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Abstract: Quantitative characterization of soil organic carbon (OC) content is essential due to its 

significant impacts on surface–subsurface hydrological-thermal processes and microbial 10	

decomposition of OC, which both in turn are important for predicting carbon-climate feedbacks. 

While such quantification is particularly important in the vulnerable organic-rich Arctic region, it 

is challenging to achieve due to the general limitations of conventional core sampling and analysis 

methods, and to the extremely dynamic nature of hydrological-thermal processes associated with 

annual freeze-thaw events. In this study, we develop and test an inversion scheme that can flexibly 15	

use single or multiple datasets, including soil liquid water content, temperature and electrical 

resistivity tomography (ERT) data, to estimate the vertical distribution of OC content. Our 

approach relies on the fact that OC content strongly influences soil hydrological-thermal 

parameters, and therefore, indirectly controls the spatiotemporal dynamics of soil liquid water 

content, temperature and their correlated electrical resistivity. We employ the Community Land 20	

Model to simulate nonisothermal surface-subsurface hydrological dynamics from the bedrock to 

the top of canopy, with consideration of land surface processes (e.g., solar radiation balance, 

evapotranspiration, snow accumulation and melting) and ice/liquid water phase transitions. For 

inversion, we combine a deterministic and an adaptive Markov chain Monte Carlo (MCMC) 

optimization algorithm to estimate posterior distributions of desired model parameters. For 25	

hydrological-thermal to geophysical variable transformation, the simulated subsurface 

temperature, liquid water content and ice content are explicitly linked to soil electrical resistivity 

via petrophysical and geophysical models. We validate the developed scheme using different 

numerical experiments and evaluate the influence of measurement errors and benefit of joint 

inversion on the estimation of OC and other parameters. We also quantified the propagation of 30	

uncertainty from the estimated parameters to prediction of hydrological-thermal responses. We 

find that compared to inversion of single dataset (either temperature or liquid water content or 
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apparent resistivity), joint inversion of these datasets significantly reduces parameter uncertainty. 

We find that the joint inversion approach is able to estimate OC and sand content within the 

shallow active layer (top 0.3 m of soil) with high reliability. Due to the small variations of 

temperature and moisture within the shallow permafrost (here at about 0.6 m depth), the approach 

is unable to estimate OC with confidence. However, if the soil porosity is functionally related to 5	

the OC and mineral content, which is often observed in organic rich Arctic soil, the uncertainty of 

OC estimate at this depth remarkably decreases. Our study documents the value of the new 

surface-subsurface, deterministic-stochastic inversion approach, as well as the benefit of including 

multiple types of data to estimate OC and associated hydrological-thermal dynamics. 

 10	

1. Introduction 

Soil organic carbon (OC) and its influence on terrestrial ecosystem feedbacks to global warming 

in permafrost regions is particularly important for the calculation of global carbon budget and 

prediction of future climate variation. Warmer air temperature leads to permafrost degradation, 

which is expected to enhance decomposition of huge pools of previously-frozen OC, releasing 15	

carbon dioxide and methane to the atmosphere, and enhancing global warming (Koven et al., 

2011; Schaphoff et al., 2013; Schuur et al., 2015). In that context, accurate estimation of OC 

content stored in both active layer and permafrost is crucial for investigation of carbon stocks 

exposing for microbial decomposition.  

 20	

Predictive understanding of ecosystem feedbacks to climate in permafrost regions requires 

quantitative knowledge of surface-subsurface hydrological-thermal dynamics, which in turn are 

strongly governed by the hydrological-thermal properties of soil OC (Jafarov and Schaefer, 2016). 

In particular, there are dramatic differences between thermal and hydraulic properties of OC and 

mineral soil, both of which typically co-exist in shallow permafrost systems. OC’s thermal 25	

conductivity (e.g., 𝜆!",!"# = 0.05 W/mK) is significantly lower than that of mineral soil (e.g., 

𝜆!"#$ =8.4 W/mK) (Farouki, 1981). By contrast, its heat capacity is higher than mineral soil. 

Considering hydrological properties, the hydraulic conductivity of OC is higher and its capillary 

pressure is smaller than mineral soil (Lawrence and Slater, 2008). In addition, while mineral soil 

porosity typically ranges from 0.4 to 0.6, the porosity of OC soil is usually greater than 0.8. Due to 30	

its low thermal conductivity, a top OC layer can behave as an insulator that reduces the magnitude 

of heat and energy exchange between the atmosphere and deeper soil (e.g., Hinzman et al., 1991; 

Rinke et al., 2008). Nicolsky et al. (2007) and Jafarov and Schaefer (2016) reported that inclusion 
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of vertical OC content profile into a land surface model can considerably improve prediction of 

subsurface moisture, temperature and carbon dynamics. However, our ability to measure or 

estimate the distribution of OC is currently challenging, which inhibits accurate model prediction.  

 

OC content is usually measured from core samples, which are collected from field sites and then 5	

analyzed in the laboratory (e.g., Kern, 1994). While this method is relatively accurate, it is labor 

intensive and typically limited in spatial coverage. Because OC and mineral content largely 

influence hydrological-thermal parameters (i.e., thermal conductivity, heat capacity, hydraulic 

conductivity and retention curve; see Appendix A), they are the main soil properties that control 

the subsurface hydrological-thermal dynamics. As a result, OC and mineral content can be 10	

potentially obtained by inverting observations of hydrological-thermal state variables (i.e., soil 

liquid water content and soil temperature) and their correlated observables (e.g., electrical 

resistivity). However, so far there has been no effort using this approach to indirectly estimate 

these soil properties.  

 15	

Geophysical methods hold potential for characterizing the subsurface in permafrost regions as well 

as their associated physical, hydrological and thermal processes. Geophysical techniques offer an 

advantage over conventional point measurement techniques because they provide spatially 

extensive information in a minimally invasive manner (e.g., Hubbard and Rubin, 2005). For 

example, Arcone et al. (1998) and Chen et al. (2016) used GPR to characterize the depth of 20	

permafrost table. Hinkel et al. (2001) used GPR to estimate thaw depth, to recognize ice wedges 

and ice lenses, and to locate the organic-mineral soil interface. Schwamborn et al. (2002) 

combined seismic and GPR to investigate the stratigraphy of both frozen and unfrozen parts of 

Lake Nikolay. Lewkowicz et al. (2011) and You et al. (2013) employed ERT, ground temperature 

monitoring, frost table probing and coring to detect the permafrost depth. Hauck et al. (2011) 25	

developed a 4-phase model of soil matrix, ice, liquid and air and used it to estimate soil liquid and 

ice content from combined ERT and seismic measurements in the Swiss Alps. Hubbard et al. 

(2013) combined Lidar data with multiple geophysical (ERT, GPR, electromagnetic) and point 

measurements to characterize active-layer thickness and permafrost variability in a large area.  

 30	

In spite of the potential benefits offered by geophysical data for characterizing permafrost systems, 

geophysical inversion approaches typically suffer from several challenges. First, inversion 
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methods are often ill-posed due to the fact that geophysical observables are sensitive to different 

soil properties. Secondly, inversion approaches often typically require petrophysical models to 

link the geophysical observables with the property of interest. Finally, there are differences 

between the geophysical support scale and the scale of the imaging target (Hubbard and Linde, 

2011). In order to take advantage of information inherent in geophysical signatures and minimize 5	

the non-uniqueness challenges described above, many recent studies have explored the value of 

coupled hydrogeophysical inversion frameworks for estimating soil properties (e.g., Johnson et al., 

2009; Huisman et al., 2010; Irving and Singha, 2010; Kowalsky et al., 2011; Pollock and Cirpka, 

2012;Busch et al., 2013; Herckenrath et al., 2013; Camporese et al., 2015; Tran et al., 2016). In 

these studies, the hydrological and geophysical models are coupled together so that geophysical 10	

data are used to estimate soil properties that control the subsurface hydrological-thermal 

dynamics. Of the geophysical techniques commonly used for monitoring the shallow subsurface, 

ERT is increasingly common because it can autonomously provide 2- or 3-D time-lapse 

measurements with a relatively high spatial resolution, is sensitive to properties influencing 

hydrological-thermal dynamics, and is particularly suitable for field deployment over a long 15	

period of time. As a result, we use ERT data in this study.  

 

Most of coupled hydrogeophysical inversion approaches developed to date are not adequate for 

investigating permafrost systems due to several gaps. Developed methods have only been applied 

to terrestrial systems without consideration of the significant dynamics associated with the freeze-20	

thaw transition. Developed coupled hydrogeophysical inversion approaches have also not yet 

incorporated surface-subsurface interactions (e.g., evapotranspiration, energy balance, plant water 

uptake). Finally, while a few studies have used Soil Vegetation Atmospheric Transfer (SVAT) 

models to qualitatively interpret geophysical data (e.g., McClymont et al., 2013), to date, no study 

has coupled SVAT and geophysical models and data to improve property estimation.  25	

 

Building on recent advances in the use of electrical methods in the permafrost (e.g.,	Minsley	et	al.,	

2016;	Dafflon	et	al.,	2017) as well as coupled hydrogeophysical inversion approaches described 

above, this study focuses on the development of an inverse approach that uses single or multiple 

datasets (soil liquid water content, soil temperature and electrical resistivity) to estimate OC 30	

content, which is a main factor that governs the subsurface hydrological-thermal dynamics. Our 

approach advances and couples several algorithms. We use a SVAT model known as Community 



	 5	

Land Model (CLM4.5, Oleson et al., 2013) to simulate water, heat and energy exchange from the 

bedrock to the top of canopy. The model considers most of the land surface processes, ice/liquid 

phase change and surface-subsurface hydrological-thermal dynamics. For parameter estimation, 

we combined deterministic and stochastic optimization algorithms to concurrently obtain the best 

parameter estimates and their associated uncertainties. The deterministic optimization algorithm is 5	

employed to estimate the initial parameter set and covariance matrix of the proposal distribution. 

For the stochastic optimization, we used an advanced MCMC method known as Delayed 

Rejection Adaptive Metropolis (DRAM, Haario et al., 2006). With this implementation of this 

adaptive MCMC algorithm, we expect to obtain the posterior probability distributions (pdfs) of the 

desired model parameters more quickly than the traditional MCMC technique. For hydrological-10	

thermal to geophysical transformation, we explicitly consider the dependence of the soil electrical 

resistivity on the soil ice/liquid water content and soil temperature via petrophysical and forward 

geophysical models. 

 

This study advances capabilities to estimate and understand the controls of OC on hydrological 15	

and thermal properties through developing a hydrological-thermal-geophysical inversion scheme 

and through exploring its potential to estimate the vertical distribution of OC and mineral content 

at several depths within a representative synthetic Artic soil column. Herein, we use synthetic 

studies to: 1) evaluate the relationship between the measurement error and uncertainties of 

parameter estimates, 2) examine the improvement in parameter estimation offered by including 20	

various datasets in the inversion, including apparent resistivity data, 3) investigate how OC 

estimation changes if the mineral and petrophysical parameters are unknown, 4) explore how 

parameter estimation changes when soil porosity functionally correlates with the OC and mineral 

content, and 5) investigate the uncertainty propagation from the OC and mineral content to the 

hydrological-thermal prediction.  25	

 

The paper is organized as follows. Section 2 describes the development of the hydrological-

thermal-geophysical inversion scheme. Section 3 analyzes and discusses the results of different 

synthetic experiments. Summary and concluding remarks are provided in Section 4.  

 30	

2. Methodology 



	 6	

Generally, the joint hydrological-thermal-geophysical inversion scheme developed in this study 

(Figure 1) includes two main components: 1) A forward coupled hydrological-thermal-

geophysical model that generates the subsurface state variables (i.e., ice/liquid water content and 

temperature), and then uses these variables to infer the apparent resistivity using a set of 

petrophysical formulas and a forward electrical resistivity model (Figure 1a); 2) A combined 5	

deterministic-stochastic optimization algorithm to estimate the pdfs of desired model parameters 

(𝕡), which include the soil OC content vertical profile (scenarios from 1 to 9), sand content 

vertical profile (scenarios 8-9) and petrophysical parameters (scenarios 8-9) (see Table 2) by 

minimizing the misfit between measured and simulated data. It is worth noting that the scheme is 

developed so that single (e.g., soil temperature or liquid water content or apparent resistivity) or 10	

multiple datasets can be used for inversion. 

   

2.1. Hydrological-thermal model 

In this study, we employed CLM4.5 model (hereafter referred to as ‘CLM’), which can effectively 

simulate different land surface energy balance and surface-subsurface hydrological-thermal 15	

processes (Oleson et al., 2013). CLM represents horizontal heterogeneity using multiple parallel 

soil/snow columns having different land use and plant function types. The lateral flow between the 

soil columns is not accounted for in CLM. The model simulates the freeze-thaw dynamics by 

considering two phases of water: liquid and ice. The rate of phase change depends on the energy 

excess (for the ice to liquid transition) or deficit (for the liquid to ice transition) from the soil 20	

temperature to the freezing temperature. Given CLM’s ability to simulate different hydrological-

thermal processes in cold regions, we found it suitable for Arctic soil column simulations. The 

minimum requirements for the top boundary conditions in CLM include precipitation, incident 

solar, air temperature and wind speed. The land use and plant type information can be provided by 

users or extracted from the available model database.  25	

 

CLM assumes that soil is a mixture of three soil types, namely, OC, sand and clay. It calculates 

the soil hydrological-thermal parameters based on the content (fraction) of these soil types and 

their corresponding hydrological-thermal properties (see Appendix A for more detailed 

information on these relationships). In CLM, the soil OC content (%𝑂𝐶) is defined as %𝑂𝐶 =30	
𝜌!"

𝜌!"!"#
 in which 𝜌!"  is the soil OC density (kg/m3) and 𝜌!"!"# is the maximum soil OC density 

(𝜌!"!"# = 130 kg/m3), which is the standard bulk density of peat (Oleson et al., 2013). The mineral 
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content is determined as %𝑀𝑖𝑛𝑒𝑟𝑎𝑙 = 100−%𝑂𝐶.  CLM further assumes that mineral includes 

only sand and clay. As a result, in the inversion scheme, we only need to estimate the soil OC 

content and sand content in mineral (hereafter referred to as the sand content). The clay content is 

obtained by subtracting the sand content from the mineral content.  

 5	

For more detailed exploration of the vertical variability of subsurface properties and associated 

hydrological-thermal dynamics, we increased the default number of soil layers in the CLM from 

15 to 32 layers, and defined the depth of layer ith (zi) as: 

   𝑧! = 0.025 𝑒!.!" !!!.! − 1 .     (1) 

Of these 32 layers, CLM assumes that the 5 bottom layers are bedrock layers. Hydrological 10	

dynamics is simulated only in the top 27 soil layers, while thermal dynamics is simulated in all 32 

layers. Equation 1 was used to ensure that the layer thicknesses near soil surface are thinner than 

those near the bottom (as shown in Figure 3) in order to capture the important hydrological and 

thermal dynamics in the topsoil active layers. 

 15	

Moreover, in order to explore how the soil porosity influences the estimation of soil OC and sand 

content, we modified the CLM to consider two cases 1) the soil porosity profile was fixed and 

independent from the soil OC and sand content (see scenarios from 1 to 8 in Table 1), and 2) the 

soil porosity was calculated from the OC and sand content as default in the CLM (see scenario 9 

in Table 1) as below (Lawrence and Slater, 2008): 20	

  𝛷 = !""!%!" !!"#!%!"!!"
!""

,      (2) 

in which 𝛷 is the soil porosity; Φ!"# and Φ!!  are, the porosity of mineral and OC, respectively. 

In the CLM, the OC porosity is given as Φ!" = 0.9 and the mineral porosity is calculated from 

sand fraction as  

  𝛷!"# = 0.489− 0.00126(%sand),     (3) 25	

 

The dependencies of soil thermal conductivity, heat capacity and thermal diffusivity on liquid 

water saturation, OC and sand content are shown in Figure 2. This figure was obtained from 

calculations using equations in Appendix A in which the soil porosity was considered in two 

cases: 1) fixing at 0.7 (Figures a, b, c), and 2) calculating from the OC and sand content (Figures 30	
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d, e, f). The figure shows that the variation of soil thermal properties with respect to the OC 

content, sand content and liquid water saturation is similar for both cases. When the OC fraction 

increases from 0 to 100%, the soil thermal conductivity decreases and the soil heat capacity 

slightly increases. By contrast, higher sand fraction leads to higher thermal conductivity and 

slightly lower heat capacity. These relationships are expected, given that OC has a considerably 5	

smaller thermal conductivity and a slightly higher heat capacity compared to sand. The figure also 

shows that both soil thermal conductivity and heat capacity significantly increase with increasing 

liquid water saturation. This is also reasonable, as the thermal conductivity and heat capacity of 

liquid water are much higher than that of air. The thermal diffusivity is defined as the ratio 

between the thermal conductivity and heat capacity. The figure indicates that the diffusivity 10	

increases when the OC decreases and sand content increases.   

 

Comparing the two cases shows that when the soil porosity depends on OC and sand content, the 

soil thermal properties change in larger ranges with the variation of OC content, sand content and 

liquid water saturation. It is because while the soil porosity is fixed at 0.7 in the first case (Figure 15	

a, b, c), it varies from 0.36 (when soil is 100% sand) to 0.9 (when soil is 100% OC) in the second 

case (Figure d, e, f). Because soil thermal properties strongly depends on soil porosity (see 

Equations A2 and A8 in Appendix A), together with the OC and sand content, the variation of 

porosity in the second case leads to rapid change of the soil thermal properties, and therefore, the 

subsurface hydrological-thermal dynamics.  20	

 

2.2. Petrophysical and geophysical transformation 

In our inverse scheme, we link the output of the hydrological-thermal simulation described above 

(soil ice/liquid water saturation and temperature) to soil electrical conductivity using the Archie’s 

law (Archie, 1942): 25	

𝜎 = 𝜙!(𝑆!!𝜎! + 𝜙!! − 1 𝜎!),    (4) 

in which 𝜙 is the porosity; Sw is the liquid water saturation in the pore space; m and n are the 

cementation and saturation indexes, respectively, and 𝜎! is the soil electrical conduction, which 

was fixed at 𝜎!=0.005 S/m in this study (Table 1).  It is worth noting that the reduction of porosity 

due to ice content in this study was not considered. How ice content influences the Archie’s 30	

equation will be considered in the future research. 
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The water electrical conductivity (𝜎!) is calculated from the concentration of all ions in water as 

(Minsley et al., 2015): 

𝜎! = 𝐹!𝛽! 𝑧! 𝐶!
!!!!"#
!!! ,     (5)  

in which 𝛽!, and zi are the ionic mobility and valence of the ith ion, respectively. Similar to 5	

Minsley et al. (2015), we assumed that Na+ and Cl- are two main ions in this synthetic study. Fc is 

Faraday’s constant. 𝐶! is the concentration of the ith ion, which depends on the ice/liquid water 

fraction as: 

𝐶! = 𝐶! (!!"!!)𝑆!"
!!,      (6) 

in which Sfi and Sfw are, respectively, the fraction of ice and liquid in ice-liquid water (Sfi+Sfw=1); 10	

𝛼 varies from 0 to 1 which is the coefficient accounting for the reduction of soil water salinity 

when liquid water saturation decreases. A larger 𝛼  implies a larger increasing rate of ion 

concentration with decreasing liquid water fraction. The concentrations of ions in the ice-free 

water (𝐶! (!!"!!)) can be obtained from samples in the summer season. The values of m, n, 𝜎!, 𝜙, 

Fc, 𝛽!, Ci and 𝛼 used in this synthetic study are presented in Table 1. Except for m, n and 𝜎!, the 15	

other parameters were taken from Minsley et al. (2015). Of these parameters, 𝛼 and m are two 

most important parameters that control the relationship between geophysical and hydrological-

thermal variables. We estimated them by inverting soil moisture, temperature and geophysical data 

in scenarios 8 and 9 (see Table 2). 

 20	

The effect of soil temperature (T) on the soil electrical conductivity is formulated as (Hayley	et	al.,	

2007): 

   𝜎! = 𝜎(0.018 ∗ 𝑇 − 25 + 1).    (7) 

The linkage between soil electrical conductivity and the apparent resistivity is established by the 

electrical forward model. In this study, we used the forward model of the Boundless Electrical 25	

Resistivity Tomography (BERT) package, developed by Rücker et al. (2006), which numerically 

solves Poisson’s equation using the finite element method in a three-dimensional arbitrary 

topography. For more detailed information on this model, we refer to Rücker et al. (2006). 

 

2.3. Stochastic and deterministic parameter estimation 30	
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In this section, we present a combination approach of deterministic and stochastic optimization 

algorithms to estimate the model parameters 𝕡 and their uncertainties. The stochastic optimization 

algorithm relies on the Bayesian inference and DRAM MCMC technique. The deterministic 

optimization algorithm was used to approximate the initial set of model parameters and initial 

covariance matrix of the proposal distribution for stochastic optimization. Consequently, the 5	

estimated parameters are more rapidly obtained than only using a single stochastic algorithm with 

arbitrary initial parameters. Moreover, the use of DRAM stochastic optimization algorithm allows 

us to sequentially update the proposal covariance matrix and perform multiple tries to improve the 

acceptance rate. This algorithm has been proved to be more efficient than the commonly-used 

MCMC Metropolis-Hasting method. 10	

 

2.3.1. Bayesian inference 

In the stochastic parameter estimation, the objective is to find the posterior probability distribution 

𝑃 𝕡|𝑌  of parameters 𝕡 conditioned on the measurements Y from which we can extract the best-

estimated parameters and their uncertainties. Based on Bayesian rule, this posterior distribution is 15	

formulated as follows: 

   𝑝 𝕡|𝑌 ∝ 𝑝(𝕡)𝑝 𝑌|𝕡 ,      (8) 

in which 𝑝 𝕡  is priori parameter distribution of parameter 𝕡  and 𝑝 𝑌|𝕡  is the likelihood 

function. Assuming that the error residuals are uncorrelated, the likelihood function can be written 

as: 20	

   𝑝 𝑌|𝕡 = 𝑓!! 𝑦!|𝕡
!
!!! ,     (9) 

where 𝑓!! 𝑦!|𝕡  denotes the probability density function (pdf) of measurement 𝑦!  at time ti given 

the model parameters 𝕡. If we further assume the error residuals (difference between modeling 

and measurement) to be normally distributed, then 𝑓!! 𝑦!|𝕡  can be written as: 

   𝑓!! 𝑦!|𝕡 = !

!!!!
!
𝑒𝑥𝑝 − !

!
!!!!!(𝕡)

!!
!

!
,    (10)  25	

     

and Equation 9 becomes:  

   𝑝 𝑌|𝕡 ∝ 𝑝(𝕡) !
!!

! !

!!
!

!
!!! 𝑒𝑥𝑝 − !

!
!!!!!(𝕡)

!!
!

!
, (11) 
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in which 𝑦!(𝕡) is the model response at time ti; 𝜎!! is the variance of measurement error at time ti. 

Intuitively, 𝜎!! works as an inverse weighted factor of contribution of measurement 𝑦! to the 

posterior distribution 𝑝 𝑌|𝕡 . A measurement with a higher variance of measurement error has a 

smaller contribution to construct the parameter posterior distribution. In addition, for joint 

inversion, 𝜎!! helps to removes the influence of measurement units of different data types. 5	

 

 2.3.2. Delayed rejection adaptive Metropolis (DRAM) Markov Chain Monte Carlo method 

Once posterior density distribution 𝑝 𝕡|𝑌  of the model parameters is defined, we need to 

determine its statistical properties (e.g., mean, covariance). However, due to the nonlinearity of the 

dynamic model, it is usually difficult to analytically obtain these properties. In that respect, the 10	

Monte Carlo methods can be used to generate samples from this posterior distribution and then 

calculate these properties. We employed the DRAM method that was improved from the 

Metropolis-Hasting MCMC method for this purpose. Basically, this method is a combination of 

the adaptive Metropolis and delayed rejection algorithm and briefly presented as follows: 

 15	

Metropolis-Hasting: Given the current parameter set 𝕡! at iteration kth, the candidate for the next 

move (𝕡!!!! ) from the current value is generated from a proposal distribution 𝑞!(𝕡! ,𝕡!!!! ). The 

acceptance ratio is calculated as below: 

 𝛼!(𝕡!!!! ,𝕡!) = 𝑚𝑖𝑛 1,
𝜋 𝕡𝑘+1
′ 𝑞1 𝕡𝑘+1

′ ,𝕡𝑘
𝜋 𝕡𝑘 𝑞1 𝕡𝑘,𝕡𝑘+1

′
,  (12) 

where 𝜋(𝕡) is the target distribution needed to approximate (𝑝 𝕡|𝑌 ). The next sample moves to 20	

the candidate 𝕡!!!! , 𝕡!!! = 𝕡!!!!  if 𝛼 > 𝑢 with 𝑢 as a random variable generated from uniform 

distribution U(0,1). Otherwise, the candidate is rejected and the next sample stays at the current 

location, 𝕡!!! = 𝕡! . 

 

Delayed rejection: In delayed rejection, once the candidate is rejected, instead of staying at the 25	

current sample, a second (𝕡!!!!! ) try is proposed. The acceptance ratio for this try is: 

𝛼!(𝕡!!!!! ,𝕡!!!! ,𝕡! ) = 𝑚𝑖𝑛 1,
! 𝕡!!!

′′ !!(𝕡!!!
′′,!!!!

! )!!(𝕡!!!
′′,𝕡!!!,

! 𝕡!) !!!!(𝕡!!!
′′,𝕡!!!

′

! 𝕡! !! 𝕡!,𝕡!!!
′ !! 𝕡!,𝕡!!!

′ ,𝕡!!!
′′ !!!!(𝕡!,𝕡!!!

′
,  (13) 

If the second try is rejected, the third try can be generated and so on. The number of tries is 
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specified by users. 

  

Adaptation: One of the key limitations of the MCMC technique is the selection of the proposal 

distribution model. In adaptive Metropolis, the proposal distribution is assumed to be Gaussian 

centered at the current sample 𝛮(𝕡! ,𝐶!) with the covariance matrix 𝐶! adapted from the previous 5	

samples as: 

   𝐶! = 𝑠!𝑐𝑜𝑣 𝕡!,… ,𝕡! + 𝑠!𝜀𝐼!.    (14) 

In Equation 14, 𝑠!  is the scaling parameter that depends on the length (d) of the estimated 

parameter vector 𝕡, which is set to 𝑠! = 2.4! 𝑑; ε > 0 is a very small constant to inhibit Ck from 

becoming singular; and Id  signifies the d-dimensional identity matrix.  10	

 

The assessment of convergence of the MCMC chain is analyzed by Geweke’s criterion, which 

compares the means and variances of the beginning and end segments of the chain as below: 

 

 𝐺! =
𝕡!,!!𝕡!,!
!!,!
!!
!
!!,!
!!

,       (15) 15	

where a denotes the beginning interval, which was selected as the first 10% of the chain, and 

where b denotes the end interval, which was selected as the last 50% of the chain. 𝕡!,!, 𝕡!,! are, 

respectively, the mean of parameters ith of segments a and b; na, nb are the number of samples in a 

and b segments; and 𝑠!,! and 𝑠!,! are their corresponding consistent spectral density estimates at 

zero frequency. The chain is considered to be converged if the Gi score is within the 95% interval 20	

of the standard Gaussian distribution (−1.96 ≤ 𝑧! ≤ 1.96). 

 

2.3.3. Deterministic optimization for approximating starting parameters and proposal 

distribution 

The speed of convergence of the MCMC optimization algorithm strongly depends on the initial 25	

model parameter 𝕡! and initial proposal distribution 𝑞!. In order to reduce the number of iterations 

needed to obtain the posterior distribution of model parameters, we used the local optimization 

Nelder-Mead Simplex Method to approximate the starting model parameter and initial covariance 

matrix of the proposal distribution. The starting point of the DRAM is the best-estimated set of 

model parameters obtained by the Nelder-Mead method. The covariance matrix of the proposal 30	
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distribution is assumed to be similar to that of the model parameters, which are locally calculated 

at the optimal solution obtained by the Nelder-Mead method as below: 

   𝑪!! =
!

!!!
𝑱′𝑱

!! !!!!!(𝕡)
!!
!

!
!
!!! ,    (16) 

in which 𝑪!!  denotes the initial covariance matrix of the  proposal distribution 𝑞! and J is the 

Jacobian matrix, which is defined as below: 5	

   𝑱 =

!!!(𝕡)
!𝕡!

… !!!(𝕡)
!𝕡!

⋮ ⋱ ⋮
!!!(𝕡)
!𝕡!

… !!!(𝕡)
!𝕡!

.     (17) 

The partial derivatives !!!(𝕡)
!𝕡!

 (i=1, 2,…, m; j=1, 2,…, n) are calculated at the optimal solution of 

the Nelder-Mead Simplex Method. Because these derivatives cannot be solved using analytical 

methods, we approximated them using: 

   
!!!(𝕡)
!𝕡!

≈
!! 𝕡!,…,𝕡!!∆𝕡!,…,𝕡! !!!(𝕡!,…,𝕡!,…,𝕡!)

∆𝕡!
,  (18) 10	

in which ∆𝕡! was set at 5% of the parameter 𝕡!. 

 

3. Results and discussion 

3.1. Synthetic soil column description and boundary conditions 
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To test the value of the developed joint inversion approach under a range of conditions and 

assumptions, we performed several synthetic case studies using the numerical soil column 

illustrated in Figure 3. The synthetic column was developed to mimic typical soil and 

petrophysical properties associated with a high-centered polygon at an intensive study transect 

(NGEE-Artic, Barrow, Alaska) (Figure 4). The transect is 35 m in length and covers three typical 5	

topography types in Barrow, namely, high-centered (HCP), flat-centered (FCP) and low-centered 

polygon (LCP). The thawing occurs during the growing season that lasts from the beginning of 

June to the end of September. In the growing season while the LCP is fully saturated, the HCP is 

relatively dry and unsaturated. The bottom of the thaw layer at the end of the growing season is 

located at about 0.3 and 0.5 m depth at the center of HCP and LCP, respectively. ERT 10	

measurements were performed along the transect daily using Wenner-Schlumberger configuration 

with an electrode spacing of 0.5 m. Other measurements and conditions useful for our synthetic 

studies, including soil temperature, soil moisture, thaw depth, snow dynamics, and climate 

conditions were also measured (Dafflon et al., 2017). These data have been used here to develop 

conceptual models and synthetic columns, while they will be used for real application of the joint 15	

inversion scheme in a subsequent study. 

 

Soil properties and petrophysical information used for the synthetic studies are provided in Table 

1. The “true” soil properties are based on the core sample analysis at the Barrow, AK site 

(Dafflon, personal communication) and the “true” petrophysical parameters were obtained from 20	

Minsley et al. (2015). It is worth noting that soil is represented in the CLM as a mixture of OC, 

sand and clay. As such, in order to estimate the soil mixture, it was sufficient for us to consider 

OC and sand content (in sand-clay mineral mixture) only. 

 

We assumed that the vertical profiles of soil properties (porosity, OC and sand content) were 25	

constructed by interpolating their corresponding values at 4 depths zk=0.15, 0.3, 0.6 and 1 m as 

below: 

 𝑓! =

𝑓!                                                 𝑖𝑓 𝑧 ≤ 𝑧!
𝑓!!! +

𝑧−𝑧𝑘−1
𝑧𝑘−𝑧𝑘−1

𝑓! − 𝑓!!!                 𝑖𝑓 𝑧!!! ≤ 𝑧 ≤ 𝑧!  (𝑘 = 2,3,4)

𝑓!                                                  𝑖𝑓 𝑧 ≥ 𝑧!

 (19) 

where fz are the soil properties at depth z and fk are the soil properties at the corresponding depth 

zk=0.15, 0.3, 0.6 and 1 m. These depths were chosen to represent the vertical variations of OC 30	
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content and soil porosity in the core samples collected at the NGEE-Arctic Barrow Alaska site. 

 

We synthetically explored 9 scenarios using the newly developed inversion procedure (Table 2). 

The purposes of these scenarios are as follows: 

1. Scenarios 1 and 2: Evaluate the effect of measurement errors on uncertainties of soil OC 5	

estimates (using electrical resistivity data as an example). 

2. Scenarios 2, 3, 4, 5, 6 and 7: Investigate the improvement in OC estimation gained by joint 

inversion of multiple hydrological, thermal and geophysical datasets compared with 

inversion of each single dataset.  

3. Scenarios 7 and 8: Study how the parameter estimates and their associated uncertainties 10	

change if, in addition to OC content, sand content and petrophysical parameters are 

unknown. 

4. Scenario 8 and 9: Explore the effect of soil porosity on the parameter estimation by 

comparing two cases: 1) Soil porosity profile is fixed and independent from the soil OC 

and sand content and 2) soil porosity is defined as a function of OC and sand content. 15	

5. Scenario 8: Analyze the uncertainties, non-uniqueness, correlation and convergence of the 

inverse problem as well as evaluate the impact of parameter uncertainty on prediction of 

hydrological-thermal dynamics. 

 

For all scenarios, we used daily time step meteorological forcing data (including air temperature, 20	

wind speed, short-wave and long-wave radiation and precipitation) collected at the Barrow site 

over a year period from 01/01/2013 to 31/12/2013, which includes a time period over which some 

of the soil and electrical datasets were also collected at the NGEE-Arctic site. The plant functional 

type information was obtained from the CLM database for the Artic region. The general approach 

that we followed to perform all synthetic scenarios is presented in Figure 5.  25	

 

In order to account for the measurement errors, we assumed that the error distribution was 

Gaussian, and added error to synthetic data to obtain “noisy” synthetic data (hereafter referred to 

as observation data) (Table 2). We set the standard deviation of ERT measurement error to 2% of 

synthetic data for scenario 1 (low measurement error) and to 5% for the other scenarios. We used a 30	

standard deviation of measurement errors of 0.5°C for soil temperature and 0.08 for soil liquid 

water content. The standard deviation of liquid water content was set to be relatively high because 
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we observed that the associated error measurements for this variable at Barrow were quite high. 

The standard deviation of temperature measurement was set higher than what is generally 

expected for such measurements while it also includes some error associated with relating 

measurements to precise depths. Observation data for inversion includes: 1) apparent resistivity 

data at 7 most important time points during the year, which includes events such as thawing (day 5	

163), summer growing season (days 185, 199 and 234), freeze-up (day 266) and frozen winter 

(days 292 and 312); 2) Soil temperature data at z=0.004, 0.16, 0.8, 1 and 2.4 m from day 49 to 

365, which are most varying; 3) Liquid water content at depths 0.004, 0.05, 0.11, 0.2 m during the 

summer growing season (days 159 to 259). Liquid water in winter season was not considered 

because it approximately equals to zero, and therefore, does not contain any information for 10	

inversion. Meanwhile, soil temperature in winter season still exhibits a large spatiotemporal 

variation so we used the temperature data both in winter and summer season for inversion. 

 

For inversion, ranges were provided for unknown soil and petrophysical parameters based on 

Hubbard et al. (2013) and Dafflon et al. (2017) (Table 2). To minimize non-uniqueness in the 15	

inversion procedure, we ignored the small OC content at 1 m and the small sand content at 0.1 m.  

For scenarios from 1 to 7, we estimated OC content at z=0.1, 0.3 and 0.6 m (3 parameters). For 

scenarios 8 and 9, we estimated OC content at z=0.1, 0.3, 0.6 m, sand content at z=0.3, 0.6 and 1 

m and petrophysical parameters m and α (8 parameters). We assumed that there is no prior 

information on the estimated parameters. As a result, the prior distributions of OC and sand 20	

content were uniformly distributed within their parameter ranges. 

 

3.2. Simulation results 

In order to estimate the posterior pdf of OC and sand content as well as petrophysical parameters, 

we generate 8000 samples for scenarios from 1 to 7 and 15000 samples for scenarios 8 and 9. The 25	

number of samples in scenarios 8 and 9 is larger because there is more number of estimated 

parameters in these scenarios. We selected the last 5000 samples having a Geweke’s score less 

than 0.4 to construct the pdfs of these parameters. Their best estimates and associated uncertainties 

are, respectively, represented by the means and standard deviations of the samples and 

summarized in Table 2. Discussion and comparison of the scenarios are presented below. 30	

 

3.2.1. Effect of measurement error on parameter uncertainty  
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The influence of measurement error on the parameter uncertainties was considered by comparing 

scenario 1 and 2 using apparent resistivity as an example. Scenario 1 assumed that the standard 

deviation of measurement error is 2% of synthetic apparent resistivity data (small measurement 

error), while this value for scenario 2 is 5% (large measurement error). For these two scenarios, 

we estimated the OC content at z= 0.1, 0.3 and 0.6 m. Figure 6 shows the probability functions of 5	

the OC at these depths. The figures indicate that the uncertainties of the estimated OC content at 

z= 0.1 and 0.3 m are considerably higher when the measurement error is larger. As shown in Table 

2, when the measurement error of apparent resistivity increases from 2% to 5%, the standard 

deviation of the posterior OC samples increases three times from 0.2 to 0.6 at z=0.1 m and more 

than two times from 2.6 to 5.5 at z=0.2 m. At z=0.6 m, the OC content cannot be reliably obtained 10	

by both scenarios.  

 

In order to investigate the non-uniqueness problem and the correlation between parameters, we 

estimated the misfit (sum of square of absolute differences) between the synthetic and sampled 

apparent resistivity data as a function of the OC content at z=0.1, 0.3 and 0.6 m for scenario 2 15	

(Figure 7). While the OC at z=0.1 m is well identified, the misfit negligibly changes when the OC 

content at z=0.6 m varies from 20 to 50%. This indicates that the apparent resistivity data is 

insensitive to OC content at z=0.6 m. This is reasonable, because this depth is within the 

permafrost (see Figure 13), where temperature insignificantly changes over time. Results could be 

different if the permafrost was deeper. Indeed, OC content at depths inside the active layer where a 20	

freeze-thaw process occurs are expected to be better resolved because of the stronger temporal 

changes in properties used in the inversion. Figure 7 also shows that there is a negative correlation 

between the OC content at z=0.3 and 0.6 m, which increases the uncertainties of OC estimates at 

both depths. 

 25	

3.2.2. Influence of joint inversion of multiple data on parameter uncertainty 

The effectiveness of the joint inversion of multiple datasets on the OC content estimation (at 

z=0.1, 0.3 and 0.6 m) was investigated by comparing results obtained from 6 scenarios that used 1) 

single apparent resistivity (scenario 2); 2) single temperature (scenario 3); 3) single liquid water 

content (scenario 4); 4) temperature and apparent resistivity data (scenario 5); 5) liquid water 30	

content and apparent resistivity (scenario 6); and 6) liquid water content, temperature and apparent 

resistivity data (scenario 7). Joint inversion of apparent resistivity with either temperature and/or 
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liquid water content data significantly reduces the uncertainties of OC content at z=0.1 and 0.3 m 

(Figure 8). For example, compared to using single temperature dataset, the uncertainty of OC 

content (the standard deviation of final Markov chain of  OC content) reduces from 0.4 to 0.2 at 

z=0.1 m, and from 4.6 to 1.9 at z=0.3 m when jointly using temperature, liquid water content and 

apparent resistivity datasets. Finally, we found that even when all “observation” data are used, 5	

there is no improvement in the OC content estimate at z=0.6 m. These synthetic experiments 

suggest that given this depth is located within the permafrost (see Figure 13), the apparent 

resistivity, liquid water content and temperature data are insensitive to OC content. This is because 

within the permafrost, the soil temperature and ice/liquid water content exhibit much smaller 

variations than in active layer, in both time and space.  10	

 

3.2.3. Effect of mineral content and petrophysical parameters 

In scenario 8, in addition to the OC content, we assumed that the sand content and petrophysical 

parameters m and α are unknown and estimated these parameters using the apparent resistivity, 

temperature and liquid water content data. Similar to the previous scenarios, the OC content at 15	

z=0.1 and 0.3 m were obtained with small uncertainties (σOC (z=0.1 m)=0.3, σOC (z=0.3 m)=2) 

(Figure 9). The sand content at z=0.3 and 1 m were also well estimated with uncertainties of 2.4 

and 2, respectively. It is worth noting that regardless of deep location, the sand content at 1 m is 

relatively well determined because at this depth the sand-clay mineral (92%) dominates the OC 

content (8%), and therefore, the hydrological-thermal data are relatively sensitive to this 20	

parameter. By contrast, the OC and sand content at z=0.6 m are unidentifiable with uncertainties 

up to 6.5 and 8.2, respectively. Finally, both of the petrophysical parameters m and α are well 

estimated while parameter α has lower uncertainty. This implies that α is more sensitive to the 

apparent resistivity than to m. 

 25	

The pairwise relationships between estimated parameters (Figure 10) indicate that the OC content 

at 0.1 m and petrophysical parameter α are the most reliably-estimated parameters, followed by 

the OC content at z=0.3 m, sand content at z=0.3 and 1 m, and cementation index m. As for the 

correlation between parameters, the figure reveals that there is a strong positive correlation 

between the sand and OC content at z=0.6 m with a correlation coefficient of 0.86. This 30	

correlation and the insensitivity of the observations with their variations are two main reasons for 

the non-uniqueness of these two parameters. The pairs of m-α and the OCz=0.1 m - Sandz=0.3 m are 
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also highly correlated, with correlation coefficients of 0.84 and 0.70, respectively.  

 

3.2.4. Effect of porosity dependence on OC and mineral content 

In this section, we evaluate how the parameter uncertainties change when the porosity is 

determined as a function of the OC and mineral content by comparing scenarios 8 and 9. While the 5	

soil porosity in scenario 8 was fixed and independent from the OC and sand content, it was 

calculated from the OC and sand content in scenario 9 as shown in Equations 2 and 3. 

 

Compared to scenario 8, all uncertainties of sand and OC content in scenario 9 are smaller (Figure 

11). Especially, the uncertainties of these parameters at z=0.6 m significantly decrease from 6.5 to 10	

3.8 (for OC content) and from 8.2 to 1.8 (for sand content). This can be explained by the fact that, 

in addition to thermal parameters (thermal conductivity and heat capacity), the OC and sand 

content in scenario 9 controls the soil porosity, which also influences the subsurface hydrological-

thermal dynamics (see Figure 2). As a result, the temperature, liquid water and apparent resistivity 

data in this scenario are more sensitive to variations of OC and sand content than those in scenario 15	

8. Consequently, these parameters are more identifiable. By contrast, the uncertainty of 

petrophysical parameters 𝛼 and m considerably increases from 0.002 to 0.022 (for 𝛼) and from 

0.042 to 0.066 (for m). This is because while it was fixed in scenario 8, the soil porosity depends 

on the OC and sand content in scenario 9. Therefore, the soil porosity in scenario 9 is also 

uncertain due to the uncertainties of the OC and sand content. Because the soil porosity, 𝛼 and m 20	

are closely correlated (see Equation 4), the uncertainty of soil porosity causes higher uncertainties 

of 𝛼 and m. 

 

3.2.5. Uncertainty propagation from parameters to the hydrological-thermal and thaw layer 

thickness prediction 25	

In this section, we evaluate the impact of parameter uncertainties on the prediction of 

hydrological-thermal dynamics. Posterior samples of the OC, sand content and petrophysical 

parameters m and α of scenario 8 were used for this analysis. The synthetic and estimated the soil 

temperature at z= 0.004, 0.16, 0.99 m and the liquid water content at z=0.004, 0.05 and 0.11 m are 

compared (Figure 12). The uncertainties of these predictions are represented by grey color regions 30	

with a confidence interval of 95%. The figure indicates that the synthetic and estimated soil 
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temperature and liquid water content agree well with each other. However, the uncertainty of the 

soil temperature prediction is much smaller than that of the liquid water content prediction. The 

average confidence intervals over the simulation period of the soil temperature prediction at z= 

0.004, 0.16, 0.99 m are 2.3, 2.3 and 1.7% of the “observation” respectively, while these values for 

the soil liquid water content prediction at z=0.004, 0.05 and 0.11 m are 28.7, 16.1 and 12.9%, 5	

respectively. These differences can be explained by the high sensitivity to the OC and sand content 

and the larger measurement errors of liquid water content compared to soil temperature. 

 

The synthetic and estimated thaw depth using results obtained from scenario 8 (Figure 13) show 

that soil water thaws around middle of June and freezes again around the middle of September. 10	

The thaw depth varies from 0.2 m to 0.42 m. These results are compatible with our field survey 

data in Barrow (Dafflon et al., 2017), indicating that although this is a synthetic study, its 

simulation is relatively compatible with the Arctic tundra field measurements. As for the influence 

of parameter uncertainties on the thaw depth estimation, we observed that the parameter 

uncertainties only cause thaw depth variations during warmest period of the year (beginning of 15	

August to middle of September). During other times of the year, the thaw depths corresponding to 

different sets of parameters are quite similar.  

 

The comparison between synthetic and predicted apparent resistivity data (Figure 14) shows that 

there is a very good agreement between them with no bias, which implies that our inversion 20	

scheme converges to the lowest misfit region. The confidence ranges corresponding to a level of 

95% vary from 1.4 to 9.4% of the “observation” resistivity, which is suitable with the relative 

measurement error of 5%.     

 

4. Summary and Conclusions 25	

In this study, we developed and tested a surface-subsurface coupled hydrogeophysical inversion 

approach to estimate OC content and its influence on hydrological-thermal behavior under Arctic 

freeze-thaw conditions. In our inversion scheme, the CLM model serves as a forward model to 

simulate the land-surface energy balance and surface-subsurface hydrological-thermal processes. 

The new scheme can jointly use different types of data for the inversion, including electrical 30	

resistivity data. The dependence of soil electrical resistivity on temperature and ice/liquid water 

content are explicitly accounted for within the inversion.  
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We developed an advanced optimization technique that combines the deterministic and stochastic 

optimization algorithms to obtain soil and petrophysical parameters and their associated 

uncertainties. The stochastic optimization estimated the posterior distribution of model parameters 

by using the Bayesian inference and adaptive MCMC algorithm-DRAM. Meanwhile, the 5	

deterministic optimization algorithm was used to approximate the starting set of model parameters 

and the initial covariance matrix of the proposal distribution for the stochastic optimization, which 

helps to more quickly converge to the parameter posterior distribution.  

 

 10	
We tested the inversion scheme using multiple synthetic experiments in a 1-D soil column 

representative of the Artic tundra, where surface–subsurface hydrological and thermal regimes co-

interact and are influenced by soil OC and mineral content.  The obtained results show that the 

new inversion approach well reproduced the synthetic data in all experiments. The shallow (upper 

0.3 m) active layer OC and sand content and the petrophysical parameters can be reliably obtained 15	

using soil temperature, soil liquid/ice water content and ERT data. When the soil porosity is fixed, 

the uncertainties of OC and sand content are very high in the permafrost section (0.6 m), even 

when soil temperature, liquid water saturation and apparent resistivity data were jointly used in the 

estimation procedure. This suggests that when the porosity is fixed, the inversion approach is 

unable to significantly improve the estimation of OC within the permafrost, due to the small 20	

magnitude of temporal variation of both temperature and soil moisture in that section. However, if 

the soil porosity is considered as a function of OC and sand content, the permafrost parameters can 

be reliably obtained because the variation of porosity with OC and sand content increases the 

sensitivity to ice/liquid water and temperature. Examining the relationship between measurement 

errors and parameter uncertainties, we found that the uncertainties of estimated parameters 25	

increases with increasing measurement error. We also explored the improvement in parameter 

estimation when jointly using multiple data for the inversion. Compared to single dataset inversion 

(either temperature or soil moisture or electrical resistivity), joint inversion significantly reduces 

the uncertainties of estimated parameters, especially at 0.3 m depth. Finally, we quantified the 

influence of parameter uncertainties on the prediction of hydrological-thermal and thaw depth 30	

dynamics. The obtained results show that the soil liquid water content prediction is more uncertain 

than the soil temperature and apparent resistivity predictions, due to its large measurement error. 

The uncertainties in OC and sand content have an impact on the thaw depth estimation only during 

the warmest months of the year (August and September).  
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This study developed and tested a novel approach to estimate soil OC content using inverse 

modeling that can incorporate diverse hydrological, thermal and ERT datasets. In addition, the 

study also permitted exploration of surface-subsurface hydrological-thermal dynamics and 

spatiotemporal variations associated with free-thaw transitions. Given the importance of 5	

characterizing OC as part of ecosystem and climate studies, the typical challenges associated with 

collecting and analyzing ‘sufficient’ core data to characterize the vertical and horizontal variability 

of OC associated with a field study site, and the increasing use of electrical resistivity data to 

characterize vertical, horizontal and temporal variability in shallow systems, the new inversion 

approach offers significant potential for improved characterization of OC over field-relevant 10	

conditions and scales. It also offers significant potential for improving our understanding of 

hydrological-thermal behavior of naturally heterogeneous permafrost systems. The successful 

validation of this approach using 1-D synthetic studies provides a foundation for extending it to 2-

D and applying it to real field data, which is currently underway.  

 15	

In this study, we concentrated on the indirect impact of the OC content on water electrical 

resistivity via soil water and temperature. Recent studies indicated that the soil OC content largely 

influences ionic mobility, and therefore, changes the polarization and relaxation time of soil 

response to the applied current, which can be measured by spectral induced polarization (SIP) 

(e.g., Schwartz & Furman, 2015). As a result, our future study will explore the possibility to 20	

integrate SIP measurements into our coupled hydrological-thermal-geophysical inversion scheme. 

In that case, the OC content is linked to SIP measurements both by its hydrological-thermal and 

electrical polarization properties. Hauck et al. (2011) indicated that combination of ERT and 

seismic measurements can improve the estimation of ice and water liquid. We will integrate this 

approach into coupled hydrogeophysical inversion to better constrain the inversion and reduce the 25	

nonuniqueness of parameter estimation.        

 

With advancements in data acquisition, the surface-subsurface hydrological-thermal dynamics 

now can be monitored in real-time with a high temporal resolution using multiple above- and 

below-ground measurements including geophysical techniques. Our next stage is to expand the 30	

inversion scheme so that it can assimilates these data into hydrological-thermal models to improve 

the model prediction in real-time. 
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(a) 

 
(b) 

Figure 1: (a) Forward coupled hydrological-thermal-geophysical model that considers soil 

liquid/ice water content, temperature and apparent resistivity. (b) The two-stage inversion 

scheme combines deterministic and stochastic optimization algorithms to estimate the pdfs of 

desired model parameters (𝕡), which include the OC content (scenarios from 1 to 9), sand 5	

content (scenarios 8-9) and petrophysical parameters (scenarios 8-9) (see Table 2). The 

scheme permits to flexibly use single or multiple types of data for inversion. The forward 

coupled hydrological-thermal-geophysical model (a) is iteratively executed in both 

deterministic and stochastic inversion stages. 
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Figure 2: Soil thermal conductivity (a, d), heat capacity (b, e) and thermal diffusivity (c, f) as 

a function of the liquid water saturation, OC and sand content. The calculation for this 20	

figure was based on equations presented in Appendix A. The soil porosity was fixed at 0.7 

for the top figures (a, b, c) and determined as a function of OC and sand content (Equations 

2 and 3) for the bottom figures (d, e, f). 
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(a) Thermal conductivity, porosity 

𝜙 = 0.7 

(b) Volumetric heat capacity, 

porosity 𝜙 = 0.7 

(c) Thermal diffusivity, porosity 

𝜙 = 0.7 

   

(d) Thermal conductivity, porosity 

is a function of OC and sand 

content 

(e) Volumetric heat capacity, 

porosity is a function of OC and 

sand content 

(f) Thermal diffusivity, porosity is a 

function of OC and sand content 
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Figure 3: 27 synthetic soil layers and soil properties (OC, sand content and porosity) for 

simulating hydrological and thermal dynamics. The 5 bottom bedrock layers are not shown 

in this figure. We assumed that the vertical profiles of soil properties are constructed by 

interpolating their corresponding values at z=0.1, 0.3, 0.6 and 1 m. For scenarios from 1 to 8, 5	

the soil porosity was fixed (𝜱=0.9, 0.5, 0.5, and 0.8 for z=0.1, 0.3, 0.6 and 1 m). For scenario 

9, the soil porosity was calculated from the OC and sand content (𝜱=0.86, 0.67, 0.57, and 

0.47 for z=0.1, 0.3, 0,6 and 1 m). 
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Figure 4: (Top panel) Image of the intensive ERT transect (dash line) and pole-mounted 

cameras, which monitor the land surface variability of the whole transect. (Middle panel) 

Aerial view of the ERT transect (dashed line), which covers different types of polygons, 5	

namely, high-centered polygon (HCP), flat-centered polygon (FCP) and low-centered 

polygon (LCP). (Bottom panel) An example of inversion of ERT data measured in August 

2013. The top layer with low resistivity represents the active layer. The middle layer with 

high resistivity and the underlying less resistive layer correspond to permafrost and saline 

permafrost, respectively (see Dafflon et al., 2017 for more details).  10	
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Figure 5: General procedure used to perform the synthetic case studies. 

	 	

Compare	inverted	results	with	synthetic	data	

Perform	inversion	based	on	numerical	“observation”	data		

Add	Gaussian	noise	to	synthetic	data	to	obtain	numerical	
“observation”	data		

Given	“true”	OC	proRile.	Run	CLM	and	ERT	model	to	
generate	synthetic	soil	temperature,	soil	moisture	and	ERT	

data	
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a) Scenario 1: ERT - 2 % error b) Scenario 2: ERT - 5% Error 

 

Figure 6: The posterior probability of the soil OC content at z= 0.1, 0.3 and 0.6 m obtained 

by inverting apparent resistivity data with relative measurement error of 2% (a) and 5% 

(b). The red lines represent the “true” OC content. 
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Figure 7: Misfit (sum of square of absolute difference) between synthetic observations and 

MCMC sampling apparent resistivity data as a function of soil OC content at z= 0.1, 0.3 and 

0.6 m for scenario 2.  

  5	
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Scenario 2: ERT Scenario 3: Temperature Scenario 4: Liquid water content 

   
Scenario 5: ERT-temperature Scenario 6: ERT-Liquid water 

content 
Scenario 7: ERT-Temperature-

Liquid water content 

Figure 8: The posterior probability of the soil OC content at z= 0.1, 0.3 and 0.6 m. These 

probability functions were constructed from 5000 MCMC samples. Measurement errors of 

apparent resistivity, temperature and liquid water content data are 5%, 0.5 oC and 0.08, 

respectively. The red lines represent the “true” soil OC content. 

  5	
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Figure 9: Posterior probability of soil OC content at z=0.1, 0.3, 0.6 m, sand content at z=0.3, 

0.6, 1 m and petrophysical parameters m and α  for scenario 8. The sand content is the 

fraction of sand in the sand-clay mineral mixture. Soil porosity is fixed and independent 

from the OC and sand content. The red line represents the “true” parameter values. 5	
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Figure 10: Pairwise relationships between estimated parameters. The calculation was based 

on 3000 MCMC samples of scenario 8.  
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Figure 11: Posterior probability of soil OC content at z=0.1, 0.3, 0.6 m, sand content at z=0.3, 

0.6, 1 m and petrophysical parameters m and α  for scenario 9. The sand content is the 

fraction of sand in the sand-clay mineral mixture. Soil porosity is determined as a function 

of soil OC and sand content in the CLM. The red line represents the “true” parameter 5	

values. 
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(a) (b) 

Figure 12: Comparison of “observation” and predicted soil temperature at z=0.004, 0.16 and 

0.99 m (a) and liquid water content at z=0.004, 0.05 and 0.11 m (b). The blue line denotes the 

synthetic data. The grey region represents the 95% confidence interval calculated from the 

posterior MCMC samples of scenario 8. The red line represents the mean of samples. 

5	
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Figure 13:  Comparison between estimated and synthetic thaw depth over a year for 

scenario 8. The blue and red lines, respectively, represent the synthetic and estimated thaw 

depth. The grey region shows the confidence interval with a level of 95%.    

  5	
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Figure 14: Comparison between “observation” and predicted apparent resistivity. The red 

line demotes the 1:1 line. The vertical error bar on the blue symbols represents the 

confidence interval of the predicted apparent resistivity with a confidence level of 95%. The 5	

comparison was based on posterior samples of scenario 8. 
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Table 1: Petrophysical parameters and soil properties information used for synthetic 

simulation. Petrophysical parameters Fc, CNa
+, CCl

-1, βNa
+, βCl

- are obtained from Minsley et 

al. (2015). Soil OC and sand content are based on the core sample analysis at the site near 

Barrow, AK. The sand content is the percentage of sand in the mineral mixture, which is 

calculated as 100-OC content. The soil porosity is independent from soil OC and sand 5	

content for scenarios from 1 to 8, while it is calculated from these properties in scenario 9.  

 

  
Petrophysical parameter Soil properties 

m 2 

Depth (m) 
𝜙 

(Scenarios 
1-8) 

𝜙 

(Scenario 9, 
calculated 
from OC 
and sand 
content) 

Soil OC 
content 

(%) 

Sand content 
(in mineral 

mixture) (%) 

n 1.3 

𝜎! (Sm-1) 0.005 

Fc (Cmol-1) 9.6487×104 

CNa
+=CCl

-
 (mol.m-3) 4.28 0.1 0.9 0.86 92.3 70.0 

𝛽!"! (m2V-1s-1) 5.8×10-8 0.3 0.5 0.67 53.8 60.0 

𝛽!"!(m2V-1s-1) 7.9×10-8 0.6 0.5 0.57 30.8 50.0 

α -0.8 1 0.8 0.47 7.7 40.0 
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Table 2: Information on parameter, “observation” data and inversion results for 9 scenarios. For scenarios from 1 to 7, the 

soil OC content (three parameters) at z=0.1, 0.3 and 0.6 m were estimated. For scenarios 8 and 9, the OC content at z=0.1, 0.3, 

0.6 m, the sand content in the mineral mixture at z=0.3, 0.6 and 1 m and the petrophysical parameters m and α  were estimated 

(8 parameters). The best estimated parameters and their uncertainties are represented by the mean and standard deviation of 

the MCMC samples. 5	
Scenario 1 2 3 4 5 6 7 8 9 
Data for 
inversion 
  

Resistivity  Resistivity  Temperature Liquid water 
content 

Resistivity and 
temperature  

Resistivity and liquid 
content  

Resistivity, 
temperature and 
liquid water content  

Resistivity, temperature and liquid water 
content  

Measurement 
error Resistivity: 2% Resistivity: 5% Temperature: 0.5°C Liquid water 

content: 0.08 
Resistivity: 5% 
Temperature: 0.5°C 

Resistivity: 5% 
Liquid water content: 
0.08 

Resistivity: 5% 
Temperature: 0.5°C 
Liquid water content: 
0.08 

Resistivity: 5% 
Temperature: 0.5°C 
Liquid water content: 0.08 

Porosity Fixed (Value in Table 1) Fixed (Values in 
Table 1) 

Function of OC, sand 
and clay content 

Parameters OC content at 0.1, 0.3 and 0.6 m 
OC content at 0.1, 0.3, 0.6 m 
Sand content at 0.3, 0.6 and 1 m 
Petrophysical parameters m and 𝛼 

True value and 
Range for 
estimation 

OC 0.1 m: True value: 92.3, Range: [69, 100]   
OC 0.3 m: True value: 53.8, Range: [38, 69] 
OC 0.6 m: True value: 30.8, Range: [15, 46] 

 

OC 0.1 m: True value: 92.3, Range: [69, 100]   
OC 0.3 m: True value: 53.8, Range: [38, 69] 
OC 0.6 m: True value: 30.8, Range: [15, 46] 
Sand 0.3 m: True value: 60, Range: [40, 80]  
Sand 0.6 m: True value: 50, Range: [30, 70]  
Sand 1.0 m: True value: 40, Range: [20, 50] 
α: True value: -0.8, Range: [-1, -0.5] 
m: True value: 2, Range: [1.5, 2.5] 

Estimated OC 
content (%) 

0.1 m: 92.4±0.2 
0.3 m: 52.8±2.6 
0.6 m: 23±8.8 

0.1 m: 92.1±0.6 
0.3 m: 53.7±5.5 
0.6 m: 26.9±6.5 

0.1 m: 92.4±0.4 
0.3 m: 53.8±4.6 
0.6 m: 26.4±6.4 

0.1 m: 92.3±0.3 
0.3 m: 57.4±3.7 
0.6 m: 26.1±6.4 

0.1 m: 92.4±0.2 
0.3 m: 53.5±2.6 
0.6 m: 27.7±7.8 

0.1 m: 92.3±0.2 
0.3 m: 53.4±2.2 
0.6 m: 28.0±6.9 

0.1 m: 92.3±0.2 
0.3 m: 53.4±1.9 
0.6 m: 26.4±6.3 

0.1 m: 92.3±0.3 
0.3 m: 52.6±2.0 
0.6 m: 31±6.5 

0.1 m: 92.3±0.2 
0.3 m: 53.9±1.9 
0.6 m: 30.4 ±3.2 

Estimated 
sand content 
(%) 

Not estimated 
0.3 m: 60.4±2.4 
0.6 m: 43.3±8.2 
1 m: 40.2±2.0 

0.3 m:  60.1±1.8 
0.6 m: 49.5±1.8 
1 m: 39.5±0.9 

Estimated 
petrophysical 
parameters 

Not estimated α: -0.801±0.002 
m: 2.02±0.042 

α: -0.806±0.022 
m: 2.01±0.066 
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Appendix A: Relationship between soil hydrological and thermal parameters and OC and mineral 
content 

Soil thermal conductivity (𝜆) is calculated as: 

 𝜆 =
𝐾!𝜆!"# + 1− 𝐾! 𝜆!"#                    𝑆! > 1×10!!

𝜆!"#                                                      𝑆! ≤ 1×10!!
,   (A1) 

 𝜆!"# = 𝜆!
!!!!"#𝜆!"#

!!"#
!!"#!!!"#

!!"#
𝜆!"#
!!

!!"#
!!"#!!!"#

!!"#
 ,    (A2) 5	

 𝜆!"# = 𝜆!"#,!"𝑓!" + 𝜆!"#,!"#(1− 𝑓!"),     (A3) 

 𝐾! =

!!"#!!!"#
!!"#

                                   for frozen soil

𝑙𝑜𝑔 !!"#!!!"#
!!"#

+ 1                     for unfrozen soil
,   (A4) 

in which 𝐾! is the Kersten number; 𝑆! is	the	wetness	of	the	soil	with	respect	to	saturation; 𝜆!"# and 𝜆!"# 

are, respectively, the saturated and dry thermal conductivity; 𝜆!,!" = 0.25 and 𝜆!"#,!" = 0.05 Wm-1K-1 

are the saturated and dry thermal conductivities of OC; 𝜃!"! and 𝜃!"# are the liquid water and ice content; 10	

𝜃!"# is the soil porosity. 

 

𝜆! is the thermal conductivity of soil matrix, which is calculated from OC and mineral content as: 

 𝜆! = 𝜆!,!"𝑓!" + 𝜆!,!"# 1− 𝑓!" ,      (A5) 

in which; 𝑓!" is the OC fraction (i.e., OC content in this study) in soil matrix. The saturated (𝜆!,!"#) and 15	

dry thermal conductivity (𝜆!"#,!"#) of minerals are calculated as:    

 𝜆!,!"# =
8.8(%sand)+2.92(%clay)

%sand+%clay ,      (A6) 

 𝜆!"#,!"# =
0.135𝜌𝑑+64.7
2700−0.947𝜌𝑑

,       (A7) 

where 𝜌! = 2700(1− 𝜃!"#,!"#) is the bulk density of minerals. 

The volumetric heat capacity (𝑐) is defined as: 20	

 𝑐 = 𝑐! 1− 𝜃!"# + 𝑤𝑖𝑐𝑒
Δ𝑧 𝐶!"# +

𝑤𝑙𝑖𝑞
Δ𝑧 𝐶!"#,     (A8) 

with 

 𝑐! = 1− 𝑓!" 𝑐!,!"# + 𝑓!"𝑐!,!",      (A9) 
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 𝑐!,!"# =
2.128(%sand)+2.385(%clay)

%sand+%clay ×10! and 𝑐!,!" = 2.5×10! Jm-3K-1  

in which 𝑐! is the heat capacity of soil matrix; Δ𝑧 is the soil layer thickness;  𝑤!"# and 𝑤!"# are the weight of 

ice and liquid water in the layer; 𝐶!"# and 𝐶!"# are the specific heat capacities (J kg-1 K-1) of ice and liquid 

water; 𝑐!,!"# and 𝑐!,!" are the heat capacity of mineral and OC, respectively. 

 5	

As for soil hydrological characteristics, soil matric potential (𝜓) and hydraulic conductivity (𝑘!) are 

determined as: 

 𝜓 = 𝜓!"#
!

!!"#

!!
    ,                 (A10) 

 𝑘! =
Θ𝑘!"#,!

0.5 𝜃𝑖+𝜃𝑖+1
0.5 𝜃𝑖,𝑠𝑎𝑡+𝜃𝑖+1,𝑠𝑎𝑡

!!!!!

Θ𝑘!"#,!
𝜃𝑖

𝜃𝑖,𝑠𝑎𝑡

!!!!!
 ,    (A11) 

where 𝑘!"#,! is the saturated hydraulic conductivity; Θ is the ice impedance factor; 𝜃! ,𝜃!!! are the liquid 10	

water content at layer ith and i+1th. The saturated matrix potential (𝜓!"#) is calculated as:  

 𝜓!"# = 1− 𝑓!" 𝜓!"#,!"# + 𝑓!"𝜓!"#,!",     (A12) 

in which the saturated matric potential of organic matter (𝜓!"#,!" is set at −10.3 mm and the saturated 

mineral matric potential (𝜓!"#,!"#) is calculated as: 

 𝜓!"#,!"# = −10×10!.!!!!.!"#"(%!"#$),     (A13) 15	

 

The exponent coefficient (𝐵!) is calculated from OC and mineral content as: 

 𝐵! = 1− 𝑓!",! 𝐵!"#,! + 𝑓!",!𝐵!",! ,     (A14) 

with 𝐵!",! = 2.7 and 𝐵!"#,! = 2.91+ 0.159%𝑐𝑙𝑎𝑦! 

 20	
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