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“Semi-brittle rheology and ice dynamics in DynEarthSol3D” 
L. C. Logan, L. L. Lavier, E. Choi, E. Tan, G. A. Catania 
 
The authors truly want to express gratitude to the reviewers, appreciating the time it takes to put forth the thoughtful 
and incisive comments presented within. To summarize: we have largely engaged with all the reviewers’ questions 5 
and requests, and hope that our responses satisfy. This manuscript revision includes 2 appendices meant to respond 
to and allay concerns expressed by the reviewers, as well as some additional model results presented when 
computational resources allowed. We sincerely believe that the reviewers’ comments greatly strengthened this 
manuscript. 
Many thanks, and best wishes, 10 
Authors 
 
Format for reading response: 
Referee comment (R1 or R2) 
Author response (AR) 15 
Change to manuscript (if appropriate) 
 
Author response to reviewer 1:  
R1: Boundary conditions I am wondering how much the conclusions from the first experiment are related to the 
imposed kinematic boundary condition, especially the two orders of magnitude difference between brittle and ductile 20 
effective stress. Imposing a velocity field on three of the four boundaries of the domain conduct to stress that are not 
realistic at all. The flow of ice is gravity driven in reality so that I am not sure of what can be really learned from this first 
experiment. In other words, I am not sure that under realistic conditions (realistic geometry and boundary conditions) the 
two approaches would give so different stress field (because the global static equilibrium would be similar if not the same). 
 25 
AR: You bring up valid concerns that are also expressed by Jeremy Bassis (reviewer 2), and we agree that the 

glacial implications from this first experiment are limited and extrapolations from these experimental results 
must remain tempered. We clarify the purpose of Experiment 1 in the text: to show the difference in stresses 
but also to see the evolution of failure in translating ice. We clarify that we do not attempt to extrapolate 
realistic values for basal crevasse spacing from the brittle experiment, and say explicitly that this experiment is 30 
demonstrated only to depict a qualitative behavior, which motivates the second set of experiments. We also 
include the figure below in the manuscript, which should ease the worries of the concerned reader regarding 
the magnitude of stresses in the ductile vs. brittle rheologies. 

 1. See new Section 2.2 
 2. See new Figure 5 35 
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However, it is important to understand that the flow in the experiments is very much driven by 
gravity. The pressure gradient due to the incline drives flow at ~470 Pa/m (Wu and Lavier, 2016, eq. 1). This is 
sufficient to generate flow in a 1000 m thick ice layer of viscosity ~1013 Pa s. The resulting strain rate due to 
this pressure gradient alone ranges from 10-9 to 10-7 s-1, enough to decrease the viscosity to 1012 Pa s, assuming 
Glen’s flow law. In addition, the constant velocity at the bottom of the box and on the sides does not 5 
generate any shear strain rate (being of constant velocity throughout the entire model domain). Therefore, 
these boundary conditions form a pseudo-rigid box, and do not generate additional flow.  

Put differently and succinctly, the box translates as a rigid entity in which the fluid flow is driven by 
gravity. The only location where the boundary conditions explicitly (and purposefully) impact deformation is 
at the bending fulcrum (“grounding line”). There the strain rate changes rapidly in the materials to 10 
accommodate the change in shape of the box. Down flow of the fulcrum, the pressure gradient is negligible: 
correspondingly, the internal flow due to gravity decreases as does the strain rate. The resulting viscosity then 
increases to > 1014 Pa s. The ice essentially becomes rigid for both rheologies (ductile and brittle) down flow 
of the bending fulcrum. Thus the ice in the inclined portion of the domain is gravity driven and the stresses 
are realistic. Additionally, brittle (elastoplastic) ice only deforms due to bending stresses imposed at the 15 
fulcrum, which are fundamentally much higher than viscous stresses.  

In addition, to further allay concerns that the velocity boundary condition does not contaminate the 
results, we show results from Experiment 2 (the flat, frictionless wedge) with purely brittle and ductile 
rheologies. Here is that image after 1 year of model time (this is now included in the manuscript): 

	20 
New Figure 5: Experiment 2, effective stress in [a] brittle ice and [b] ductile ice after 1 year model time. The bottom of 
the ice is frictionless, and there is no inflow ice velocity. Ice flows [a] (or does not, [b] )from left to right. There is an 
order of magnitude stress difference between the two rheologies and the ductile ice flow is driven entirely by 
thickness. Brittle ice would flow to the right, but the thickness gradient is not large enough, and the corresponding 
viscosity is sufficiently high to make flow velocities much smaller than those of ductile ice. Imposed velocity conditions 25 
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and bending are needed (as in Experiment 1 – tilted planar) to observe regularly spaced zones of vertical failure. Pink 
arrow is transition to buoyancy stress boundary condition. 

 
Again, flow here is driven entirely by gravity: the thickness gradient causes a pressure gradient which drives 
flow to the right, and the downstream portion (right side) of the domain undergoes floatation stresses at the 5 
black arrow. The order of magnitude stress difference is readily apparent, and in no way can be attributed to 
contaminating boundary conditions. After 1 year of simulation the brittle ice (Fig. 1a) has not advanced over 
the grounding line (although it has failed there due to bending buoyancy). That the brittle ice does not flow 
is the reason we executed the first set of experiments: not only to show the difference in stresses, but also to 
show the temporal evolution of failure of ice as it goes through a bend. In the image above, the brittle ice is 10 
simply too strong (and the pressure gradient too low) to drive flow across the grounding line.  

  
R1: Description of the implemented rheology. The paper should be really improved regarding the presentation of 
the implemented rheology and failure criteria in the model. All this material should be consistently presented in section 2.1. 
Some of these aspects are described all along the manuscript whereas they should really be presented consistently in the 15 
model description section (e.g., the Mohr-Coulomb failure envelope, the fact that there is no failure criteria for the ductile 
behaviour or the expression for the ice effective viscosity are presented in the application section). Some part of the model 
are not described at all. For example, it is not clear what becomes the rheology when the Morh-Coulomb criteria is reached 
in the brittle approach? From Fig. 4, I understand that in fact there is no real failure of the material property of ice for the 
brittle rheology and that failure is estimated when a plastic strain is larger than 0.03? This should be really explained in 20 
much more detail. 
 
AR: This is an easy fix: we kept most of the details out at first because they were presented in Choi et al. (2013), 

when the model was first published. But we are happy to include these details again and agree that their 
presentation strengthens the manuscript. Additionally, so that readers can be assured that the values used in 25 
material properties are appropriate we included an Appendix A on the calibration experiments we used to 
validate the semi-brittle material. 
1. See new Section 2.2  
2. See Appendix A (semi-brittle ice calibration experiments) 

 30 
R1: Sensitivity to mesh quality The free surface for both experiments looks very jagged. It is mentioned page 9 line 
16 that it is an artifact of the low resolution and that these features disappear with higher resolution. I don’t understand 
then why the results with a higher resolution are not presented, especially when it is mentioned in the conclusion (page 13, 
line 23) that all the simulations presented here are computationally cheap! How much the results presented in this paper 
are mesh dependent? The geometries obtained after only 6 months of simulation and presented in Fig. 5 look so bad that I 35 
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have some doubts that the simulation can be performed for a longer time before exploding? It looks like you have positive 
slope which would induce reverse velocity for a 2D flow line problem. How much the spacing of the "crevasses" presented 
in Fig. 4 is mesh dependent? All these feature (distribution of the plastic strain larger than 0.03, upper and lower surface 
undulations) seem to be of the element size. Information regarding the mesh are really needed, as well as a clear study of 
the sensitivity of the results to mesh refinement. 5 
 
AR: Failure in ice is marked by localized strain, and strain localization is well-known to be mesh-dependent 

under rate-independent plasticity (the brittle rheology in DynEarthSol3D). Usually what people mean by 
mesh-dependence in this context is that the width of a band of localized strain is determined by element size 
and/or the orientation of the band tends to follow "grains" of a mesh even though they are not consistent 10 
with stress field.  
We present experiments with halved resolution. Computational resources did not allow for a presentation of 
quartered resolution. 

 1. See new Figure 8 
 15 
Other remarks 
R1: page 2, line 8: add "e.g." in front of these references as they are not exhaustive on that subject. The same remarks 
apply at other places in the manuscript. 
AR: Ok. 
R1: page 2, lines 10-14: the tone of this introduction is a bit naive? You are writing in TC, people have heard about 20 
calving? 
AR: Ok. 
R1: page 2, line 17: there is nothing about LEF mechanics in Larour et al. (2012) paper. 
AR: You’re right: it’s a 2004 paper. Cited. 
R1: page 2, line 19: or a mixture of both like in Krug et al. (2014). 25 
AR: Krug et al. (2014) is cited later. We moved it up though. 
R1: page, line 23: over very short time scales? 
AR: Ok. 

R1: Equation (1): define σe as well. The definition of the effective pressure should be presented here. 
AR: Ok. 30 
R1: page 3, line 11: Most ice-flow numerical models 
AR: Ok.  
R1: page 3, line 18: I don’t agree that viscous model are not capable to represent ice failure and ice retreat. As far as I 
know (and some of these paper are cited in the present manuscript), there have been some work to include these 
processes. 35 
AR: Rephrased. 
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R1: page 3, line 26: the need of elastic stress to be accounted for is a bit affirmative and, as it is said in this paper, 
would need some modeling effort to really understand how important it is to account for them. Moreover, I think it really 
depends at which scale (time and space) you are interested, which should be mentioned. 
AR: The papers suggested below employ elasticity to simulate very realistic calving of ice. So we ite those as 

examples that show the potential for realistic calving simulation when elasticity is accounted for; obviously 5 
the spatio-temporal scales we are interested in are those which can resolve accumulated effects of brittle 
failure: or calving fronts on the yearly to decadal time span.  
But we tempered the statement anyway. 

R1: page 4, line 14: some words in the introduction about particle models or discrete element models would be 
interesting (e.g. Bassis and Jacobs, 2013; Åström and others, 2014), and how they compare to the present approach. 10 
AR: Ok. 
R1: page 4, line 17: the main issue of using a Lagrangian approach in glaciology relies in accounting for the 
in/outcoming flux of ice on the domain boundaries (accumulation and/or ablation on the surface, melting/accretion at the 
base). You should mention in the manuscript how this problem is (or will) be overcome for realistic applications. 
AR: Ok. 15 
R1: page 4, line 19: FS models neglect acceleration because it is completely negligible for the time step of interest of 
many applications. In the proposed applications, it would be interesting to document the relative contribution of 
acceleration in the total momentum. Their importance, as stated here, has still to be proven? 
AR: Agreed: their importance, as stated here, has yet to be explicitly shown. However, the particle models 

suggested in this review nicely capture the dynamics of calving: these models account entirely for 20 
acceleration. But we believe that the proportional importance of dynamic and static formulations of 
momentum conservation for calving applications are best left to future work, as this paper’s scope is limited 
to rheological choices. Further, while not applied to ice directly, Choi et al. [2013] discuss the range of quasi-
static damping parameters employed in DES in much greater detail.  

R1: page 5, line 5: avoid repeating "of ice". 25 
AR: Ok. 
R1: page 5, line 7: from my experience, a Dirichlet BC is only required where you have an output flow and not on all 
the boundaries, as it seems the case here. Does it come from the Lagrangian formulation? 
AR: The mobile nature of the mesh – that all nodes are free to move and can be deleted or added– is why we 

prescribe Dirichlet conditions. This model was developed to simulate very large strain problems in elasticity, 30 
and this is the mesh required for such a problem.  

R1: page 5, line 13: This sentence is not clear and looks technical more than related to the physics in the model? 
Which equation is solved for incompressibility should be given here, whereas how it is solved should be given in the 
following section. 
AR: Ok. 35 
R1: page 5, line 23: it is not clear if the floatation is fulfilled for the floating part?  
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AR: We clarified the language.  
R1: page 5, line 25: you mean an explicit time-stepping scheme?  
AR: Clarified: explicit (in time), finite-element in space. That is, explicit time integration, finite element method. 
R1: page 6, line 6: are given in Choi et al. [2013]. 
AR: “mass scaling technique that is detailed in Choi et al., 2013” 5 
R1: page 6, line 14: no need to define again the minimum element facet length. 
AR: Ok. 
R1: page 7, line 25: I don’t really think this list of capabilities is relevant for the present paper  
AR: We strongly believe they are: that these experiments presented in Choi et al. [2013] is proof to the reader that 

the model numerics have been verified and validated. The reader of a numerical modeling paper should care 10 
that a model has passed its required benchmark tests.  
But to un-clutter the manuscript we have moved this albeit simple statement to Appendix A. 

R1: page 8, line 4: we divide this section (delete the) 
AR: Ok. 
R1: page 9, line 4: the two order of magnitude differences in term of stress certainly is the result of the very particular 15 
boundary conditions applied here and therefore no real conclusion can be drawn from this setup regarding a realistic case 
(see major remarks). 
AR: See new Figure 5. 
R1: page 9, line 5: (Figs. 3a and b) 
AR: Ok. 20 
R1: page 9, line 9: (Figs. 3e and f) 
AR: Ok. 
R1: page 9, line 16: So why not showing these better results obtained with an higher resolution? In any case, a 
sensitivity study of our results to the mesh resolution would clearly improve the strengh of the paper. 
AR: Agreed; we now present results for halved resolution. 25 
R1: page 9, line 25: How much the spacing shown in Fig. 4 is dependent of the mesh. In other words, do you get the 
same spacing with a mesh with halved elements? 
AR: Also see major comment response. 
R1: page 10, line 23: The most appropriate variable to write a criteria for damage would be the Cauchy stress, not the 
strain or strain-rate. 30 
AR: Duddu et al., 2013 (GRL, reviewer 2 is a co-author) use a critical strain (p. 964).  
R1: page 12, line 9: How would you account for basal melting in a Lagrangian model? 
AR: Basal melting is often reported in the literature in terms of meters per year of loss. We admit our 

implementation of this is unsophisticated and remains to be developed further. As yet, we (would) apply a 
Dirichlet velocity condition, in meters per year, which moves nodes vertically at those melting rates – 35 
effectively thinning the tongue. This does not change the shape or sharp-ness of various features, as might be 
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expected in nature, or as is examined in more detail in numerous papers.   In any case, the effect of melting 
is simply not the focus of this paper. 

R1: The basal geometry from Fig. 3 does not correspond to the setup presented in Fig. 2a. In Fig 2a it is a straight line 
over 10 km whereas in Fig 3 there is two lines that define the base (over the same 10 km)? I am wondering if the 10 km 
scale indicated in Fig. 3 is therefore correct? An horizontal scale in Fig. 4 would be helpful for the same reason. 5 
AR: The geometric setup in 2a indicates that ice is advected down a 3 degree plane until it reaches 10 km in the 

domain, at which point it is forced flat. Not sure where in Fig. 3 you are seeing two lines other than the 3 
degree plane leading to a flat plane after 10 km. The length of the ice is also 10 km long. The 10 km scale is 
correct.  
We added a horizontal scale bar to Fig. 4.  10 

R1: The geometry in Figs. 5 and 6 look very mesh dependent and it would require some convincing arguments (i.e., a 
mesh sensitivity study) before moving to physical explanations about these modeled features as done in Fig. 7. 
AR: See response to major comment. 
References 
R1: Åström, J. A., D. Vallot, M. Schäfer, E. Z. Welty, S. O’Neel, T. Bartholomaus, Y. Liu, T. Riikilä, T. Zwinger, J. Timonen 15 
and others. 2014, Termini of calving glaciers as self-organized critical systems. Nature Geoscience, 7(12), 874–878. 
AR: Ok. 
R1: Bassis, J. and S. Jacobs. 2013, Diverse calving patterns linked to glacier geometry. Nature Geo- science, 6(10), 833–
836. 
AR: It’s already there. 20 
 
 
[We have bolded questions to help ease the reading here, and broken apart the referee comment to make clear 
our responses to individual questions within the discussion.] 
  25 
Author response to reviewer 2, Jeremy Bassis: 
R2: 1. Rheology and yield relations. I would like to see a much more detailed description of the spectrum of 
rheologies and yield relations used. The authors provide a description of the usual power-law viscous creep deformation 
glaciologists are used to, but few equations describing the rheology beyond this. I recognize that the model used is fully 
documented in prior publications. However, the authors are introducing concepts that are new (or at least less familiar) to 30 
glaciologists and some hand holding is appropriate. There are also some details that are missing. For example, the 2D 
viscoelastic simulations are presumably done under plane stress or plane strain conditions, but I could not find which in 
the manuscript. (I apologize to the authors if I missed this in the manuscript.) More importantly, I would like to see 
equations describing the yield relations and some description of the assumptions. 
AR: We include an exhaustive exposition of all rheological assumptions and flow laws now in a new section 2.2. 35 
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 For example, the authors state that they use a Mohr-Coulomb yield strength. The typical interpretation of the 
MohrCoulomb yield strength is that materials fail when the maximum shear stress exceeds a threshold that depends on the 
normal stress and a cohesion parameter. This is occasionally interpreted as the initiation of new faults or the re-activiation 
of previously existing faults. Which interpretation are the authors assuming? Or does it not matter? 
AR: It can be both. At the beginning of the simulation no plastic strain has accumulated, so prior to any failure 5 

(the ice is truly virgin) exceeding the failure threshold represents the initiation of new ‘faults,’ however 
throughout the model run previously broken areas can accumulate more plastic strain provided the failure 
thresholds (now detailed exhaustively) are met. 
We make explicit this interpretation in section 2.2 now. 

 10 
Also, what happens above the yield strength?  
AR: Material follows plastic flow law (new section 2.2). 
 
Does the yield strength denote a boundary between flow laws, as in a Bingham plastic? What happens once ice has 
failed? Does it return to behaving like intact ice if the stress decreases beneath the yield strength (as is true in a 15 
granular material) or does it continue to behave as dam aged ice once yielded, irrespective of the current state of 
stress? 
AR: Once ice is broken it is broken: no healing occurs in this rheology. So an element that has reached brittle 

failure continues to be evaluated as elastic (and can break further if the tresses reach MC threshold) but it is 
no longer evaluated as Maxwell. We arrived at this by way of the calibration experiments that indicated that 20 
we could only reproduce the strain-time curves with this requirement.  

 
Another question I have relates to tensile versus shear failure. For example, typically, we think of crevasses as tensile failure 
features, but the Mohr Coulomb failure envelope is usually applied to shear failure. (In the absence of a cohesive strength, 
a MohrCoulomb failure law implies no tensile strength.) How do the authors simulate tensile failure as opposed to 25 
shear failure? Are there different yield strengths used? 
AR: We have a Mohr-Coulomb envelope with cohesive strength and are often in the tensile region in the 

shallower ice depths. So we accommodate both tensile and shear failure,  
and this is now explicitly apparent in Section 2.2. 

 30 
Typically, faulting is more important in the Earth, but in ice people often focus on tensile failure. (We partially dispute 
this. (us too!) See for example, Bassis and Walker, 2012, Proceedings of the Royal Society.). Moreover, failure envelopes in 
compression and tension are usually very different with compressive strengths much larger than tensile strengths. Is this 
accommodated in the model? Is compressive failure considered negligible?  
AR: We do not model compressive failure, and believe that at least for our simulations (where there are no 35 

pinning points – for instance) compressive failure is negligible.  
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This is stated explicitly now (Section 2.2, and in Appendix A). 
 
There are also some technical questions associated with simulating yielded ice. We (and others) have found that the 
maximum shear stress criterion associated with Coulomb-like failure can be difficult to implement numerically. Instead, we 
(and many others) often prefer to use the effective stress (2nd deviatoric stress invariant). This is qualitatively similar, but 5 
corresponds to a Drucker-Prager granular material and not a Coulomb-granular material. I assume the authors are using 
the Coulomb criterion, but do the authors need to stabilize the method to avoid the numerical errors associated with 
the non-robustness of finding a maximum?  
AR: We use an explicit (shown in great detail now) formulation that guaranties that the failure occurs at the max. 
 10 
All of these questions leave me with an imperfect understanding of the physics assumed by the authors and this clouds my 
understanding of the results that follow from these assumptions. I suspect most readers will have similar questions and it 
will help tremendously if the authors step us through the assumptions and assumed physics instead of rushing us through 
to the results. In many ways, I think the physical model has much greater value than the preliminary results so I urge the 
authors to take the time to explain the model thoroughly to the audience. 15 
AR: Valid concerns and astute questions all. 
 1. See new Section 2.2 
 2. See new Appendix A 
 
R2: 2. Boundary conditions. The authors specify velocity boundary conditions at the left, bottom and right edges of 20 
the domain. Specifying a velocity boundary condition at the bottom is a bit odd. Typically, we would specify a sliding law 
or, alternatively no-slip or free-slip boundary conditions. I’m a little bit worried that the velocity boundary condition 
contaminates the results. I would recommend either re-running simulations using a sliding law. We often like to do 
both the free-slip and no-slip conditions to bracket behavior when doing idealized experiments where we don’t want to 
specify parameters in a sliding law. If this is unfeasible, then I think some additional justification for the boundary 25 
conditions is appropriate. If the authors maintain the velocity boundary condition the authors should plot basal shear 
stress. Basal velocities are specified to be reasonable, but does this produce realistic basal shear stresses? The 
authors also might want to consider using a free-slip boundary condition for the vertical displacement in the left 
side of the domain. This will avoid the weird abrupt decrease in ice thickness near the left wall.  
 30 
AR: Good point.  

We show now more of our motivation for Experiment 1, and opted for your suggestion to run ome cases 
(now either shown or touched on in manuscript): 
1. Experiment 2: purely ductile and brittle ice, no-slip / free-slip: these show that the velocity BCs do not 
contaminate the stress field, and that we can believe the stresses we see in Experiment 1 35 

 2. Experiment 2: semi-brittle ice, no-slip  
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R2: 3. Model numerics and comparison with existing solutions. The model that the authors are using is a complex 
viscoelastic model used to study solid Earth deformation. The model appears to have been well benchmarked agains 
standard solutions and so hopefully the model numerics is well understood. However, there are aspects of the numerics 
associated with the flow of ice that are not as well represented in the previous set of benchmark experiments. In 5 
particular, the mass weighting and damping to obtain stable solutions in the explicit integration of the Navier-
Stokes equations (with inertia) does not appear to have been calibrated with ice is mind.  
 
AR:  This damping scheme does not depend on material properties specific to tectonics; rather, it is a numerical 

technique employed based on the characteristic speed of the phenomenon that the user wishes to resolve. 10 
But we include now in Appendix A the results of a validating experiment wherein we tuned model 
parameters to reproduce strain- and strain-rate-vs-time curves for laboratory prepared ice, in essentially the 
same exercise as in Duddu and Waisman, 2012. Reproducing this behavior in our semi-brittle ice required a 
great amount of parameter suite exploration, including the mass weighting and characteristic speeds, as well 
as exploration in the ductile to brittle strain rate threshold. Truly, the strain-time behavior of this semi-brittle 15 
rheology is sensitive to parameters, and our matching the strain- / strain-rate-vs-time behavior should give 
the reader some assurance that the parameters used in the idealized experiments are those which give the 
most realistic representation of ice behavior that we are able to reproduce. 

  
 This raises some questions about the appropriateness of the numerical parameters. The mass weighting method that the 20 
authors use to time step the Navier-Stokes equations is one of the those methods that gets periodically rediscovered. I 
would personally prefer if the authors made it clear that the mass weighted explicit integration is used as a means 
of avoiding the cumbersome and expensive task of solving of large-non-linear sets of equations and that 
individual time steps do not provide accurate solution to the equations of motions. The hope is that over long time 
scales the solution is approximately steady-state, which corresponds to the Stokes equations that the authors rely want to 25 
solve. Presumably,  one could use, say, a multi grid or other fancy numerical solver instead to find the solution to the 
elliptical set of equations. Having said this, it would be nice if the authors could show that the model that they use is 
able to reproduce existing analytic or benchmark solutions for glacier flow. 
 
AR:  So noted. As an aside, we disagree that this method does not “provide [an] accurate solution to the equations 30 

of motions”: e.g., Hughes [2000], Detournay and Dzik [2006], De Micheli and Mocellin [2009], Choi et al. 
[2013], Ta et al. [2015], Lavier and Wu, [2016], to list a scant few (cited within), show that these techniques do 
provide accurate solutions to the equation of motion.  

 
There have been a number of model inter comparisons that the authors could consider. I’m agnostic to the choice, but it 35 
would be reassuring to show that under viscous conditions, the authors can reproduce standard solutions for velocities and 
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ice thickness. The authors have probably already done this and so a few sentences or a section in an Appendix would be all 
that is required. If possible, it would be great to see some convergence studies to show that the results shown in the paper 
are not numerical artifacts or signs of instabilities. The figures in the paper show jagged ice shelves. I suspect that 
failure will look more realistic if the authors conduct higher resolution model runs.  
 5 
AR:  These are all really important aspects of model development, verification/validation, and presentation. You are 

correct in assuming that we have explored the ISMIP-HOM suite of experiments. Unfortunately, because DES’ 
mesh is completely mobile, it is impossible to apply the periodic boundary conditions necessary to validate 
the model against Experiment F in Pattyn et al. [2008; ISMIP-HOM]. However we are able to reproduce 
Experiment E (Haut Glacier d’Arolla) with some success. This is shown in Appendix B. 10 
1. See new Appendix A: material and numerical parameters that reproduce laboratory-derived strain-time 
curves reported by Mahrenholtz and Wu, 1998. 
2. See new Appendix B: Arolla Glacier benchmark experiment reproduced (from Pattyn et al., 008, I SMIP-
HOM).  

 15 
R2: 4. Interpretation of model results: One of the most intriguing results that the authors obtain is that they 
produce basal crevasses under ice shelves. We tried to explain these features in a recent paper using a perturbation 
approach (Bassis and Yue, 2015, EPSL). We focused on viscous instead of brittle ice and found a long wavelength instability 
that could result in wide basal crevasses so long as the stress was sufficiently large compared to the confining pressure. In 
our formalism, we can also examine brittle failure by taking the limit that the flow law exponent (n) tends to infinity. When 20 
we do this we find that the dominant wavelength is of the order of the ice thickness. The growth rate of perturbations, 
however, becomes extremely large. This is a consequence of the fact that in our model, we assume the ice is isothermal. 
This implies that over long wavelengths, the strain rate and deviator stress are both constant with depth and the entire ice 
shelf reaches the yield strength at the same time. This raises the question of whether the results here are consistent or 
inconsistent with our (admittedly limited) analytic result? If not, what controls the rate at which brittle failure 25 
propagates. What control the spacing between basal crevasses? Incidentally, the perturbation analysis that we 
conduct is analogous to some of the original perturbation calculations to explain boudinage in rock by Smith and others. 
 
AR:  These are important questions; we’re glad you brought to our attention your formalism, and in the 

manuscript now we engage with a comparison – albeit briefly. We thought that it was important to show 30 
these results to the community so that questions such as the rate of brittle failure, the spacing of boudins 
may be addressed by the community and in our future work. We explicitly admit to the limitation of our work 
and that many remaining aspects need to be addressed in future work. 

 
 35 
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R2: 5. Clarification of the role of elastic stresses: The authors make a really interesting point that despite the fact 
that elastic stress decay over long time scales, the fractures that result from elastic stresses remain important. Based on 
this, the authors argue that we need viscoelastic rheologies to accomodate failure. I don’t disagree with the authors. 
However, if elastic stresses are important (through their role in promoting failure) then, unlike purely viscous flow, 
simulations become an initial value problem. What I mean by this is that in purely viscous flow we can initialize a model 5 
with an unrealistic initial condition. The unrealistic initial condition will generates shocks in the model that will relax over 
time and we typically either initialize a model in such a way as to not generate shocks or allow the model to spin up until 
those shocks have sufficiently dissipated that the model is no longer contaminated by these shocks. In a viscoelastic model 
with failure, it seems possible that the template for failure will be strongly controlled by the initial condition -- especially if 
the initial condition is unrealistic and generates shocks. The authors are starting with simple wedges and allowing them to 10 
evolve. Do the authors obtain similar results if the model is first spun up to a quasi-steady state consistent with 
purely viscous flow and only then is failure allowed to occur? Do elastic stresses remain important if the model is 
started from a configuration in which elastic stresses have already decayed? What is an appropriate starting 
condition for models or is the initial condition not that important? 
 15 
AR:  This is a very nice point, and while not the focus of this paper, we note that we did in fact run experiments 

(not shown in the manuscript because they look exactly the same) where we initialized semi-brittle rheology 
but held the geometry in place to allow for elastic shocks to dissipate. These resulted in exactly the same 
failure pattern and geometry of the floating tongue shown in the manuscript. To look at the rate of fracture 
propagation in the context of elastic shocks and competing viscoelastic damping we need to implement an 20 
adaptive time stepping scheme that depends on occurrence of brittle failure and initiate the model with 
preloading.  This is most assuredly the scope of future work. 

 
 Incidental comments:  
R2: Page 3, near line 5 “Ductile fracture is initiated by the formation of distributed voids that eventually coalesce to 25 
form a macroscopic fracture”. Laboratory experiments indicate that ductile failure growth through the nucleation and 
growth of voids does not occur in ice. Fractures instead usually propagate through the formation and propagation of 
micro-cracks. I think that is what we proposed occurs ahead of the rift in the Amery Ice Shelf. The void growth mode of 
failure occurs in metals (perhaps rocks as well?), but to my knowledge is inapplicable to ice under terrestrial conditions. 
There is, of course, the separate question of whether the macroscopic behavior of ice in glaciers can be simulated using a 30 
framework appropriate for ductile failure of metals. However, I would like the distinction to be made more clearly in the 
manuscript. 
 
AR: This is an incisive point (we were attempting to say as much); regardless, clarified. 
 35 
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R2: Page 8, left, right and bottom velocities are set to 300 m/a. First, I recommend using more physical notation, like 
inflow, outflow and basal boundary conditions, including left, right, bottom as the authors see fit. Second, the fact that the 
velocity is constant implies no bulk extensional stresses, which seems odd for a glacier. I would appreciate more description 
for the motivation for this set of experiments. I’m less confident for the evidence of a sharp brittle-ductile transition at a 
critical strain rate. We clearly see tensile fractures at a range of strain rates, with the controlling variable usually stress. Of 5 
course, stress and strain rate are interchangeable if the ice is isothermal, but that is not often the case. 
 
AR: We agree: replaced left/bottom/right with inflow/basal/outflow. And yes, we also agree that ot allowing any 

bulk extensional stress (or strain, we prefer to think) is odd for a glacier. We clarify that this is not a glacier: 
we’re only setting up this scenario to see how these two rheologies undergo a bending moment, admitting 10 
that almost no extrapolations that can be made from this experiment to features of interest (like basal 
crevasses) in an actual glacier. Experiment 1 motivates Experiment 2: Experiment 1 shows us vertical, 
localized, regular failure, which motivates semi-brittle ice as a rheology (since we want to reproduce vertical, 
localized, regular failure in a **only** slightly more realistic setup – Experiment 2).  

 15 
R2: Page 1 Line 15: “We find that the use of a semi-brittle constitutive law is a necessary material condition to form 
the . . .” I believe necessary should be replaced with sufficient. I don’t think the authors have proven that no other 
conditions are able to reproduce fields of basal crevasses. What they have demonstrated is that a brittle rheology is 
sufficient to produce this feature. 
 20 
AR:  Agreed and changed. 
 
R2: Page 3 Line 5: Usually brittle failure of ice is thought to be a consequence of high stresses rather than strain rates. 
See, e.g., Vaughan, Journal of Glaciology, 1993 “Relating the occurrence of crevasses to strain rates”.  
 25 
AR: Rephrased.  
 
R2: Page 3 Line 5: The point about ductile failure versus brittle failure is subtle. The coalescence of voids to form 
macroscopic fractures might actually be brittle. At the very least, the formation of these voids appears to be seismic. But 
the brittle failure that occurs may act like plastic or ductile failure over macroscopic length scales.  30 
 
AR: Trenchant comment; we agree that macroscopic failure may be approximated by plastic or ductile failure, and 

say that explicitly instead.  
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R2: Page 3, Line 20 It seems odd to claim that models based on Linear Elastic Fracture Mechanics do not predict the 
correct stresses if their rheology is assumed to be purely viscous. By definition the “E” in LEFM corresponds to elastic so how 
can the rheology be assumed to be purely viscous? 
 
AR: You’re right: it’s odd. Reviewer 1 had qualms with this statement and we rephrased accordingly. 5 
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Abstract. We present a semi-brittle rheology and explore its potential for simulating glacier and ice 

sheet deformation using a numerical model DynEarthSol3D (DES) in simple, idealized experiments. 

DES is a finite element solver for the dynamic and quasi-static simulation of continuous media. The 20 

experiments within demonstrate the potential for DES to simulate ice failure and deformation in 

dynamic regions of glaciers, especially at quickly changing boundaries like glacier termini in contact 

with the ocean. We explore the effect that different rheological assumptions have on the pattern of flow 

and failure. We find that the use of a semi-brittle constitutive law is a sufficient material condition to 

form the characteristic pattern of basal crevasse-aided pinch-and-swell geometry, which is observed 25 

globally in floating portions of ice and can often aid in eroding the ice sheet margins in direct contact 

with oceans. 
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Keywords:  

Numerical modeling, rheology, ice fracture, basal crevasses.  

1 Introduction 

Accurate prediction of global sea-level rise depends critically on numerical models’ ability to project 

the removal of ice from the margins of ice sheets and glaciers under climate change scenarios – 5 

especially those in contact with oceans. In the past five years numerical models have largely risen to the 

challenge of simulating the continent-scale, steady state viscous flow of ice, leading to the development 

of the latest class of ice sheet models that represent ice physics across many flow regimes and in three 

spatial dimensions. These are often non-linearly viscous, thermo-mechanical models that solve the so-

called full-Stokes (FS) equations (e.g., Gagliardini and Zwinger, 2008; Larour et al., 2012). Models 10 

based on shallow ice (SIA) and shallow shelf (SSA) approximations of the FS equations are also in 

wide use and simulate ice flow well in most areas (e.g. Winkelmann et al., 2011; Lipscomb et al., 2013). 

Regardless of their computational cores, most models are designed largely for steady state flow, or 

diagnostic execution; there are several widely used models designed to simulate prognostic, time-

dependent ice flow (e.g., Martin et al., 2004; Gagliardini and Zwinger, 2008; Larour et al., 2012) and 15 

therefore specifically equipped to simulate ice retreat.   

Despite recent advances many pertinent questions in glaciology remain that could potentially be 

addressed best from a computational perspective, particularly with regard to calving. However 

representing the smaller scale physics at the heart of this particular problem (i.e., the fracture of 

crystalline material) often imposes too large a computational cost to remain a tractable problem for 20 

many models. Thus both the FS and SIA/SSA formulations often employ parametrizations for the most 

physically complicated aspects of their systems. In particular, the failure of ice within many ice sheet 

models is often treated using Linear Elastic Fracture Mechanics (e.g., Larour et al., 2004), as a 

rheologically more flexible, time-dependent scalar damage field  (e.g., Duddu et al., 2012), or a mixture 

of the two (Krug et al., 2014). 25 
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Ice rheology has been studied using both geophysical observations and laboratory experiments 

(Budd & Jacka, 1989; Sammonds et al., 1998; Goldsby and Kohlstedt, 2001; Mahrenholtz and Wu, 

1992). Over short time scales ice behaves elastically before yielding or flowing viscously.  Over long 

time scales ice behaves as a viscous fluid for which the viscosity is non-linearly dependent on both 

temperature and effective stress (Glen, 1955). The resulting constitutive law is called Glen’s flow law in 5 

glaciological literature and can be written as: 

𝜀! =  𝐴𝜎!!,            (1) 

where 𝐴 represents an Arrhenius temperature relation,  𝜀! is the effective strain rate (the square root of 

the second invariant of the full strain rate tensor), 𝜎!! is the effective pressure, and n is typically set to 3. 

Laboratory experiments also show that ice strain-rate hardens and that it starts to fracture in a brittle 10 

manner at high strain rate (Schulson and Duval, 2009). In nature, calving results from the fracture of ice 

and is a consequence of brittle or ductile deformation (van der Veen, 1998; Weiss, 2004).  Ductile 

fracture is initiated by the formation of micro-cracks that eventually coalesce to form a macroscopic 

fracture (seen for example in the Amery Ice Shelf, Bassis et al., 2008), and is a slow process for which 

weakening by micro-cracks occurs over a prolonged stress plateau. On the other hand, the breaking or 15 

damage process for brittle fractures occurs abruptly for a given value of stress and strain-rate 

(Sammonds et al., 1998; Schulson and Duval, 2009).  

 Most ice-flow numerical models simulate the long-term (hundreds to thousands of years), large-

scale behaviour of ice sheets using a non-linear viscous formulation to calculate the stress tensor (e.g., 

Larour et al., 2012). Indeed, for simulating long term flow of ice sheets this is an excellent 20 

approximation as the Maxwell viscoelastic stress relaxation timescale (time to dissipate elastic stresses) 

is on the order of a hours to days – depending on local material properties that affect the ice viscosity 

and shear modulus (MacAyeal & Sergienko, 2013). When simulating ice rupture however these models 

they often employ failure criteria developed with elastic underpinnings. For example, Linear Elastic 

Fracture Mechanics has been a popular and largely accurate criterion for simulating ice fracture when 25 

compared to in-situ crevasse measurements (e.g., van der Veen, 1998; Rist et al., 1999; Mottram and 

Benn, 2009; Luckman et al., 2012; Krug et al., 2014). Particle-based numerical models also show a 
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great deal of promise for the simulation of tidewater glacier calving on an interannual time scale, where 

ice failure occurs via the breakage of elastic bonds. Bassis and Jacobs (2013) recently modeled the 

retreat of Helheim glacier using tightly packed particles that interacted elastically and broke once a 

threshold stress was achieved, often due to the influences of basal topography and buoyancy in floating 

portions. Astrom et al. (2013) also implemented a particle-based model that included the effects of 5 

viscosity by allowing particles joined by elastic beams to form new bonds with nearby particles when 

stresses were below brittle failure. Thus even though long-term ice flow is approximated well by purely 

viscous formulations, efforts to simulate ice failure typically incorporate some measure of elastic ice 

behaviour. 

 While it is true that the Maxwell viscoelastic relaxation time is on the order of hours to days 10 

(very short times scales), the consideration of elastic stresses may prove illuminating and useful in 

understanding terminus retreat. This retreat depends on a long history of failure accumulation – accrued 

over time scales orders of magnitude larger than the Maxwell relaxation time – as well as a time-

dependent forcing by the ocean on the floating ice (e.g., Bindschadler et al., 2011). For example, 

calving via the detachment of large, tabular icebergs is an important end-member of observed calving 15 

styles (Amundsen and Truffer, 2010). The fractures that determine the size of very large icebergs—such 

as the ‘loose tooth’ at the terminus of the Amery Ice Shelf, and thus the calving rate in these locations – 

are exactly those features that result from brittle or ductile deformation over yearly to decadal time 

scales (Bassis et al., 2008). Thus while the elastic component of stress relaxes away over long-term 

simulations, the fractures resulting from the elastic component of stress remain and affect the ice 20 

dynamics (e.g., the complete disintegration of the Larsen B Ice Shelf, examined by Glasser and 

Scambos, 2008).  

In this paper we employ a Lagrangian finite element method with explicit time integration that 

allows for both elastic and viscous component of ice deformation to be taken in to account, while 

simulating ice failure on unstructured meshes. We examine how failure zones form and propagate in an 25 

advecting ice slab as it loses contact with the underlying bedrock and begins to float while relaxing the 

rheological assumption of ice as a purely non-linear viscous material. The model exploration here is not 

meant to be wide-reaching and exhaustive; rather, it is presented as a tool to aid in the exploration of 
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how the failure of ice impacts its flow, and how rheological assumptions result in different qualitative 

expressions of ice flow and failure. 

2 Model description 

DES (DynEarthSol3D) is a robust, adaptive, two- and three-dimensional finite element method that 

solves the momentum balance and heat equation in Lagrangian form using unstructured meshes. 5 

2.1 Equations of motion 

While many FS models neglect acceleration and formulate ice flow as a static problem, momentum 

conservation in DES takes the full dynamic form: 

𝜌𝒖 =  𝛁 ∙ 𝝈+  𝜌𝒈,           (2) 

where 𝜌 is the material density, 𝒖 is the velocity vector, 𝝈 is the Cauchy stress tensor, and 𝒈 is the 10 

acceleration due to gravity. The dot above 𝒖 is the total time derivative, and variables in boldface are 

vectors or tensors. The ∇· is the divergence operator. DES is designed to solve dynamic and quasi-static 

problems by applying the dynamic relaxation technique (Cundall, 1989) to Eq. (2), of which details are 

given below.  

 The temperature field of the ice is modeled using the following heat equation: 15 

𝜌𝑐!𝑇 + 𝒗 ∙ 𝛁𝑻 =  𝑘𝛁𝟐𝑻,          (3) 

 where T is the temperature in Kelvin, cp is the heat capacity of ice, and k is the thermal conductivity. 

We do not include the effects of deformational strain heating within the ice. For the temperature field 

we impose Dirichlet boundary conditions on the ice surface and base, as well as at any water 

boundaries. 20 

  The governing equations are discretized using an unstructured mesh composed of triangular 

(2D) or tetrahedral (3D) elements. The approximate displacement 𝒙, velocity 𝒖, acceleration 𝒂, force 𝒇, 

and temperature 𝑇 are defined with linear basis functions (i.e., with P1 elements), while other physical 

quantities (e.g., stress 𝝈 and strain 𝜺) and material properties (e.g., density 𝜌 and viscosity 𝜂) are 
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piecewise constant over elements. Conservation of mass is enforced via elasticity rather than the 

incompressibility condition. A general schematic of DES’ solution scheme is shown in Fig. 1. 

  In DES we make use of both stress and velocity Dirichlet boundary conditions. Neumann 

conditions are not yet accommodated by DES and so – as the focus of this work is on rheology – we 

neglect the effects of accumulation and ablation (via either surface or basal melting) which are often 5 

prescribed via flux conditions. Subaerial ice is subject to a traction-free boundary condition, or σ · n = 

0. Floating ice is subject to an applied normal stress equal to the weight of the water column displaced 

by the ice plus an additional, diurnal tidal signal of 1 m amplitude. As yet, the location of grounding 

lines are prescribed a priori in DES and do not evolve according to ice thickness or other environmental 

variables.  10 

2.2 Constitutive relations 

The following is a recapitulation of the presentation of DES’ constitutive formulation presented by Choi 

et al. [2013]. The interested reader is directed to that work and its references that describe the well-

established field of the numerical modeling of large-strain continuum problems involving material 

failure and elasticity.  15 

The user has the choice in DES of either evaluating the stress field as linear elastic (with the 

option of employing a Mohr-Coulomb failure threshold), or linear Maxwell viscoelastic (with no 

associated failure threshold). We use the former (often termed elastoplastic) to approximate the brittle, 

rupture-prone behavior of ice. In tectonophysics, for example, elastoplasticity is often understood as the 

formation or activation of faults. We take a similar interpretation of this rheology as applied to ice: 20 

while in our experiments ice is initially rupture-free, the brittle failure of ice approximated by this 

rheology indicates both the initiation of zones of failure and enables the re-activation of older zones of 

failure.  

For the ductile, rupture-free behavior of ice we use Maxwell viscoelasticity with no associated 

failure threshold. Finally, as ice in nature both simultaneously flows and ruptures, we combine the two 25 
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stress evaluations in a third constitutive framework which we call semi-brittle. This case simply 

calculates both the brittle (elastoplastic) and ductile (viscoelastic) stresses at each point in time in the 

domain and, depending on a strain-rate threshold (Schulson and Duval, 2009), selects the ductile stress 

if the local strain rate is below the threshold and the brittle stress if the strain rate is above the threshold. 

Many numerical and material parameters play a role in these stress evaluations, and we have tuned 5 

those parameters to match laboratory-derived strain- and strain-rate-versus-time curves (Appendix A). 

In DES the updated stress tensor in the momentum equation is calculated using the strain rate 

and strain tensors. These are determined by the constitutive relation. For the ductile (Maxwell 

viscoelastic) rheology, viscosity is determined by Glen’s flow law: 

𝜂 =  !
!

 𝐴!! ! 𝜀!
(!!!) ! .          (4) 10 

The stress update is given by: 

𝑑𝑒𝑣 𝝈!! ∆! =  2𝜂 𝑑𝑒𝑣 (𝜺!)+ 𝐾 𝑡𝑟(𝜺),        (5) 

where dev(*) and tr(*) indicate the deviatoric component and trace of the quantity in the parentheses, 

and K is the bulk modulus. For the ductile (viscoelastic, VE) rheology the constitutive update is given 

by the total deviatoric strain increment which is composed of a viscous and elastic contribution 15 

corresponding to the mechanical analog of a spring and dashpot in series (a Maxwell element): 

𝑑𝑒𝑣 ∆𝜺 =  !"#(∆𝝈!")
!!

+  !"# 𝝈!"  ∆!
!!

.         (6) 

Substituting ∆𝜺  with 𝜺!!Δ! −  𝜺! , Δ𝝈!"  with 𝝈!"!! Δ! −  𝝈! , and 𝝈!"  with 𝝈!"!! Δ! + 𝝈! /2 , the 

equation above is reduced to: 

𝝈!"!! !! = 𝑑𝑒𝑣 𝝈!"!! Δ! +  Δ𝑡 𝐾 𝑡𝑟 𝜺!! !!  𝑰.        (7) 20 

 The brittle (elastoplastic, EP) stress 𝝈!" is computed using linear elasticity and the Mohr-

Coulomb (MC) failure criterion with a general (associative or non-associative) flow rule. Following a 
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standard operator-splitting scheme (e.g., Lubliner, 1990; Simo and Hughes, 2004; Wilkins, 1964), an 

elastic trial stress 𝝈!"!! Δ! is first calculated as: 

𝝈!"!! !! =  𝝈! +  𝐾 −  !
!
𝐺 𝑡𝑟 𝜺!! !! 𝑰Δ𝑡 + 2𝐺𝜺!! !!Δ𝑡,      (8) 

If the elastic trial stress is on or within a yield surface, that is, 𝑓 𝝈!"!! Δ! ≥ 0, where f is the yield 

function, then the stress does not need a plastic correction. In this case 𝝈!"!! Δ! is set equal to 𝝈!"!! Δ!. If 5 

𝝈!"!! Δ! is outside the yield surface, then it is projected onto the yield surface using a return-mapping 

algorithm, (e.g., Simo and Hughes, 2004). 

In the case of a Mohr-Coulomb material, it is convenient to express the yield function for the 

tensile failure as  

𝑓! 𝜎! =  𝜎! −  𝜎!,           (9) 10 

where 𝜎! and 𝜎! are the maximal and minimal principal stresses with the convention that tension is 

positive, and 𝜎! is the yield stress in tension. For shear failure the corresponding stress envelope is 

defined as 

𝑓! 𝜎!,𝜎! =  𝜎! −  𝑁!𝜎! +  2𝐶 𝑁!,         (10) 

where C is the material’s cohesion, 𝜙 is the internal friction angle, and 𝑁! =  !!!"#!
!!!"#!

. To guarantee a 15 

unique decision on the mode of yielding (tensile versus shear), we define an additional function that 

bisects the obtuse angle made by two-yield function on the 𝜎! − 𝜎! plane, as  

𝑓! 𝜎!,𝜎! =  𝜎! −  𝜎! +  𝑁!! +  1+  𝑁! 𝜎! −  𝑁!𝜎! +  2𝐶 𝑁!     (11). 

Once yielding occurs, that is 𝑓!  < 0 or 𝑓! > 0, the mode of failure is decided based on the value of 𝑓!. 

Shear failure occurs if 𝑓!  < 0 and tensile otherwise. Ice is much stronger in compression than in 20 

tension, and, as we herein do no attempt to simulate any ice flowing over a pinning point or other such 

obstruction that would favour a compressive stress regime, we do not account for the compressive 
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failure of ice (which would necessitate the employment of a failure threshold with very different 

properties). 

Frictional materials generally follow a non-associative flow rule, meaning the direction of 

plastic flow in the principal stress space is not the same as the direction of the vector normal to the yield 

surface. The plastic flow potential for tensile failure can be defined as 5 

𝑔! 𝜎! =  𝜎! −  𝜎!,           (12) 

while the plastic flow potential for shear is 

𝑔! 𝜎!,𝜎! =  𝜎! −  !!!"#!
!!!"#!

𝜎!           (13). 

When there is plastic failure, the total strain increment is given by 

Δ𝜺 =  Δ𝜺!" +  Δ𝜺!" ,          (14) 10 

where Δ𝜺!" and Δ𝜺!" are the elastic and plastic strain increments. The plastic strain increment is 

normal to the flow potential surface and can be written as: 

Δ𝜀!" =  𝛽 !"
!"

             (15) 

where 𝛽 is the plastic flow magnitude. 𝛽 is computed by requiring that the updated stress state lies on 

the yield surface, 15 

𝑓 𝝈!"!! Δ! =  𝑓 𝝈! +  Δ𝝈!" =  0         (16). 

 In the principal component representation, 𝝈! =  𝑬!"𝝐! where 𝝈! and 𝝐! are the principal stress 

and strain, respectively, and E is a corresponding elastic moduli matrix with the following components: 

𝐸!" = 𝐾! −  !
!
𝐺  if 𝐴 ≠ 𝐵 and         (17.a) 

𝐸!" = 𝐾! +  !
!
𝐺  otherwise           (17.b). 20 

By applying the consistency condition and using 𝝈!"!! Δ! =  𝝈! +  𝑬 ∙Δ𝝐, we obtain the following 

formula for  𝛽, 

𝛽 =  !!",!
!!Δ!! !!
!"!
!"!

 for tensile failure and          (18.a) 
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) 
 for shear failure        (18.b). 

Likewise, 𝛿𝑔 𝛿𝜎 takes different forms according to the failure mode: 

𝛿𝑔 𝛿𝜎! = 0             (19.a), 

𝛿𝑔 𝛿𝜎! = 0             (19.b), 

𝛿𝑔 𝛿𝜎! = 1 for tensile failure and         (19.c) 5 

𝛿𝑔 𝛿𝜎! = 1             (20.a) 

𝛿𝑔 𝛿𝜎! = 0             (20.b) 
𝛿𝑔 𝛿𝜎! =

!!!"#!
!!!"#!

 for shear failure.          (20.c) 

Once Δ𝜺!" is computed, 𝝈!" is updated as 

𝝈!" =  𝝈!"!! Δ! −  𝑬 ∙Δ𝜺!"           (21) 10 

in the principal component representation and transformed back to the original coordinate system. After 

the viscoelastic stress and elastoplastic stress are evaluated, we compute the second invariant of the 

deviatoric components of each, and following the minimum energy principle, select the smaller of the 

two as that element’s stress update. 
 15 

 2.3 Numerical considerations 

DES is formulated as a finite element method with explicit time integration, and the order of 

calculations can be seen in Fig. 1. The advantage of using this method is that the computational cost of 

each time step is small (compared to implicit methods where advancing by one large time step involves 

the solving of large, ill-conditioned linear systems) and the implementation of non-linear rheologies is 20 

simple. 

  The use of the explicit time integration means that the time step is limited to very small values, 

on the order of ∆𝑋!"# 𝑢!"#$%&' where ∆𝑋!"# is the smallest edge length of an element and 𝑢!"#$%&' is the 

elastic wave speed (from the Courant-Friederics-Lewy condition). We overcome this limitation using 
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the mass scaling technique that is detailed in Choi et al. (2013). Because DES employs a suite of 

constitutive relations, we also need to consider the constraints on the time step size associated with the 

dominating deformational mechanism. The time step in these simulations is chosen as the minimum 

between  

∆𝑡 = min{ ∆𝑡!"#$%&' ,∆𝑡!"#$%&& }         (22) 5 

where  

∆𝑡!"#$%&' =  ∆𝑋!"# 2𝑐 𝑢!!!"          (23a) 

∆𝑡!"#$%&& =  𝜂!"# 4𝐺	          (23b)	

where c is the inertial scaling parameter related to the dynamic relaxation, ∆𝑢!!!" is the characteristic 

advective speed, 𝜂!"# is the minimum allowable viscosity, and G is the shear modulus. This scheme 10 

ensures that the dominating deformational mechanism is adequately resolved in time. As such the time 

steps in DES are on the order of seconds to hours, depending largely on mesh parameters and the 

characteristic speed of the simulation as determined by the phenomenon the user wishes to resolve. 

Typical values for c have been found to fall in the range of {104, 108} (Choi et al., 2013) and we fine 

that a value of c = 105 works well for semi-brittle ice (see Appendix A and B for ice calibration and 15 

benchmark). 

 In addition to the dynamic time-stepping routine, several other numerical techniques are 

employed that distinguish this model from implicit finite element schemes commonly used to solve FS 

systems. DES solves the dynamic momentum balance equation, Eq. (2), by damping the inertial forces 

at each time step, giving rise to the quasi-static (i.e., static with time-dependent boundary conditions) 20 

solution. Originally proposed by Cundall [1989], this variant of dynamic relaxation applies forces at 

each node in the domain opposing the direction of the node’s velocity vector: 

𝑚𝒂𝒊 =  (𝒇𝒅𝒂𝒎𝒑𝒆𝒅)𝒊 =  𝒇𝒊 −  𝜒 𝑠𝑔𝑛 𝒖𝒊 𝒇𝒊         (24) 

where the subscript i denotes the i-th component of a vector and the sgn(*) denotes the signum function. 

χ is a user-supplied damping factor (χ = 0.8 has been shown to ensure stability, e.g., Choi et al., 2013). 25 

This numerical method is employed often when simulating complex rheologies (typically encounted in 
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tectonophysics, e.g., Lavier and Wu, 2016) as a means of obviating the need to solve large, non-linear 

sets of equations encountered in purely Stokes formulations of ice flow problems. 

The linear triangular elements used in DES are known to suffer volumetric locking when subject 

to incompressible deformations (e.g., Hughes, 2000). Because we model phenomena that require 

incompressible plastic and viscous flow, we use an anti-volumetric-locking correction based on the 5 

nodal mixed discretization methodology (Detournay and Dzik, 2006; De Micheli and Mocellin, 2009). 

The technique simply averages the volumetric strain rate over a group of neighboring elements and then 

replaces each element’s volumetric strain rate with the averaged one. Choi et al. [2013] describes this 

technique in greater detail.  

Finally, DES makes use of adaptive remeshing. Based on the quality constraints selected by the 10 

user, DES assesses the mesh quality at fixed step intervals and remeshes if elements are found in 

violation (e.g., if a triangular element contains an angle smaller than some input threshold). New nodes 

may be inserted into the mesh (or old ones deleted) and the mesh topology can be changed through edge 

flipping. The nodes are provided to the Triangle library (Shewchuk, 1996) to construct a new 

triangulation of the domain. After the new mesh is created, the boundary conditions, derivatives of 15 

shape functions, and mass matrix are recalculated. When deformation is distributed over a large region 

or the whole domain, remeshing may result in a new mesh quite different from the old one. Because of 

this possibility the fields associated with nodes (e.g., velocity and temperature) are linearly interpolated 

from the old mesh to the new. For data associated with elements (e.g., strain and stress) DES uses an 

approximate conservative mapping described in detail by Ta et al. [2015]. 20 

3 Experiments: different constitutive models for ice 

Observations have shown that the bending that occurs as ice transitions from resting on land to floating 

in water (the grounding line) promotes the failure of ice from the bottom up, called basal crevasses, that 

often appear with characteristic regularity in spacing, persisting within the ice for long distances and 

eventually promoting the calving of ice (Bindschadler et al., 2011; Glasser and Scambos, 2008; Logan 25 

et al., 2013; McGrath et al., 2012; James et al., 2014; Murray et al., 2014). The main motivation of 
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using DES to understand this phenomenon (or a simplified version thereof) is its rheological flexibility. 

That is, a wide array of phenomena in nature may be explored in DES by relaxing the assumption that 

ice is a purely non-linear viscous fluid, and examining how ice deformation differs if ice is assumed to 

be ductile, brittle, or some mixture of the two.  

 To distill the effects that certain constitutive choices have on the time-dependent ice 5 

deformation, we divide this section according to how different constitutive models available within 

DES simulate the ductile, brittle, and semi-brittle deformation of ice in two different geometrically 

simple experiments: Experiment 1, a tilted, planar, pseudo-rigid box being advected through a bending 

fulcrum (Fig. 2a); and Experiment 2, a flat wedge undergoing a transition from frozen or freely-slipping 

to buoyantly floating with an added 1 m diurnal tidal signal (Fig. 2b). These experiments, while 10 

extremely simple, are designed in order to examine the effect that bending has on these relatively 

complicated rheologies. These experiments are not meant as realistic, glacier-like scenarios, but rather 

are idealized scenarios designed solely for the purpose of understanding the range of deformation 

behaviours for different constitutive formulations. Their purposeful simplicity allows us to examine the 

effect that bending has on ice and to attribute deformation and flow patterns solely to the choice in 15 

rheology. 

3.1 Purely ductile or brittle ice 

For Experiment 1, we set the ice thickness to 1000 m and prescribe the inflow, basal, and 

outflow side velocities to be 300 m yr-1, as these are realistic values for marine outlet glaciers. While 

boundary conditions in glaciers are often either formulated as a Weertman-style sliding law or 20 

completely frozen / free-slip, we have chosen to prescribe Dirichlet boundary to ensure the ice slab 

advects through a bending fulcrum (results from Experiment 2 will show this is necessary for purely 

brittle ice). The initial mesh resolution is 50 m. The inflow and basal boundary velocities are tilted to an 

angle of 3 degrees for all horizontal positions x in the domain less than 10 km, and are forced horizontal 

for x greater than this location. The temperature of the ice is defined by a linear gradient between 25 

Dirichlet conditions of −30° C at the surface to 0° C at the base. 
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Figure 3 shows the effective stress (a), strain rate (c) and viscosity (e) after twenty years model 

time for purely brittle ice. Purely brittle ice experiences stress 1 to 2 orders of magnitude higher than 

purely ductile ice (Figs. 3a and b). For the brittle case, stresses are highest (about 1 MPa) on the basal 

surface and in a thin vertical line where the surface bends at the grounding line, whereas in the ductile 

ice case we observe only a slight increase in stress at the grounding line and nowhere else. Overall we 5 

observe in both experiments lower viscosity ice at the grounding line and higher ice viscosity upstream 

and downstream of the grounding line (Figs. 3e and f), however for the ductile case there is a much 

wider zone of low viscosity ice – by as much as 2 orders of magnitude smaller than the brittle ice. This 

means that the strains associated with deformation are more localized for the brittle rheology (limited to 

about 1 or 2 elements in width making for a very small deformational process zone) and conversely 10 

very diffuse for the ductile rheology. The comparative weakness and low effective viscosity of the 

ductile rheology is reflected by the surface topography: the left-hand side of the domain in the ductile 

simulation shows a depression at the ice surface, where the ice is essentially slumping toward the right-

hand side of the domain under the force of gravity. Additionally, the velocity boundary condition 

imposed at the left side of the domain introduces an artifact in the flow that is expressed as an artificial 15 

steep surface depression: while the boundary nodes’ velocities are prescribed, the nearby interior nodes 

relax and flow downhill under the force of gravity. 

Because these simulations are intended to only compare ductile and brittle approximations for 

ice flow, the ductile ice does not fail (no yield envelope has been provided for this stress calculation). 

The brittle ice can and does fail, however, as dictated by the Mohr-Coulomb threshold, with a pattern 20 

shown in Fig. 4. Reasonable values for the yield envelope properties were selected from the literature 

and are listed in Table 1 (Bassis and Jacobs, 2013; Fish and Zaretsky, 1997; Sammonds et al., 1998). 

The plastic strain (or amount of strain a failed element undergoes once it has reached yield stress) for 

the brittle ice shows a very regular, localized pattern. We executed the same experiments with applied 

velocities of 600 and 900 m yr-1 and saw no difference in the spacing or amount of strain. That is, failure 25 

patterns were insensitive to the speed at which the slab was advected down the slope and through the 

bend. During model simulation the strain begins at the base of the slab at the bending fulcrum and 

quickly propagates upward toward the surface. Ice upstream of the bending fulcrum remains fully intact 
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until reaching the thin process zone delineated by the stress and strain rate fields shown in Fig. 3a and c. 

Once the ice has been advected away from this thin zone of high stress and strain rate the accumulation 

of post-failure strain ceases, leaving a pattern of regularly spaced, thin, vertical lines of failed ice, that 

have failed in sequence. 

To ensure that the kinematic velocity conditions are not contaminating the stress field in 5 

Experiment 1 (Fig. 2a), we executed the purely brittle and ductile ice according to the setup for 

Experiment 2 in Fig. 2b, with a flat, freely slipping or frozen bed. We maintain a static grounding line, 

and due to numerical constraints on DES’ remeshing algorithm, we cannot maintain the initial thickness 

gradient; thus, the driving stress decreases throughout the simulation, leading to a model time of 

approximately 3 years. The geometry of the domain is shown in Fig. 2b, where the thickness of the left 10 

side is 1050 m, decreasing linearly over 50 km to 900 m on the right. We found that this initial 

thickness gradient produces a driving stress with reasonable terminus velocities matching to those of 

glaciers with ice shelves in Antarctica (Rignot et al., 2011). We employed the geometric setup in 

Experiment 1 because purely brittle ice initialized as shown in Fig. 2b does not flow; it remains static 

(Fig. 5a and c). Figure 5 shows the effective stress and viscosity of brittle and ductile ice after 1 year of 15 

model time. Again, the brittle ice experiences stresses an order of magnitude higher than the ductile ice 

(Fig. 5a and b) and a much smaller process zone of high stress at the grounding line, and the resulting 

viscosity field after 1 year model time (Fig. 5c and d) shows a large difference: 2 orders of magnitude at 

the grounding line and as much as 4 or 5 upstream. The brittle ice remains largely in its initial 

configuration at the end of 1 year, while the ductile ice has advanced 2700 m past its initial location. For 20 

both cases, a frozen bed results in almost no movement after 10 years model time. 

In the following section we simulate a mixture of these two modes of deformation, brittle and 

ductile simultaneously, and show how brittle shear and tension fractures interact with ductile flow 

depending on stress and strain rate. We term this mixed ductile and brittle behavior as semi-brittle. 

3.2 Semi-brittle behaviour 25 

In computational mechanics, time-dependent semi-brittle behavior (a simultaneous mix of ductile and 

brittle deformation) is often simulated using damage theory (Pralong et al., 2003; Duddu et al., 2013; 
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Krug et al, 2014, 2015; Borstad et al., 2016). In these recent models, stresses are approximated using 

viscoelasticity (Pralong et al., 2003; Duddu et al., 2013) or simply viscous friction (Borstad et al., 

2016), and a calculation is carried throughout to determine a scalar damage variable that varies between 

0 and 1 (0 for perfectly virgin ice, 1 for completely fractured). The theory relies on the assumption of 

recovery (via inversion) of a critical strain or strain-rate value after which ice begins to accumulate 5 

damage. Here we want to investigate the partitioning of viscous or ductile ice flow and brittle failure 

under boundary conditions that promote the formation of basal crevasses at glacier grounding lines – 

areas of fast ice movement and flexure. We suggest this represents an advance from previous damage-

centric models where damage is estimated either in static snapshots throughout time (Borstad et al., 

2016) for entire ice sheets or in completely time-dependent but small-strain conditions, as in Duddu et 10 

al., 2013 (i.e., the domain was not characterized by strains exceeding 100 % with advecting ice).  

In glaciological literature there is evidence for a transition from ductile flow to brittle failure 

depending on the applied strain rate: specimens of ice experiencing low strain rate flow in a ductile 

manner, with viscosities adhering to Eq. 7, and those straining faster than a laboratory observed value of 

10-7 s-1 will fail in a brittle manner (Schulson and Duval, 2009, chapter 9). Simply following these 15 

observations: DES selects either the ductile or brittle constitutive update based on the local strain rate 

field (see the steps in the pseudo-code, Fig. 1). Elements in the domain with a strain rate less than 10-7 s-

1 are approximated as ductile (or Maxwell viscoelastic) and elements straining faster are approximated 

as brittle (or Mohr-Coulomb elastoplastic). The semi-brittle rheology employed here is supported by 

laboratory data that show that a stiffening of ice at a high strain rate will be accompanied by fracture 20 

only at correspondingly high tensile stress (from 105 to 106 Pa) (Bassis and Jacobs, 2013; Schulson and 

Duval, 2009). The strain rate dependent nature of the transition from ductile to brittle implies that – 

depending on the viscosity – fracture in ice occurs on time scales of less than a few seconds to hours, 

which DES easily resolves. Appendix A presents the weakening parameters used to calibrate semi-

brittle ice in DES against laboratory-derived strain- and strain-rate- versus-time curves, as well as lists 25 

all relevant material and numerical parameters that reproduce this behavior (following essentially the 

same exercise in Duddu and Waisman, 2012). Most important, we recover the value of plastic strain that 

indicates when semi-brittle ice has ruptured. Appendix B shows the results of DES executed according 
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to Experiment E (Haut Glacier d’Arolla) from the ISMIP-HOM intercomparison project with the values 

obtained from the calibration experiments, to show that semi-brittle ice largely reproduces the behavior 

in this benchmark test. 

We execute DES with semi-brittle ice according to the setup in Experiment 2 for 2 difference 

mesh sizes, 100 and 50 m (computational resources did not allow for 25 m resolution). No ice melting is 5 

applied to these boundaries as this effect is the subject of future work.  

Figure 6 shows the velocity, effective stress, strain rate, and viscosity at 6 months model time. 

Up until this time in the simulation the ice reaches a maximum velocity of about 2 km a-1, after which 

the velocities decrease to 0 due to a loss of driving stress as the ice extends into the floating portion of 

the domain. Stresses at the grounding line in these simulations are high: about 1 MPa at the grounding 10 

line, similar to the behavior we saw in previous experiments (Fig. 3).      

We also determine the distribution of ice failure for the semi-brittle rheology (Fig. 7).  Ice at the 

surface is regularly and heavily broken as the yield strength there is the lowest (this is the case for all 

frictional materials in the vertical plane). As the floating portion of the ice extends further past the 

grounding line the ice thins, allowing for necking at the grounding line and other places the ice has 15 

failed in the floating tongue. This thinning as ice begins to float is a feature of marine-terminating ice 

sheets, and is accentuated in nature by intense basal melting. Toward the end of the simulation the 

floating tongue has accumulated so much strain that it begins to form undulated pinch-and-swell 

structures (Fig. 7). We term this characteristic pinch-and-swell geometry boudins, where we count 18 

boudins that have a mean spacing of 530 m and a standard deviation of 150 m at the end of the 3 year 20 

model run. While the basal crevasses form sequentially, that is – failed ice to the right of the domain are 

older than those to the left – these features develop more fully into the characteristic boudin-like shape 

all at the same time in the model. Once the ice has lost all its driving stress the ice begins to thicken just 

beyond the grounding line, which is a consequence of the boundary conditions and the lack of true 

bedrock below the ice. As in the purely brittle ice in Experiment 2, simulations with a frozen bed 25 

resulted in almost no deformation at all. 
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Computational limitations prevented the simulation of Experiment 2 under quartered resolution, 

and so Fig. 8 shows the result of the same semi-brittle, freely slipping ice after 8 months model time for 

halved resolution. Boudins develop again here, although at much shorter wavelength than for a 

resolution of 100 m: they have a mean spacing of 250 m with a standard deviation of 83 m, 

approximately half that of the coarser experiment. Gone however is the rather jagged, undulating 5 

surface shown in Fig. 8a; instead, Fig. 8b shows that mesh refinement produces a much smoother 

surface in ice that was initially floating in the domain (and did not traverse the grounding line). 

Experiments with 100 m resolution took less than 1 hour to complete, and those with 50 m resolution 

completed in approximately 24 hours. Lastly, to ensure that the unrealistic initial geometry of 

Experiment 2 does not contaminate results, we ran experiments where ice was held in its initial 10 

geometry before flowing out across the grounding line, to allow the effect of elastic shocks to decay. 

Model results were the same for both coarser and finer resolution: boudins formed with the same 

regularity and pattern. 

4 Discussion and conclusion 

The experiments performed in this study are not meant to be exhaustive and wide-reaching; rather, they 15 

were performed to show how a semi-brittle ice-like material responds to very idealized initial and 

boundary conditions. Because we do not actually simulate fractures – ice in DES is represented as a 

continuum material – we must assume that at some level of plastic strain, the ice in a simulation is 

considered broken. Appendix A shows calibration experiments wherein we determined an accumulated 

plastic strain value of .03 is sufficient to consider semi-brittle ice to have ruptured. Zones of intense, 20 

vertical localization in these experiments can be considered to have ruptured for plastic strain values > 

.03 and further, in essence, could represent basal crevasses. These ‘crevasses’ initiate in virgin material 

where the shear and extensional stresses due to bending and increases in velocity are highest and are 

then advected downstream from the grounding line. While Experiment 1 is very simple, the regularly-

spaced zones of failure motivate the use of a semi-brittle material, which is tested under more realistic 25 

conditions in Experiment 2. The initial and boundary conditions of Experiment 2 represent a next step 

toward a more realistic simulation as the ice flow is generated entirely by a gradient in ice thickness and 
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we employ a jump in boundary conditions (from freely slipping or frozen to floating) at the grounding 

line. As this work represents an initial exploration and presentation of the model’s capability, 

simulations that employ a Weertman-style sliding law and the effects of accumulation and ablation are 

left for later studies. For example, the loss of driving stress in the semi-brittle experiment could be 

mitigated by applying a velocity condition on the inflow boundary, or simply by remeshing the 5 

upstream side geometry to its original shape. Our focus here truly is on the effect of rheological choices, 

and with this goal in mind we have attempted to design experiments idealized enough so that 

differences in deformation can truly be attributed to rheology. Similarly, while our simulations are 

carried out under the condition of conservation of energy, we do not explore the effect of changing ice 

temperature on ice flow; rather, we carry out the experiments under this condition to demonstrate that 10 

future experiments will be able to solve both conservation of momentum (with non-zero acceleration) 

and energy without too much computational cost. Simulations presented here ranged in their 

computational cost, from less than one hour to less than one day. Certainly, experiments with even finer 

resolution are left to future work as the computational cost to perform them becomes much higher.  

 One main result from these experiments is the observation that boudins may form as a 15 

consequence of semi-brittle rheology. This observation may appear to be complicated by the fact that 

the boudin size or spacing scale with mesh size. Failure in ice is marked by localized strain, and 

computational strain localization is well-known to be mesh-dependent under rate-independent plasticity, 

which is the brittle rheology implemented in DES. In this sense then ice failure in DES scales with 

element size, and this is consistent with and predicted by rate-independent. Our results however would 20 

be inconsistent with those developed in a theoretical perturbation formalism developed by Bassis and 

Ma (2015), wherein the dominant wavelength for boudin spacing was on the order of ice thickness (our 

experiments here show wavelengths of approximately half to quarter ice thickness). These differences 

might reflect the primary assumptions underpinning the two approaches – one is viscous (although 

allows for a brittle limit) and the other is semi-brittle. Further, the formulation developed by Bassis and 25 

Ma (2015) permits a central role for basal melting within basal crevasses, an undoubtedly crucial 

feature that DES does not implement in a sophisticated way at present. Care should be taken in 

extrapolating results here to real glaciers; these experiments are performed only as an initial exploration 
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of the potential for this kind of rheological framework to aid in understanding patterns of flow and 

failure seen in nature. Certainly, that DES lacks the implementation of Neumann boundary conditions 

indicates that studies where constant ice fluxes must be maintained are best left to other numerical 

models at the moment. More work must also be conducted to understand the competing effects of 

viscoelastic damping and brittle failure propagation. 5 

From very simple model runs we learned there may indeed be a ductile to brittle transition in ice 

that is likely very difficult to capture in many numerical models. Figure 9 indicates how we imagine 

failure and subsequent deformation occurs in floating ice masses in nature: at grounding lines, both an 

increase in ice velocity (due to loss of retaining frictional forces applied by bedrock contact) and an 

application of bending moment (due to tides and the equilibrated response beams and plates exhibit 10 

when they are partially supported by fluid) lead to high stresses and strain rates that initiate ice failure 

from the bottom up (Fig. 9a). As ice accelerates into open ocean it thins, promoting further crack 

propagation, which can be further widened by intrusions of warm, buoyant melt water (Fig. 9b – not 

explored in these experiments). Further, thinning, stretching, and ice melting when simulated with a 

semi-brittle rheology like the one presented here can lead to ice geometries that are like those seen in 15 

nature (Bindschadler et al., 2011; Luckman et al., 2012). Since the location and size of basal crevasses 

can directly impact calving rates by propagating upward through the full thickness of the ice (Logan et 

al., 2013) understanding their evolution and growth may be critical to predicting calving occurrence and 

terminus position. 

Future work with DES must explore the utility of a semi-brittle ice rheology in more realistic 20 

scenarios and with the inclusion of a freely varying grounding line (i.e., one that evolves based on ice 

thickness) and basal melting – two ice dynamic processes incorporated in other numerical models and 

known to be critical processes in glacier and ice sheet retreat. At present this study has shown that the 

assumption of a semi-brittle ice rheology can reproduce the brittle rupture of ice, general ice flow 

characteristics, and idealized patterns of failure in simple situations, and may be recommended as a tool 25 

through which future studies of ice failure related to calving and ice dynamics can be conducted. 
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Appendix A Semi-brittle ice calibration 

To ensure that flow and deformation as represented in DES is reasonable, we calibrated the numerical 

and material parameters of semi-brittle ice to match strain- and strain-rate-versus-time experiments 

performed on laboratory-derived ice (Fig. 10). We essentially followed the same exercise as in Duddu 

and Waisman (2012), in which material parameters are calibrated against deformation curves derived by 5 

Mahrenholtz and Wu (1992). Ice in both the laboratory setting and DES was isothermal at -10 C and 

deformed in uniaxial tension. Semi-brittle ice in DES is initialized in a completely undamaged state. 

The elastic and shear moduli are only slightly temperature dependent (Schulson and Duval, 2009) and 

we neglect this temperature dependence because their contribution to total strain is negligible during 

tertiary creep stages which dominate the length of the experiments, and further because the laboratory 10 

experiments were isothermal. We have not calibrated the model for compressional strain- and strain-

rate-versus-time as our interest is in simulating scenarios where extensional stresses are dominant, as is 

typically assumed when ice is calving or rifting. The model domain is set to the same geometry as that 

of the lab experiments, and ice is subjected to 3 difference stresses: .93, .82, and .64 MPa. Figure 10a 

and b show the initial mesh and final rupture of the semi-brittle ice for an applied stress of .82 MPa. 15 

Figure 10b shows the rupture of semi-brittle ice after approximately 150 hours: from this we see that the 

(overlaid in grey) accumulated plastic strain is > .03 for the ice plug to have ruptured. This represents a 

threshold above which we can consider semi-brittle ice in DES to have failed. Figures 10c and d show 

the weakening that the cohesion and angle of internal friction that reproduce the strain- and strain-rate-

versus-time curves (Fig. 10e and f) produced by Mahrenholtz and Wu (1992) for the 3 different applied 20 

stresses. The material weakens according to the local amount of plastic strain: values of cohesion and 

friction larger than those shown in Fig. 10c and d failed to produce any rupture, while those below 

rupture too fast. Fish and Zaretsky [1997] reported cohesion and internal friction values for ice in 

compression experiments; while the cohesion values they reported are much larger than those suggested 

here (ice is well known to be stronger in compression than in tension) we find our internal friction 25 

angles to be within theirs. Experiments were also performed for ductile-to-brittle strain-rate thresholds 

of 10-8 and 10-6 s-1, with similar findings: the lower strain-rate threshold produced rupture too fast, and 

the higher none at all.  
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Appendix B Benchmark: Haut Glacier d’Arolla 

In Choi et al. (2013), DES performed the benchmark tests for a range of material or rheological 

behaviors to validate and verify this numerical method. These tests included: 1 – flexure of a finite-

length elastic plate; 2 – thermal diffusion of a half-space cooling plate; 3 – stress build-up in a Maxwell 

viscoelastic material; 4 – Rayleigh-Taylor instability; and 5 – Mohr-Coulomb oedometer test. Thus 5 

DES has been verified and validated and is already in use in fields relating to crustal deformation (Ta et 

al., 2015). Despite this prior exercise in verification and validation demonstrating that DES’ numerics 

are well understood, we executed DES according to a benchmark test presented by Pattyn et al. (2008) 

in the ISMIP-HOM study in the spirit of presenting DES as a numerical model suitable for the 

community of glaciologists. All experiments in Pattyn et al. (2008) were designed to be isothermal and 10 

many employ boundary conditions that DES unfortunately cannot accommodate due to its entirely 

mobile mesh (e.g., periodic boundary conditions). However, Experiment E (Haut Glacier d’Arolla) calls 

for boundary conditions that DES can easily employ, in 2 tests: first, a completely frozen bed 

everywhere in the domain, and second, a completely frozen bed except for 2200 ≤ x ≤ 2500 m in the 

domain, where ice slips freely. The flow-law rate factor is set to 𝐴 =  10!!" 𝑃𝑎!! 𝑎!! , and the 15 

resolution is suggested to be 100 m. DES performed both tests with 10 m resolution, and the results are 

shown in Fig. 11. Given that DES has a completely different constitutive framework than the FS models 

that participated in the ISMIP-HOM suite of experiments, the model does remarkably well with small 

misfit compared to the suite of FS models that participated in the exercise, and within or close to the 

standard deviation of those models. 20 
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Symbol	 Constant	 Value	 Units	

ρ	 Density	of	ice	 911	 kg	m-3	

n	 Power	in	Glen’s	Law	 3	 -	

A	 Multiplier	in	Paterson	and	Budd	(1982)	

if	T	<	263	K		 3.615	x	10-13	 s-1	Pa-3	

if	T	≥	263	K	 1.733	x	103	 s-1	Pa-3	

Q	 Activation	energy	for	creep	in	Paterson	and	Budd	(1982)	

if	T	<	263	 6	x	104	 J	mol-1	

if	T	≥	263	K	 13.9	x	104	 J	mol-1	

σT	 Strength	in	tension	 1		 MPa	

K	 Bulk	modulus		 9500	 MPa	

cp		 Heat	capacity	 2000	 J	kg-1	K-1	

k	 Thermal	conductivity	 2.1	 W	m-1	K-1	

𝜺𝒕𝒓𝒂𝒏𝒔𝒊𝒕𝒊𝒐𝒏		 Ductile-to-brittle	transition	threshold	 1	x	10-7	 s-1	

uchar	 Characteristic	speed	 1	x	10-6	 m	s-1	

c	 Inertial	scaling	 2	x	105	 -	

𝝌 		 Inertial	damping	 .8	 -	

Table 1: Numerical and material parameters used in model runs whose values remained constant. 
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Figure 1: Schematic of one time step in DES. 

 

	
Figure 2: Schematic of experiments. (a) Experiments performed with a purely ductile or brittle rheology are initialized as a 5 
parallel-sided slab that is advected down a plane and forced flat at 10 km. (b) Setup for semi-brittle rheology: a horizontal domain 
of 50 km and a fixed grounding line at 48 km, with an initial 2 km of floating tongue. The left-hand side horizontal velocity is fixed 
at zero and the bottom side upstream (left) of the grounding line vertical velocity is fixed at zero (this type of boundary condition is 
represented schematically by open black circles). Hyrdrostatic and tidal stress is applied to the bottom and right-hand side of the 
domain downstream (right) of the grounding line. 10 
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Figure 3: Comparisons of purely brittle (a, c, e) and purely ductile (b, d, f) tilted slab experiments. (a, b) Effective stress, (c, d) 
effective strain rate, (e, f) viscosity after 20 years model time. While the boundary nodes are given prescribed velocities, the 
interior and surface nodes move freely; in the purely ductile case this results in the surface depression seen on the left side. The left 
boundary nodes are effectively pinned by the prescribed velocity but the ice slumps downhill due to gravity. The rather rough 5 
surface (most pronounced in the ductile case, though still present in the brittle case) is an artifact of low resolution that disappears 
in experiments with higher resolution. Overall the brittle rheology results in a narrow process zone of high stress and deformation, 
while the ductile rheology has a more diffuse area of strain and lower stresses. 
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Figure 4: Simulation of brittle ice slab being advected down the inclined plane throughout the model time. Pink vertical line 
denotes the change in the angle of applied velocity boundary conditions from 3 degrees to flat. Black ice indicates completely intact 
ice, while grey represents ice that has failed. Grey vertical lines appear with regularity. 5 

 
Figure 5: Effective stresses in (a) purely brittle and (b) purely ductile ice for a wedge experiments after 1 year of model time. The 
left nodes vary freely in the vertical and are fixed to 0 in the horizontal, and the basal boundary is free-slip. There is an order of 
magnitude difference in stress, which is due entirely to the gradient in thickness. Again, brittle ice experiences a small process zone 
of high stress immediately at the grounding line (black arrow) where there is a transition from freely slipping ice to a buoyancy 10 
stress condition with a 1 m diurnal tidal forcing, and the forces due to bending are high. Ductile ice also experiences an increase in 
stress at this location, although the transition is not as sharp. Most notably, flow in brittle ice is negligible compared to ductile ice 
after 1 year, owing to the very large (as much as 5 orders of magnitude) difference in viscosity between the (c) brittle and (d) 
ductile ice. 
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Figure 6: Simulation of semi-brittle wedge of ice after 6 months model time, undergoing a jump in boundary conditions from freely 
slipping on the basal side (left of grounding line – dashed arrow) to floating in the ocean (right of grounding line). The horizontal 
velocity (a) is fixed at x = 0 and free elsewhere, while the vertical velocity is free at x = 0 and fixed to zero up to the grounding line. 
The gradient in thickness drives the flow of ice over the grounding line where ice experiences a transition to stress boundary 5 
conditions that represent floatation and 1 m tides. Dashed bars in the floating tongue show the development of boudins. The 
effective stress (b) and strain rate (c) fields both show orders of magnitude increases at the grounding line: the jump in strain rate 
allows the ice to be evaluated as brittle in DES and the associated stresses are high enough to reach yield (see Fig. 6). The 
corresponding viscosities (d) just upstream of the grounding line are high and decrease 3 orders of magnitude as the ice expands 
out into the ocean under its own weight. 10 
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Figure 7: Plastic strain over 2.5 years model time. Ice fails in tension at the surface near the terminus with regularity at the 
grounding line where hydrostatic stress is applied (in pink). Ice forms boudin-like features after accommodating a large amount of 
strain.  

 5 
Figure 8: Geometries of the mesh for a resolution of (a) 100 m and (b) 50 m. The pinch and well features (“boudins”) appear with 
regularity (white bars) and decreasing size upon mesh refinement. Computational limitations precluded running the simulations at 
quartered resolution. 
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Figure 9: Schematic of how semi-brittle deformation could proceed in nature, through space and time. (a) Initial failure forms due 
to high strain rates as ice accelerates across the grounding line, with the added bending due to tidal motion. (b) Ice continues to 
accelerate as it floats without resistance into the ocean; (not simulated here) melting from hot, buoyant water enters cracks and 
erodes crack walls, widening and thinning the ice. (c) Ice reaching its terminal speed at the front undergoes both semi-brittle 5 
deformation and ductile deformation. Semi-brittle failure occurs where ice has previously failed (in thin spots) and further thins 
the floating tongue, while ice between surface cracks and bottom cracks undergoes ductile deformation. The geometry produced 
by these processes resembles boudins, which eventually calve into the ocean. 
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Figure 10: Calibration experiments for semi-brittle ice based on laboratory-derived data presented in Mahrenholtz and Wu 
(1992). (a) Initial mesh and dimensions and (b) effective strain after failure of semi-brittle ice with .82 MPa applied vertical stress. 
Overlaid on top is the accumulated plastic strain (grey) of elements > .03. Because the grey extends horizontally throughout the ice 
plug we consider an accumulated plastic strain of .03 or greater to represent ruptured ice. (c) Cohesion and (d) angle of internal 5 
friction parameters that are needed as a function of accumulated plastic strain to reproduce the (e) strain and (f) strain-rate-
versus-time curves presented in Mahrenholtz and Wu (1992). Open black points are laboratory-derived data and coloured lines 
are from DES experiments.  

 
Figure 11: DES with semi-brittle ice executed according to Experiment E presented by Pattyn et al. (2008). (a) Surface velocity and 10 
(b) basal shear stress for ice completely frozen to the bed, and (c) surface velocity and (d) basal shear stress for ice with a freely 
slipping patch for a small portion of the domain. 
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