoff is generated (Machguth et al., 2016). 

 

Weathering crusts are fractured, disintegrated, or “rotten” ice layers that form on the thermally transient surface of ablating 

glaciers (Fountain and Walder, 1998; Irvine-Fynn et al., 2011; Müller and Keeler, 1969). In temperate ice, liquid water exists 15 

within an interconnected network of meltwater veins (Lliboutry, 1996; Mader, 1992; Nye and Frank, 1973). When glacier 

ice is exposed to water, these veins coarsen to the order of tenths of a millimetre in diameter, a process referred to as 

“rotting” (Nye, 1991). On the bare ice surface of ablating glaciers exposed to solar radiation, this action is intensified by the 

transmission and absorption of solar radiation through the upper few meters of ice (Cook et al., 2016; Fountain and Walder, 

1998; Irvine-Fynn and Edwards, 2014). Sub-surface radiative heating enhances melting along ice grain edges, further 20 

coarsening vein networks and disaggregating ice crystals, creating a layer of porous, water-saturated ice typically <2 m thick 

(Irvine-Fynn and Edwards, 2014; Müller and Keeler, 1969). Subsequent lateral drainage of meltwater through the permeable 

weathering crust to seeps and supraglacial channels reduces near-surface ice density, by removing mass with no detectable 

change in glacier surface height (Hoffman et al., 2014; Müller and Keeler, 1969). Owing to the exponential attenuation of 

radiative heating with depth (Brandt and Warren, 1993), weathering crust ice density exhibits a characteristic non-linear 25 

increase from a very low-density (<0.5 g cm-3) surface layer to a higher density (~0.90 g cm-3) substrate (Cook et al., 2016; 

LaChapelle, 1959) (Fig. 1). As such, mass change during periods of weathering crust development or removal cannot be 

resolved solely from ice surface elevation changes, but also requires knowledge of the sub-surface depth-density profile 

(Braithwaite et al., 1998; LaChapelle, 1959; Müller and Keeler, 1969; Munro, 1990).  

 30 

Weathering crust is often enhanced by cryoconite, the biologically active dark sediment that preferentially absorbs solar 

radiation, locally enhancing melt in quasi-cylindrical holes that deepen into the weathering crust and brighten the ice surface 

relative to dispersed or uniform debris-covered ice (Boggild et al., 2010). Cryoconite holes are coupled to the weathering 

crust via porous sub-surface water exchange (Cook et al., 2016) and surface flow that redistributes sediments, nutrients, and 



 
 

3 

microbial cells between holes and the ice surface, potentially controlling their distribution and ecological structure (Edwards 

et al., 2011; Hodson et al., 2007; Takeuchi et al., 2000). Weathering crust hydrology, therefore, exerts a dynamic control on 

the “photic zone” where solar radiation, liquid water, nutrients, and air provide habitat for a rich microbial community within 

the upper few meters of an ablating glacier (Irvine-Fynn and Edwards, 2014) (Fig. 1). Physical controls on these 

ecohydrologic interactions, however, have only recently been explored and remain poorly understood, especially the 5 

seasonal evolution of depth-variable ice density, permeability, water storage, and microbial mobility (Cook et al., 2016; 

Irvine-Fynn et al., 2012). 

 

Despite these varied implications of weathering crust for supraglacial processes, no studies have reported physical properties 

or documented sub-surface meltwater storage for the Greenland Ice Sheet weathering crust. When present, the weathering 10 

crust could provide a temporary storage reservoir, thus modulating meltwater delivery to supraglacial channels, crevasses, 

and englacial hydrologic systems (Karlstrom et al., 2014). In addition, because mass may be removed from the weathering 

crust without detectable change in glacier surface height, the growth and decay of the crust may confound estimates of sub-

seasonal surface mass balance made from ice surface elevation change or surface energy balance models that neglect its 

presence (van den Broeke et al., 2008; Munro, 1990). Weathering crust structure and hydrologic storage is therefore an 15 

important but understudied component of the Greenland Ice Sheet bare ice ablation zone hydrologic system and surface mass 

balance. The purpose of this study is to describe the physical structure and hydrologic storage of the weathering crust in a 

mid-elevation Greenland Ice Sheet supraglacial catchment. We provide an initial set of measurements of near-surface ice 

density, porosity, water saturation, and water table height, and use these data to estimate meltwater storage within the 

weathering crust. To illustrate the implications of our findings, we extrapolate this storage estimate across the study 20 

catchment for comparison with proglacial meltwater runoff volumes. Finally, we discuss broader implications of the findings 

for ablation zone hydrology and surface mass balance processes to guide future work.   

2 Data and methods 

During a 6–14 July 2016 field campaign in the middle ablation zone (67.049o N, 49.022o W, 1215 m a.s.l.), in the 

Kangerlussuaq sector of the Greenland Ice Sheet, we measured near-surface ice density, effective porosity, presence/absence 25 

of sub-surface water saturation, cryoconite hole depth, cryoconite hole water levels, and ice surface topography. 

Measurements were made along an 800 m transect in a 63.1 km2 moulin-terminating supraglacial river catchment in the bare 

ice ablation zone (Fig. 2). We supplement these transect measurements with daily records of meteorological variables 

recorded by the nearby PROMICE/GAP KAN-M automatic weather station (AWS) (www.promice.org). KAN-M is located 

~8.3 km ENE of our field site at ~1270 m a.s.l., and is the closest AWS to our study site (Fig. 2). 30 
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2.1 Density and stratigraphy of near-surface ice  

At 80 m posting along the 800 m transect (Fig. 2), shallow ice cores 0.9–1.1 m deep were drilled with a 7.25 cm diameter 

Kovacs Mark III coring system (www.kovacsicedrillingequipment.com). Cores were collected and processed adjacent to the 

core sites on 11 July (#4–10; Fig. 2) and 12 July (#1–3; Fig. 2) between 14:00 and 21:00 local time. Core stratigraphy 

observations recorded in field notes include the presence of liquid water, ice lenses, and air bubbles. Natural breaks were 5 

used to separate the cores into individual segments. Each segment’s length and diameter was measured to the nearest 0.1 cm 

with a caliper and weighed to the nearest 0.1 g on an Acculab digital scale to determine the ice density of each segment. The 

natural break segmentation yielded a 13 ± 6 cm mean sampling interval. Individual segments ranged from 3 to 40 cm in 

length.  

 10 

At six sites (core #1, 2, 4, 5, 9, and 10), the upper 14–30 cm of ice lacked sufficient cohesion for intact removal with the 

coring system. To obtain density measurements for this material, ice samples were removed adjacent to the core sites with a 

Snowmetrics© (www.snowmetrics.com) 1000 cm3 wedge-type steel snow density sampler (Fig. 3). In typical usage, the 

snow density sampler is inserted horizontally into the sidewall of a snow pit to obtain undisturbed snow samples. For this 

study, ice samples were obtained by inserting the 20 cm sampler vertically downward into the ice. To our knowledge, this 15 

instrument has not been used for ice density studies on weathering crust, but was highly effective for our purposes. These 

measurements provide bulk density estimates for the upper 20 cm for the six aforementioned sites, however the density 

measurements may be more representative of the uppermost ~6 cm of ice because of the shape of the sampler (see Fig. 3). 

Missing data between 20–30 cm depth for cores #1, 4, 5, and 9 were gap filled with linear interpolation. Together, the 

shallow ice core and density sampler measurements provide depth-density profiles to depths ranging from 0.9–1.1 m. The 20 

nominal 1 m coring depth was selected based on the expectation that weathered ice would not extend below the 1 m depth of 

the drill barrel. For additional context, two 1.8 m cores were extracted but ice density measurements were not undertaken, 

these cores are described further in Sect. 3.3.  

 

Density measurement uncertainty cannot be quantified with known accuracy as each ice core segment was unique in size and 25 

shape. Based on visual inspection, we consider 1.5 cm (~10%) uncertainty in ice core segment length to be conservative. 

This 10% measurement uncertainty primarily accounts for loss of material at the irregular ends of the ice core segments, 

which would tend to result in overestimated volume and underestimated ice density. Additionally, it is possible some 

interstitial meltwater remained in the ice cores when weighed, resulting in overestimated mass and ice density. The cores 

were held vertically and drained when extracted, and drainage continued prior to analysis and weighing adjacent to the core 30 

sites. Nevertheless, some interstitial meltwater likely remained. Estimates of depth-dependent glacier ice water content range 

from 0–9% though 15 of 18 independent estimates range from 0% to less than <3.4% (Pettersson et al., 2004). Such water 

retention errors would tend to cancel with overestimated volume errors, though to an unknown extent. We consider both 
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sources of error to be poorly constrained within the ±10% limits, which we consider sufficiently conservative without giving 

undue confidence to either the measurements or the error estimate. This uncertainty is incorporated into calculations of 

density and porosity, propagating into ±14% specific storage uncertainty (see Sect. 2.2 and Sect. 2.4).  

2.2 Effective porosity of near-surface ice 

The porosity of the near-surface ice was examined to determine the liquid meltwater storage capacity of the study area 5 

weathering crust. In theory, the total porosity of a solid material is the ratio of pore space volume to total volume and is 

calculated from the ratio of measured density to pure material density (Dingman, 2002): 

𝜙" = 1 − &'
&(
≥ 	𝜙+,,,            (1) 

where 𝜙" (-) is total porosity, 𝜌. (g cm-3) is measured density, 𝜌" is solid material density (0.917 g cm-3 for pure ice), and 

𝜙+,, (-) is effective porosity, or the porosity effectively available for water storage. Because glacier ice contains closed air 10 

bubbles that are unavailable for water storage, the 𝜙+,, can be less, but not greater than 𝜙", and cannot be calculated directly 

from ice density. Instead, 𝜙+,, must be estimated by measuring the ratio of interconnected pore volume to total ice volume.  

 

To measure 𝜙+,, we used the 1000 cm3 weathering crust ice samples extracted with the snow sampler described above. 

Twenty-five samples were collected in total, one at each core site and fifteen additional sites at random along the transect. 15 

Samples were immediately weighed to determine 𝜌.. Liquid water sourced from nearby flowing rills was then applied to the 

levelled ice-filled sampler until the water level was coincident with the ice surface (i.e., until the interconnected pore space 

was filled with water). 𝜙+,, was computed as the ratio of the water volume required to fill the sample to the 1000 cm3 ice 

sample volume. We restricted our measurements of 𝜙+,, to ice sampled from assumed dry weathering crust, but it was not 

possible to control for the effect of residual liquid water content. Air bubbles and ice crystals were observed for signs of melt 20 

and none were observed.  

 

To estimate 𝜙+,, throughout the shallow ice core samples (where 𝜙+,, was not measured) an “error-in-variables” (EIV) 

linear model (York, 1968) was computed between coincident point measurements of 𝜙+,, and 𝜌. obtained with the snow 

sampler. EIV refers to a general class of methods for fitting a straight line to experimental data when measurement errors are 25 

present in both the independent and dependent variables. The method has been widely applied in geophysical research when 

measurement errors are considered important (Brutsaert and Lopez, 1998; York, 1968). The important feature is that EIV 

regression accounts for error in both the independent and dependent variables when determining the slope and intercept of 

the straight line. The model is identical in form to a standard ordinary least squares regression but contains additional error 

terms: 30 
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𝜙+,,∗ = 𝛼 + 𝛽 ∙ 𝜌∗ + 𝜂 + 𝜀,          (2) 

where 𝜙+,,∗  and 𝜌∗ are the “true” but unobserved effective porosity and ice density, 𝜙+,,∗  is the EIV estimate of effective 

porosity, 𝜂 and 𝜀 are the measurement errors (10%), and 𝛼 and 𝛽 are the intercept and slope, respectively. The exact solution 

procedure is described in York et al., (2004). The 𝛼 and 𝛽 estimates are then applied to the shallow ice core 𝜌. to estimate 

𝜙+,, for each shallow ice core segment.  5 

2.3 Depth to liquid water saturation 

At 8 m posting along the 800 m transect, the presence/absence of liquid water saturation within the weathering crust, the 

depth of cryoconite holes, and the depth to water within cryoconite holes were measured with respect to the ice sheet surface. 

First, the presence/absence of liquid water saturation was assessed by drilling a 1 m deep hole into the weathering crust with 

a 5 cm diameter Kovacs drill bit. The drilled holes were monitored for liquid water refilling within 30 minutes as an 10 

indication of sub-surface water saturation. Second, the nearest cryoconite hole within a 1 m radius of the posting was 

identified and the total depth of each hole and the depth to water in each hole below the surface were measured. The height 

of water in each hole is calculated as the difference between the depth of the hole and the depth to water. The depth to water 

in the holes is used as an estimate of the depth to liquid water saturation i.e. the water table height. Absence of cryoconite 

holes was noted if none were present within a 1 m radius of the 8 m posting.  15 

 

As an additional qualitative check on the weathering crust structure, a Snowmetrics© steel pointed depth probe was forced 

downward adjacent to each 1 m drilled hole until impenetrable ice was encountered. The expectation was that these 

measurements would approximate the depth to the shoulder of the sub-surface density profile, roughly corresponding to the 

depth of rotten unsaturated ice as per Fig. (1) in Müller and Keeler, (1969). Initial field observations confirmed the upper 20 

few tens of centimetres of ice was composed of weakly-bonded, coarse-grained ice that was easily removed with a flat 

bladed shovel and penetrated with the depth probe. The depth probe measurements are used as a qualitative description of 

the weathering crust structure in Sect. 3.3. 

2.4 Estimating water storage in the weathering crust 

The total volumetric water storage	𝑆 in the weathering crust is defined as: 25 

𝑆 = 𝑆7 + 𝑆89	+	𝑆:;<,            (3) 

where 𝑆7 is free-draining liquid water storage within the weathering crust ice matrix, 𝑆89 is liquid water storage in 

cryoconite holes, and 𝑆:;< is irreducible liquid water held under capillary tension within the weathering crust. The focus of 

this work is 𝑆7, which we estimate with the following relationship: 
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𝑆P = 𝜙+,, ∙ 𝐷7,             (4) 

where 𝜙+,, is the effective porosity of the saturated porous ice within the weathering crust and 𝐷7 is the thickness of 

saturated porous ice. Eq. (4) is applied to each segment of porous ice in the extracted ice cores, where	𝜙+,, is calculated 

from the segment’s 𝜌. (Eq. 2), and 𝐷7 is the measured thickness of each segment. We exclude the thickness of unsaturated 

ice in each core, as estimated by the average depth to water in cryoconite holes measured adjacent to the core sites, which we 5 

show is relatively constant along the transect (Sect. 3.3). The ±10% measurement uncertainty for 𝐷7 and 𝜙+,, (𝜂 and 𝜀, Eq. 

2) propagate into ±14% uncertainty for 𝑆7: 

𝛥𝑆7 = 𝜂@ + 𝜀@ = 14%           (5) 

The segment 𝑆7 (±𝛥𝑆7) values are then summed across each core and reported as lower and upper values for specific storage 

(cm).  10 

 

Finally, for illustrative purposes we scale our 𝑆7 estimate to the study catchment by multiplying the lower and upper values 

for 𝑆7 estimated from the shallow ice cores by the bare ice surface area of the study catchment (63.1 km2). In terms of total 

water storage, this calculation is conservative since it assumes there is no water storage below the ~1 m depth measured with 

our field equipment, and excludes storage within cryoconite holes and unsaturated storage. However, it also assumes the ice 15 

density, porosity, and saturation conditions measured along the transect are representative of conditions across the entire 

catchment. Recognizing this uncertainty, we caution that it is meant for illustrative purposes.  

3 Results 

3.1 Density and stratigraphy of near-surface ice 

Throughout the study area, the ice sheet surface was characterized by a layer of coarse-grained, weakly-bonded ice, a few 20 

tens of centimetres thick (Fig. 3). Bulk 𝜌. of this material measured to 20 cm depth with the snow sampler is 0.45 ± 0.05 g 

cm-3, and ranges from 0.33–0.56 g cm-3. This is much lower than typical glacier ice densities of 0.83–0.90 g cm-3 (Cuffey and 

Paterson, 2010), but is consistent with previous findings of ice densities < 0.50 g cm-3 in the upper few tens of centimetres of 

weathering crust (Müller and Keeler, 1969; Schuster, 2001). Suggestive of its weak bonding, this material was easily 

removed with a flat bladed shovel, penetrated with the depth probe, and often deformed or collapsed slightly underfoot. Free 25 

draining liquid water was not observed in the extracted ice samples and there was no sub-surface water table observed within 

this upper weathering crust layer, for example when penetrated with the depth probe or when the material was removed with 

the shovel. 
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Sub-surface 𝜌. averaged across the ~1 m depth from the shallow ice cores is 0.69 ± 0.10 g cm-3, and ranges from 0.43–0.91 

g cm-3. In most cores, 𝜌. steadily increased with depth but remained less than solid ice density across the entire depth 

profile, suggesting substantial sub-surface ablation across the ~1 m depth sampled by the cores (Fig. 4). Sampling resolution 

limited our ability to resolve the depth-density profile in the upper few tens of centimetres, but the observed profiles are 

generally consistent with the expected non-linear increase in weathering crust ice density from the upper few tens of 5 

centimetres to a higher density substrate across the upper 1–2 m (LaChapelle, 1959) (Fig. 1). However, a few large 

fluctuations toward densities less than <0.50 g cm-3 at depth were found at core sites 2, 5, and 8, and density variability was 

twice as large across the depth of the shallow ice cores than the upper 20 cm (0.10 vs. 0.05 g cm-3). 

 

The source of this density variability likely corresponds to core stratigraphy. While drilling, alternating weak and resistant 10 

layers were qualitatively observed based on the resistance to downward motion. This structure was confirmed by the 

presence of alternating layers of coarse-grained (> 1 cm), weathered ice and clear, solid ice lenses in all cores. The ice lenses 

were readily identified in the core stratigraphy and removed intact from the granular, friable ice between lenses (Fig. 5). The 

ice lenses contained visible closed air bubbles trapped in clear solid ice. Subtle evidence of internal melting along coarse 

grain edges was visible in some ice lenses, but most were solid with minimal or no apparent evidence of weathering. 15 

Densities of these lenses were not measured in the field but based on their solid structure are estimated to be in the range of 

typical glacier ice densities (e.g. 0.83–0.90 g cm-3; Cuffey and Paterson, 2010).  

 

Previous analyses of weathering crusts have not reported this pattern of alternating coarse-grained, weathered ice and clear, 

solid ice (e.g. Hoffman et al., 2014; Müller and Keeler, 1969; Schuster, 2001). Though refrozen meltwater lenses are found 20 

in firn at elevations above the study area (Cox et al., 2015; Machguth et al., 2016), refrozen meltwater lenses are unlikely in 

a bare ice, ablating weathering crust (Schuster, 2001). Rather, the observed stratigraphy likely reflects differential weathering 

of the underlying structural ice fabric. Surface expression of differential weathering is visible as contrasting dark and light 

areas along the transect (Fig. 2), similar to km-scale foliated bands associated with outcropping of stratified impurities in the 

study region (Wientjes et al., 2012). At the scale of the shallow ice cores, stratified distributions of crystal size and shape, 25 

bubble elongation and distribution, and impurity content with depth could each influence rates of sub-surface radiative 

heating (Brandt and Warren, 1993; Liston et al., 1999) and hence could promote differential weathering of cm-scale foliated 

ice layers at depth (Hudleston, 2015). Meltwater advection along micro-seams and cracks, or along foliated planes with 

enhanced permeability (Wakahama et al., 1973) could provide an additional differential heat source at depth, either via 

enhanced rotting of temperate ice (Nye, 1991) or, if transported to cold ice, via meltwater refreezing. The ice lenses, then, 30 

may represent structural resistance to weathering, and/or result from heterogeneity in sub-surface flow paths that promote 

differential weathering of sub-surface ice. We would thus expect lenses to be localized features, which helps explain the lack 

of consistent stratigraphy among cores. Mechanism aside, the 𝜌. values reported in Fig. 4 were calculated from the mass of 
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each ice core segment measured prior to removing the ice lenses, and therefore represent the bulk density of each segment 

(i.e. weathered ice + lens ice). These features are discussed further in Sect. 4. 

3.2 Measured and estimated effective porosity 

Effective porosity 𝜙+,, measured with the snow sampler is 0.44 ± 0.05 and ranges from 0.33–0.56. Measured values were 

generally smaller than the theoretical upper bound total porosity (𝜙") calculated from 𝜌. (Fig. 6), likely owing to observed 5 

closed air bubbles in the porous ice grains that decrease the density without increasing the porosity. This result suggests our 

measurement technique was accurate, as data points above the dashed line would be physically implausible. A significant 

linear relationship was found (𝜙+,, = −0.97ρH + 0.89; r2 = 0.53, RMSE = 0.03), and was used to predict 𝜙+,, from the 

shallow ice core 𝜌. (Fig. 4, top axis). Predicted 𝜙+,,	averaged across all core segments is 0.22 ± 0.11 and ranges from 

0.002–0.47. Though lower on average (and more variable) than the range of 𝜙+,, measured with the snow sampler in the 10 

upper 20 cm of crust, this range suggests substantial porosity across the ~1 m depth sampled with the shallow ice corer. 

However, the narrow range of 𝜌., and structural differences in the ice sampled with the corer, are sources of uncertainty 

when extrapolating outside of the measurement range (i.e. 𝜙+,, < 0.35 and  𝜙+,, > 0.55 have greater uncertainty).  

3.3 Evidence of saturation from drilled holes and cryoconite holes 

The ice surface topography along the study transect was highly variable across short spatial scales (<10 m) (Fig. 7). 15 

Qualitatively, the surface was characterized by hummocks and hollows separated by shallow rills (often flowing) and pitted 

cryoconite deposits. Water-filled cryoconite holes were ubiquitous across the study area surface, though variability in 

cryoconite hole water levels and spatial coverage was observed. For example, at 14 of the 100 postings no cryoconite holes 

were present within the nominal 1 m observation radius and at 9 postings all cryoconite holes within the 1 m radius were dry. 

At the remaining 77 postings cryoconite holes contained measurable water levels. Cryoconite holes were 25.2 ± 11.4 cm 20 

deep and water levels were 15.5 ± 7.8 cm below the ice sheet surface, equivalent to water heights of 9.7 ± 7.8 cm above hole 

bottoms (Fig. 7b). The height of water in these holes likely varied diurnally and could have steadily drained or filled during 

the study period (Cook et al., 2016), thus the 15.5 cm average depth to water likely represents a snapshot of the transient 

water table surface. Further, we measured a single hole at each 8 m posting and thus cannot quantify local variability. With 

respect to distance along the transect, there was a trend toward shallower holes (-0.012 cm m-1, p<0.005) but no trend in 25 

depth to water below the ice sheet surface. Rather, cryoconite hole water levels generally mirrored the 8 m scale topographic 

variability (Fig. 7b), suggesting a local topographically-driven sub-surface water table (Karlstrom et al., 2014). 

 

In 83 of 100 drilled 1 m holes, water from surrounding ice refilled the hole within the nominal 30 minute post-drilling 

observation period. Refilling rates were not systematically measured but were observed to vary from nearly instantaneous 30 

refilling before the drill was removed, to relatively slow (and incomplete) refilling over the 30 minute observation period, 
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suggesting substantial variability over short spatial scales. In addition to this rapid refilling and the widespread presence of 

water-filled cryoconite holes, all but one of the ten shallow ice core boreholes were observed filling with water during the 

post-drilling period, though the equilibrium height of water in these holes was not measured. Collectively, these 

measurements suggest the ice was saturated across the entire 800 m transect to a depth of at least 1 m, albeit with substantial 

spatial variability in refilling rates.  5 

 

Based on these observations, we characterize the near-surface ice as composed of two continuous layers with varying 

thicknesses. The upper layer consisted of low-density (0.33–0.56 g cm-3), unsaturated weathering crust ice with relatively 

uniform crystal structure and no marked stratigraphy. This ice was readily probed, easily removed with a shovel, and often 

deformed or collapsed under foot. This layer was penetrated to 11.3 ± 5.8 cm (maximum 49 cm) with the depth probe. 10 

Beneath this layer was a higher density (0.43–0.91 g cm-3), saturated ice layer that we could not excavate with the shovel nor 

penetrate with the depth probe. The transition between layers was marked by a distinct increase in material strength across a 

short (~4 cm) distance below which the shovel and depth probe could not penetrate. Though inferred from the shovel and 

depth probe, this transition likely marks the non-linear increase in density on the shoulder of the theoretical depth-density 

curve (Fig. 1). The transition roughly coincides with the 15.5 cm average depth to water measured in cryoconite holes, 15 

suggesting a possible link between ice density and water table height.  

 

The vertical structure of the higher density, saturated ice was highly variable, consisting of alternating layers of coarse-

grained, porous ice and clear, solid ice lenses. The thickness of the saturated ice layer could not be definitively determined 

with the drilling equipment. However, at two locations shallow ice cores 1.8 m deep were extracted. The densities of these 20 

cores were not measured, but at both sites the ice cores consisted of coarse-grained, porous ice alternating with clear, solid 

ice lenses across their entire depth. There were no qualitative differences between the ice in these cores and the ice presented 

in Fig. 4 and Fig. 5. At one of these two sites, weathered ice persisted to 1.8 m depth. At the other site, a 20 cm thick 

segment of solid ice was found between 1.6 and 1.8 m, possibly marking the transition to cold, solid, impermeable ice at this 

location. 25 

3.4 Meltwater storage in the near-surface ice and the seasonal context 

Averaged across the 94 cm mean depth of the 10 shallow ice cores, 𝑆7 is 14–18 cm (Table 1). The average 𝜌. and 𝜙+,, are 

0.69 g cm-3 and 0.22, respectively. As each ice core was unique in terms of sampling interval, the 𝜌. and 𝜙+,, are depth-

weighted mean values whereas 𝑆7 is summed across each core. 𝑆7 is lower in cores 1–3 owing to higher sub-surface 𝜌. and 

hence lower 𝜙+,, below ~50–60 cm depth, whereas 𝑆7 in cores 4–10 consistently ranges between 14 and 21 cm, owing to 30 

lower 𝜌. across their entire depth. While these estimates suggest substantial 𝑆7 at the time of observation, they should be 

considered minimum bounds (within ±14% uncertainty) as they do not include the potential for additional liquid meltwater 
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storage below the measured ice core depths. The methods used in this study did not yield a definitive bound on the thickness 

of the saturated ice layer, nor the variation in porosity with depth below the range of the shallow boreholes, and thus deeper 

water storage cannot be ruled out.  

 

Given the transient nature of the weathering crust, it is important to place these findings in a seasonal context. Antecedent 5 

meteorology such as the amount of spring snow accumulation, timing of snowmelt, rainfall, and prevalence of shortwave 

radiation, would each influence weathering crust growth and decay. Sonic ranging data recorded at the KAN-M automatic 

weather station (AWS) indicate ~50 cm maximum spring snow depth and ~21 June snow disappearance date, which agrees 

with regional average snow depth and snow disappearance date presented in Tedstone et al., (2017) from the Modèle 

Atmosphérique Régional (MAR) regional climate model (Fettweis et al., 2017). Following snow disappearance, AWS data 10 

indicate ~55 cm of ice surface ablation (2.62 cm d-1) prior to collection of the shallow ice cores on 11–12 July, equivalent to 

49.5 cm water equivalent assuming solid ice density of ~0.90 g cm-3. The inferred 14–18 cm 𝑆7 is therefore equivalent to 

~28–36% of the cumulative seasonal ice surface ablation, or ~11–14% of the ~1.25 m average annual surface ablation at 

KAN-M (van As et al., 2017). 

 15 

Further, MAR data suggests conditions during summer 2016 favoured weathering crust growth in the study region. These 

include below average cloud cover and rainfall, and above average downward shortwave radiation (e.g. compare to 2000–

2016 period, Fig. 1–4 in Tedstone et al., 2017). These meteorological conditions suggest that presence of a well developed 

weathering crust was likely in the study area at the time of observation, though inferring a likely thickness is not possible 

without a physical model for weathering crust development. Nevertheless, the >1.6 m thickness of weathered ice is perhaps 20 

surprising given the 21 June snow disappearance date, suggesting the conditions we document either developed over a ~21 

day period following exposure to solar radiation, or persisted during the previous winter, further suggesting structural 

controls unrelated to penetration of shortwave radiation may underlie the observed weathering crust structure. 

4 Discussion 

Water storage in the weathering crust has been reported (Irvine-Fynn et al., 2011; Larson, 1978) but is generally not 25 

considered a significant component of water storage in supraglacial environments, owing to its transient nature (Fountain 

and Walder, 1998; Jansson et al., 2003; Müller and Keeler, 1969). While more work is required to determine the spatial 

extent and seasonal evolution of the conditions found in this investigation, our documentation of a saturated weathering crust 

storing up to 18 cm of liquid meltwater supports the possibility of substantial transient water storage on the bare ice 

Greenland Ice Sheet ablation zone surface, consistent with observations of weathering crust for supraglacial environments 30 

worldwide (Irvine-Fynn, 2008; Larson, 1978; Munro, 1990). Though a snapshot characterization, the weathering crust 

structure presented in Fig. 7 is consistent with conceptual models of the near-surface weathering crust-cryoconite hole 
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hydrologic system (e.g. Fig. 1; Irvine-Fynn and Edwards, 2014; Müller and Keeler, 1969) and confirms this system is 

present in the Greenland Ice Sheet ablation zone. The ubiquity of water-filled cryoconite holes, the rapid refilling of drilled 

holes with liquid water, and the excavation of saturated ice cores to depths >1.6 m suggests the study area weathering crust 

acts as a depth-limited aquifer (Irvine-Fynn et al., 2011), storing meltwater in the seasonally-temperate near-surface ice and 

likely delaying the delivery of meltwater to supraglacial streams and rivers via saturated sub-surface flow (Fountain and 5 

Walder, 1998; Irvine-Fynn et al., 2011; Karlstrom et al., 2014).  

 

Unlike previous findings, however, we find a pattern of porous, granular ice alternating with solid ice lenses in the upper 1-2 

m of weathering crust in the study area, rather than a homogeneous rotten near-surface ice layer (e.g. Müller and Keeler, 

1969). Given the rapidly ablating ice surface prior to the study, we posit the solid ice lenses are emergent structural features, 10 

as refrozen meltwater is unlikely in an ablating weathering crust (Schuster, 2001). Though beyond the scope of the data 

collected in this study, we hypothesize two mechanisms to explain the observed stratigraphy. First, stratified distributions of 

crystal size and shape, bubble elongation and distribution, and impurity content with depth could influence rates of sub-

surface radiative heating (Brandt and Warren, 1993; Liston et al., 1999), and hence could promote differential weathering 

across cm-scale distances at depth (Hudleston, 2015). Second, meltwater advection along micro seams, cracks, or foliated ice 15 

layers with enhanced permeability (Wakahama et al., 1973) may promote differential weathering via sensible and frictional 

heat transfer (Hambrey, 1977; Hambrey and Lawson, 2000), similar to joint block weathering of terrestrial lithology. 

Therefore, underlying structural features such as foliation, cracks, and fractures caused by thermal expansion (Sanderson, 

1978) may be accentuated by differential radiative heating, enhanced “rotting” by meltwater along preferential flow paths, or 

heating due to meltwater refreezing. Together, these suggest weathering crust formation in the study area may be more 20 

complicated than previous descriptions of a process driven solely by solar radiative heating (Hoffman et al., 2014; Müller 

and Keeler, 1969), and suggest meltwater dynamics and ice structure may be important controls on weathering crust 

development. 

 

Though we interpret the lenses as structural features, there is evidence that internal refreezing of meltwater occurs in 25 

weathering crust on the Dry Valley glaciers in Antarctica (Hoffman et al., 2014), raising the possibility of meltwater 

refreezing within the weathering crust ice matrix in Greenland. If so, refreezing would represent a heat source within near-

surface ice, and a sink for meltwater retention (Pfeffer et al., 1991). Though detailed energy balance studies suggest internal 

refreezing is negligible in near-surface porous ice on alpine glaciers in the Canadian Rockies (Paterson, 1972; Schuster, 

2001), such analyses have not been performed for the Greenland Ice Sheet ablation zone. Regardless of internal refreezing at 30 

depth, we frequently observed night-time refreezing of meltwater at the surface of cryoconite holes and water tracks in the 

study area (Fig. 8), though the magnitude of this refreezing was not studied. In addition to careful observation of sub-surface 

ice structure, future work should determine if internally refrozen meltwater occurs within weathering crust in the Greenland 

Ice Sheet ablation zone, especially during seasonal transitions from temperate to cold near-surface ice.  



 
 

13 

4.1 Estimating meltwater storage of the study catchment weathering crust 

While extrapolating these local scale findings to broader areas of the Greenland Ice Sheet is not justified presently, it is 

illustrative to consider the potential meltwater storage volume of the weathering crust in our study catchment. For example, 

if we assume our shallow ice core data are broadly representative of conditions across its 63 km2 area, multiplying the lower 

and upper estimate of 𝑆7 (Table 1) by the bare ice surface area of the study catchment yields 0.009–0.012 km3 of meltwater 5 

storage. To put these numbers in perspective, one hour of peak discharge measured at the Watson River in Kangerlussuaq 

during the July 2012 record melt event (Nghiem et al., 2012) was equivalent to 0.0115 km3 (van As et al., 2017). Our study 

catchment occupies ~2% of the total Watson River ablation zone contributing area (2800 km2; Lindbäck et al., 2015). Thus, 

while our 800 m shallow ice core survey may not be representative of ice density or porosity across vast areas of the 

Greenland Ice Sheet ablation zone, even relatively small areas of weathering crust have the potential to buffer large volumes 10 

of supraglacial meltwater, potentially delaying its delivery to englacial and proglacial systems.  

4.2 Implications of weathering crust for surface mass balance processes  

Our findings of low-density, saturated weathering crust in the Greenland Ice Sheet ablation zone have at least four 

implications for Greenland Ice Sheet surface mass balance (SMB). First, sub-surface meltwater generation within the 

weathering crust does not materially lower the ice sheet surface (Braithwaite et al., 1998; LaChapelle, 1959; Müller and 15 

Keeler, 1969). Lateral drainage of internal meltwater through the permeable weathering crust to supraglacial channels 

(Karlstrom et al., 2014) reduces weathering crust density, by removing mass with no detectable change in surface height. As 

a result, mass change during periods of weathering crust development may be underpredicted or, during periods of 

weathering crust removal, overpredicted, if determined solely from ice surface elevation changes (Braithwaite et al., 1998; 

LaChapelle, 1959; Müller and Keeler, 1969). In turn, where weathering crust is present, ice surface elevation change 20 

measurements cannot be confidently used to calibrate SMB models that assume all meltwater is generated at the solid ice 

surface with no sub-surface melt (van den Broeke et al., 2008). In the Kangerlussuaq region of the southwest Greenland Ice 

Sheet ablation zone, penetration of shortwave radiation into near-surface ice is estimated to generate 20–30% of total 

summertime melt, possibly rendering ablation stake measurements dubious as short-term model validation datasets in this 

region unless sub-surface melt is accounted for (van den Broeke et al., 2008; Munro, 1990).  25 

 

Second, SMB models for the Greenland Ice Sheet that ignore sub-surface melting and water storage in near-surface porous 

ice may miscalculate total meltwater production, energy partitioning, and surface lowering, especially on sub-seasonal or 

diurnal timescales when the weathering crust is actively developing (van den Broeke et al., 2008; Smith et al., 2017; Wheler 

and Flowers, 2011). Studies that rely on SMB model output to estimate meltwater runoff volumes or timing on the 30 

Greenland Ice Sheet ablation zone surface may be affected by these errors (Munro, 1990, 2011; Smith et al., 2017). For 

example, investigations of sub-seasonal coupling between surface melt and dynamic ice motion on the Greenland Ice Sheet 
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typically credit surface meltwater instantaneously to the englacial hydrologic system (Das et al., 2008; Hoffman et al., 2011; 

Joughin et al., 2008; Schoof, 2010; Zwally et al., 2002). Further, the development and removal of the weathering crust is 

strongly coupled to sub-seasonal synoptic meteorology. The weathering crust can rapidly ablate away when the surface 

energy balance is dominated by latent or longwave heat fluxes (Müller and Keeler, 1969; Schuster, 2001). Such conditions 

are common during warm rainfall events, which have been linked to short term ice-flow acceleration (Doyle et al., 2015). 5 

Understanding sub-seasonal ablation processes such as weathering crust development and removal could thus improve our 

understanding of meltwater delivery to the englacial system.  

 

Third, typical flow velocities of 0.4–2.6 m s-1 in supraglacial meltwater channels on the Greenland Ice Sheet surface 

(Gleason et al., 2016) are 3–5 orders of magnitude greater than hydraulic conductivity estimates for permeable ice (Cook et 10 

al., 2016; Fountain and Walder, 1998; Karlstrom et al., 2014; Wakahama et al., 1973). Thus, porous sub-surface meltwater 

flow may modulate delivery of surface meltwater to supraglacial channels, which in turn deliver meltwater to englacial and 

subglacial systems. Yet, little is known about the Greenland Ice Sheet weathering crust hydraulic properties that control non-

channelized flow, particularly its depth-variable hydraulic conductivity. Prior investigations of Greenland Ice Sheet surface 

hydrologic routing relied exclusively on assumptions of instantaneous meltwater runoff, or routing schemes appropriate for 15 

channelized overland flow or porous media flow in snow (e.g. Arnold et al., 1998, 2014; Banwell et al., 2012, 2013; Smith et 

al., 2015). Hence, understanding sub-surface meltwater transport mechanisms in addition to surface transport mechanisms in 

the Greenland Ice Sheet ablation zone may improve modelling capabilities.  

 

Finally, the weathering crust provides a substrate for entrainment of impurities, cryoconite, and microbial communities that 20 

influence the Greenland Ice Sheet ablation zone surface albedo (Boggild et al., 2010; Lutz et al., 2014; Ryan et al., 2017; 

Yallop et al., 2012). Cryoconite deposits locally enhance melt, forming quasi-cylindrical melt holes that deepen into the 

weathering crust (Gribbon, 1979), likely reducing their direct effect on mesoscale ice albedo patterns in southwest Greenland 

(Ryan et al., 2016; Tedstone et al., 2017). Conversely, interstitial water within the weathering crust, such as that documented 

in this study, provides abundant habitat for microalgae and cyanobacteria (Irvine-Fynn and Edwards, 2014), which reduce 25 

ice surface albedo (Yallop et al., 2012). Sub-surface water exchange may further redistribute soluble impurities and microbes 

between the permeable weathering crust and cryoconite holes (Cook et al., 2016), while channel invasion of cryoconite holes 

during periods of weathering crust removal may disperse cryoconite sediments and microbes across the ice surface (Hodson 

et al., 2007; Takeuchi et al., 2000). Thus, while it has not been confirmed, weathering crust hydrology, in addition to its 

growth and removal, could modulate the distribution of impurities and microbial communities on the Greenland Ice Sheet 30 

ablation zone surface, and hence could influence surface albedo patterns. 

 

Underpinning each of these implications of weathering crust, however, is the transient nature of its growth and decay. Our 

study provides a snapshot characterization of what appears to be a deeply developed weathering crust, approximately 
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midway through a summer characterized by below average cloud cover, albedo, rainfall, and spring snow depth, earlier than 

average snow disappearance, and above average downward shortwave radiation (e.g. compare to Fig. 1–4 in Tedstone et al., 

2017). These conditions suggest abundant time for weathering crust development, and lack of conditions conducive to its 

removal or decay. Interannual variability in these conditions is substantial, and the conditions we document may not be 

representative of normal conditions. The net seasonal effect of weathering crust processes on Greenland Ice Sheet ablation 5 

zone hydrology and mass balance remains poorly understood and should form the basis for future work.  

5 Conclusion 

This study suggests presence of a water-saturated weathering crust at least 1 m thick on the bare ice surface of the Greenland 

Ice Sheet ablation zone. The observed characteristics of this weathering crust are similar to those described for supraglacial 

environments worldwide (Cook et al., 2016; Hoffman et al., 2014; Irvine-Fynn and Edwards, 2014; Karlstrom et al., 2014; 10 

Larson, 1978; Müller and Keeler, 1969; Munro, 2011). Namely, the weathering crust acts as a depth-limited aquifer (Irvine-

Fynn et al., 2011), storing liquid meltwater and likely slowing its transport to supraglacial streams via porous sub-surface 

flow (Cook et al., 2016; Karlstrom et al., 2014). Our empirical relationship (𝜙+,, = −0.97ρH + 0.89) between measured ice 

density and measured ice porosity at the study field site suggests 14–18 cm of meltwater storage within weathering crust at 

our study site. If these findings are representative of broader areas of the Greenland Ice Sheet ablation zone, they suggest the 15 

potential for substantial sub-seasonal meltwater storage within porous low-density ice on the Greenland Ice Sheet ablation 

zone bare ice surface. Future work should examine how spatio-temporal changes in the surface energy balance and 

underlying ice structure control weathering crust development, and quantify potential errors in sub-seasonal mass balance 

and surface elevation change estimates derived from surface energy balance models and altimetry, as most currently neglect 

removal of mass due to sub-surface melting in the bare ice ablation zone.  20 
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Fig. 1. (a) Conceptual diagram of weathering crust structure, highlighting the porous ice layers, cryoconite holes, and saturated 
water table (adapted from Irvine-Fynn and Edwards, 2014 and Müller and Keeler, 1969). (b) Theoretical sub-surface depth-5 
density profile showing the non-linear increase in ice density from the highly porous, low density near-surface ice to a higher 
density substrate (adapted from LaChapelle, 1959). 
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Fig. 2. Ortho-rectified image mosaic of the study area at 6 cm ground resolution from RGB camera imagery collected 10 July 2016 
on board a quad-copter drone. Background 30 m Landsat image collected same day. Shallow ice cores extracted at 80 m posting 
(blue circles) along the 800 m transect provide ice density measurements to depths of 1.1 m, with two additional shallow ice cores 
extracted to 1.8 m depth at posting 1.  Insets (below) show the 63.1 km2 supraglacial catchment extent (magenta outline), as 5 
delineated from WorldView satellite stereo-photogrammetric digital elevation model topography, and supraglacial river and 
moulin locations derived from Landsat 8 imagery (Yang	and	Smith,	2016). 
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Fig. 3. (a) A surface weathering crust was pervasive throughout the study area, characterized by small scale topographic 
variability and cryoconite holes. (b-c) A 1000 cm3 steel snow density sampler was vertically inserted into the upper 20 cm 
weathered ice. (d) A shallow ice core drill was used to obtain ice samples to depths of 1.8 m.  

  5 
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Fig. 4. Sub-surface measured ice density (𝛒𝐌) and corresponding calculated effective porosity (𝛟𝐞𝐟𝐟), and stratigraphy profiles 
from 10 shallow ice cores (#10-1, left to right) extracted at 80 m posting along the study transect (see Fig. 2 for ice core locations). 
Horizontal blue shading represents solid ice layers. Vertical dashed line at solid ice density 0.917 g cm-3. Assumed ±10% 
measurement uncertainty represented by shaded grey bars. Hatched areas are no data. 5 
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Fig. 5. (a) Typical near-surface shallow ice core (core #6) prior to in situ analysis of density and stratigraphy. Clear, solid ice lenses 
alternate with granular, fractured ice. Approximate locations of ice lenses noted with white arrows (not all lenses are clearly 
visible). (b) Ice lenses removed and confirmed after completed core analysis (core #1). 

  5 
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Fig. 6. Linear relationship (𝝓𝒆𝒇𝒇, solid line) between measured ice density (𝛒𝐌) and effective porosity (𝛟𝐞𝐟𝐟) and assumed ±10% 
measurement error (whiskers). Dashed line is theoretical upper limit where effective porosity equals total porosity (i.e. 
𝛟𝐓 = 𝛒𝐌/𝛒𝐓). 5 
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Fig. 7. (a) Ice sheet surface topography along the 800 m study transect extracted from a 6 cm posting stereo-photogrammetric 
digital elevation model derived from RGB imagery collected 10 July 2016 from a quad-copter drone and the 2nd-order polynomial 
best fit. (b) Ice sheet surface topography detrended with the polynomial best fit, crycoconite hole depths (vertical grey bars), and 
cryoconite hole water levels (vertical blue bars) sampled along the 800 m study transect, adjusted to a common vertical reference. 5 
Locations of the 10 shallow boreholes and their depth relative to the detrended surface are labelled #1-10.   
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Table 1: Shallow ice core depth, mean core density, mean core porosity, and specific storage depth (𝐒𝐏), for each shallow ice core. 

Core Ice Core 
Depth 

Mean Core 
Density 

Mean Core 
Porosity 𝑆𝑃 

 (cm) (g cm-3) (-) (cm) 
1 100 0.72 0.19 12 – 16 
2 100 0.72 0.19 11 – 15 
3 100 0.76 0.15 10 – 13  
4 90 0.63 0.28 15 – 21 
5 89 0.63 0.27 16 – 21 
6 97 0.74 0.17 15 – 20 
7 90 0.65 0.26 15 – 20 
8 102 0.72 0.19 15 – 20 
9 90 0.64 0.26 16 – 21 

10 82 0.64 0.27 14 – 18 
μ 94 0.69 0.22 14 – 18 
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Fig. 8. Night-time refreezing of meltwater at the surface of cryoconite holes and water tracks was frequently observed during the 
field study.   

 


