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I have also reviewed the first version of the manuscript and the authors have revised most
of my comments.

I have still some reservations regarding some parts of the manuscript where the authors
are urgently requested to be formally correct in their wording: As the authors state clearly
in their response to my first review, there is no direct relationship between OC and
electrical resistivity. In their conclusions of the revised version, they again state (P. 22, L
16-17) ,,we concentrated on the impact of OC content on the soil electrical resistivity via
its hydrological-thermal properties®. Formally and physically correct, only properties or
states that influence electrical conduction can influence measured electrical resistivity.
The most important ones are clay content, dissolved ions in the water phase in
combination with the continuity of the water phase which allows electrical conduction,
and temperature. Most other properties only have indirect effects on electrical resistivity
as they are mostly (often non-linearly) related to one (or even some at the same time) of
the properties stated above. I know that there are many hydrogeophysical applications
that follow a similar approach, however, it is important to stick to the physical basis of
the processes. Consequently, the wording needs to be carefully revised in this respect.

Reply: The foundation behind the applications of hydrogeophysical inversion is that ions
are dissolved in water and move with water. Therefore, geophysical techniques that
measure soil electrical conductivity can be used to track the water dynamics. In addition,
with the same amount of ions in water, if water reduces for some reasons (for example,
by freezing), the ion concentration (and correlated water electrical conductivity) will
increase. By contrast, when soil temperature reduces, ion mobility reduces, which
decreases water conductivity. Because OC influences the dynamics of both temperature
and soil moisture, it influences the water electrical conductivity. We agree with the
reviewer that OC indirectly influences soil electrical conductivity. To emphasize the
indirect impact of OC on water electrical conductivity via soil water and temperature, we
modified the sentence in P22, L16-17 as below:

In this study, we concentrated on the indirect impact of the OC content on water
electrical resistivity via soil water and temperature. (Line 16-17 page 22)

Besides all the challenges at unfrozen conditions, this is particularly important as soon as
the soil becomes frozen and, hence, the water phase becomes discontinuous causing the
characteristic drop in electrical resistivity during freezing. This effect is not considered
by the empirical Archie’s Law. I did a quick literature scan mayself and found some work
by Hauck and collaborators who did some nice work employing ERT in periglacial and
glacial environments. So the authors may take a look at these publications. For this
manuscript, it should be ok to include a review about application of Archie’s Law in
permafrost research which also mentions the difficulty with using this equation and



discusses the limits of the approach followed in this study. Formalizing this process
correctly, which would mean finding a better equation than Archie’s Law, could be one
grand challenge in future research to really establish ERT for quantitatively investigating
freeze/thaw and related processes

Reply: Thank to reviewer for referring the research of Hauk and collaborators.
Regarding petrophysical relationship in cold region, Hauk et al. (2011) developed a 4-
phase soil model (consist of soil matrix, ice, liquid and air) and used it to estimate ice
and liquid content from combined ERT and seismic measurements. Similar to our study,
they used Archie’s model to link soil water liquid with soil electrical resistivity, which is
obtained from ERT measurement. The other components (ice, soil matrix and air) were
linked to P-wave velocity, which is obtained from seismic measurement. This is an
interesting approach to jointly combine ERT and seismic data for estimating ice and
water liquid. A review about the works of Christian Hauk was added to the introduction
part as below:

Hauck et al. (2011) developed a 4-phase model of soil matrix, ice, liquid and air and
used it to estimate soil liquid and ice content from combined ERT and seismic
measurements in the Swiss Alps. (lines 25-27, page 3)

Different from Hauk’s studies, we used multiple time-lapse ERT measurements but we did
not have seismic data in this study. So we cannot use 4-phase model. We will explore the
possibility to integrate Hauk'’s petrophysical model into our coupled hydrogeophysical
inversion when both electrical resistivity and seismic (or GPR) measurements are
available. It is worth noting that in 4-phase soil model of Hauk, he assumed that the soil
porosity and Archie’s model parameters are known. In hydrogeophysical inversion, we
can set them as unknown parameters and estimate them (like we did in this study). In
addition, in Hauk’s study, they only used single ERT and seismic measurements at a time
instant. In hydrogeophysical inversion, we will use multiple time-lapse measurements. As
a result, the inversion is potentially better constrained. We added the following sentences
to the revised manuscript:

Hauck et al. (2011) indicated that combination of ERT and seismic measurements can
improve the estimation of ice and water liquid. We will integrate this approach into
coupled hydrogeophysical inversion to better constrain the inversion and reduce the
nonuniqueness of parameter estimation. (lines 24-26 page 22).
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Abstract: Quantitative characterization of soil organic carbon (OC) content is essential due to its
significant impacts on surface—subsurface hydrological-thermal processes and microbial
decomposition of OC, which both in turn are important for predicting carbon-climate feedbacks.
While such quantification is particularly important in the vulnerable organic-rich Arctic region, it
is challenging to achieve due to the general limitations of conventional core sampling and analysis
methods, and to the extremely dynamic nature of hydrological-thermal processes associated with
annual freeze-thaw events. In this study, we develop and test an inversion scheme that can flexibly
use single or multiple datasets, including soil liquid water content, temperature and electrical
resistivity tomography (ERT) data, to estimate the vertical distribution of OC content. Our
approach relies on the fact that OC content strongly influences soil hydrological-thermal
parameters, and therefore, indirectly controls the spatiotemporal dynamics of soil liquid water
content, temperature and their correlated electrical resistivity. We employ the Community Land
Model to simulate nonisothermal surface-subsurface hydrological dynamics from the bedrock to
the top of canopy, with consideration of land surface processes (e.g., solar radiation balance,
evapotranspiration, snow accumulation and melting) and ice/liquid water phase transitions. For
inversion, we combine a deterministic and an adaptive Markov chain Monte Carlo (MCMC)
optimization algorithm to estimate posterior distributions of desired model parameters. For
hydrological-thermal to geophysical variable transformation, the simulated subsurface
temperature, liquid water content and ice content are explicitly linked to soil electrical resistivity
via petrophysical and geophysical models. We validate the developed scheme using different
numerical experiments and evaluate the influence of measurement errors and benefit of joint
inversion on the estimation of OC and other parameters. We also quantified the propagation of
uncertainty from the estimated parameters to prediction of hydrological-thermal responses. We

find that compared to inversion of single dataset (either temperature or liquid water content or
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apparent resistivity), joint inversion of these datasets significantly reduces parameter uncertainty.
We find that the joint inversion approach is able to estimate OC and sand content within the
shallow active layer (top 0.3 m of soil) with high reliability. Due to the small variations of
temperature and moisture within the shallow permafrost (here at about 0.6 m depth), the approach
is unable to estimate OC with confidence. However, if the soil porosity is functionally related to
the OC and mineral content, which is often observed in organic rich Arctic soil, the uncertainty of
OC estimate at this depth remarkably decreases. Our study documents the value of the new
surface-subsurface, deterministic-stochastic inversion approach, as well as the benefit of including

multiple types of data to estimate OC and associated hydrological-thermal dynamics.

1. Introduction

Soil organic carbon (OC) and its influence on terrestrial ecosystem feedbacks to global warming
in permafrost regions is particularly important for the calculation of global carbon budget and
prediction of future climate variation. Warmer air temperature leads to permafrost degradation,
which is expected to enhance decomposition of huge pools of previously-frozen OC, releasing
carbon dioxide and methane to the atmosphere, and enhancing global warming (Koven et al.,
2011; Schaphoff et al., 2013; Schuur et al., 2015). In that context, accurate estimation of OC
content stored in both active layer and permafrost is crucial for investigation of carbon stocks

exposing for microbial decomposition.

Predictive understanding of ecosystem feedbacks to climate in permafrost regions requires
quantitative knowledge of surface-subsurface hydrological-thermal dynamics, which in turn are
strongly governed by the hydrological-thermal properties of soil OC (Jafarov and Schaefer, 2016).
In particular, there are dramatic differences between thermal and hydraulic properties of OC and
mineral soil, both of which typically co-exist in shallow permafrost systems. OC’s thermal

conductivity (e.g., Aoc,ary = 0.05 W/mK) is significantly lower than that of mineral soil (e.g.,

Asana =8.4 W/mK) (Farouki, 1981). By contrast, its heat capacity is higher than mineral soil.
Considering hydrological properties, the hydraulic conductivity of OC is higher and its capillary
pressure is smaller than mineral soil (Lawrence and Slater, 2008). In addition, while mineral soil
porosity typically ranges from 0.4 to 0.6, the porosity of OC soil is usually greater than 0.8. Due to
its low thermal conductivity, a top OC layer can behave as an insulator that reduces the magnitude
of heat and energy exchange between the atmosphere and deeper soil (e.g., Hinzman et al., 1991;

Rinke et al., 2008). Nicolsky et al. (2007) and Jafarov and Schaefer (2016) reported that inclusion
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of vertical OC content profile into a land surface model can considerably improve prediction of
subsurface moisture, temperature and carbon dynamics. However, our ability to measure or

estimate the distribution of OC is currently challenging, which inhibits accurate model prediction.

OC content is usually measured from core samples, which are collected from field sites and then
analyzed in the laboratory (e.g., Kern, 1994). While this method is relatively accurate, it is labor
intensive and typically limited in spatial coverage. Because OC and mineral content largely
influence hydrological-thermal parameters (i.e., thermal conductivity, heat capacity, hydraulic
conductivity and retention curve; see Appendix A), they are the main soil properties that control
the subsurface hydrological-thermal dynamics. As a result, OC and mineral content can be
potentially obtained by inverting observations of hydrological-thermal state variables (i.e., soil
liquid water content and soil temperature) and their correlated observables (e.g., electrical
resistivity). However, so far there has been no effort using this approach to indirectly estimate

these soil properties.

Geophysical methods hold potential for characterizing the subsurface in permafrost regions as well
as their associated physical, hydrological and thermal processes. Geophysical techniques offer an
advantage over conventional point measurement techniques because they provide spatially
extensive information in a minimally invasive manner (e.g., Hubbard and Rubin, 2005). For
example, Arcone et al. (1998) and Chen et al. (2016) used GPR to characterize the depth of
permafrost table. Hinkel et al. (2001) used GPR to estimate thaw depth, to recognize ice wedges
and ice lenses, and to locate the organic-mineral soil interface. Schwamborn et al. (2002)
combined seismic and GPR to investigate the stratigraphy of both frozen and unfrozen parts of
Lake Nikolay. Lewkowicz et al. (2011) and You et al. (2013) employed ERT, ground temperature
monitoring, frost table probing and coring to detect the permafrost depth. Hauck et al. (2011)
developed a 4-phase model of soil matrix, ice, liquid and air and used it to estimate soil liquid and
ice content from combined ERT and seismic measurements in the Swiss Alps. Hubbard et al.
(2013) combined Lidar data with multiple geophysical (ERT, GPR, electromagnetic) and point

measurements to characterize active-layer thickness and permafrost variability in a large area.

In spite of the potential benefits offered by geophysical data for characterizing permafrost systems,

geophysical inversion approaches typically suffer from several challenges. First, inversion
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methods are often ill-posed due to the fact that geophysical observables are sensitive to different
soil properties. Secondly, inversion approaches often typically require petrophysical models to
link the geophysical observables with the property of interest. Finally, there are differences
between the geophysical support scale and the scale of the imaging target (Hubbard and Linde,
2011). In order to take advantage of information inherent in geophysical signatures and minimize
the non-uniqueness challenges described above, many recent studies have explored the value of
coupled hydrogeophysical inversion frameworks for estimating soil properties (e.g., Johnson et al.,
2009; Huisman et al., 2010; Irving and Singha, 2010; Kowalsky et al., 2011; Pollock and Cirpka,
2012;Busch et al., 2013; Herckenrath et al., 2013; Camporese et al., 2015; Tran et al., 2016). In
these studies, the hydrological and geophysical models are coupled together so that geophysical
data are used to estimate soil properties that control the subsurface hydrological-thermal
dynamics. Of the geophysical techniques commonly used for monitoring the shallow subsurface,
ERT is increasingly common because it can autonomously provide 2- or 3-D time-lapse
measurements with a relatively high spatial resolution, is sensitive to properties influencing
hydrological-thermal dynamics, and is particularly suitable for field deployment over a long

period of time. As a result, we use ERT data in this study.

Most of coupled hydrogeophysical inversion approaches developed to date are not adequate for
investigating permafrost systems due to several gaps. Developed methods have only been applied
to terrestrial systems without consideration of the significant dynamics associated with the freeze-
thaw transition. Developed coupled hydrogeophysical inversion approaches have also not yet
incorporated surface-subsurface interactions (e.g., evapotranspiration, energy balance, plant water
uptake). Finally, while a few studies have used Soil Vegetation Atmospheric Transfer (SVAT)
models to qualitatively interpret geophysical data (e.g., McClymont et al., 2013), to date, no study
has coupled SVAT and geophysical models and data to improve property estimation.

Building on recent advances in the use of electrical methods in the permafrost (e.g., Minsley et al,,
2016; Dafflon et al., 2017) as well as coupled hydrogeophysical inversion approaches described
above, this study focuses on the development of an inverse approach that uses single or multiple
datasets (soil liquid water content, soil temperature and electrical resistivity) to estimate OC
content, which is a main factor that governs the subsurface hydrological-thermal dynamics. Our

approach advances and couples several algorithms. We use a SVAT model known as Community
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Land Model (CLM4.5, Oleson et al., 2013) to simulate water, heat and energy exchange from the
bedrock to the top of canopy. The model considers most of the land surface processes, ice/liquid
phase change and surface-subsurface hydrological-thermal dynamics. For parameter estimation,
we combined deterministic and stochastic optimization algorithms to concurrently obtain the best
parameter estimates and their associated uncertainties. The deterministic optimization algorithm is
employed to estimate the initial parameter set and covariance matrix of the proposal distribution.
For the stochastic optimization, we used an advanced MCMC method known as Delayed
Rejection Adaptive Metropolis (DRAM, Haario et al., 2006). With this implementation of this
adaptive MCMC algorithm, we expect to obtain the posterior probability distributions (pdfs) of the
desired model parameters more quickly than the traditional MCMC technique. For hydrological-
thermal to geophysical transformation, we explicitly consider the dependence of the soil electrical
resistivity on the soil ice/liquid water content and soil temperature via petrophysical and forward

geophysical models.

This study advances capabilities to estimate and understand the controls of OC on hydrological
and thermal properties through developing a hydrological-thermal-geophysical inversion scheme
and through exploring its potential to estimate the vertical distribution of OC and mineral content
at several depths within a representative synthetic Artic soil column. Herein, we use synthetic
studies to: 1) evaluate the relationship between the measurement error and uncertainties of
parameter estimates, 2) examine the improvement in parameter estimation offered by including
various datasets in the inversion, including apparent resistivity data, 3) investigate how OC
estimation changes if the mineral and petrophysical parameters are unknown, 4) explore how
parameter estimation changes when soil porosity functionally correlates with the OC and mineral
content, and 5) investigate the uncertainty propagation from the OC and mineral content to the

hydrological-thermal prediction.

The paper is organized as follows. Section 2 describes the development of the hydrological-
thermal-geophysical inversion scheme. Section 3 analyzes and discusses the results of different

synthetic experiments. Summary and concluding remarks are provided in Section 4.

2. Methodology
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Generally, the joint hydrological-thermal-geophysical inversion scheme developed in this study
(Figure 1) includes two main components: 1) A forward coupled hydrological-thermal-
geophysical model that generates the subsurface state variables (i.e., ice/liquid water content and
temperature), and then uses these variables to infer the apparent resistivity using a set of
petrophysical formulas and a forward electrical resistivity model (Figure la); 2) A combined
deterministic-stochastic optimization algorithm to estimate the pdfs of desired model parameters
(), which include the soil OC content vertical profile (scenarios from 1 to 9), sand content
vertical profile (scenarios 8-9) and petrophysical parameters (scenarios 8-9) (see Table 2) by
minimizing the misfit between measured and simulated data. It is worth noting that the scheme is
developed so that single (e.g., soil temperature or liquid water content or apparent resistivity) or

multiple datasets can be used for inversion.

2.1. Hydrological-thermal model

In this study, we employed CLM4.5 model (hereafter referred to as ‘CLM”), which can effectively
simulate different land surface energy balance and surface-subsurface hydrological-thermal
processes (Oleson et al., 2013). CLM represents horizontal heterogeneity using multiple parallel
soil/snow columns having different land use and plant function types. The lateral flow between the
soil columns is not accounted for in CLM. The model simulates the freeze-thaw dynamics by
considering two phases of water: liquid and ice. The rate of phase change depends on the energy
excess (for the ice to liquid transition) or deficit (for the liquid to ice transition) from the soil
temperature to the freezing temperature. Given CLM’s ability to simulate different hydrological-
thermal processes in cold regions, we found it suitable for Arctic soil column simulations. The
minimum requirements for the top boundary conditions in CLM include precipitation, incident
solar, air temperature and wind speed. The land use and plant type information can be provided by

users or extracted from the available model database.

CLM assumes that soil is a mixture of three soil types, namely, OC, sand and clay. It calculates
the soil hydrological-thermal parameters based on the content (fraction) of these soil types and
their corresponding hydrological-thermal properties (see Appendix A for more detailed

information on these relationships). In CLM, the soil OC content (%0C) is defined as %0C =

max

Poc / pmax in which p, is the soil OC density (kg/m’) and pi¢* is the maximum soil OC density
oc

(pB¥* = 130 kg/m’), which is the standard bulk density of peat (Oleson et al., 2013). The mineral
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content is determined as %oMineral = 100 — %O0C. CLM further assumes that mineral includes
only sand and clay. As a result, in the inversion scheme, we only need to estimate the soil OC
content and sand content in mineral (hereafter referred to as the sand content). The clay content is

obtained by subtracting the sand content from the mineral content.

For more detailed exploration of the vertical variability of subsurface properties and associated
hydrological-thermal dynamics, we increased the default number of soil layers in the CLM from

15 to 32 layers, and defined the depth of layer i (z,) as:
z; = 0.025(e%17(=02) — 1), (1)

Of these 32 layers, CLM assumes that the 5 bottom layers are bedrock layers. Hydrological
dynamics is simulated only in the top 27 soil layers, while thermal dynamics is simulated in all 32
layers. Equation 1 was used to ensure that the layer thicknesses near soil surface are thinner than
those near the bottom (as shown in Figure 3) in order to capture the important hydrological and

thermal dynamics in the topsoil active layers.

Moreover, in order to explore how the soil porosity influences the estimation of soil OC and sand
content, we modified the CLM to consider two cases 1) the soil porosity profile was fixed and
independent from the soil OC and sand content (see scenarios from 1 to 8 in Table 1), and 2) the
soil porosity was calculated from the OC and sand content as default in the CLM (see scenario 9

in Table 1) as below (Lawrence and Slater, 2008):

(100-%0C) P in+%0CPD
b = (i 1(r)r:)m 0 OC’ (2)

in which @ is the soil porosity; ®,,;, and @, are, the porosity of mineral and OC, respectively.
In the CLM, the OC porosity is given as @, = 0.9 and the mineral porosity is calculated from

sand fraction as

@in = 0.489 — 0.00126(%sand), 3)

The dependencies of soil thermal conductivity, heat capacity and thermal diffusivity on liquid
water saturation, OC and sand content are shown in Figure 2. This figure was obtained from
calculations using equations in Appendix A in which the soil porosity was considered in two

cases: 1) fixing at 0.7 (Figures a, b, ¢), and 2) calculating from the OC and sand content (Figures
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d, e, f). The figure shows that the variation of soil thermal properties with respect to the OC
content, sand content and liquid water saturation is similar for both cases. When the OC fraction
increases from 0 to 100%, the soil thermal conductivity decreases and the soil heat capacity
slightly increases. By contrast, higher sand fraction leads to higher thermal conductivity and
slightly lower heat capacity. These relationships are expected, given that OC has a considerably
smaller thermal conductivity and a slightly higher heat capacity compared to sand. The figure also
shows that both soil thermal conductivity and heat capacity significantly increase with increasing
liquid water saturation. This is also reasonable, as the thermal conductivity and heat capacity of
liquid water are much higher than that of air. The thermal diffusivity is defined as the ratio
between the thermal conductivity and heat capacity. The figure indicates that the diffusivity

increases when the OC decreases and sand content increases.

Comparing the two cases shows that when the soil porosity depends on OC and sand content, the
soil thermal properties change in larger ranges with the variation of OC content, sand content and
liquid water saturation. It is because while the soil porosity is fixed at 0.7 in the first case (Figure
a, b, ¢), it varies from 0.36 (when soil is 100% sand) to 0.9 (when soil is 100% OC) in the second
case (Figure d, e, f). Because soil thermal properties strongly depends on soil porosity (see
Equations A2 and A8 in Appendix A), together with the OC and sand content, the variation of
porosity in the second case leads to rapid change of the soil thermal properties, and therefore, the

subsurface hydrological-thermal dynamics.

2.2. Petrophysical and geophysical transformation

In our inverse scheme, we link the output of the hydrological-thermal simulation described above
(soil ice/liquid water saturation and temperature) to soil electrical conductivity using the Archie’s

law (Archie, 1942):

o =¢"(Swow + (¢ — Doay), 4
in which ¢ is the porosity; S, is the liquid water saturation in the pore space; m and n are the
cementation and saturation indexes, respectively, and o is the soil electrical conduction, which
was fixed at 0,=0.005 S/m in this study (Table 1). It is worth noting that the reduction of porosity
due to ice content in this study was not considered. How ice content influences the Archie’s

equation will be considered in the future research.
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The water electrical conductivity (a,,) is calculated from the concentration of all ions in water as

(Minsley et al., 2015):
i=Njon
Oy = X1 " E.Pilzi|C, (5)

in which 8;, and z; are the ionic mobility and valence of the i ion, respectively. Similar to
Minsley et al. (2015), we assumed that Na" and CI” are two main ions in this synthetic study. F. is
Faraday’s constant. C; is the concentration of the i ion, which depends on the ice/liquid water

fraction as:
Ci = Ci(s;=0)Sfw » (6)

in which S; and Sj, are, respectively, the fraction of ice and liquid in ice-liquid water (S;+Ss=1);
« varies from 0 to 1 which is the coefficient accounting for the reduction of soil water salinity
when liquid water saturation decreases. A larger a implies a larger increasing rate of ion
concentration with decreasing liquid water fraction. The concentrations of ions in the ice-free

water (C; (s fizo)) can be obtained from samples in the summer season. The values of m, n, ag, ¢,

F., B;, C; and « used in this synthetic study are presented in Table 1. Except for m, n and g, the
other parameters were taken from Minsley et al. (2015). Of these parameters, @ and m are two
most important parameters that control the relationship between geophysical and hydrological-
thermal variables. We estimated them by inverting soil moisture, temperature and geophysical data

in scenarios 8 and 9 (see Table 2).

The effect of soil temperature (7) on the soil electrical conductivity is formulated as (Hayley et al.,

2007):

or = 0(0.018 « (T — 25) + 1). (7)
The linkage between soil electrical conductivity and the apparent resistivity is established by the
electrical forward model. In this study, we used the forward model of the Boundless Electrical
Resistivity Tomography (BERT) package, developed by Riicker et al. (2006), which numerically
solves Poisson’s equation using the finite element method in a three-dimensional arbitrary

topography. For more detailed information on this model, we refer to Riicker et al. (2006).

2.3. Stochastic and deterministic parameter estimation
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In this section, we present a combination approach of deterministic and stochastic optimization
algorithms to estimate the model parameters p and their uncertainties. The stochastic optimization
algorithm relies on the Bayesian inference and DRAM MCMC technique. The deterministic
optimization algorithm was used to approximate the initial set of model parameters and initial
covariance matrix of the proposal distribution for stochastic optimization. Consequently, the
estimated parameters are more rapidly obtained than only using a single stochastic algorithm with
arbitrary initial parameters. Moreover, the use of DRAM stochastic optimization algorithm allows
us to sequentially update the proposal covariance matrix and perform multiple tries to improve the
acceptance rate. This algorithm has been proved to be more efficient than the commonly-used

MCMC Metropolis-Hasting method.

2.3.1. Bayesian inference

In the stochastic parameter estimation, the objective is to find the posterior probability distribution
P(p|Y) of parameters [p conditioned on the measurements Y from which we can extract the best-
estimated parameters and their uncertainties. Based on Bayesian rule, this posterior distribution is

formulated as follows:

p(plY) < p(p)p(Y|p), (8)

in which p(pp) is priori parameter distribution of parameter p and p(Y|p) is the likelihood
function. Assuming that the error residuals are uncorrelated, the likelihood function can be written

as:

p(Y|p) = [Iiz1 f,vilp), )

where f;, (y;|p) denotes the probability density function (pdf) of measurement y; at time # given

the model parameters p. If we further assume the error residuals (difference between modeling
and measurement) to be normally distributed, then f,, (y;|p) can be written as:

~ 2
1(n—yi@)
-3 (e ] (10)

o;

1

exp

fr: i) =

271'0',:

and Equation 9 becomes:

~ 2
1(n-yi(@)
_2< v )l (11)

1

1\" 1
p(Ylp)Mp(p)(E) i=1 T exp

o

10
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in which y;(pp) is the model response at time #; o7 is the variance of measurement error at time .
Intuitively, 67 works as an inverse weighted factor of contribution of measurement ¥, to the
posterior distribution p(Y|p). A measurement with a higher variance of measurement error has a
smaller contribution to construct the parameter posterior distribution. In addition, for joint

inversion, o/ helps to removes the influence of measurement units of different data types.

2.3.2. Delayed rejection adaptive Metropolis (DRAM) Markov Chain Monte Carlo method

Once posterior density distribution p(p|Y) of the model parameters is defined, we need to
determine its statistical properties (e.g., mean, covariance). However, due to the nonlinearity of the
dynamic model, it is usually difficult to analytically obtain these properties. In that respect, the
Monte Carlo methods can be used to generate samples from this posterior distribution and then
calculate these properties. We employed the DRAM method that was improved from the
Metropolis-Hasting MCMC method for this purpose. Basically, this method is a combination of

the adaptive Metropolis and delayed rejection algorithm and briefly presented as follows:

Metropolis-Hasting: Given the current parameter set y, at iteration £”, the candidate for the next
move (]pj,,) from the current value is generated from a proposal distribution q; (P, Pk+1)- The

acceptance ratio is calculated as below:

i (Pevss ) = min <1ln(pk+1)Q1(pk-t1']Pk)>’ (12)
m(e1)q1 (Biepy 1)
where () is the target distribution needed to approximate (p(p|Y)). The next sample moves to

the candidate [Py, Prs+1 = P41 if @ > u with u as a random variable generated from uniform

distribution U(0,1). Otherwise, the candidate is rejected and the next sample stays at the current

location, Py,1 = Py -

Delayed rejection: In delayed rejection, once the candidate is rejected, instead of staying at the

current sample, a second (]pj4) try is proposed. The acceptance ratio for this try is:

(13)

”(l@kﬂ)% Prs10141)92 (]IDk+1']P’;c+1,lP)k)(1—“1 ([P)k+1'lp)k+1)>
b

a, (P ; =min| 1 - — :
2(]p)k+1’]p)k+1’]p)k) ( ’ ”(]P)k)Ch(]P’k.[@k+1)QZ(]P)kv]pk+1'pk+1)(1_a1(ﬂ3k’pk+1)

If the second try is rejected, the third try can be generated and so on. The number of tries is
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specified by users.

Adaptation: One of the key limitations of the MCMC technique is the selection of the proposal
distribution model. In adaptive Metropolis, the proposal distribution is assumed to be Gaussian
centered at the current sample N (ppy, C;) with the covariance matrix C;, adapted from the previous

samples as:

Cr = Sgcov(Pg, ., Pr) + Sq€ly. (14)

In Equation 14, s; is the scaling parameter that depends on the length (d) of the estimated
parameter vector [, which is set to s; = 2.4%2/d; € > 0 is a very small constant to inhibit C; from

becoming singular; and I; signifies the d-dimensional identity matrix.

The assessment of convergence of the MCMC chain is analyzed by Geweke’s criterion, which

compares the means and variances of the beginning and end segments of the chain as below:

Pra™Pup

'—Si_.a_'_si_,b’ (15)
Ng np

where a denotes the beginning interval, which was selected as the first 10% of the chain, and

Gi:

where b denotes the end interval, which was selected as the last 50% of the chain. p, 4, P, are,
respectively, the mean of parameters i” of segments a and b; ng, n; are the number of samples in a
and b segments; and s; ; and s; ;, are their corresponding consistent spectral density estimates at
zero frequency. The chain is considered to be converged if the G; score is within the 95% interval

of the standard Gaussian distribution (—1.96 < z; < 1.96).

2.3.3. Deterministic optimization for approximating starting parameters and proposal

distribution

The speed of convergence of the MCMC optimization algorithm strongly depends on the initial
model parameter [p, and initial proposal distribution g, . In order to reduce the number of iterations
needed to obtain the posterior distribution of model parameters, we used the local optimization
Nelder-Mead Simplex Method to approximate the starting model parameter and initial covariance
matrix of the proposal distribution. The starting point of the DRAM is the best-estimated set of

model parameters obtained by the Nelder-Mead method. The covariance matrix of the proposal
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distribution is assumed to be similar to that of the model parameters, which are locally calculated

at the optimal solution obtained by the Nelder-Mead method as below:

2
0i

_ o \2
cS=—0"J) 1Z?=1<m> : (16)

in which Cj denotes the initial covariance matrix of the proposal distribution q; and J is the

Jacobian matrix, which is defined as below:

9y1(p) 9y1(p)
op1 " OPm
J= : L | (17)
9yn(p) 9yn(p)
op1 " OPm

The partial derivatives a;if‘ﬁp) (=1, 2,..., m; j=1, 2,..., n) are calculated at the optimal solution of
]

the Nelder-Mead Simplex Method. Because these derivatives cannot be solved using analytical

methods, we approximated them using:

dyi(p) N yi(pl,...,pj+A]p)j,...,]p>m)—yi(pl,...,pj,...,]p)m)

a]pj A]pj ’

(18)

in which App; was set at 5% of the parameter p;.

3. Results and discussion

3.1. Synthetic soil column description and boundary conditions
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To test the value of the developed joint inversion approach under a range of conditions and
assumptions, we performed several synthetic case studies using the numerical soil column
illustrated in Figure 3. The synthetic column was developed to mimic typical soil and
petrophysical properties associated with a high-centered polygon at an intensive study transect
(NGEE-Artic, Barrow, Alaska) (Figure 4). The transect is 35 m in length and covers three typical
topography types in Barrow, namely, high-centered (HCP), flat-centered (FCP) and low-centered
polygon (LCP). The thawing occurs during the growing season that lasts from the beginning of
June to the end of September. In the growing season while the LCP is fully saturated, the HCP is
relatively dry and unsaturated. The bottom of the thaw layer at the end of the growing season is
located at about 0.3 and 0.5 m depth at the center of HCP and LCP, respectively. ERT
measurements were performed along the transect daily using Wenner-Schlumberger configuration
with an electrode spacing of 0.5 m. Other measurements and conditions useful for our synthetic
studies, including soil temperature, soil moisture, thaw depth, snow dynamics, and climate
conditions were also measured (Dafflon et al., 2017). These data have been used here to develop
conceptual models and synthetic columns, while they will be used for real application of the joint

inversion scheme in a subsequent study.

Soil properties and petrophysical information used for the synthetic studies are provided in Table
1. The “true” soil properties are based on the core sample analysis at the Barrow, AK site
(Dafflon, personal communication) and the “true” petrophysical parameters were obtained from
Minsley et al. (2015). It is worth noting that soil is represented in the CLM as a mixture of OC,
sand and clay. As such, in order to estimate the soil mixture, it was sufficient for us to consider

OC and sand content (in sand-clay mineral mixture) only.

We assumed that the vertical profiles of soil properties (porosity, OC and sand content) were

constructed by interpolating their corresponding values at 4 depths z=0.15, 0.3, 0.6 and 1 m as

below:
fi ifz<z
fu = femr + 2 (i = fim) if 71 Sz < 7 (k= 234) (19)
fa ifz2 24

where f. are the soil properties at depth z and f; are the soil properties at the corresponding depth

zx=0.15, 0.3, 0.6 and 1 m. These depths were chosen to represent the vertical variations of OC
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content and soil porosity in the core samples collected at the NGEE-Arctic Barrow Alaska site.

We synthetically explored 9 scenarios using the newly developed inversion procedure (Table 2).

The purposes of these scenarios are as follows:

1. Scenarios I and 2: Evaluate the effect of measurement errors on uncertainties of soil OC
estimates (using electrical resistivity data as an example).

2. Scenarios 2, 3, 4, 5, 6 and 7: Investigate the improvement in OC estimation gained by joint
inversion of multiple hydrological, thermal and geophysical datasets compared with
inversion of each single dataset.

3. Scenarios 7 and 8: Study how the parameter estimates and their associated uncertainties
change if, in addition to OC content, sand content and petrophysical parameters are
unknown.

4. Scenario 8 and 9: Explore the effect of soil porosity on the parameter estimation by
comparing two cases: 1) Soil porosity profile is fixed and independent from the soil OC
and sand content and 2) soil porosity is defined as a function of OC and sand content.

5. Scenario §: Analyze the uncertainties, non-uniqueness, correlation and convergence of the
inverse problem as well as evaluate the impact of parameter uncertainty on prediction of

hydrological-thermal dynamics.

For all scenarios, we used daily time step meteorological forcing data (including air temperature,
wind speed, short-wave and long-wave radiation and precipitation) collected at the Barrow site
over a year period from 01/01/2013 to 31/12/2013, which includes a time period over which some
of the soil and electrical datasets were also collected at the NGEE-Arctic site. The plant functional
type information was obtained from the CLM database for the Artic region. The general approach

that we followed to perform all synthetic scenarios is presented in Figure 5.

In order to account for the measurement errors, we assumed that the error distribution was
Gaussian, and added error to synthetic data to obtain “noisy” synthetic data (hereafter referred to
as observation data) (Table 2). We set the standard deviation of ERT measurement error to 2% of
synthetic data for scenario 1 (low measurement error) and to 5% for the other scenarios. We used a
standard deviation of measurement errors of 0.5°C for soil temperature and 0.08 for soil liquid

water content. The standard deviation of liquid water content was set to be relatively high because
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we observed that the associated error measurements for this variable at Barrow were quite high.
The standard deviation of temperature measurement was set higher than what is generally
expected for such measurements while it also includes some error associated with relating
measurements to precise depths. Observation data for inversion includes: 1) apparent resistivity
data at 7 most important time points during the year, which includes events such as thawing (day
163), summer growing season (days 185, 199 and 234), freeze-up (day 266) and frozen winter
(days 292 and 312); 2) Soil temperature data at z=0.004, 0.16, 0.8, 1 and 2.4 m from day 49 to
365, which are most varying; 3) Liquid water content at depths 0.004, 0.05, 0.11, 0.2 m during the
summer growing season (days 159 to 259). Liquid water in winter season was not considered
because it approximately equals to zero, and therefore, does not contain any information for
inversion. Meanwhile, soil temperature in winter season still exhibits a large spatiotemporal

variation so we used the temperature data both in winter and summer season for inversion.

For inversion, ranges were provided for unknown soil and petrophysical parameters based on
Hubbard et al. (2013) and Dafflon et al. (2017) (Table 2). To minimize non-uniqueness in the
inversion procedure, we ignored the small OC content at 1 m and the small sand content at 0.1 m.
For scenarios from 1 to 7, we estimated OC content at z=0.1, 0.3 and 0.6 m (3 parameters). For
scenarios 8 and 9, we estimated OC content at z=0.1, 0.3, 0.6 m, sand content at z=0.3, 0.6 and 1
m and petrophysical parameters m and o (8 parameters). We assumed that there is no prior
information on the estimated parameters. As a result, the prior distributions of OC and sand

content were uniformly distributed within their parameter ranges.

3.2. Simulation results

In order to estimate the posterior pdf of OC and sand content as well as petrophysical parameters,
we generate 8000 samples for scenarios from 1 to 7 and 15000 samples for scenarios 8 and 9. The
number of samples in scenarios 8 and 9 is larger because there is more number of estimated
parameters in these scenarios. We selected the last 5000 samples having a Geweke’s score less
than 0.4 to construct the pdfs of these parameters. Their best estimates and associated uncertainties
are, respectively, represented by the means and standard deviations of the samples and

summarized in Table 2. Discussion and comparison of the scenarios are presented below.

3.2.1. Effect of measurement error on parameter uncertainty
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The influence of measurement error on the parameter uncertainties was considered by comparing
scenario 1 and 2 using apparent resistivity as an example. Scenario 1 assumed that the standard
deviation of measurement error is 2% of synthetic apparent resistivity data (small measurement
error), while this value for scenario 2 is 5% (large measurement error). For these two scenarios,
we estimated the OC content at z= 0.1, 0.3 and 0.6 m. Figure 6 shows the probability functions of
the OC at these depths. The figures indicate that the uncertainties of the estimated OC content at
z=0.1 and 0.3 m are considerably higher when the measurement error is larger. As shown in Table
2, when the measurement error of apparent resistivity increases from 2% to 5%, the standard
deviation of the posterior OC samples increases three times from 0.2 to 0.6 at z=0.1 m and more
than two times from 2.6 to 5.5 at z=0.2 m. At z=0.6 m, the OC content cannot be reliably obtained

by both scenarios.

In order to investigate the non-uniqueness problem and the correlation between parameters, we
estimated the misfit (sum of square of absolute differences) between the synthetic and sampled
apparent resistivity data as a function of the OC content at z=0.1, 0.3 and 0.6 m for scenario 2
(Figure 7). While the OC at z=0.1 m is well identified, the misfit negligibly changes when the OC
content at z=0.6 m varies from 20 to 50%. This indicates that the apparent resistivity data is
insensitive to OC content at z=0.6 m. This is reasonable, because this depth is within the
permafrost (see Figure 13), where temperature insignificantly changes over time. Results could be
different if the permafrost was deeper. Indeed, OC content at depths inside the active layer where a
freeze-thaw process occurs are expected to be better resolved because of the stronger temporal
changes in properties used in the inversion. Figure 7 also shows that there is a negative correlation
between the OC content at z=0.3 and 0.6 m, which increases the uncertainties of OC estimates at

both depths.

3.2.2. Influence of joint inversion of multiple data on parameter uncertainty

The effectiveness of the joint inversion of multiple datasets on the OC content estimation (at
z=0.1, 0.3 and 0.6 m) was investigated by comparing results obtained from 6 scenarios that used 1)
single apparent resistivity (scenario 2); 2) single temperature (scenario 3); 3) single liquid water
content (scenario 4); 4) temperature and apparent resistivity data (scenario 5); 5) liquid water
content and apparent resistivity (scenario 6); and 6) liquid water content, temperature and apparent

resistivity data (scenario 7). Joint inversion of apparent resistivity with either temperature and/or
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liquid water content data significantly reduces the uncertainties of OC content at z=0.1 and 0.3 m
(Figure 8). For example, compared to using single temperature dataset, the uncertainty of OC
content (the standard deviation of final Markov chain of OC content) reduces from 0.4 to 0.2 at
z=0.1 m, and from 4.6 to 1.9 at z=0.3 m when jointly using temperature, liquid water content and
apparent resistivity datasets. Finally, we found that even when all “observation” data are used,
there is no improvement in the OC content estimate at z=0.6 m. These synthetic experiments
suggest that given this depth is located within the permafrost (see Figure 13), the apparent
resistivity, liquid water content and temperature data are insensitive to OC content. This is because
within the permafrost, the soil temperature and ice/liquid water content exhibit much smaller

variations than in active layer, in both time and space.

3.2.3. Effect of mineral content and petrophysical parameters

In scenario 8, in addition to the OC content, we assumed that the sand content and petrophysical
parameters m and o are unknown and estimated these parameters using the apparent resistivity,
temperature and liquid water content data. Similar to the previous scenarios, the OC content at
z=0.1 and 0.3 m were obtained with small uncertainties (ooc (z=0.1 m)=0.3, opc (z=0.3 m)=2)
(Figure 9). The sand content at z=0.3 and 1 m were also well estimated with uncertainties of 2.4
and 2, respectively. It is worth noting that regardless of deep location, the sand content at 1 m is
relatively well determined because at this depth the sand-clay mineral (92%) dominates the OC
content (8%), and therefore, the hydrological-thermal data are relatively sensitive to this
parameter. By contrast, the OC and sand content at z=0.6 m are unidentifiable with uncertainties
up to 6.5 and 8.2, respectively. Finally, both of the petrophysical parameters m and o are well
estimated while parameter o has lower uncertainty. This implies that ¢« is more sensitive to the

apparent resistivity than to m.

The pairwise relationships between estimated parameters (Figure 10) indicate that the OC content
at 0.1 m and petrophysical parameter o are the most reliably-estimated parameters, followed by
the OC content at z=0.3 m, sand content at z=0.3 and 1 m, and cementation index m. As for the
correlation between parameters, the figure reveals that there is a strong positive correlation
between the sand and OC content at z=0.6 m with a correlation coefficient of 0.86. This
correlation and the insensitivity of the observations with their variations are two main reasons for

the non-uniqueness of these two parameters. The pairs of m-o and the OC.—o1 , - Sand,—¢ 3, are
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also highly correlated, with correlation coefficients of 0.84 and 0.70, respectively.

3.2.4. Effect of porosity dependence on OC and mineral content

In this section, we evaluate how the parameter uncertainties change when the porosity is
determined as a function of the OC and mineral content by comparing scenarios 8 and 9. While the
soil porosity in scenario 8 was fixed and independent from the OC and sand content, it was

calculated from the OC and sand content in scenario 9 as shown in Equations 2 and 3.

Compared to scenario 8, all uncertainties of sand and OC content in scenario 9 are smaller (Figure
11). Especially, the uncertainties of these parameters at z=0.6 m significantly decrease from 6.5 to
3.8 (for OC content) and from 8.2 to 1.8 (for sand content). This can be explained by the fact that,
in addition to thermal parameters (thermal conductivity and heat capacity), the OC and sand
content in scenario 9 controls the soil porosity, which also influences the subsurface hydrological-
thermal dynamics (see Figure 2). As a result, the temperature, liquid water and apparent resistivity
data in this scenario are more sensitive to variations of OC and sand content than those in scenario
8. Consequently, these parameters are more identifiable. By contrast, the uncertainty of
petrophysical parameters a and m considerably increases from 0.002 to 0.022 (for &) and from
0.042 to 0.066 (for m). This is because while it was fixed in scenario 8, the soil porosity depends
on the OC and sand content in scenario 9. Therefore, the soil porosity in scenario 9 is also
uncertain due to the uncertainties of the OC and sand content. Because the soil porosity, a and m
are closely correlated (see Equation 4), the uncertainty of soil porosity causes higher uncertainties

of @ and m.

3.2.5. Uncertainty propagation from parameters to the hydrological-thermal and thaw layer

thickness prediction

In this section, we evaluate the impact of parameter uncertainties on the prediction of
hydrological-thermal dynamics. Posterior samples of the OC, sand content and petrophysical
parameters m and « of scenario 8 were used for this analysis. The synthetic and estimated the soil
temperature at z= 0.004, 0.16, 0.99 m and the liquid water content at z=0.004, 0.05 and 0.11 m are
compared (Figure 12). The uncertainties of these predictions are represented by grey color regions

with a confidence interval of 95%. The figure indicates that the synthetic and estimated soil
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temperature and liquid water content agree well with each other. However, the uncertainty of the
soil temperature prediction is much smaller than that of the liquid water content prediction. The
average confidence intervals over the simulation period of the soil temperature prediction at z=
0.004, 0.16, 0.99 m are 2.3, 2.3 and 1.7% of the “observation” respectively, while these values for
the soil liquid water content prediction at z=0.004, 0.05 and 0.11 m are 28.7, 16.1 and 12.9%,
respectively. These differences can be explained by the high sensitivity to the OC and sand content

and the larger measurement errors of liquid water content compared to soil temperature.

The synthetic and estimated thaw depth using results obtained from scenario 8 (Figure 13) show
that soil water thaws around middle of June and freezes again around the middle of September.
The thaw depth varies from 0.2 m to 0.42 m. These results are compatible with our field survey
data in Barrow (Dafflon et al., 2017), indicating that although this is a synthetic study, its
simulation is relatively compatible with the Arctic tundra field measurements. As for the influence
of parameter uncertainties on the thaw depth estimation, we observed that the parameter
uncertainties only cause thaw depth variations during warmest period of the year (beginning of
August to middle of September). During other times of the year, the thaw depths corresponding to

different sets of parameters are quite similar.

The comparison between synthetic and predicted apparent resistivity data (Figure 14) shows that
there is a very good agreement between them with no bias, which implies that our inversion
scheme converges to the lowest misfit region. The confidence ranges corresponding to a level of
95% vary from 1.4 to 9.4% of the “observation” resistivity, which is suitable with the relative

measurement error of 5%.

4. Summary and Conclusions

In this study, we developed and tested a surface-subsurface coupled hydrogeophysical inversion
approach to estimate OC content and its influence on hydrological-thermal behavior under Arctic
freeze-thaw conditions. In our inversion scheme, the CLM model serves as a forward model to
simulate the land-surface energy balance and surface-subsurface hydrological-thermal processes.
The new scheme can jointly use different types of data for the inversion, including electrical
resistivity data. The dependence of soil electrical resistivity on temperature and ice/liquid water

content are explicitly accounted for within the inversion.
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We developed an advanced optimization technique that combines the deterministic and stochastic
optimization algorithms to obtain soil and petrophysical parameters and their associated
uncertainties. The stochastic optimization estimated the posterior distribution of model parameters
by using the Bayesian inference and adaptive MCMC algorithm-DRAM. Meanwhile, the
deterministic optimization algorithm was used to approximate the starting set of model parameters
and the initial covariance matrix of the proposal distribution for the stochastic optimization, which

helps to more quickly converge to the parameter posterior distribution.

We tested the inversion scheme using multiple synthetic experiments in a 1-D soil column
representative of the Artic tundra, where surface—subsurface hydrological and thermal regimes co-
interact and are influenced by soil OC and mineral content. The obtained results show that the
new inversion approach well reproduced the synthetic data in all experiments. The shallow (upper
0.3 m) active layer OC and sand content and the petrophysical parameters can be reliably obtained
using soil temperature, soil liquid/ice water content and ERT data. When the soil porosity is fixed,
the uncertainties of OC and sand content are very high in the permafrost section (0.6 m), even
when soil temperature, liquid water saturation and apparent resistivity data were jointly used in the
estimation procedure. This suggests that when the porosity is fixed, the inversion approach is
unable to significantly improve the estimation of OC within the permafrost, due to the small
magnitude of temporal variation of both temperature and soil moisture in that section. However, if
the soil porosity is considered as a function of OC and sand content, the permafrost parameters can
be reliably obtained because the variation of porosity with OC and sand content increases the
sensitivity to ice/liquid water and temperature. Examining the relationship between measurement
errors and parameter uncertainties, we found that the uncertainties of estimated parameters
increases with increasing measurement error. We also explored the improvement in parameter
estimation when jointly using multiple data for the inversion. Compared to single dataset inversion
(either temperature or soil moisture or electrical resistivity), joint inversion significantly reduces
the uncertainties of estimated parameters, especially at 0.3 m depth. Finally, we quantified the
influence of parameter uncertainties on the prediction of hydrological-thermal and thaw depth
dynamics. The obtained results show that the soil liquid water content prediction is more uncertain
than the soil temperature and apparent resistivity predictions, due to its large measurement error.
The uncertainties in OC and sand content have an impact on the thaw depth estimation only during

the warmest months of the year (August and September).
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This study developed and tested a novel approach to estimate soil OC content using inverse
modeling that can incorporate diverse hydrological, thermal and ERT datasets. In addition, the
study also permitted exploration of surface-subsurface hydrological-thermal dynamics and
spatiotemporal variations associated with free-thaw transitions. Given the importance of
characterizing OC as part of ecosystem and climate studies, the typical challenges associated with
collecting and analyzing ‘sufficient’ core data to characterize the vertical and horizontal variability
of OC associated with a field study site, and the increasing use of electrical resistivity data to
characterize vertical, horizontal and temporal variability in shallow systems, the new inversion
approach offers significant potential for improved characterization of OC over field-relevant
conditions and scales. It also offers significant potential for improving our understanding of
hydrological-thermal behavior of naturally heterogeneous permafrost systems. The successful
validation of this approach using 1-D synthetic studies provides a foundation for extending it to 2-

D and applying it to real field data, which is currently underway.

In this study, we concentrated on the indirect impact of the OC content on water electrical
resistivity via soil water and temperature. Recent studies indicated that the soil OC content largely
influences ionic mobility, and therefore, changes the polarization and relaxation time of soil
response to the applied current, which can be measured by spectral induced polarization (SIP)
(e.g., Schwartz & Furman, 2015). As a result, our future study will explore the possibility to
integrate SIP measurements into our coupled hydrological-thermal-geophysical inversion scheme.
In that case, the OC content is linked to SIP measurements both by its hydrological-thermal and
electrical polarization properties. Hauck et al. (2011) indicated that combination of ERT and
seismic measurements can improve the estimation of ice and water liquid. We will integrate this
approach into coupled hydrogeophysical inversion to better constrain the inversion and reduce the

nonuniqueness of parameter estimation.

With advancements in data acquisition, the surface-subsurface hydrological-thermal dynamics
now can be monitored in real-time with a high temporal resolution using multiple above- and
below-ground measurements including geophysical techniques. Our next stage is to expand the
inversion scheme so that it can assimilates these data into hydrological-thermal models to improve

the model prediction in real-time.
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(b)
Figure 1: (a) Forward coupled hydrological-thermal-geophysical model that considers soil
liquid/ice water content, temperature and apparent resistivity. (b) The two-stage inversion
scheme combines deterministic and stochastic optimization algorithms to estimate the pdfs of
desired model parameters (p), which include the OC content (scenarios from 1 to 9), sand
content (scenarios 8-9) and petrophysical parameters (scenarios 8-9) (see Table 2). The
scheme permits to flexibly use single or multiple types of data for inversion. The forward
coupled hydrological-thermal-geophysical model (a) is iteratively executed in both

deterministic and stochastic inversion stages.
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Figure 2: Soil thermal conductivity (a, d), heat capacity (b, e) and thermal diffusivity (c, f) as

a function of the liquid water saturation, OC and sand content. The calculation for this

figure was based on equations presented in Appendix A. The soil porosity was fixed at 0.7

for the top figures (a, b, ¢) and determined as a function of OC and sand content (Equations

2 and 3) for the bottom figures (d, e, f).

28



10

15

Porosity
0 0.3 0.5 0.8 1

Sand content
0.2 (in sand-clay mineral)

/

0.4 OC content

0.6 Porosity
(scenarios 1-8)

08 /

E
£12
)
a
1.4 \
Porosity
1.6 (scenario 9)

2
22

0 25 50 75 100
OC/Sand content (%)

Figure 3: 27 synthetic soil layers and soil properties (OC, sand content and porosity) for
simulating hydrological and thermal dynamics. The 5 bottom bedrock layers are not shown
in this figure. We assumed that the vertical profiles of soil properties are constructed by
interpolating their corresponding values at z=0.1, 0.3, 0.6 and 1 m. For scenarios from 1 to 8,
the soil porosity was fixed (£=0.9, 0.5, 0.5, and 0.8 for z=0.1, 0.3, 0.6 and 1 m). For scenario
9, the soil porosity was calculated from the OC and sand content (©=0.86, 0.67, 0.57, and
0.47 for z=0.1, 0.3, 0,6 and 1 m).
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Aerial view of the ERT transect (dashed line), which covers different types of polygons,
namely, high-centered polygon (HCP), flat-centered polygon (FCP) and low-centered
polygon (LCP). (Bottom panel) An example of inversion of ERT data measured in August
2013. The top layer with low resistivity represents the active layer. The middle layer with
high resistivity and the underlying less resistive layer correspond to permafrost and saline

permafrost, respectively (see Dafflon et al., 2017 for more details).
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Given “true” OC profile. Run CLM and ERT model to
generate synthetic soil temperature, soil moisture and ERT
data

Add Gaussian noise to synthetic data to obtain numerical
“observation” data

Perform inversion based on numerical “observation” data

Compare inverted results with synthetic data

Figure 5: General procedure used to perform the synthetic case studies.
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Figure 6: The posterior probability of the soil OC content at z= 0.1, 0.3 and 0.6 m obtained

by inverting apparent resistivity data with relative measurement error of 2% (a) and 5%

(b). The red lines represent the “true” OC content.
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0.6 m for scenario 2.

33



0.24

0.12
0
69 85 100
OC at 0.1 m (%)
0.24
0.12
0
38 54 69
OC at 0.3 m (%)
0.24
0.12
0
15 27 38
OC at 0.6 m (%)
Scenario 2: ERT
0.24
0.12
0
69 85 100
OC at 0.1 m (%)
0.24
0.12
0
38 54 69
OC at 0.3 m (%)
0.24 T
0.12
0
15 27 38

Scenario 5: ERT-temperature

Figure 8: The posterior probability of the soil OC content at z= 0.1, 0.3 and 0.6 m. These
probability functions were constructed from 5000 MCMC samples. Measurement errors of

apparent resistivity, temperature and liquid water content data are 5%, 0.5 °C and 0.08,

OC at 0.6 m (%)

(=N
o

85 100
OC at 0.1 m (%)

W
%
%
S
foa)
o

OC at 0.3 m (%)

w
[
2
[
o

OC at 0.6 m (%)

Scenario 3: Temperature

0.24

0.12

0
6

o

85 100
OC at 0.1 m (%)
0.24

0.12

0
3

o
W
B
foa)
o

OC at 0.3 m (%)
0.24 T

0.12

w
5]
2
)
o

OC at 0.6 m (%)

Scenario 6: ERT-Liquid water

content

0.24
0.12
0
69 85 100
OC at 0.1 m (%)
0.24
0.12
0
38 54 69
OC at 0.3 m (%)
0.24
0.12 ‘
0
5 27 38

Scenario 4: Liquid water content

OC at 0.6 m (%)

0.24
0.12
0
69 85 100
OC at 0.1 m (%)
0.24
0.12
0
38 54 69
OC at 0.3 m (%)
0.24
0.12
0
15 27 38

OC at 0.6 m (%)

Scenario 7: ERT-Temperature-

respectively. The red lines represent the “true” soil OC content.

Liquid water content



0.24 0.24

0.12 0.12
0 0
69 85 100 38 54 69
OC at 0.1 m (%) OC at 0.3 m (%)
0.24 T 0.24 T
0.12 0.12
0 0
15 27 38 40 60 80
OC at 0.6 m (%) Sand at 0.3 m (%)
0.15 0.24
0.075 0.12
0 0
30 50 70 20 40 60
Sand at 0.6 m (%) Sand at 1 m (%)
0.24 T 0.24 T
0.12 0.12
0 0
-1 -0.8 -0.6 1.5 2 2.5
o m

Figure 9: Posterior probability of soil OC content at z=0.1, 0.3, 0.6 m, sand content at z=0.3,
0.6, 1 m and petrophysical parameters m and « for scenario 8. The sand content is the
fraction of sand in the sand-clay mineral mixture. Soil porosity is fixed and independent
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Figure 11: Posterior probability of soil OC content at z=0.1, 0.3, 0.6 m, sand content at z=0.3,
0.6, 1 m and petrophysical parameters m and « for scenario 9. The sand content is the
fraction of sand in the sand-clay mineral mixture. Soil porosity is determined as a function
of soil OC and sand content in the CLM. The red line represents the “true” parameter

values.

37



Depth =0.004 m Depth =0.004 m

95% CI
—— Sample Mean
—— Synthetic

95% CI
—— Sample Mean

—— Synthetic
-40
20 Depth =0.16 m Depth =0.05 m
S 206
2 0 2
= 504
g g
%) =
£.-20 502
S Ao)
T 40 = 0
20 Depth =0.99 m Depth=0.11 m
0.6
0
m 0.4
-20 0.2
-40 0 .
49 128 207 286 365 159 184 209 234 259
DOY Day of Year
(a) (b)

Figure 12: Comparison of “observation” and predicted soil temperature at z=0.004, 0.16 and
0.99 m (a) and liquid water content at z=0.004, 0.05 and 0.11 m (b). The blue line denotes the
synthetic data. The grey region represents the 95% confidence interval calculated from the

posterior MCMC samples of scenario 8. The red line represents the mean of samples.
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depth. The grey region shows the confidence interval with a level of 95%.

39



700

600 z

m)
o

500 | = .

400 ¢

300+

Sample Mean (£2

200 ¢

()0 i " i "
100 200 300 400 500 600 700
"Observation" (2.m)

Figure 14: Comparison between “observation” and predicted apparent resistivity. The red
line demotes the 1:1 line. The vertical error bar on the blue symbols represents the
confidence interval of the predicted apparent resistivity with a confidence level of 95%. The

comparison was based on posterior samples of scenario 8.
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Table 1: Petrophysical parameters and soil properties information used for synthetic
simulation. Petrophysical parameters F., CN,,+, CC[I, ﬁN,,+, Bcr are obtained from Minsley et
al. (2015). Soil OC and sand content are based on the core sample analysis at the site near
Barrow, AK. The sand content is the percentage of sand in the mineral mixture, which is
calculated as 100-OC content. The soil porosity is independent from soil OC and sand

content for scenarios from 1 to 8, while it is calculated from these properties in scenario 9.

Petrophysical parameter Soil properties
m 2 ¢
" 13 ¢ (Scenario 9, g4i] OC |Sand content
Depth (m) | (Scenarios CFICUIg%d content (i.n mineral
o5 (Sm™) 0.005 1-8) rom (%)  |mixture) (%)
Z and sand
F. (Cmol™) 9.6487x10 content)

Crne =Cei (mol.m™)|  4.28 0.1 0.9 0.86 92.3 70.0
Bygt (m2V7lshy | 5.8x107 0.3 0.5 0.67 53.8 60.0
Bori-(m*V's™ 7.9%10™ 0.6 0.5 0.57 30.8 50.0

a -0.8 1 0.8 0.47 7.7 40.0
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Table 2: Information on parameter, “observation” data and inversion results for 9 scenarios. For scenarios from 1 to 7, the

soil OC content (three parameters) at z=0.1, 0.3 and 0.6 m were estimated. For scenarios 8 and 9, the OC content at z=0.1, 0.3,

0.6 m, the sand content in the mineral mixture at z=0.3, 0.6 and 1 m and the petrophysical parameters m and « were estimated

(8 parameters). The best estimated parameters and their uncertainties are represented by the mean and standard deviation of

the MCMC samples.

Scenario 1 2 3 4 5 6 7 8 | 9
Data for L e e . . |Resistivity, e Lo
. . s s Liquid water Resistivity and Resistivity and liquid Resistivity, temperature and liquid water
mversion Resistivity Resistivity Temperature temperature and
content temperature content Lo content
liquid water content
s Resistivity: 5% s
. 0, . 0,
Measurement s o s o o~ |Liquid water Resistivity: 5% RAeSIS.'nVIty‘ 3% Temperature: 0.5°C Resistivity: 5% o
Resistivity: 2% |Resistivity: 5% |Temperature: 0.5°C X ' o [Liquid water content: | . % .|Temperature: 0.5°C
error content: 0.08 Temperature: 0.5°C Liquid water content:| .
0.08 008 Liquid water content: 0.08
. . . Fixed (Values in Function of OC, sand
Porosity Fixed (Value in Table 1) Table 1) and clay content
OC content at 0.1, 0.3, 0.6 m
Parameters OC content at 0.1, 0.3 and 0.6 m Sand content at 0.3, 0.6 and 1 m

Petrophysical parameters m and a

True value and
Range for
estimation

OC 0.1 m: True value: 92.3, Range: [69, 100]
OC 0.3 m: True value: 53.8, Range: [38, 69]
OC 0.6 m: True value: 30.8, Range: [15, 46]

OC 0.1 m: True value: 92.3, Range: [69, 100]
OC 0.3 m: True value: 53.8, Range: [38, 69]
OC 0.6 m: True value: 30.8, Range: [15, 46]
Sand 0.3 m: True value: 60, Range: [40, 80]
Sand 0.6 m: True value: 50, Range: [30, 70]
Sand 1.0 m: True value: 40, Range: [20, 50]
o: True value: -0.8, Range: [-1, -0.5]

m: True value: 2, Range: [1.5,2.5]

Estimated OC |0-1 M1 92.4£02/0.1 m: 92.140.6/0.1 m: 924504 0.1 m:92.3£0.3 0.1 m: 92402 {0.1 m: 92.3+0.2 0.1 m: 92.340.2 0.1 m: 92,303 0.1 m: 92.340.2
content (v) |03 ™ S2842.6/03 m: 537455103 m: S3864.6 03 m: STAERT 03 m: 535426 (0.3 m: 53.442.0 0.3 m: 53.441.9 0.3 m: 52.642.0 0.3 m: 53.941.9

®) 10.6m:23+8.8 |0.6 m: 26.9+6.50.6 m: 26.4+6.4  |0.6m: 26.146.4  |0.6m:27.7+7.8  |0.6 m: 28.0+6.9 0.6 m: 26.4+6.3 0.6 m: 316.5 0.6m: 30.4+3.2
Estimated 03 m: 60.4£2.4 03 m: 60.1+1.8
sand content Not estimated 0.6 m: 43.3+8.2 0.6 m: 49.5+1.8
(%) 1 m: 40.2+2.0 1 m: 39.5+0.9
E:g':al:e‘:ical Not estimated o: -0.80120.002 ot: -0.80620.022
petrophy m: 2.02+0.042 m: 2.01£0.066
parameters
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Appendix A: Relationship between soil hydrological and thermal parameters and OC and mineral
content

Soil thermal conductivity (4) is calculated as:

A= {fd’ly“f + (= Kedary ; Z i:ig:: (A1)
g, U
5 Asat = Ai‘esafxlf;;"+g“eusat,1§; TR , (A2)
Aary = Aary,omfom + Aarymin(1 = fom), (A3)
% for frozen soil
fe = log (%) +1 for unfrozen soil, (A9

in which K, is the Kersten number; S, is the wetness of the soil with respect to saturation; As4; and A4y,
are, respectively, the saturated and dry thermal conductivity; A o, = 0.25 and Agry o = 0.05 Wm 'K
10  are the saturated and dry thermal conductivities of OC; 6}, and 6., are the liquid water and ice content;

O4: 1s the soil porosity.

A 1s the thermal conductivity of soil matrix, which is calculated from OC and mineral content as:

As = As,omfom + As,min(l - fom)a (AS)

15 in which; f,,, is the OC fraction (i.e., OC content in this study) in soil matrix. The saturated (A ;) and

dry thermal conductivity (A4yy min) of minerals are calculated as:

__ 8.8(%sand)+2.92(%clay)

Asmin = %sand+%clay ’ (A6)
Rarymin = Zro0 o5 (A7)
where pg = 2700(1 — B54¢ min) 18 the bulk density of minerals.
20  The volumetric heat capacity (c) is defined as:
¢ = ¢5(1 = Oga) + 22 Ciop + =2 C, (A8)
with
¢s = (1 = fom)Csmin + fomCsom. (A9)
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- _ 2.128(%sand)+2.385(%clay)
smin = %sand+%oclay

X108 and ¢ oy = 2.5%10° Jm K"

in which ¢, is the heat capacity of soil matrix; Az is the soil layer thickness; w;., and wy;, are the weight of
ice and liquid water in the layer; C;., and Cy;, are the specific heat capacities (J kg' K™) of ice and liquid

water; Cg min and s o, are the heat capacity of mineral and OC, respectively.

As for soil hydrological characteristics, soil matric potential (1)) and hydraulic conductivity (k;) are

determined as:

¥ =Ysar (&)_B ; (A10)

2B;+3
Ok l 0.5(6i+6;+1) l

t,

sabt O'S(Bi,sat+9i+1,sat)

9. 2B;+3
G)ksat,i <9—l>

i,sat

ki = , (Al1)

where kg ; 1s the saturated hydraulic conductivity; © is the ice impedance factor; 8;, 8;,, are the liquid

water content at layer i” and i+1™. The saturated matrix potential (1s4,) is calculated as:
Y p sat

lpsat = (1 - fom)lpsat,min + fomwsat,oma (Alz)

in which the saturated matric potential of organic matter (¥ s4¢ om 1s set at —10.3 mm and the saturated

mineral matric potential (Ysq¢ min) 15 calculated as:

lpsat,min — _10X101.88—0.0131(%sand)’ (A13)
The exponent coefficient (B;) is calculated from OC and mineral content as:

Bi = (1 - fom,i)Bmin,i + fom,iBom,i 5 (A14)

with By ; = 2.7 and Bpn; = 2.91 + 0.159%clay;

44



	tc-2017-1-author_response-version2.pdf (p.1-3)
	APTran2016_submit_3round.pdf (p.4-47)
	APTran2016_submit_3round1
	APTran2016_submit_3round2
	APTran2016_submit_3round3


