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Abstract 42 

Quantifying the spatial distribution of snow is crucial to predict and assess its water resource potential 43 

and understand land-atmosphere interactions. High-resolution remote sensing of snow depth has been 44 

limited to terrestrial and airborne laser scanning and more recently with application of Structure from 45 

Motion (SfM) techniques to airborne (manned and unmanned) imagery. In this study, photography from 46 

a small unmanned aerial vehicle (UAV) was used to generate digital surface models (DSMs) and 47 

orthomosaics for snowcovers at a cultivated agricultural Canadian Prairie and a sparsely-vegetated Rocky 48 

Mountain alpine ridgetop site using SfM. The accuracy and repeatability of this method to quantify snow 49 

depth, changes in depth and its spatial variability was assessed for different terrain types over time. Root 50 

mean square errors in snow depth estimation from differencing snow covered and non-snow covered 51 

DSMs were 8.8 cm for a short prairie grain stubble surface, 13.7 cm for a tall prairie grain stubble surface 52 

and 8.5 cm for an alpine mountain surface. This technique provided useful information on maximum snow 53 

accumulation and snow-covered area depletion at all sites, while temporal changes in snow depth could 54 

also be quantified at the alpine site due to the deeper snowpack and consequent higher signal-to-noise 55 

ratio. The application of SfM to UAV photographs returns meaningful information in areas with mean snow 56 

depth > 30 cm, however the direct observation of snow depth depletion of shallow snowpacks with this 57 

method is not feasible. Accuracy varied with surface characteristics, sunlight and wind speed during the 58 

flight, with the most consistent performance found for wind speeds < 10 ms-1, clear skies, high sun angles 59 

and surfaces with negligible vegetation cover. 60 

1. Introduction  61 

Accumulation, redistribution, sublimation and melt of seasonal or perennial snowcovers are defining 62 

features of cold region environments. The dynamics of snow have incredibly important impacts on land-63 

atmosphere interactions and can constitute significant proportions of the water resources necessary for 64 

socioeconomic and ecological functions (Armstrong and Brun, 2008; Gray and Male, 1981; Jones et al., 65 

2001). Snow is generally quantified in terms of its snow water equivalent (SWE) through measurements 66 

of its depth and density. Since density varies less than depth (López-Moreno et al., 2013; Shook and Gray, 67 

1996) much of the spatial variability of SWE can be described by the spatial variability of snow depth. Thus, 68 

the ability to measure snow depth and its spatial distribution is crucial to assess and predict how the snow 69 

water resource responds to meteorological variability and landscape heterogeneity. Observation and 70 

prediction of the spatial distribution of snow depth is even more relevant with the anticipated and 71 

observed changes occurring due to a changing climate and land use (Dumanski et al., 2015; Harder et al., 72 

2015; Milly et al., 2008; Mote et al., 2005; Stewart et al., 2004).  73 

The many techniques and sampling strategies employed to quantify snow depth all have strengths and 74 

limitations (Pomeroy and Gray, 1995). Traditionally, manual snow surveys have been used to quantify snow 75 

depth and density along a transect. The main benefit of manual snow surveying is that the observations 76 

are a direct measurement of the SWE; however, it requires significant labour, is a destructive sampling 77 

method and can be impractical in complex, remote or hazardous terrain (DeBeer and Pomeroy, 2009; 78 

Dingman, 2002). Many sensors exist that can measure detailed snow properties non-destructively, with a 79 

comprehensive review found in Kinar and Pomeroy (2015), but non-destructive automated sensors, such 80 

as acoustic snow depth rangers (Campbell Scientific SR50) or SWE analyzers (Campbell Scientific CS275 81 

Snow Water Equivalent Sensor), typically only provide point scale information and may require significant 82 

additional infrastructure or maintenance to operate properly. Remote sensing of snow from satellite and 83 
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aerial platforms quantify snow extent at large scales. Satellite platforms can successfully estimate snow-84 

covered area but problems remain in quantifying snow depth, largely due to the heterogeneity of terrain 85 

complexity and vegetation cover. To date, Light Detection And Ranging (LiDAR) techniques have provided 86 

the highest resolution estimates of snow depth spatial distribution from both terrestrial (Grünewald et al., 87 

2010) and airborne platforms (Hopkinson et al., 2012). The main limitations encountered are easily 88 

observable areas (sensor viewshed) for the terrestrial scanner and the prohibitive expense and long lead 89 

time needed for planning repeat flights for the aerial scanner (Deems et al., 2013). Typically, airborne 90 

LiDAR provides data with a ground sampling of nearly 1 m and a vertical accuracy of 15 cm (Deems and 91 

Painter, 2006; Deems et al., 2013). While detailed, this resolution still does not provide observations of 92 

the spatial variability of snow distributions that can address microscale processes such as snow-vegetation 93 

interactions or wind redistribution in areas of shallow snowcover, and the frequency of airborne LiDAR 94 

observations are typically low, except for NASA’s Airborne Snow Observatory applications in California 95 

(Mattmann et al., 2014). 96 

An early deployment of a high resolution digital camera on a remote controlled gasoline powered model 97 

helicopter in 2004 permitted unmanned digital aerial photography to support studies of shrub emergence 98 

and snowcovered area depletion in a Yukon mountain shrub tundra environment (Bewley et al., 2007). 99 

Since then, Unmanned Aerial Vehicles (UAVs) have become increasingly popular for small-scale high-100 

resolution remote sensing applications in the earth sciences. The current state of the technology is due to 101 

advances in the capabilities and miniaturization of the hardware comprising UAV platforms 102 

(avionics/autopilots, Global-Positioning Systems (GPS), Inertial Momentum Units (IMUs) and cameras) and 103 

the increases in computational power for processing imagery. The conversion of raw images to 104 

orthomosaics and Digital Surface Models (DSMs) takes advantage of Structure from Motion (SfM) 105 

algorithms (Westoby et al., 2012). These computationally intensive algorithms simultaneously resolve 106 

camera pose and scene geometry through automatic identification and matching of common features in 107 

multiple images. With the addition of information on the respective camera location, or if feature locations 108 

are known, then georeferenced point clouds, orthomosaics and DSMs can be generated (Westoby et al., 109 

2012). Snow is a challenging surface for SfM techniques due to its relatively uniform surface and high 110 

reflectance relative to snow-free areas, which limit identifiable features (Nolan et al., 2015). The resolution 111 

of the data products produced by UAVs depends largely on flight elevation and sensor characteristics but 112 

can promise accuracies of 2.6 cm in the horizontal and 3.1 cm in the vertical (Roze et al., 2014). The 113 

unprecedented spatial resolution of these products may be less important than the fact that these 114 

platforms are deployable at a high user-defined frequencies below cloud cover, which can be problematic 115 

for airborne or satellite platforms. Manned aerial platforms have the advantage of covering much larger 116 

areas (Nolan et al., 2015) with a more mature and clear regulatory framework (Marris, 2013; Rango and 117 

Laliberte, 2010) than small UAVs. However, the greater expenses associated with acquisition, 118 

maintenance, operation and training required for manned platforms (Marris, 2013), relative to small UAVs, 119 

are significant (Westoby et al., 2012). Many snow scientists have expressed great enthusiasm in the 120 

opportunities UAVs present and speculate that they may drastically change the quantification of snow 121 

accumulation and ablation (Sturm, 2015). 122 

The roots of SfM are found in stereoscopic photogrammetry, which has a long history in topographic 123 

mapping (Collier, 2002). Relative to traditional photogrammetry, major advances in the 1990’s in computer 124 

vision (Boufama et al., 1993; Spetsakis and Aloimonost, 1991; Szeliski and Kang, 1994) has automated and 125 

simplified the data requirements to go from a collection of overlapping 2D images to 3D point clouds. 126 

Significant work by the geomorphology community has pushed the relevance, application and further 127 
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development of this technique into the earth sciences (Westoby et al., 2012). Recent application of this 128 

technique to snow depth estimation has used imagery captured by manned aerial platforms (Bühler et al., 129 

2015; Nolan et al., 2015) and increasingly with small UAVs (Vander Jagt et al., 2015; Bühler et al., 2016; De 130 

Michele et al., 2016). The manned aircraft examples have reported vertical accuracies of 10cm (Nolan et 131 

al., 2015) and 30 cm (Bühler et al., 2015) with horizontal resolutions of 5-20 cm (Nolan et al., 2015) and 2 132 

m (Bühler et al., 2015). Unmanned aircraft examples have shown similar accuracies and resolution with 133 

vertical errors of reported to be ~10 cm with horizontal resolutions between 50 cm (Vander Jagt et al., 134 

2015) and 10 cm (Bühler et al., 2016). The accuracy assessments of the De Michele et al. (2016), Vander 135 

Jagt et al. (2015), and Bühler et al. (2016) studies were limited to a small number of snow depth maps. 136 

Bühler et al. (2016) had the most with four maps, but more are needed to get a complete perspective on 137 

the performance of this technique and its repeatability under variable conditions.  138 

The overall objective of this paper is to assess the accuracy of snow depth as estimated by imagery 139 

collected by small UAVs and processed with SfM techniques. Specifically, this paper will: 1) assess the 140 

accuracy of UAV-derived snow depths with respect to the deployment conditions and heterogeneity of the 141 

earth surface, specifically variability in terrain relief, vegetation characteristics and snow depth; and 2) 142 

identify and assess opportunities for UAV generated data to advance understanding and prediction of 143 

snowcover and snow depth dynamics. 144 

2. Sites and Methodology 145 

2.1 Sites 146 

The prairie field site (Fig. 1a) is representative of agricultural regions on the cold, windswept Canadian 147 

Prairies, where agriculture management practices control the physical characteristics of the vegetation 148 

which, in turn, influence snow accumulation (Pomeroy and Gray, 1995). There is little elevation relief and 149 

the landscape is interspersed with wooded bluffs and wetlands. Snowcover is typically shallow (maximum 150 

depth < 50 cm) with development of a patchy and dynamic snow-covered area during melt. Data collection 151 

occurred at a field site near Rosthern, Saskatchewan, Canada Mountains (52° 42’ N, 106° 27’ W) in spring 152 

2015 as part of a larger project studying the influence of grain stubble exposure on snowmelt processes. 153 

The 0.65 km2 study site was divided into areas of tall stubble (35 cm) and short stubble (15 cm). The wheat 154 

stubble (Fig. 1c), clumped in rows ~30 cm apart, remained erect throughout the snow season, which has 155 

implications for blowing snow accumulation, melt energetics and snow cover depletion. Pomeroy et al. 156 

(1993, 1998) describes the snow accumulation dynamics and snowmelt energetics of similar 157 

environments. 158 

The alpine site, located in Fortress Mountain Snow Laboratory in the Canadian Rocky Mountains (50° 50’ 159 

N, 115° 13’ W), is characterized by a ridge oriented in SW-NE direction (Fig. 1b, d) at an elevation of 160 

approximately 2300 m. The average slope at the alpine site is ~15 degrees with some slopes > 35 degrees. 161 

Large areas of the ridge were kept bare by wind erosion during the winter of 2014/2015 and wind 162 

redistribution caused the formation of deep snowdrifts on the leeward (SE) side of the ridge, in surface 163 

depressions and downwind of krummholz. Vegetation is limited to short grasses on the ridgetop while 164 

shrubs and coniferous trees become more prevalent in gullies on the shoulders of the ridge. Mean snow 165 

depth of the snow-covered area at the start of the observation period (May 13, 2015) was 2 m (excluding 166 

snow-free areas) with maximum depths over 5 m. The 0.32 km2 study area was divided between a North 167 

and a South area (red polygons in Fig. 1b) due to UAV battery and hence flight area limitations. DeBeer 168 



5 

 

and Pomeroy (2010, 2009) and MacDonald et al. (2010) describe the snow accumulation dynamics and 169 

snowmelt energetics of the area. 170 

 2.2 Methodology 171 

2.2.1 Unmanned Aerial Vehicle - flight planning - operation - data processing  172 

A Sensefly Ebee Real Time Kinematic (RTK) UAV (version 01) was used to collect imagery over both sites 173 

(Fig. 2a). The platform is bundled with flight control and image processing software to provide a complete 174 

system capable of survey grade accuracy without the use of ground control points (GCPs) (Roze et al., 175 

2014). The Ebee RTK is a hand launched, fully autonomous, battery powered, fixed wing UAV with a 176 

wingspan of 96 cm and a weight of ~0.73 kg including payload. Maximum flight time is up to 45 minutes 177 

with cruising speeds of 40-90 km h-1. A modified consumer grade camera, a Canon PowerShot ELPH 110 178 

HS, captures red, green and blue band imagery as triggered by the autopilot. The camera, fixed in the UAV 179 

body, lacks a stabilizing gimbal as often seen on multirotor UAVs, and upon image capture levels the entire 180 

platform and shuts off motor, to minimize vibration, resulting in consistent nadir image orientation. The 181 

camera has a 16.1 MP 1/2.3-inch CMOS sensor and stores images as JPEGs, resulting in images with 8-bit 182 

depth for the three color channels. Exposure settings are automatically adjusted based on a center 183 

weighted light metering. Images are geotagged with location and camera orientation information supplied 184 

by RTK corrected Global Navigation Satellite System (GNSS) positioning and IMU, respectively. A Leica GS15 185 

base station supplied the RTK corrections to the Ebee to resolve image locations to an accuracy of ±2.5 186 

cm. The Ebee was able to fly in all wind conditions attempted but image quality, location and orientation 187 

became inconsistent when wind speed at the flight altitude (as observe by an on-board pitot tube) 188 

approached 14 m s-1. 189 

At the prairie site, the UAV was flown 22 times over the course of the melt period (March 6 to 30, 2015) 190 

with three flights over the snow free surface between April 2 and 9, 2015. A loaner Ebee, from Spatial 191 

Technologies, the Ebee distributor, performed the first 11 flights at the prairie site due to technical issues 192 

with the Ebee RTK. The geotag errors of the non-RTK loaner Ebee were ±5 m (error of GPS Standard 193 

Positioning Service) and therefore required GCPs to generate georeferenced data products. At the alpine 194 

site, to reduce variations in the height of the UAV above the surface in complex terrain, flight plans were 195 

adjusted using a 1 m resolution DEM, derived from a LiDAR DEM. The UAV was flown 18 times over melt 196 

from 15 May to 24 June 2015 with four flights over bare ground on 24 July 2015. Table 1 summarises flight 197 

plan attributives of the respective sites. Figure 2b shows a typical flight plan generated by the eMotion 198 

flight control software for the prairie site. 199 

Postflight Terra 3D 3 (version 3.4.46) processed the imagery to generate DSMs and orthomosaics. Though 200 

the manufacturer suggested that they are unnecessary with RTK corrected geotags (error of ±2.5 cm), all 201 

processing included GCPs. At the prairie site, 10 GCPs comprised of five tarps and five utility poles were 202 

distributed throughout the study area (blue points in Fig. 1a). At the alpine site, the north and south areas 203 

had five and six GCPs (blue points in Fig. 1b), respectively comprised of tarps (Fig. 3a) and easily identifiable 204 

rocks (Fig. 3b) spread over the study area. 205 

Processing involved three steps. First, initial processing extracted features common to multiple images, 206 

optimized external and internal camera parameters for each image, and generated a sparse point cloud. 207 

The second step densified the point cloud and the third step generated a georeferenced orthomosaic and 208 

a DSM. Preferred processing options varied between the sites, with the semi-global matching algorithm in 209 

the point densification used to minimize erroneous points encountered at the alpine site (see Sect 3.3). 210 
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Generated orthomosaics and DSMs had a horizontal resolution of 3.5 cm at the prairie site and between 211 

3.5 cm and 4.2 cm at the alpine site.  212 

2.2.2 Ground truth and snow depth data collection 213 

To assess the accuracy of the generated DSMs and their ability to measure snow depth, detailed 214 

observations of the land surface elevation and snow depth were collected. At the prairie site a GNSS 215 

survey, utilizing a Leica GS15 as a base station and another GS15 acting as a RTK corrected rover, measured 216 

the location (x, y and z) of 17 snow stakes on each stubble treatment to an accuracy of less than ±2.5 cm. 217 

This gives 34 observation points at the prairie site (locations identified as red dots in Fig. 1a). Over the 218 

melt period, the snow depth was measured with a ruler at each point (error of ±1 cm). Adding the manually 219 

measured snow depths to the corresponding land surface elevations from the GNSS survey gives snow 220 

surface elevations at each observation point directly comparable to the UAV derived DSM. At the alpine 221 

site, 100 land surface elevations were measured at points with negligible vegetation (bare soil or rock 222 

outcrops) with a GNSS survey to determine the general quality of the DSMs. For eight flights a GNSS survey 223 

was also performed on the snowcover (all measurement locations over the course of campaign are 224 

highlighted in Fig. 1b). To account for the substantial terrain roughness and to avoid measurement errors 225 

in deep alpine snowpacks, snow surface elevation was measured via GNSS survey and snow depth 226 

estimated from the average of five snow depth measurements in a 0.4 m x 0.4 m square at that point. 227 

Time constraints and inaccessible steep snow patches limited the number of snow depth measurements 228 

to between three and 19 measurements per flight. While the number of accuracy assessment points over 229 

snow is limited for each flight the cumulative number of points over the course of the campaigns used to 230 

assess accuracy over all flights is not; at the alpine site there were 101 GNSS surface measurements and 231 

83 averaged snow depth measurements available, and at the prairie site 323 measurements on each 232 

stubble treatment. 233 

At both the prairie and alpine site, the same GNSS RTK surveying method established GCP locations. Snow 234 

surveys (maximum one per day) and DSMs (multiple per day) are only compared if from the same days.  235 

2.2.3 Snow depth estimation 236 

Subtracting a DSM of a snow free surface from a DSM of a snow covered surface estimates snow depth 237 

assuming snow ablation is the only process changing the surface elevations between observation times. 238 

Vegetation is limited over the areas of interest at the alpine site and any spring up of grasses or shrubs is 239 

insignificant, based upon local observations, with respect to the large snow depths observed (up to 5 m). 240 

The wheat stubble at the prairie site is unaffected by snow accumulation or ablation. The snow-free DSMs 241 

corresponded to imagery collected on for the prairie site and July 24, 2015 for the alpine site. 242 

2.2.4 Accuracy assessment 243 

The accuracy of the UAV-derived DSM and snow depth was estimated by calculating the root mean square 244 

error (RMSE), mean error (bias) and standard deviation of the error (SD) with respect to the manual 245 

measurements. The RMSE quantifies the overall difference between manually measured and UAV derived 246 

values, bias quantifies the mean magnitude of the over (positive values) or under (negative values) 247 

prediction of the DSM with respect to manual measurements, and SD quantifies the variability of the error.  248 

2.2.5 Signal-to-Noise Calculation 249 

The signal-to-noise ratio (SNR) compares the level of the snow depth signal with respect to the 250 

measurement error to inform when meaningful information is available. The SNR is calculated as the mean 251 

measured snow depth value divided by the standard deviation of the error between the observed and 252 
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estimated snow depths. The Rose criterion (Rose 1973), commonly used in the image processing literature, 253 

is used to define the threshold SNR where the UAV returns meaningful snow depth information. The Rose 254 

criterion proposes a SNR ≥ 4 for the condition at which the signal is sufficiently large to avoid mistaking it 255 

for a fluctuation in noise. Ultimately, the acceptable signal to noise ratio depends upon the user’s error 256 

tolerance (Rose, 1973).  257 

3. Results and Discussion 258 

3.1 Absolute surface accuracy 259 

The accuracy of the DSMs relative to the measured surface points varies with respect to light conditions 260 

at time of photography and differences in snow surface characteristics and extent. This is seen in the RMSE 261 

for individual flights varying from 4 cm to 19 cm (Fig. 4). Only a few problematic flights, which will be 262 

discussed in section 3.3.1, showed larger RMSEs, which are marked in blue in Figure 4. In general, the 263 

accuracy of the DSMs as represented by the mean RMSEs in Table 2, were comparable between the prairie 264 

short stubble (8.1 cm), alpine-bare (8.7 cm) and alpine-snow (7.5 cm) sites and were greater over the 265 

prairie tall stubble (11.5 cm). Besides the five (out of a total of 43) problematic flights (out of a total of 43 266 

flights), accuracy was relatively consistent over time at all sites.  More specifically, the prairie flights 267 

simultaneously sampled the short and tall stubble areas, thus there were only three problematic flights at 268 

the prairie site in addition to the two at the alpine site (Fig. 4). The larger error at the tall stubble is due to 269 

snow and vegetation surface interactions. Over the course of melt, the DSM gradually became more 270 

representative of the stubble surface rather than the snow surface. More points are matched on the high 271 

contrast stubble than the low contrast snow leading to the DSM being biased to reflect the stubble surface. 272 

This is apparent in the increasing tall stubble bias as the snow surface drops below the stubble height. By 273 

comparing the many alpine-bare points to the limited number of alpine-snow points (3 to 19) the relative 274 

difference in errors between the snow and non-snow surfaces was assessed. The benefit of the large 275 

amount of alpine-bare points (100) revealed the general errors, offsets and tilts in the DSM. It was 276 

concluded that the snow surface errors are not appreciably different from the non-snow surface errors.  277 

The RTK level accuracy of the camera geotags should produce products with similar accuracy, without the 278 

use of GCPs, as those generated with standard GPS positioning and the use of GCPs (Roze et al., 2014). 279 

DSMs created with and without GCPs for flights where the Ebee’s camera geotags had RTK-corrected 280 

positions with an accuracy of ±2.5 cm tested this claim. Nine flights from the prairie site and 22 flights 281 

from the alpine site met the requirements for this test. Inclusion of GCPs had little effect on the standard 282 

deviation of error with respect to surface observations, but resulted in a reduction of the mean absolute 283 

error of the bias from 27 cm to 10 cm and from 14 cm to 6 cm at the prairie and alpine sites, respectively. 284 

3.2 Snow depth accuracy 285 

The snow depth errors were similar to that of the surface errors with the alpine and short stubble sites 286 

having very similar errors, with mean RMSEs of 8.5 cm and 8.8 cm, but much larger errors over tall stubble, 287 

with a mean RMSE of 13.7 cm (Fig. 5 and Table 3). Snow depth errors were larger than the surface errors 288 

as the errors from the snow-free and snow-covered DSMs are additive in the DSM differencing. The 289 

usability of snow depth determined from DSM differencing requires comparison of signal-to-noise. Signal-290 

to-noise, in Fig. 5, clearly demonstrates that the deep alpine snowpacks have a large signal relative to noise 291 

and provide useable information on snow depth both at maximum accumulation and during most of the 292 

snowmelt period (SNR >7). In contrast, the shallow snowpack at the prairie site, despite a similar absolute 293 

error to the alpine site, demonstrates decreased ability to retrieve meaningful snow depth information 294 
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over the course of snowmelt; the signal became smaller than the noise. Applying the Rose criterion of a 295 

SNR ≥4, it is apparent that only the first flight at the short stubble and the first two flights at the tall stubble 296 

provided useful information on the snow depth signal. This is relevant when applying this technique to 297 

other areas with shallow, wind redistributed seasonal snowcovers such as those that cover prairie, steppe 298 

and tundra in North and South America, Europe and Asia. This is in contrast to other studies which do not 299 

limit where this technique can be reasonably applied (Bühler et al., 2016; Nolan et al., 2015).  300 

3.3 Challenges 301 

3.3.1 UAV Deployment Challenges 302 

An attractive attribute of UAVs, versus manned aerial or satellite platforms, is that they allow “on-demand” 303 

responsive data collection. While deployable under most conditions encountered, the variability in the 304 

DSM RMSEs is likely due to the environmental factors at time of flight including wind conditions, sun angle, 305 

flight duration, cloud cover and cloud cover variability. In high wind conditions (>14 m s-1) the UAV 306 

struggled to maintain its preprogrammed flight path as it was blown off course when cutting power to take 307 

photos. This resulted in missed photos and inconsistent density in the generated point clouds. Without a 308 

gimballed camera, windy conditions also resulted in images that deviated from the ideal nadir orientation. 309 

The flights for the DSMs with the greatest RMSEs had the highest wind speeds as measured by the UAV. 310 

Four of the five problematic flights were due to high winds (>10 m s-1) and were identified by relatively 311 

low-density point clouds with significant gaps which rendered DSMs that did not reflect the snow surface 312 

characterises.  313 

As the system relies on a single camera traversing the areas of interest, anything that may cause a change 314 

in the reflectance properties of the surface will complicate post-processing and influence the overall 315 

accuracy. Consistent lightning is important with a preference for clear skies and high solar angles to 316 

minimize changes in shadows. Diffuse lighting during cloudy conditions results in little contrast over the 317 

snow surface and large gaps in the point cloud over snow, especially when the snow cover was 318 

homogeneous. Three flights under these conditions could not be used and were not included in the 319 

previously shown statistics. Clear conditions and patchy snowcover led to large numbers of overexposed 320 

pixels (see Sect 3.3.2). Low sun angles should be avoided as orthomosaics from these times are difficult to 321 

classify due to the large and dynamic surface shadows present and the relatively limited reflectance range.  322 

It is suggested that multirotor UAVs may be more stable and return better data products in windy 323 

conditions (Bühler, et al., 2016). There have not been any direct comparison studies that the authors are 324 

aware of that validate such assertions. A general statement regarding the use of fixed wing versus 325 

multirotor is also impossible with the broad spectrum of UAVs and their respective capabilities on the 326 

market. The only clear benefit of using a multirotor platform is that larger, potentially more sophisticated, 327 

sensors can be carried and landing accuracy is greater. That being said, the Ebee RTK returns data at 328 

resolutions that are more than sufficient for the purposes of this study (3cm pixel-1), can cover much larger 329 

areas and has a higher wind resistance (>14 m s-1 than many multirotor UAVs. Landing accuracy (±5 m) was 330 

also sufficient to locate a landing location in the complex topography of the alpine site. The more 331 

important issue relative to any comparison between platform types is that all UAVs will have limited flight 332 

times and results are compromised if conditions are windy and light is inconsistent. Until a direct platform 333 

comparison study is conducted this experience, and results of other recent studies (Vander Jagt et al., 334 

2015; Bühler et al., 2016; De Michele et al., 2016), suggests that fixed wing platforms, relative to multi-335 

rotor platforms, have similar accuracy and deployment constraints but a clear range advantage. 336 
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3.3.2 Challenges applying Structure from Motion over snow 337 

Erroneous points over snow were generated in post-processing with the default software settings at the 338 

alpine site. These points were up to several metres above the actual snow surface and were mainly located 339 

at the edge of snow patches, but also on irregular and steep snow surfaces in the middle of a snow patch. 340 

The worst cases occurred during clear sunny days over south-facing snow patches, which were 341 

interspersed with these erroneous points. These points are related to the overexposure of snow pixels in 342 

the images which had bare ground in the centre and small snow patches on the edges. This is a 343 

consequence of the automatically adjusted exposure based on centre-weighted light metering of the 344 

Canon ELPH camera. It is recommended that erroneous points could be minimized with the removal of 345 

overexposed images; however, this increased the bias and led to gaps in the point cloud, which made this 346 

approach inappropriate. 347 

The semi-global matching (SGM) option with optimization for 2.5D point clouds (point clouds with no 348 

overlapping points) proved to be the best parameter setting within the post-processing software Postflight 349 

Terra 3D. Semi-global matching was employed to improve results on projects with low or uniform texture 350 

images, while the optimization for 2.5D removes points from the densified point cloud (SenseFly, 2015). 351 

The SGM option removed most of the erroneous points with best results if processing was limited to 352 

individual flights. Including images from additional flights resulted in a rougher surface with more 353 

erroneous points.  This may be caused by changes in the surface lighting conditions between flights. Biases 354 

did not change when using SGM though some linear artefacts were visible when compared to default 355 

settings. These linear artefacts caused the SD to increase from 1 cm to 3 cm on bare ground. Areas with 356 

remaining erroneous points were identified and excluded from the presented analysis. Table 3 summarises 357 

the extent of the areas removed with respect to the snow covered area at the alpine site. The fifth 358 

problematic flight identified (June 1, 2015flight over north area of alpine site) had a much larger bias with 359 

the inclusion of GCPs and the reason for this cannot be determined. The “black box” nature of this 360 

proprietary software and small number of adjustable parameters clearly limits the application of this post-361 

processing tool for scientific purposes.  362 

3.4 Applications of UAVs and Structure from Motion over snow 363 

The distributed snow depth maps generated from UAV imagery are of great utility for understanding snow 364 

processes at previously unrealized resolutions, spatial coverages and frequencies. Figure 6 provides 365 

examples of UAV derived distributed snow depth maps. The identification of snow dune structures, which 366 

correspond to in-field observations, is a qualitative validation that UAV derived DSM differencing does 367 

indeed provide reasonable information on the spatial variability of snow depth. Actual applications will 368 

depend upon the surface, snow depth and other deployment considerations as discussed. 369 

Applications at the alpine site also include the ability to estimate the spatial distribution of snow depth 370 

change due to ablation (Fig. 7). To obtain ablation rates, the spatial distribution of snow density is still 371 

needed but it may be estimated with a few point measurements or with parameterizations dependent 372 

upon snow depth (Jonas et al., 2009; Pomeroy and Gray, 1995). In Fig. 7 the mean difference in snow depth 373 

between the two flights was 0.9 m; this gives a SNR of ~11 which is more than sufficient to confidently 374 

assess the spatial variability of melt.  375 

Despite the limitations and deployment considerations discussed, the Ebee RTK was capable of providing 376 

accurate data at very high spatial and temporal resolutions. A direct comparison between fixed wing and 377 

multirotor platforms is necessary to determine how snow depth errors may respond to variations in wind 378 
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speed and lighting conditions. Until then, based on this experience and results of other recent studies 379 

(Vander Jagt et al., 2015; Bühler et al., 2016; De Michele et al., 2016), we do not expect there to be large 380 

differences in errors between platform types. Rather, the most important consideration when planning to 381 

map snow depth with a UAV should be whether the anticipated SNR will allow for direct estimates of snow 382 

depth or snow depth change. The SNR issue limits the use of this technique to areas with snow depths or 383 

observable changes sufficiently larger than the SD of the error. We propose a mean snow depth threshold 384 

of 30 cm is necessary to obtain meaningful information on snow depth distribution with current 385 

technology. This threshold is equal to four times the mean observed SD (Rose criterion), but will vary with 386 

the application, site and user’s error tolerance.  387 

The use of SfM in shallow snow environments, such as on the Canadian Prairies, is therefore limited to 388 

measuring near-maximum snow depths. Besides providing an estimate of the total snow volume, this 389 

information can also inform snow cover depletion curve estimation and description (Pomeroy et al., 1998). 390 

Simple snow cover depletion models can be parameterized with estimates of snow depth mean and 391 

coefficient of variation (Essery and Pomeroy, 2004), which otherwise need to be obtained from snow 392 

surveying. For 2015, coefficients of variation from the peak snow depth maps were 0.255 and 0.173, at 393 

the short and tall stubble sites respectively, which are similar to previous observations from corresponding 394 

landforms/surfaces (Pomeroy et al., 1998).  395 

In addition to parameterising snow cover depletion models, UAV data could also be used to test the 396 

performance of these same models as Structure from Motion processing of UAV images produces 397 

orthomosaics in addition to DSMs. Sequences of orthomosaics are especially useful to quantify the spatio-398 

temporal dynamics of snow covered area (SCA) depletion processes. Orthomosaics are complementary 399 

products to DSMs and their quality is subject to the same deployment conditions as DSMs. Orthomosaics 400 

have the same horizontal accuracy and resolution as the DSMs, but without a vertical component; any 401 

DSM vertical errors are irrelevant. Interpretation of SCA from orthomosaics is therefore possible regardless 402 

of surface characteristics or snow depth. The classification of orthomosaics to quantify surface properties 403 

will introduce error, and can be challenging in changing light conditions, which changes the spectral 404 

response of snow or non-snow covered areas across the surface. Typical supervised and unsupervised 405 

pixel based classification procedures can be readily applied. Since UAV imagery is at a much higher 406 

resolution than satellite or airborne imagery, classification differences in spectral response due to varying 407 

light conditions can be compensated for by using object oriented classification which also takes into 408 

account shape, size, texture, pattern and context (Harayama and Jaquet, 2004).  409 

An example of a snow-covered depletion curve for the prairie site is presented in Fig. 8. A simple 410 

unsupervised classification of the orthomosaic into snow and non-snow classes quantifies the earlier 411 

exposure of the tall wheat stubble relative to the short wheat stubble. The tall stubble surface is an 412 

illustrative example of the advantages UAVs offer for SCA quantification. Tall stubble is a challenging 413 

surface on which to quantify SCA as snow is prevalent below the exposed stubble surface rendering other 414 

remote sensing approaches inappropriate. From an oblique perspective, the exposed stubble obscures the 415 

underlying snow and prevents the classification of SCA from georectification of terrestrial photography 416 

(Fig. 9). Due to the surface heterogeneity on small scales (stubble, soil and snow all regularly occurring 417 

within 30 cm) satellite, and most aerial, imagery struggles with clearly identifying SCA. To identify features 418 

accurately, in this case exposed stubble versus snow, multiple pixels are needed per feature (Horning and 419 

DuBroff, 2004). The 3.5 cm resolution of the orthomosaic corresponds to approximately three pixels to 420 

span the 10 cm stubble row which is sufficient for accurate SCA mapping over a tall stubble surface. The 421 
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advantages of high-resolution UAV orthomosaics are obviously not limited to SCA mapping of snow 422 

between wheat stubble and can be readily applied to other challenging heterogeneous surfaces where 423 

SCA quantification was previously problematic. Snow cover data at this resolution can quantify the role of 424 

vegetation on melt processes at a micro-scale, which can in turn inform and validate snowmelt process 425 

understanding. 426 

4. Conclusions 427 

The accuracy of DSMs and orthomosaics, generated through application of SfM techniques to imagery 428 

captured by a small fixed-wing UAV, was evaluated in two different environments, mountain and prairie, 429 

to verify its ability to quantify snow depth and its spatial variability over the ablation period. The 430 

introduction of functional UAVs to the scientific community requires a critical assessment of what can 431 

reasonably be expected from these devices over seasonal snowcovers. Snow represents one of the more 432 

challenging surfaces for UAVs and SfM techniques to resolve due to the lack of contrast and high surface 433 

reflectance. Field campaigns assessed the accuracy of the Ebee RTK system over flat prairie and complex 434 

terrain alpine sites subject to wind redistribution and spatially variable ablation associated with varying 435 

surface vegetation and terrain characteristics. The mean accuracies of the DSMs were 8.1 cm for the short 436 

stubble surface, 11.5 cm for the tall surface and 8.7 cm for the alpine site. These DSM errors translate into 437 

mean snow depth errors of 8.8 cm, 13.7 cm and 8.5 cm over the short, tall and alpine sites respectively. 438 

Ground control points were needed to achieve this level of accuracy. The SfM technique provided 439 

meaningful information on maximum snow depth at all sites, and snow depth depletion could also be 440 

quantified at the alpine site due to the deeper snowpack and consequent higher signal-to-noise ratio. 441 

These findings demonstrate that SfM can be applied to accurately estimate snow depth and its spatial 442 

variability only in areas with snow depth >30 cm. This restricts SfM applications with shallow, windblown 443 

snowcovers. Snow depth estimation accuracy varied with wind speed, surface characteristics and sunlight; 444 

the most consistent performance was found for wind speeds <10 ms-1, surfaces with insignificant 445 

vegetation cover, clear skies and high sun angles. The ability to generate good results declined over 446 

especially homogenous snow surfaces and southerly slope aspects in mountain terrain. Clear sky 447 

conditions were favourable for high snow-covered fractions with limited snow surface brightness contrast. 448 

During snowmelt with reduced snow-covered fraction, clear sky conditions caused overexposure of snow 449 

pixels and erroneous points in the point clouds. 450 

The challenges of applying SfM to imagery collected by a small UAV over snow complicate the generation 451 
of DSMs and orthomosaics relative to other surfaces with greater contrast and identifiable features. 452 
Regardless, the unprecedented spatial resolution of the DSMs and orthomosaics, low costs and “on-453 
demand” deployment provide exciting opportunities to quantify previously unobservable small-scale 454 
variability in snow depth that will only improve the ability to quantify snow properties and processes. 455 
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Table 1: Flight plan specifications 576 

Variable Prairie Site Alpine Site 

Flight altitude 90 m 90 m 

Lateral overlap 70 % 85 % 

Longitudinal overlap 70 % 75 % 

Ground resolution 3 cm pixel-1 3 cm pixel-1 

Number of flights (over snow/over non-snow) 22/3 18/4 

Approximate area surveyed per flight 1 km2 0.32 km2  

 577 

Table 1: Absolute surface accuracy summarya 578 

Area Variable Mean (cm) Maximum (cm) Minimum (cm) Total Points c 

Apine-bare RMSE 8.7 15 4 1120 
Alpine-bare Bias b 5.6 11 1 1120 
Alpine-bare SD 6.2 12 3 1120 
Alpine-snow RMSE 7.5 14 3 101 
Alpine-snow Bias b 4.4 13 1 101 
Alpine-snow SD 5.4 13 3 101 
Short RMSE 8.1 12.5 4.4 357 
Short Bias b 4.4 11.2 0 357 
Short SD 6.3 9.5 3.2 357 
Tall RMSE 11.5 18.4 4.9 357 
Tall Bias b 6.6 17.5 0.3 357 
Tall SD 8.4 14.2 3.1 357 

a summary excludes five flights identified to be problematic  579 
b mean of absolute bias values 580 
c cumulative points used to assess accuracy over all assessed flights 581 

  582 

Table 2: Absolute snow depth accuracy summary a  583 

Area Variable Mean (cm) Maximum (cm) Minimum (cm) Total Points c 

Alpine RMSE 8.5 14.0 3 83 

Alpine Bias b 4.1 11.0 0 83 

Alpine SD 7.1 12.0 3 83 

Short RMSE 8.8 15.8 0 323 

Short Bias b 5.4 15.2 0 323 

Short SD 6.1 10.3 0 323 

Tall RMSE 13.7 27.2 0 323 

Tall Bias b 9.8 26.4 0 323 

Tall SD 8.3 13.9 0 323 

a summary excludes two flights identified to be problematic  584 
b mean of absolute bias values  585 
c cumulative points used to assess accuracy over all assessed flights 586 

 587 

 588 

 589 
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Table 3: Summary of areas excluded due to erroneous points with respect to snow covered area at Alpine 590 

site. 591 

Flight a Snow covered area (%) Percentage of snow 
covered area excluded (%) 

5-19_N 45.9 0.0 
5-20_S 32.6 2.0 
5-22_N 39.8 0.0 
6-01_N 24.0 0.0 
6-08_N 12.5 3.2 
6-18_N 5.3 19.3 
6-24_N 3.1 21.9 
6-24_S 3.7 18.9 

amonth-day_portion of study area 592 

 593 

 594 

 595 

 596 

 597 

 598 

 599 

 600 

 601 

 602 
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 603 

 604 

Figure 1: Orthomosaics of a) the prairie site located near Rosthern, Saskatchewan and b) the alpine site at 605 

Fortress Mountain Snow Laboratory, Kananaskis, Alberta. The prairie site image (March 19, 2015) has 606 

polygons depicting areas used for peak snow depth estimation over short (yellow) and tall (green) stubble. 607 

The alpine site image (May 22, 2015) was split into two separately processed subareas (red polygons). Red 608 

points in a) and b) are locations of manual snow depth measurements while green points at the alpine site 609 

b) were used to test the accuracy of the DSM over the bare surface. Ground control point (GCP) locations 610 

are identified as blue points. Axes are UTM coordinates for the prairie site (UTM zone 13N) and alpine site 611 

(UTM zone 11N). The defining feature of the prairie site was the c) wheat stubble (tall) exposed above the 612 

snow surface and at the alpine site was the d) complex terrain as depicted by the generated point cloud 613 

(view from NE to SW). 614 
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615 
Figure 2: a) Sensefly Ebee RTK, b) a typical flight over the prairie site where red lines represent the flight 616 

path of UAV and the white placemarks represent photo locations. 617 

 618 

619 
Figure 3: Examples of ground control points that included a) tarps (2.2 m x 1.3 m) and b) identifiable rocks 620 

at the same magnification as the tarp. 621 
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 622 

 Figure 4: Root mean square error (RMSE, top row), Bias (middle row) and standard deviation (SD, bottom 623 

row) of DSMs with respect to surface over alpine-bare, alpine-snow, and short and tall stubble at prairie 624 

site, respectively. Blue bars highlight problematic flights and are excluded from summarization in Table 2. 625 

X-axis labels represent month-date-flight number of the day (to separate flights that occurred on the same 626 

day). Alpine-bare accuracies are separated into north or south areas, reflected with a  _N or _S suffix. The 627 

last number in the alpine-snow x-axis label is the number of observations used to assess accuracy as  the 628 

number of surface observations varied between 3 and 20.  629 
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630 
Figure 5: Estimated UAV snow depth error with respect to observed snow depth for the alpine site and the 631 

short and tall stubble treatments at prairie site. Blue bars highlight problematic flights and are excluded 632 

from summarization in Table 3. X-axis labels represent month-date. The last number in prairie labels is the 633 

flight of the day (to separate flights that occurred on the same day). Alpine labels separate the north or 634 

south flight areas suffixed as _N or _S respectively, and the last value is the number of observations used 635 

to assess accuracy as they vary between 3 and 19. Horizontal line in the SNR plots is the Rose criterion 636 

(SNR ≥4) that is used to identify flights with a meaningful snow depth signal. 637 

 638 

 639 
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 640 

 641 
Figure 6: Bias corrected distributed snow depth (m) for a) short and b) tall stubble treatments at peak 642 

snow depth (March 10, 2015) at the prairie site.  643 

 644 

Figure 7: Rate of snow depth change (dHS day-1) between May 19 and June 1, 2015 in the northern portion 645 

of the alpine site. 646 
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  647 

 648 
Figure 8: Estimation of snow covered area requires an a) orthomosaic which is then b) classified into snow 649 

and non-snow covered area. This produces a c) snow cover depletion curve when a sequence of 650 

orthomosaics are available. The short and tall stubble surface snow covered areas at the prairie site are 651 

contrasted, with a snowfall event evident on March 23, 2015. 652 

 653 
 654 

 655 
Figure 9: a) An oblique photograph demonstrates the issue of tall stubble obscuring underlying snowcover 656 

when considered in contrast to b) a UAV orthomosaic of the same area on the same date that clearly shows 657 

widespread snowcover. 658 


